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Talk outline

Part I: One-way quantum computer (QCC) and cluster states

What is the one-way quantum computer?

Part II: Fault-tolerance

Which methods are used? What is the threshold?

3D cluster state =
fault-tolerant substrate

Logic from non-trivial
boundary conditions



Part I:

The one-way quantum computer and cluster states



The one-way quantum computer

measurement of Z (�), X (↑), cosαX + sinαY (↗)

• Universal computational resource: cluster state.

• Information written onto the cluster, processed and

read out by one-qubit measurements only.



Cluster states - creation

1. Prepare product state
⊗
a∈C

|0〉a + |1〉a√
2

on d-dimensional qubit

lattice C.

2. Apply the Ising interaction for a fixed time T (conditional

phase of π accumulated).



Cluster states - simple examples

|ψ〉2 = |0〉1|+〉2 + |1〉1|−〉2
Bell state

|ψ〉3 = |+〉1|0〉2|+〉3 + |−〉1|1〉2|−〉3
GHZ-state

|ψ〉4 = |0〉1|+〉2|0〉3|+〉4 + |0〉1|−〉2|1〉3|−〉4 +
+ |1〉1|−〉2|0〉3|+〉4 + |1〉1|+〉2|1〉3|−〉4

Number of terms exponential in number of qubits!



Cluster states - definition

A cluster state |φ〉C on a cluster C is the single common eigenstate

of the stabilizer operators

Ka = Xa
⊗

b∈N(a)

Zb, ∀a ∈ C, (1)

where b ∈ N(a) if a,b are spatial next neighbors in C.

Z-Rule:

Z-measurement

removes qubit
from the cluster



Cluster states - experiment

Cold atoms in optical

lattices

Coherent interaction among

neighboring atoms

Greiner, Mandel, Esslinger, Hänsch, and Bloch, Nature 415, 39-44 (2002),

Greiner, Mandel, Hänsch and Bloch, Nature, 419, 51-54 (2002).



Part II:

Fault-tolerance



The threshold theorem

Theorem∗: Assume a suitable noise model for a universal quan-

tum computer. If the noise per elementary operation is be-

low a constant non-zero threshold ε then arbitrarily long quan-

tum computations can be performed with arbitrary accuracy at

small operational overhead.

What is a suitable
noise model?

What is the value of
ε?

What is a small
overhead?

Standard:
Indepedent proba-
bilistic errors

ε = 10−10..10−2 Polylogarithmic.
S −→ S logγS

Generalized Improve threshold! Reduce overhead!

*: Aharonov & Ben-Or (1996), Kitaev (1997), Knill & Laflamme & Zurek

(1998), Aliferis & Gottesman & Preskill (2005)



Known threshold values
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!: 1014 bare gates for 1000 encoded gates [Knill, (2004)]

[1] Knill, (2005); [2] Zalka (1999); [3] Dawson & Nielsen (2005); [4] Aliferis

& Gottesman & Preskill (2005), [5] Raussendorf & Harrington & Goyal,

quant-ph/0510135; [6] Cross (unpublished), [7] Aharonov & Ben-Or (1999)



Fault-tolerant one-way QC

Main idea: Replace 2D cluster state by 3D cluster state!

3D cluster state = fault-

tolerant substrate

Logic from non-trivial

boundary conditions



Macroscopic view

Three cluster regions:

V (Vacuum), D (Defect) and S (Singular qubits).

Qubits q ∈ V : local X-measurements,
Qubits q ∈ D: local Z-measurements,
Qubits q ∈ S: local measurements of X±Y√

2
.



Microscopic view
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cluster edges

elementary cell of L

qubit location: (even, odd, odd) - face of L,
qubit location: (odd, odd, even) - edge of L,
syndrome location: (odd, odd, odd) - cube of L,
syndrome location: (even, even, even) - site of L.



Lattice duality L ←→ L

Translation by vector (1,1,1)T :

• Cluster C invariant,

• L (primal) −→ L (dual).

face of L − edge of L,
edge of L − face of L,
site of L − cube of L,

cube of L − site of L,

(2)

• Many objects in this scheme exist as ‘primal’ and ‘dual’.



