A fault-tolerant one-way quantum computer

Robert Raussendorf¹, Jim Harrington² and Kovid Goyal³

1: Perimeter Institute,

2: Los Alamos National Laboratory,

3: California Institute of Technology.

BIRS @Banff Center, July 31, 2006

Talk outline

Part I: One-way quantum computer $(QC_{\mathcal{C}})$ and cluster states What is the one-way quantum computer?

Part II: Fault-tolerance

Which methods are used? What is the threshold?

Part I:

The one-way quantum computer and cluster states

The one-way quantum computer

measurement of Z (\odot), X (\uparrow), $\cos \alpha X + \sin \alpha Y$ (\nearrow)

- Universal computational resource: cluster state.
- Information written onto the cluster, processed and read out by one-qubit measurements only.

Cluster states - creation

- 1. Prepare product state $\bigotimes_{a\in\mathcal{C}} \frac{|0\rangle_a + |1\rangle_a}{\sqrt{2}}$ on d-dimensional qubit lattice \mathcal{C} .
- 2. Apply the Ising interaction for a fixed time T (conditional phase of π accumulated).

Cluster states - simple examples

$$|\psi\rangle_2 = |0\rangle_1|+\rangle_2 + |1\rangle_1|-\rangle_2$$

Bell state

$$|\psi\rangle_3 = |+\rangle_1|0\rangle_2|+\rangle_3 + |-\rangle_1|1\rangle_2|-\rangle_3$$

GHZ-state

$$|\psi\rangle_4 = |0\rangle_1|+\rangle_2|0\rangle_3|+\rangle_4+|0\rangle_1|-\rangle_2|1\rangle_3|-\rangle_4+ + |1\rangle_1|-\rangle_2|0\rangle_3|+\rangle_4+|1\rangle_1|+\rangle_2|1\rangle_3|-\rangle_4$$

Number of terms exponential in number of qubits!

Cluster states - definition

A cluster state $|\phi\rangle_{\mathcal{C}}$ on a cluster \mathcal{C} is the single common eigenstate of the stabilizer operators

$$K_a = X_a \bigotimes_{b \in N(a)} Z_b, \quad \forall a \in \mathcal{C}, \tag{1}$$

where $b \in N(a)$ if a,b are spatial next neighbors in C.

Cluster states - experiment

Cold atoms in optical lattices

Coherent interaction among neighboring atoms

Greiner, Mandel, Esslinger, Hänsch, and Bloch, *Nature* 415, 39-44 (2002), Greiner, Mandel, Hänsch and Bloch, *Nature*, 419, 51-54 (2002).

Part II:

Fault-tolerance

The threshold theorem

Theorem*: Assume a suitable noise model for a universal quantum computer. If the noise per elementary operation is below a constant non-zero threshold ϵ then arbitrarily long quantum computations can be performed with arbitrary accuracy at small operational overhead.

What is a suitable noise model?

What is the value of What is a small ϵ ?

overhead?

Standard: Indepedent probabilistic errors

$$\epsilon = 10^{-10}..10^{-2}$$

Polylogarithmic. $S \longrightarrow S \log^{\gamma} S$

Generalized

Improve threshold!

Reduce overhead!

*: Aharonov & Ben-Or (1996), Kitaev (1997), Knill & Laflamme & Zurek (1998), Aliferis & Gottesman & Preskill (2005)

Known threshold values

no constraint

$$[1]$$
 ____ 0.03, est.

$$[2]$$
 — 10^{-3} , est.

$$[3] - 10^{-4}$$
, est.

$$[4] - 10^{-5}$$
, bd.

geometric constraint

2D 1D 3D

[2]
$$-10^{-3}$$
, est. [5] -10^{-3} , est.

$$[6]$$
 — 10^{-5} , est.

$$[7] - 10^{-8}$$
, est.

 $!: 10^{14}$ bare gates for 1000 encoded gates [Knill, (2004)]

[1] Knill, (2005); [2] Zalka (1999); [3] Dawson & Nielsen (2005); [4] Aliferis & Gottesman & Preskill (2005), [5] Raussendorf & Harrington & Goyal, quant-ph/0510135; [6] Cross (unpublished), [7] Aharonov & Ben-Or (1999)

Fault-tolerant one-way QC

Main idea: Replace 2D cluster state by 3D cluster state!

3D cluster state = faulttolerant substrate

Logic from non-trivial boundary conditions

Macroscopic view

Three cluster regions:

V (Vacuum), D (Defect) and S (Singular qubits).

Qubits $q \in V$: local X-measurements,

Qubits $q \in D$: local Z-measurements,

Qubits $q \in S$: local measurements of $\frac{X \pm Y}{\sqrt{2}}$.

Microscopic view

elementary cell of $\mathcal L$

qubit location: (even, odd, odd) - face of \mathcal{L} ,

qubit location: (odd, odd, even) - edge of \mathcal{L} ,

syndrome location: (odd, odd, odd) - cube of \mathcal{L} ,

syndrome location: (even, even, even) - site of \mathcal{L} .

