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 Ideas were originated in speculations about phase transitions in the early universe 
-----T. W. B. Kibble, J. Phys. A 9, 1387 (1976) 

 Topological defects such as cosmic strings may have been formed in early-universe 
phase transitions

Questions: How many defects would be formed in the phase transition?
                      How would they evolve as the Universe expands? ……

How to test ?
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HOW ABOUT QUANTUM?
Non-ergodic behavior of time-dependent T=0 magnetization 
of the anisotropic XY chain 

--- E. Barouch, et al. PRA 2, 1075 (1970)
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Non-ergodic behavior of time-dependent T=0 magnetization 
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MOTIVATION
Tunable quantum systems:

 
              --- Ultracold Atom systems

Adiabatic quantum computation: 
(quantum annealing)

(quantum simulators)
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MOTIVATION
Tunable quantum systems:

 
              --- Ultracold Atom systems

Adiabatic quantum computation: 
(quantum annealing)

Increasing dimensions can be 
more efficient

Classical-to-Quantum Mapping

(quantum simulators)
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KIBBLE-ZUREK (AND OTHERS) INTUITION

2

--- W. H. Zurek, et al. PRL 95, 105701 (2005) 

Linear sweep of control parameter with constant speed τ
λ(t)− λc =

t− tc
τ

, tc = 0, τ > 0

Adiabatic AdiabaticImpulse

t̂−t̂ tc=0

Near a QCP there is a vanishing energy scale: ∆ ∼ |λ(t)− λc|νz

τr(t) ∼ ∆−1 ∼ |λ(t)− λc|−νz

Relaxation time: Transition rate:

Time scale of adiabaticity loss: t̂

T (t) =

����
λ(t)

λ̇(t)

����

T (t̂) = τr(t̂)
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Adiabatic AdiabaticImpulse

t̂−t̂ tc=0

For a linear quench:

Defects

t̂ ∼ τνz/(νz+1) , ξ(t̂) ∼ τν/(νz+1) , nex(tf ) ∼ τ−dν/(νz+1)

density of excitations
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To what extent universal quantum scaling 
pers i s t out-of -equi l ibr ium and encode 
information about the equilibrium phase 
diagram?
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A MAIN QUESTION

To what extent universal quantum scaling 
pers i s t out-of -equi l ibr ium and encode 
information about the equilibrium phase 
diagram?

How universal ?
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One needs in general path-dependent 
(non-static) exponents

Adiabatic AdiabaticImpulse

tc=0−t̂1 t̂2

Dynamical asymmetry
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A MAIN MESSAGE

Details about initial and final phases

Time-dependent excitation pattern
Important:

Appropriate Landau-Zener analysis 
when applicable is OK

One needs in general path-dependent 
(non-static) exponents
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ULTIMATE GOAL

Develop a theory and understanding of non-equilibrium 
scaling for quenches across 

quantum (multi)critical points and regions
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ULTIMATE GOAL

Develop a theory and understanding of non-equilibrium 
scaling for quenches across 

quantum (multi)critical points and regions

This talk:
Elementary integrable (Lie algebraic) toy model

Surprises emerge: Departure from KZS

--- Isolated QCP
--- Isolated Multicritical QCP
--- Search for understanding
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MODEL SYSTEM
h, δ ∈ [−∞,∞]

H =
�

k∈K+

A
†
kHkAk

K+ = { π

N
,
3π

N
, . . .

π

2
− π

N
}A†
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†
k, b−k)
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�
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MODEL SYSTEM
γ = 0When ⇒ U(1) Symmetry

W †
k = (a†k, b

†
k) W †

−k = (a−k, b−k)

Ĥ±k = W
†
±kH

�
±kW±k

H
�
±k = ±2hI2 +

�
±2δ ∓2 cos k

∓2 cos k ∓2δ

�

Appropriate for a Landau-Zener analysis

Multicritical QCP

H = −
N�

i=1

�1

2
σi
xσ

i+1
x +

1

2
σi
yσ

i+1
y −[h− (−)iδ]σi

z

�
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MODEL SYSTEM

γ ∈ [0, 1]

h, δ ∈ [−∞,∞]

1 2 3 4 N 

B = h± δ

∆k = 4
�
h2 + δ2 + cos2 k + γ2 sin2 k − 2

�
h2 cos2 k + δ2(h2 + γ2 sin2 k)

�1/2

|ΨGS� =
�

k∈K+

|Ψk�

|Ψk� =
�
u(1)
k + u(2)

k a†ka
†
−k + u(3)

k b†kb
†
−k + u(4)

k a†kb
†
−k + u(5)

k a†−kb
†
k + u(6)

k a†ka
†
−kb

†
kb

†
−k

�
|vac�

∆k = �k,3 − �k,2

�k,1 ≤ �k,2 ≤ �k,3 ≤ �k,4 with �k,1, �k,2 ≤ 0 occupied
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QUANTUM PHASE DIAGRAM
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UNIVERSALITY CLASSES

