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Outline

‣ Deformations of perfect crystal
‣ point defects : vacancies
‣ line defects : dislocations
‣ planar defects : grain boundaries
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liquid 4He
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where !ωk is the energy of the elementary excitation of wave number k, and {nk}
a set of occupation numbers. For T sufficiently low, one can assume the nk’s to be
independent and their thermodynamic average to be given by 〈nk〉 = [e!ωkβ−1]−1.
The internal energy of the liquid of volume V is then

U = E0 +
∑

k

!ωk〈nk〉 = E0 +
V

2π2

∫ ∞

0

dk
k2!ωk

e!ωkβ − 1
. (1)

Figure 3: Energy spectrum of elementary excitations in liquid 4He.

According to [3], the excitation spectrum can be derived from the structure factor
S(k) by the formula

ε(k) =
!2k2

2mS(k)
.

A typical form of the structure factor of a compressible system is shown in Fig-
ure 5. For k → 0, S(k) behaves approximately linear which implies ε(k) ∝ !k,
whereas the peak of S(k) leads to the roton minimum near k = 2π/particle distance.

At low temperatures, there are two types of quasiparticle which contribute signifi-
cantly to the integral in (1): phonons with spectrum ε(k) = u!k and rotons, which

are regarded as quantized rotational motion, with spectrum ε(k) = ∆+ !2(k−k0)2

2µ .
The parameters are experimentally found [1]:

u = 239
m

s
, ∆ = 8.65 K, k0 = 1.9 Å

−1
, µ = 0.16mHe.

The specific heat cV = ∂U
∂T can be approximated as the sum of the contribution

of the phonons and the one of the rotons

cV = cphonon + croton.

The phenomenon of frictionless flow for a velocity less than a critical velocity
vc = minp

ε(p)
p may be understood in terms of the gas of quasiparticles: Consider

energy spectrum

c = 239m/s

ε(k) = ∆ +
h̄2(k − k0)2

2µ

∆ = 8.65K k0 = 1.9A
−1

µ = 0.16mHe

condensate fraction 10 %
superfluid fraction 100%

Landau’s two-fluid model
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Kim-Chan experiment

we observed is only 90 ns. In other words,
the observed fractional decoupling in the
blocked cell filled with superfluid is com-
parable to that found for solid helium. This
similarity suggests that superflow in solid
4He, as in superfluid, is also irrotational. In
contrast to the data obtained with the barrier-
free or unblocked cell, there is no observ-
able minimum in the amplitude. We have
also made measurements with high-purity
(99.999%) solid 3He in the barrier-free tor-
sion cell and found no drop in the resonant
period and no amplitude minimum.

In Fig. 3 we plot the nonclassical rota-
tional inertia fraction (11) (NCRIF) as a
function of temperature for 3 of the 17
samples we studied. NCRIF is defined as
the period shift I j I* (Fig. 2A) divided by
the increase in period due to the filling of the
annulus with the specific 4He sample. The
family of curves in Fig. 3, A to C, show
NCRIF determined with different values of
vmax. NCRIF obtained with vmax smaller than
a certain critical value, vc, collapses into a
single curve. Exceeding vc, NCRIF is found
to decrease with vmax. The value of vc of the
samples at 41 and 65 bars (Fig. 3, B and C)
and 51 bars (Fig. 2A) is close to 5 6m/s. A
much higher vc, close to 38 6m/s, is found
for the 26-bars sample. The value of NCRIF
in the low-temperature limit (at 20 mK) as
a function of vmax for five different solid
samples is also shown (Fig. 3D). The results
shown in Figs. 3 and 2A can be understood
by thinking of vc as the critical velocity of
superflow. When the torsional cell is oscil-
lating with vmax below vc, a fraction of the
helium (i.e., the supersolid fraction) is
stationary and does not contribute to rota-
tional inertia. The collapsed NCRIF curves at
these low speeds are therefore plots of the
supersolid fraction, Ds/D, as a function of
temperature. When the cell is oscillating with
vmax exceeding vc, supersolid decoupling oc-
curs only during the portion of the oscillation
cycle when the instantaneous speed is less
than vc, and thus gives rise to a smaller
NCRIF and smaller period shift.

Liquid helium undergoing superflow
around an annulus of radius R satisfies the
Onsager-Feynman quantized circulation rela-
tion (22), 2>RIvs 0 (h/m)In, where vs is the
superflow velocity, h is Planck_s constant, m
is the mass of helium atom, and the integer n
is the circulation quantum number. For R 0
5 mm, as in our annulus, vs 0 3.6 6m/s for
n 0 1. The fact that this velocity is on the
same order of magnitude as the critical ve-
locity vc defined above indicates that the
decrease in NCRIF with increasing vmax is
associated with the appearance of vortices
of a single or few unit(s) of quantum cir-
culation in the superflow.

