A toolbox for lattice spin-models with polar molecules in optical lattices

Andrea Micheli
Gavin K. Brennen
Peter Zoller

quant-ph/0512222

Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences

Institute for Theoretical Physics, University of Innsbruck
Lattice Spin Models

- Used in CMP as simplified models to
 - describe behavior of more complicated system
 - long range order, phase transitions, broken symmetries, ...

- Can we encode quantum information robustly in many body spin states?
 - Desired features
 - Degenerate ground states encoding logical states with energy gap to excited states
 - Logical states coupled only by highly non local operator
 - Leakage errors that couple to excited states correctable by quasi local operators (local stabilizers)

- Topologically ordered ground-states
 - Robust to arbitrary perturbations in the underlying Hamiltonian
 - no long-range pair-wise correlations, rather
 long-range correlations in strings of operators

- These types of spin models are highly anisotropic in spin and space, often involve N>2 body interactions

- Challenge: find physical systems where
 - these models can be build and
 - their properties can be probed
Outline

- Brief! introduction to topological order
- Description of polar molecules --how to control them
- Building spin models with polar molecules
 - This is not a simulation, i.e. does not involve short time pulse sequencing
- Protocol for building two spin models that encode noise protected quantum memory
 - One on a square lattice with two fold degenerate states
 - One on a honeycomb lattice with topologically protected ground states
- Conclusions
Topologically ordered states

- **Definition:**
 - Hilbert space of n, d-level spins
 \[\mathcal{H} = (\mathbb{C}^d)^\otimes n \]
 - Isomorphic to
 \[\mathcal{H} = \mathbb{C}^{C_1(\Gamma, \mathbb{F}_d)} \]
 - Topologically ordered if ground state degeneracy reflects the homology
 \[H_1(\Gamma, \mathbb{F}_d) = \ker(\partial_1)/\text{image}(\partial_2) \]
 - i.e. ground states described by equivalence classes of cycles on the lattice that are not themselves boundaries of areas
 \[\dim(\mathcal{H}_g) = d^{2g} \]

- **Example:** Qubits represented by edges on a planar lattice with two holes
 - Code subspace is two qubits:
 \[H_1(C; \mathbb{Z}_2)/\bigoplus_{f} H_1(f, \partial f; \mathbb{Z}_2) \]
 - Ground states invariant under loops of Pauli
 - operators that are contractible
 - Hamiltonian
 \[H = J \left(\sum_{+} (\sigma^z)^\otimes 4 + \sum_{\Box} (\sigma^x)^\otimes 4 \right) \]
 \[n = |E| \]
Realization with molecular quantum gases:
Physical Ingredients

- lattices:
 - prepare exactly one molecule per site in optical lattice, e.g. starting from a BEC.
 - cf. AMO-Hubbard models

- spin by internal structure of:
 - rotating hetero-nuclear molecules
 - dipole-moment in electronic ground state

- spin-spin interactions
 - via dipole-dipole interactions
 - strong anisotropic off-site interactions
Polar molecules*

- System: $^2\Sigma_{1/2}$ hetero-nuclear molecules in electronic-vibrational ground-states
 - Alkaline-earth monohalogenides (CaF, CaCl, ...)
 - single electron in outer shell
- Look like alkali-atoms ...
 - can be cooled and trapped in optical lattices
 - ground states as spin-1/2-system (neglect hyperfine)
- But: rotation and electric dipole moment in el. gs

here e.g. CaF

\[\text{el.spin} \rightarrow S \rightarrow e^- \]

\[\text{optical excitation} \]

\[\text{Alkali-like} \]

\[\text{dipole moment} \]

\[\text{talks to optical radiation, like an alkali atom} \]

\[\text{talks to microwave radiation \ldots as rotations on } \sim 20 \text{ GHz} \]

* exp: Demille, Doyle, Mejer, Rempe, ...
Rotational spectra of a single molecule

- single hetero-nuclear molecule (without spin)

\[H = B N^2 \]

\[| N, M_N \rangle \]

\[E_N = B N(N+1) \]

- dipole-moment \(d \sim 10 \) Debye 😊
- rotation \(B \sim 10 \) GHz ... anharmonic 😊
- essentially no spontaneous emission 😊
 black-body scatt. rate \(\Gamma N(kT) \sim 10^{-3} \)Hz 😊
 i.e. excited states useable 😊
Rotational spectra of a single molecule