Phase boundaries: 

Four universality classes: 

U(1) Symmetry
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QUENCH DYNAMICS:ADIABATIC 
AND SUDDEN QUENCHES

H(t) = Hc + [λ(t)− λc]H1 Hc :quantum-critical in the TL
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QUENCH DYNAMICS:ADIABATIC 
AND SUDDEN QUENCHES

H(t) = Hc + [λ(t)− λc]H1 Hc :quantum-critical in the TL
i�∂t|ψ(t)� = H(t)|ψ(t)� t ∈ [ti, tf ]

ttc

H(t) = Hc +

����
t− tc

τ

����
α

sign(t− tc)H1

Adiabatic quenches Sudden quenches

Hc

H(t)

ttc

Hc H(t)

α = 1 → Linear quench

H(t) = Hc +
α√
τ
θ(t− tc)H1
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PURE (GROUND AND EXCITED 
STATES) AND MIXED 

H(t)|ψm(t)� = Em(t)|ψm(t)�

snapshot
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PURE (GROUND AND EXCITED 
STATES) AND MIXED 

H(t)|ψm(t)� = Em(t)|ψm(t)�

snapshot

|ψ(ti)� = |ψm(ti)�

ρ(ti) = e−βH(ti)

|ψ(ti)� = |ψGS(ti)� = |ψ0(ti)�

One may consider different classes of initial states: t = ti

Ground state:

Excited (eigen)state:

Excited state: |ψ(ti)� =
�

m

am|ψm(ti)�

Thermal state:
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ISOLATED NON-MC QCP
(ADIABATIC QUENCHES)
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SIMPLE ISOLATED QCP

4th order QPT
ν = 2, z = 1

Alternating universality class

nAlternating
ex (tf ) ∼ τ−2/3
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SIMPLE ISOLATED QCP

∆O(t) ≡ �ψ(t)| O |ψ(t)� − �ψGS(t)| O |ψGS(t)� = τ (−ν+β)/(νz+1)FO

� t− tc
t̂

�

nex(t) = τ−ν/(νz+1)Fn

�
t− tc
t̂

�

Scaling function
For a general observable:
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SIMPLE ISOLATED QCP

∆O(t) ≡ �ψ(t)| O |ψ(t)� − �ψGS(t)| O |ψGS(t)� = τ (−ν+β)/(νz+1)FO

� t− tc
t̂

�

Examples:

∆Mz(t) = τ (−ν−νz+1)/(νz+1)G((t− tc)/t̂)

∆XX(t) = τ−ν/(νz+1)W ((t− tc)/t̂)

Mz = (
N�

i=1

σi
z)/N

XX = (
N�

i=1

σi
xσ

i+1
x )/N

nex(t) = τ−ν/(νz+1)Fn

�
t− tc
t̂

�

Scaling function
For a general observable:

departure from adiabaticity
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ISOLATED MULTICRITICAL QCP
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Adiabatic Control Paths
h = 1 δ = 0

2 1 0 1 2
2

1

0

1

2

h2 1 0 1 2
2

1

0

1

2
FMx

FMy

PM PM

4
A

FMy

FMx

A B
1

2 3 FMx

FMy

DMDM

5

. . .
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Important Observations

Paths 1 and 2  start and end in the same phase. 
The excitation spectrum is symmetric under λ → −λ

Along Paths 3 and 4 the MCPs A and B belong to the 
Lifshitz universality class

KZS

non-KZS
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Path 2-3

2 0 2

0

0.1

0.2

t/ 2/3

n e
x*

1/
3

2 0 2
0

0.1

0.2

0.3

t/ 1/2

n e
x
1/
6

2 0 2
0
1
2
3

t/ 1/2

H
*
2/
3

N=400 N=400

nex ∼ τ−1/3 nex ∼ τ−1/6

KZS non-KZS
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LANDAU-ZENER ANALYSIS
This analysis is sharp but limited to two-level systems

H(t) =

�
E + Ė t V

V E

�

p = e
− 2πV 2

�|Ė|

Adiabaticity condition: 
2V 2

�|Ė|
� 1

Transition probability:

E−(t)

E+(t)

t

(paths 4 and 5)
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LANDAU-ZENER ANALYSIS
This analysis is sharp but limited to two-level systems

H(t) =

�
E + Ė t V

V E

�

p = e
− 2πV 2

�|Ė|

Adiabaticity condition: 
2V 2

�|Ė|
� 1

Transition probability:

E−(t)