The temperature dependence of Ds/D at
different pressures—that is, the (collapsed)

NCRIF curves measured with the lowest
speeds (Fig. 3, A to C)—shows a Buniversal[
behavior of a smooth but increasingly rapid
rise with decreasing temperature and then a
saturation in the low-temperature limit. Thir-
teen other samples (in addition to the samples
featured in Figs. 2 and 3) with pressure
falling between 26 and 66 bars, all showing
the same Buniversal[ supersolid behavior,

were studied with either one or two low
oscillation speeds, typically with vmax close to
or smaller than 5 6m/s. The low-temperature
supersolid fraction, Dso/D, for all 17 solid sam-
ples (fig. S1) ranges from 0.0075 to 0.0175
and clusters between 0.01 and 0.015. The
scatter in the result makes it difficult to con-
clude whether there is a real trend of in-
creasing Dso/D with pressure. We speculate
that the variation in Dso/D is related to the
less than ideal crystallinity of the solid he-
lium samples. Given the temperature gradient
and different wall materials that exist in the
torsional cell and the capillary leading to the
cell, solid helium grown by the blocked cap-
illary method is likely to be polycrystalline
with grain boundaries that may affect the
coherence of the superflow and possibly the
magnitude of the supersolid fraction. The
largest Dso/D value, 0.017, is comparable to
that found for the experiment with helium
confined in Vycor (0.025) (15). The Vycor
value includes a multiplicative factor of 5 to
correct for the tortuous pore structure of the
Vycor glass. The theoretical estimate of the
zero-temperature supersolid fraction varies
from 1 part per million to 40% (11, 23–26).

In addition to the comparable ampli-
tude, the temperature dependence of the Ds/
D of 4He in Vycor resembles that found in
bulk solid samples (15). These similarities
suggest that the observed superflow in
these two systems is an intrinsic low-
temperature property of solid helium. One
may argue that the decrease in the resonant
period is not due to superflow but due to
solid helium (with a soft shear mode) not
following the acceleration of the torsional
cell. This means the viscous penetration
depth (&) of solid helium must be less than
3.5 nm, the typical radius of the pores in
Vycor glass. Its viscosity, ( 0 &2D< (where
D 0 0.2 g/cc and < 0 2>I1024 Hz are the
density of solid helium and the angular
frequency of the torsional motion, respec-
tively), must be less than 1.5 ! 10j11 PaIs.
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Fig. 3. (A to C) NCRIF as a function of
temperature for three solid samples at differ-
ent maximum oscillation speeds vmax. The
observed period increases due to filling of the
cell with 4He at 300 mK are, respectively, 2785
ns, 2886 ns, and 3143 ns for solid samples at
26, 41, and 65 bars. NCRIF curves measured
with oscillation speed less than the critical
velocity of superflow collapse into a single
curve. These curves represent the supersolid
fraction, Ds/D, as a function of temperature. (D)
NCRIF in the low-temperature limit as a
function of vmax.
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around an annulus of radius R satisfies the
Onsager-Feynman quantized circulation rela-
tion (22), 2>RIvs 0 (h/m)In, where vs is the
superflow velocity, h is Planck_s constant, m
is the mass of helium atom, and the integer n
is the circulation quantum number. For R 0
5 mm, as in our annulus, vs 0 3.6 6m/s for
n 0 1. The fact that this velocity is on the
same order of magnitude as the critical ve-
locity vc defined above indicates that the
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associated with the appearance of vortices
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rise with decreasing temperature and then a
saturation in the low-temperature limit. Thir-
teen other samples (in addition to the samples
featured in Figs. 2 and 3) with pressure
falling between 26 and 66 bars, all showing
the same Buniversal[ supersolid behavior,

were studied with either one or two low
oscillation speeds, typically with vmax close to
or smaller than 5 6m/s. The low-temperature
supersolid fraction, Dso/D, for all 17 solid sam-
ples (fig. S1) ranges from 0.0075 to 0.0175
and clusters between 0.01 and 0.015. The
scatter in the result makes it difficult to con-
clude whether there is a real trend of in-
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that the variation in Dso/D is related to the
less than ideal crystallinity of the solid he-
lium samples. Given the temperature gradient
and different wall materials that exist in the
torsional cell and the capillary leading to the
cell, solid helium grown by the blocked cap-
illary method is likely to be polycrystalline
with grain boundaries that may affect the
coherence of the superflow and possibly the
magnitude of the supersolid fraction. The
largest Dso/D value, 0.017, is comparable to
that found for the experiment with helium
confined in Vycor (0.025) (15). The Vycor
value includes a multiplicative factor of 5 to
correct for the tortuous pore structure of the
Vycor glass. The theoretical estimate of the
zero-temperature supersolid fraction varies
from 1 part per million to 40% (11, 23–26).