- rigid rotor
 \[H = B \, N^2 \]
 \[|N, M_N\rangle \]
 \[E_N = B \, N(N+1) \]

- add spin-rotation coupling
 \[H = B \, N^2 + \gamma \, N \cdot S \]
 \[|N, J, M_J\rangle \quad (J=|N\pm 1/2|) \]
 \[E_{N,J=N\pm 1/2} = B \, N(N+1) + \begin{cases} +\gamma N/2 \\ -\gamma(N+1)/2 \end{cases} \]

N=2: "D"

N=1: "P"

N=0: "S"

2B \sim 20GHz

rotational ground state...

N=0: "S_1/2" J=1/2

N=1: "P_1/2" J=1/2

N=2: "D_{3/2}" "D_{5/2}" J=3/2 J=5/2

3\gamma/2 \sim 60MHz

... as spin-1/2-system
Two polar molecules: dipole-dipole interactions

- interactions of two polar molecules
 \[V_{dd} = \frac{\vec{d}_1 \cdot \vec{d}_2 - 3(\vec{d}_1 \cdot \vec{e}_b)(\vec{e}_b \cdot \vec{d}_2)}{r^3} \]

- features of dipole-dipole interaction:
 - long range \(\sim 1/r^3 \)
 - angular dependence (anisotropic)

- include spin-rotation coupling in adiabatic potentials for molecular dimers

- At typical optical lattice spacing: \(\lambda/2 \sim r_\gamma = (2d^2/\gamma)^{1/3} \)
 - rotation of dimers strongly coupled to spins
 - Hund's case (c) excited states, \(\{\alpha(r)\} \quad (Y = \Sigma_{i=1,2} M_{N,i} + M_{S,i}) \)
 - solvable in closed form due to symmetries
Two molecules: Adiabatic Potentials $E_\lambda(r)$

- Adiabatic potential curves for two dimers (rotor + spin-rotation + dipole-dipole)

\[
\begin{align*}
E/2B &= \frac{\gamma}{4B}^{1/3} r / r_\gamma \\
&= \frac{\gamma}{4B}^{1/3} \left(\frac{d^2}{3B} \right)^{1/3} \\
&\approx 300 \text{ nm}
\end{align*}
\]

- In joint rotational ground-state (S+S) only van der Waals interaction
 - weak and (essentially) spin-independent
 \[
 V_{\text{eff}}(r) = -\frac{C_6}{r_\gamma^6} \left[1 + \left(\frac{\gamma}{2B} \right)^2 (S_1 \cdot S_2 - S_1^b S_2^b) + O \left(\frac{\gamma}{2B} \right)^4 \right] \\
 C_6 = \frac{d^4}{6B}
 \]
 - while ground + excited (S+P) have strong resonant dipole-dipole interactions
 - competition with spin-rotation coupling at lattice spacings $r \sim \lambda/2$
 \[
 \{|Y\rangle_{g,u}^{\pm}(r)\} \quad (Y=\sum_{i=1,2} M_{N_i}^{\pm} + M_{S_i}^{\pm})
 \]
Microwave coupling with tunable spin patterns

- Adiabatic mixing with dipole-dipole coupled states by microwave fields $E(t)$

Mathematical expressions:

\[
H_{\text{eff}}(r) = \sum_{i,f} \sum_{\lambda(r)} \frac{\langle g_f | H_{\text{mf}} | \lambda(r) \rangle \langle \lambda(r) | H_{\text{mf}} | g_i \rangle}{\hbar \omega_F - E(\lambda(r))} |g_f \rangle \langle g_i|
\]

\[
H_{\text{mf}} = -\sum_{j=1}^{2} \vec{d}_j \cdot \vec{E}(\vec{x}_j, t) = -\hbar \Omega \sum_{j} \vec{d}_j \cdot \vec{e}_F e^{-i(\vec{k}_F \cdot \vec{x}_j - \omega_F t)}/d + h.c.
\]
Microwave coupling with tunable spin patterns

- Adiabatic mixing with dipole-dipole coupled states by microwave fields

\[H_{\text{eff}}(r) = \sum \sum_{i, f} \frac{\langle g_f | H_{\text{mf}} | \lambda(r) \rangle \langle \lambda(r) | H_{\text{mf}} | g_i \rangle}{\hbar \omega_F - E(\lambda(r))} | g_f \rangle | g_i \rangle \]

\[H_{\text{spin}} = \langle H_{\text{eff}}(r) \rangle_{\text{rel}} = \sum_{\alpha, \beta} A_{\alpha, \beta} \sigma^\alpha \sigma^\beta \]

- Feature 1: Tuning close to a resonance one select a specific spin pattern, e.g.