Lattice duality $\mathcal{L} \longleftrightarrow \overline{\mathcal{L}}$

Translation by vector $(1,1,1)^T$:

- ullet Cluster ${\cal C}$ invariant,
- \mathcal{L} (primal) $\longrightarrow \overline{\mathcal{L}}$ (dual).

face of
$$\mathcal{L}$$
 — edge of $\overline{\mathcal{L}}$, edge of \mathcal{L} — face of $\overline{\mathcal{L}}$, site of \mathcal{L} — cube of $\overline{\mathcal{L}}$, cube of \mathcal{L} — site of $\overline{\mathcal{L}}$,

Many objects in this scheme exist as 'primal' and 'dual'.

Key to scheme

Surface codes

- Errors are represented by chains.
- Homologically equivalent chains correspond to physically equivalent errors.
- Harmfull errors stretch across the entire lattice (rare events).

A. Kitaev, quant-ph/9707021 (1997).

$QC_{\mathcal{C}}$: topological error correction in V

- Errors are represented by chains.
- Homologically equivalent chains correspond to physically equivalent errors.
- Harmfull errors stretch across the entire lattice.
- -> Leads to Random plaquette Z_2 -gauge model (RPGM) [1].

[1] Dennis et al., quant-ph/0110143 (2001).

RPGM: schematic phase diagram

Map error correction to statistical mechanics:

[1] T. Ohno et *al.*, quant-ph/0401101 (2004). [2] E. Dennis et *al.*, quant-ph/0110143 (2001); J. Edmonds, Canadian J. Math. **17**, 449 (1965).

Error model:

- Cluster state created in a 4-step sequence of $\Lambda(Z)$ -gates from product state $\bigotimes_{a \in \mathcal{C}} |+\rangle_a$.
- Error sources:
 - $|+\rangle$ -preparation: Perfect preparation followed by 1-qubit partially depolarizing noise with probability p_P .
 - $\Lambda(Z)$ -gates: Perfect gates followed by 2-qubit partially depolarizing noise with probability p_2 .
 - Memory: 1-qubit partially depolarizing noise with probability p_S per time step.
 - Measurement: Perfect measurement preceded by 1-qubit partially depolarizing noise with probability p_M .
- 3D cluster state created in slices of fixed thickness.
- Instant classical processing.

Fault-tolerance threshold in V

$$p_{2,c} = 9.6 \times 10^{-3}$$
, for $p_P = p_S = p_M = 0$,
 $p_c = 5.8 \times 10^{-3}$, for $p_P = p_S = p_M = p_2 =: p$. (3)

Fault-tolerant quantum logic

Surface codes

• Storage capacity of the code depends upon the topology of the code surface.

Surface codes

- There are two types of holes: primal and dual.
- A pair of same-type holes constitutes a qubit.

Defects for quantum logic

Defects are the extension of holes in the code plane to the third dimension.

Defects for quantum logic

A quantum circuit is encoded in the way primal and dual defects are wound around another.

Quantum gates, Part I

- Displayed fault-tolerant gates are not universal.
- Need one non-Clifford element: fault-tolerant measurement of $\frac{X\pm Y}{\sqrt{2}}$.

Singular Qubits

Quantum gates, Part II

Encoder and decoder for surface code:

Quantum gates, Part II

A circuit for code-conversion:

- Reed-Muller code: Fault-tolerant measurement of $\frac{\overline{X\pm Y}}{\sqrt{2}}$ via *local* measurements of $\frac{X_a\pm Y_a}{\sqrt{2}}$ and classical post-processing.
 - -> Fault-tolerant universal gate set complete.

Fault-tolerance threshold in S

- ullet Topological error correction breaks down near the S-qubits.
- ullet Leads to an effective error on S-qubits.
- This effective error is *local*.

Fault-tolerance threshold in S

Error budget from Reed-Muller concatenation threshold:

$$\frac{76}{15}p_2 + \frac{2}{3}p_P + \frac{4}{3}p_M + \frac{4}{3}p_S < \frac{1}{105}. (4)$$

Specific parameter choices:

$$p_{2,c} = 2.9 \times 10^{-3}$$
, for $p_P = p_S = p_M = 0$,
 $p_c = 1.1 \times 10^{-3}$, for $p_P = p_S = p_M = p_2 =: p$. (5)

The Reed-Muller code sets the overall threshold.

Remark 1 - mapping to 2D

- Make "simulated time" real time. Entangle slice-wise.
- → 2D qubit lattice suffices.

Remark 2 - Homology

Undetectable errors \cong 1-cycles, measured correlations \cong 2-cycles.

Summary

[quant-ph/0510135]

Numbers:

 \bullet Fault-tolerance threshold of 1.1×10^{-3} in 3D local architecture.

Methods:

• Cluster states in three spatial dimensions provide intrinsic topological error correction.