In addition to the comparable ampli-
tude, the temperature dependence of the Ds/
D of 4He in Vycor resembles that found in
bulk solid samples (15). These similarities
suggest that the observed superflow in
these two systems is an intrinsic low-
temperature property of solid helium. One
may argue that the decrease in the resonant
period is not due to superflow but due to
solid helium (with a soft shear mode) not
following the acceleration of the torsional
cell. This means the viscous penetration
depth (&) of solid helium must be less than
3.5 nm, the typical radius of the pores in
Vycor glass. Its viscosity, ( 0 &2D< (where
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observed period increases due to filling of the
cell with 4He at 300 mK are, respectively, 2785
ns, 2886 ns, and 3143 ns for solid samples at
26, 41, and 65 bars. NCRIF curves measured
with oscillation speed less than the critical
velocity of superflow collapse into a single
curve. These curves represent the supersolid
fraction, Ds/D, as a function of temperature. (D)
NCRIF in the low-temperature limit as a
function of vmax.
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Why study vacancies in 
solid 4He?

the necessary condition for a solid to be sf is to 
have zero-point vacancies and/or interstitials as 
an integral part of the ground state.

N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 94, 155302 (2005).

superflow occurs generically in incommensurate solids

look at vacancies/interstitials 
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A. F.  Andreev and I. M. Lifshitz, Sovjet. Phys. JETP 29, 1107(1969).

Andreev-Lifshitz-Chester
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Dispersion
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States with many 
vacancies

• grand-canonical ensemble : runaway in 
particle/vacancy number; thermodynamic 
unstable

• canonical ensemble : phase separation

UNSTABLE

effective vacancy-vacancy attraction
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Vacancy -vacancy 
correlation function

• separation in energy scale :

• zero point fluctuation : Debye frequency 25 K-1

• vacancy exchange rate : ≈1 K-1

• Renormalization procedure : 

How to localize vacancies/ What are vacancies?

using partially averaged positions of atoms
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Renormalization procedure

All vacancies found!
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Outline

‣ Deformations of perfect crystal
‣ point defects : vacancies
‣ line defects : dislocations
‣ planar defects : grain boundaries



no period drop

• square geometry
• bigger volume

AnnSophie C. Rittner and J.D.Reppy, Phys. Rev. Lett. 97, 165301 (2006).



Experimental vacancy 
concentration

condensate fraction

n0 = (−0.10 ± 1.20)% T = 80mK
n0 = (0.08 ± 0.78)% T = 120mK

X-ray diffraction
S. O. Diallo et al., cond-mat/0702347

max. 1%
(interpretation in terms of thermal vacancies 

criticized by Anderson-Brinkman-Huse)
B. A. Fraass,  P.  R. Granfors, and R. O. Simmons, 

Phys. Rev. B 39, 124 (1989)

Measurement of the melting curve
I. A. Todoshchenko et al., cond-mat/0703743p ∼ T 4



non-equilibrium 
scenarios : the Roadmap

• superglass

• Migration of vacancies to grain boundaries / ridges, 
formation of dislocation loops

• ‘ideal’ domain walls, grain boundaries and dislocations

• ‘rough’ domain walls,  grain boundaries, dislocations,...

M. Boninsegni, N.V. Prokof’ev, B. V. Svistunov, Phys. Rev. Lett. 96, 105301 (2006). 

lattice models
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Screw dislocation

384 updatable

1536 fixed

n = 0.0287Å
−1

T = 0.2 → 1K



Screw dislocation

ns ≈ 1Å−1, KL = 0.205(20)

Tc ∼ T∗a/l " T∗

τ = (T∗/T )2/KL−1/T∗

Shevchenko state



edge dislocation
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forms a glassy region, but can also be an 
insulator depending on the initial configuration 



Outline

‣ Deformations of perfect crystal
‣ point defects : vacancies
‣ line defects : dislocations
‣ planar defects : grain boundaries



“law of the 
communicating vessels”

clean samples: no signal
dirty samples :  SS signal
however : 
• also signal above (1K) (cracks ? wetting? )
• vs. how can signal disappear for clean samples???
• liquid film caused by grain boundaries at the interface?

Science 313, no. 5790, p 1098. (2006)



mechanical stability of 
grain boundaries

experimental conditions of phase coexistence : 
true superfluid grain boundaries 

or cracks filled with liquid?

σgb < σ1 + σ2



grain boundaries are 
stable...
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the condensate wave function (spatial 
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...and generically 
superfluid...
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...but  not in  all cases

plane # 1

plane # 2

simulation box

Insulating



It happened also with 
the cuboids

projection on the xz plane
z = Lz/4

z = Lz + Lz/4

pinned 
plane

additional 
grain 

boundaries 
due to 

periodic 
boundary 
conditions

insulating additional 
grain boundary



density  matrix

finite sizeTKT = 0.6(1)

superfluid fraction
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Glassy interfaces
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Stacking fault
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Latest results

47%

AnnSophie C. Rittner and J.D.Reppy, cond-mat/0702665



Grain boundaries : condensate maps

simulation box

across x-axis

across y-axis

across z-axis

the 4 slices

Each of the 8 cubes is a randomly oriented crystallite



• perfect crystal is insulating

• phase separation of vacancies

• superfluid screw dislocations and Shevchenko state

• ‘homeopathic’ role of 3He

• superfluid grain boundaries exist 

• do supersolids exist for systems in continuous space 
(2D, 3D) with one type of particles interacting 
through a pair potential? 

Conclusion