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Resonance</th>
<th>Spin pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{x})</td>
<td>2_g</td>
<td>(\sigma^z \sigma^z)</td>
</tr>
<tr>
<td>(\hat{z})</td>
<td>0^+_u</td>
<td>(\tilde{\sigma} \cdot \tilde{\sigma})</td>
</tr>
<tr>
<td>(\hat{z})</td>
<td>0^-_g</td>
<td>(\sigma^x \sigma^x + \sigma^y \sigma^y - \sigma^z \sigma^z)</td>
</tr>
<tr>
<td>(\hat{y})</td>
<td>0^-_g</td>
<td>(\sigma^x \sigma^x - \sigma^y \sigma^y + \sigma^z \sigma^z)</td>
</tr>
<tr>
<td>(\hat{y})</td>
<td>0^+_g</td>
<td>(-\sigma^x \sigma^x + \sigma^y \sigma^y + \sigma^z \sigma^z)</td>
</tr>
<tr>
<td>((\hat{y} - \hat{x})/\sqrt{2})</td>
<td>0^+_g</td>
<td>(-\sigma^x \sigma^x - \sigma^y \sigma^y + \sigma^z \sigma^z)</td>
</tr>
</tbody>
</table>

polarization rel. to body axis, here set \(\vec{e}_b = \hat{z} \)
Lattice Spin Models using multiple fields

- **Feature 2:** for a *multifrequency* field spin textures are *additive* => toolbox

1D XYZ model

\[H = \sum_{\langle i,j \rangle} J_x \sigma_i^x \sigma_j^x + J_y \sigma_i^y \sigma_j^y + J_z \sigma_i^z \sigma_j^z \]

2D Ising model

\[H = \sum_{\langle i,j \rangle} J \sigma_i^z \sigma_j^z \]

3D Heisenberg model

\[H = \sum_{\langle i,j \rangle} J \vec{\sigma}_i \cdot \vec{\sigma}_j \]

Typical coupling strengths: \(|J| \sim 10 - 100\text{kHz}\)

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Resonance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{z})</td>
<td>0(_u^+)</td>
</tr>
<tr>
<td>(\hat{y})</td>
<td>0(_g^-)</td>
</tr>
<tr>
<td>(\hat{y})</td>
<td>0(_g^+)</td>
</tr>
<tr>
<td>(\hat{x})</td>
<td>2(_g)</td>
</tr>
<tr>
<td>(\hat{x})</td>
<td>0(_u^+)</td>
</tr>
<tr>
<td>(\hat{z})</td>
<td>0(_g^-)</td>
</tr>
<tr>
<td>(\hat{z})</td>
<td>0(_u^+)</td>
</tr>
<tr>
<td>(\hat{x})</td>
<td>1(_u)</td>
</tr>
</tbody>
</table>

sign adjustable by tuning above or below given resonance
Model I: Error protected ground states

- Model on 2D square lattice

\[H_{\text{spin}}^{(1)} = \sum_{i=1}^{\ell-1} \sum_{j=1}^{\ell-1} J(\sigma_{i,j}^z \sigma_{i,j+1}^z + \cos \zeta \sigma_{i,j}^x \sigma_{i+1,j}^x) \]

- gapped spectrum with 2-fold degenerate ground-state (for \(\zeta \neq \pm \pi/2 \) → \(|0\rangle_L, |1\rangle_L \)
- ground-states robust to local errors up to \(\ell\)-th order
- logical operations correspond to strings of operators along row or column
- tunable coupling by rotating polarization of the driving microwave field \(E(t) \) by angle \(\zeta \)

\(J_z \sum_{i,j} \sigma_{i,j}^z \sigma_{i,j+1}^z \)

\[\text{Gap } \Delta/J = (E_n - E_0)/J \]