E+(t)

t

Infinite time expression     
(asymptotic                 )tf → ∞

(paths 4 and 5)

Monday, January 3, 2011



Landau-Zener Analysis of Path 4

LZ formula: C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932)

†

H
�
k,11 = −2(1− cos k) cos 2qk − 2t/τ(cos 2qk − sin k sin 2qk)

H
�
k,12 = 2(1− cos k) sin 2qk

kc = 0

k6 = k2z2 , z2 = 3
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Path 5

nex ∼ τ−3/4

non-KZS

δ = 0
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Path 5

nex ∼ τ−3/4

non-KZS
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Path 5

4 2 0 2 4
0
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n e
x
3/
4
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2

ln( )
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(n
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N=1600
N=6400N=400

nex ∼ τ−3/4

non-KZS
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Finite Time Landau-Zener Analysis of Half-Path 5

Taylor expanding parabolic cylinder function around  
h

γ

--- N. V. Vitanov (1999)

(ω � |Tf | � 1)

5

/2

→ (k − kc)
d2

kc

d2 = 2

is not excited

Monday, January 3, 2011



Physical Understanding

Minimum gap along the path: 

: : :
ˆ ˆ

ˆˆ

∆̃k

Typical gap: ∆̂ nex =

� kmax

0
Pk(tf )d

dk

Excitation spectrum
(path 4)

quasicritical
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WHAT HAVE WE LEARNED?

Anomalous (non-static) critical exponents may emerge 
Non-critical energy modes may dominate scaling

Effective dimensionality exponent
z2Path-dependent minimum gap determines

Adiabatic AdiabaticImpulse

tc=0−t̂1 t̂2

Dynamical asymmetry

Only relevant modes matter in a dynamical process

(shift of the center of impulse region)

d2 �= 0
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SEARCH FOR UNDERSTANDING

Is it possible to develop some general framework for 
dynamical critical scaling?
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ADIABATIC RENORMALIZATION
H(t) = Hc + [λ(t)− λc]H1 = Hc + (t− tc)/τH1

H(t)|ψm(t)� = Em(t)|ψm(t)�
|ψ0(t)�

|ψ1(t)�
|ψ2(t)�

U0

U †
1

U †
0

U1

H
0

H
1

|ψ0
m(t)�

|ψ0
m(ti)�

|ψ1
m(t)�

iteration

|ψj
m(t)� = Uj(t)|ψ0

m(ti)�

i�∂t|ψj(t)� = H
j(t)|ψj(t)�

H
j(t) = U

†
j−1H

j
Uj−1 − i�U †

j−1U̇j−1

|ψj(t)� = U†
j−1(t) · · ·U

†
1 (t)U

†
0 (t)|ψ0(t)�

Hope is: time-dependence
disappears 
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ADIABATIC RENORMALIZATION

--- A. Polkovnikov, PRB, 72 (2005) 161201

H(t) = Hc + [λ(t)− λc]H1 = Hc + (t− tc)/τH1

H(t)|ψm(t)� = Em(t)|ψm(t)�

|ψ(t)� = c0(t)|ψ0(t)�+
�

m �=0

cm(t)|ψm(t)�

c
(1)
m (t) = e

−iΓm(t)

� t

tin

dt
�λ̇(t�)

�ψm(t�)|H1|ψ0(t�)�
Em(t�)− E0(t�)

e
i
� t�
tin
ds∆m(s)

∆m(t) = Em(t)− E0(t)

Non-adiabatic correction:

c(1)0 (t) = e−iΓ0(t)
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Main scaling assumptions:

ρ(E) ∼ Ed/z2−1

fm(x), gm(x)(x → 0) → constant

fm(x), gm(x)(x → ∞) → x

�ψm(t)|H1|ψ0(t)� = δλ(t)νz−1
gm(∆m(tmin)

1+
d2
2z2 /δλ(t)νz)

∆m(tmin) : minimum gap of mode         at tminm

Em(t)− E0(t) = δλ(t)νzfm(∆m(tmin)/δλ(t)
νz)

Monday, January 3, 2011



CONCLUSIONS
Dynamical Asymmetry of the Impulse region (non-KZ)

Adiabatic AdiabaticImpulse

tc=0−t̂1 t̂2
Relevant modes versus critical mode: minimum gap

Dynamical critical exponents not determined from equilibrium 
Knowledge about the path-dependent excitation process may be crucial and 
non-equilibrium exponents cannot be fully predicted from equilibrium ones

Quench across critical regions:
--- Dominant critical point
--- Cancellation mechanism

Monday, January 3, 2011



  For quenches involving isolated QCPs,non-ergodic 
dynamical scaling is fully captured by first-order adiabatic
renormalization with appropriate scaling assumptions

Role of Initial State

What happens away from integrability?
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