Key to scheme



Surface codes
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• Errors are represented by chains.

• Homologically equivalent chains correspond to physically

equivalent errors.

• Harmfull errors stretch across the entire lattice (rare events).

A. Kitaev,quant-ph/9707021 (1997).



QCC: topological error correction in V

cluster

harmful errorelementary cell

• Errors are represented by chains.

• Homologically equivalent chains correspond to physically

equivalent errors.

• Harmfull errors stretch across the entire lattice.

-> Leads to Random plaquette Z2-gauge model (RPGM) [1].

[1] Dennis et al., quant-ph/0110143 (2001).



RPGM: schematic phase diagram

Map error correction to statistical mechanics:

EC

no EC Nishimori line

p

T

optimal
Error correction [1]

Minimum weight
chain matching [2]

3%

[1] T. Ohno et al., quant-ph/0401101 (2004). [2] E. Dennis et al., quant-ph/0110143

(2001); J. Edmonds, Canadian J. Math. 17, 449 (1965).



Error model:

• Cluster state created in a 4-step sequence of Λ(Z)-gates

from product state
⊗
a∈C |+〉a.

• Error sources:

– |+〉-preparation: Perfect preparation followed by 1-qubit par-

tially depolarizing noise with probability pP .

– Λ(Z)-gates: Perfect gates followed by 2-qubit partially depolar-

izing noise with probability p2.

– Memory: 1-qubit partially depolarizing noise with probability pS

per time step.

– Measurement: Perfect measurement preceeded by 1-qubit par-

tially depolarizing noise with probability pM .

• 3D cluster state created in slices of fixed thickness.

• Instant classical processing.



Fault-tolerance threshold in V

p2,c = 9.6× 10−3, for pP = pS = pM = 0,
pc = 5.8× 10−3, for pP = pS = pM = p2 =: p.

(3)



Fault-tolerant quantum logic



Surface codes
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• Storage capacity of the code depends upon the topology of

the code surface.



Surface codes

missing site stabilizer X
X

X
X

missing plaquette stabilizer

Z
Z

Z
Z

dual hole

primal hole

• There are two types of holes: primal and dual.

• A pair of same-type holes constitutes a qubit.



Defects for quantum logic

Defects are the extension of holes
in the code plane to the third dimension.



Defects for quantum logic

A quantum circuit is encoded in the way
primal and dual defects are wound around another.



Quantum gates, Part I



• Displayed fault-tolerant gates are not universal.

• Need one non-Clifford element:

fault-tolerant measurement of X±Y√
2

.

Singular Qubits



Quantum gates, Part II

Encoder and decoder for surface code:

singular
qubit

Encoder Decoder



Quantum gates, Part II
A circuit for code-conversion:

Reed-Muller
   encoder

CNOTs,
|0  , |+  -preps.

qubit, encoded with
surface code

qubit, encoded with
Reed-Muller code

• Reed-Muller code: Fault-tolerant measurement of X±Y√
2

via

local measurements of Xa±Ya√
2

and classical post-processing.

-> Fault-tolerant universal gate set complete.



Fault-tolerance threshold in S

• Topological error correction breaks down near the S-qubits.

• Leads to an effective error on S-qubits.

• This effective error is local.



Fault-tolerance threshold in S

Error budget from Reed-Muller concatenation threshold:
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4

3
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4

3
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1

105
. (4)

Specific parameter choices:

p2,c = 2.9× 10−3, for pP = pS = pM = 0,
pc = 1.1× 10−3, for pP = pS = pM = p2 =: p.

(5)

The Reed-Muller code sets the overall threshold.



Remark 1 - mapping to 2D

• Make “simulated time” real time. Entangle slice-wise.

→ 2D qubit lattice suffices.



Remark 2 - Homology

Undetectable errors ∼= 1-cycles,

measured correlations ∼= 2-cycles.



Summary

[quant-ph/0510135]

Numbers:

• Fault-tolerance threshold of 1.1 × 10−3 in 3D local ar-

chitecture.

Methods:

• Cluster states in three spatial dimensions provide intrin-

sic topological error correction.