\(J_x \sum_{i,j} \sigma_{i,j}^x \sigma_{i+1,j}^x \)
Spatial orientation dependent Ising interactions

- Realization by tuning MW far blue from bare $S_{1/2} \leftrightarrow P_{3/2}$ transition

- Interaction given effectively by interplay of 3 resonances
 - Outer two yield single effective interaction
 - Optimal regime near 2_g as spin-texture

- Feature 3: Can choose the range of the interaction for a given spin texture,
 (cf. reminiscent of optical shielding)
Results: Design and verification on 3x3 lattice

- Noise resilience as measured by rms magnetisation in ground manifold
 - as function of the detuning
 - give worst case scenario for logical bit flip errors / phase flip errors
 - protected region near 2_g

- Verification by absorption spectroscopy
 - for $\zeta=0$ (polarization along the plane)
 - probe gap at $J/2$
 - for $\zeta=\pi/2$ (polarization along the plane)
 - gap disappears and excitations as spin-waves S^x
Model II: Topological order

- Model on a 2D honeycomb lattice*

\[H_{\text{spin}}^{(\text{II})} = J_\perp \sum_{x-\text{links}} \sigma_j^x \sigma_k^x + J_\perp \sum_{y-\text{links}} \sigma_j^y \sigma_k^y + J_z \sum_{z-\text{links}} \sigma_j^z \sigma_k^z \]

- exactly solvable model
- two phases:
 - \(|J_z| > 2|J_\perp| \): gapped phase with abelian anyonic excitations
 - \(|J_z| \leq 2|J_\perp| \): gapless phase which becomes gapped in presence of a magnetic field with nonabelian anyonic excitations
- Effective Hamiltonian in gapped phase with \(|J_z| \gg |J_\perp| \) encodes topologically protected memory**

\[H_{\text{eff,spin}}^{(\text{II})} = J_{\text{eff}} \left(\sum_{i=1}^{4} \prod_{i=1}^{4} \sigma_i^x + \sum_{i=1}^{4} \prod_{i=1}^{4} \sigma_i^z \right) \]

\[J_{\text{eff}} = \frac{J_\perp J_z}{16J_4^z} \]
Construction in an optical lattice

- Implementation in $Q^{*}bert$ lattice:
 - Two staggered triangular lattices
 - Nearest neighbors give honeycombs
 - Their edges form orthogonal triads

- Realization with 3 fields: (several possible choices)
 shown when all 3 being z polarized, resp. near 0^{-g}, 1^{-g}, 2^{-g}

Spin pattern

Coupling strengths $	J_{lr}	$			
$\sigma^z \sigma^z$	$< 10^{-2}	J_z	$		
$\sigma^x \sigma^x$	$< 10^{-3}	J_z	$		
$\sigma^y \sigma^y$	$	J_{\perp}	= 0.4	J_z	$

Operator fidelity (on a 4 spin configuration)

$\sup[||H_{spin} - H^{(II)}_{spin} |\psi||_2; \langle \psi | \psi \rangle = 1] = 10^{-4} |J_z|$
Measuring quasi-particle statistics

- Statistical phase measured by computing relative phase between a path with a braid that cannot be disentangled and one that can.

- Particle types depend on character of the excitation.

- Physical implementation of quasiparticle creation and transport using a different species atom or molecule trapped in a different lattice.

- Guide for braiding operations can be preprepared using state preparation on the ancillaes.
Summary

- **Lattice Spin Models**
 - Realization with Polar Molecules & optical lattices

- **Engineering spin-spin interactions with polar molecules**
 - Structure of a single polar molecule
 - Electronic, vibrational, rotational and spin degrees of freedom
 - Electronic Dipole-moments in ro-vibrational ground-states
 - Interactions between two (unpolarized) rotating polar molecules
 - Competing Dipole-Dipole Interaction and Spin-rotation
 - VdW & Resonant transition between Hund's Cases for Dimers of dipoles
 - Effective spin-spin interactions via long-range resonances

- **Examples of Lattice Spin Models**
 - The Duocot *et al.* Model
 - Error protected degenerate subspace (macroscopic # spins).
 - The Kitaev Model
 - From gapped system with abelian excitations to
 - To ungapped system with nonabelian excitations