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KIBBLE-ZUREK'S MOTIVATION

ldeas were originated in speculations about phase transitions in the early universe
----- T. W. B. Kibble, J. Phys. A 9, 1387 (19706)

Topological defects such as cosmic strings may have been formed in early-universe
phase transitions

Questions: How many defects would be formed in the phase transition?
How would they evolve as the Universe expands? ......

How to test ?
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How to test ? Cosmology at the Lab
In 1985, Zurek suggested that a mechanism for defect formation could be

applied to a thermodynamic transition in a suitably chosen condensed-matter
system---- W. H. Zurek, Nature (1985)

Exciting developments in condensed matter physics-----
In particular, classical dynamical critical phenomena
(superfluids, superconductors, BEC...... )
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HOW ABOUT QUANTUM?

Non-ergodic behavior of time-dependent T=0 magnetization

of the anisotropic XY chain
--- E. Barouch, et al. PRA 2, 1075 (1970)
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FIG. 1. Final magnetization versus initial field a
for step function case: a - jumps to 0.
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HOW ABOUT QUANTUM?

Non-ergodic behavior of time-dependent T=0 magnetization

of the anisotropic XY chain
--- E. Barouch, et al. PRA 2, 1075 (1970)

Kibble-Zurek Scaling (KZS)
--- W. H. Zurek, et al. PRL 95, 105701 (2005)

--- A. Polkovnikov, PRB, 72 (2005) 161201

Linear sweep of control parameter with constant speed T

Adiabatic I|Impulse|I Adiabatic
—1 t. =0 t
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Non-ergodic behavior of time-dependent T=0 magnetization

of the anisotropic XY chain
--- E. Barouch, et al. PRA 2, 1075 (1970)

Kibble-Zurek Scaling (KZS)
--- W. H. Zurek, et al. PRL 95, 105701 (2005)

--- A. Polkovnikov, PRB, 72 (2005) 161201

Linear sweep of control parameter with constant speed T

Adiabatic I|Impulse|I Adiabatic
—1 t. =0 t
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MOTIVATION

‘Tunable quantum system:s:

— Ultracold Atom systems
(quantum simulators)

Adiabatic quantum computation:
(quantum annealing)
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MOTIVATION

‘Tunable quantum system:s:

— Ultracold Atom systems
(quantum simulators)

Adiabatic quantum computation:
(quantum annealing)

-

v Increasing dimensions can be
more efficient
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KIBBLE-ZUREK (AND OTHERS) INTUITION

--- W. H. Zurek, et al. PRL 95, 105701 (2005)

Near a QCP there is a vanishing energy scale: A ~ |A(f) — A[*°

Linear sweep of control parameter with constant speed T

t — Te
At) — Ae = , te=0, 7> 0

T

Adiabatic ||Impulse'I Adiabatic

~t 40t
Relaxation time: Transition rate:
(1
r(t) ~ A7~ A = A7 T = |50

Time scale of adiabaticity loss: ¢

T(f) =h (7?)
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Near a QCP there is a vanishing energy scale: A ~ |A(f) — A[*°

Linear sweep of control parameter with constant speed T

t — T,
At) — A = , te=0, 7>0
T

Symmetric | |

imp}ﬂse Adiabatic ||Impulse II Adiabatic

reglon _£ tC:O £
Relaxation time: Transition rate:

= e A(%)

() ~ A e A(t) — A T — 7)

Time scale of adiabaticity loss: ¢
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--- W. H. Zurek, et al. PRL 95, 105701 (2005)

Near a QCP there is a vanishing energy scale: A ~ |A(f) — A[*°

Linear sweep of control parameter with constant speed T

t — e
T
Symmetric | | equilibrium
imp}llse Adiabatic [Impulse! Adiabatic critical
region _l_'_l_’_ ; 20 7 exponents
Relaxation time: Transition rate:
A1)
(1) ~ A7 ~ I\(1) = A |77 T(t) = |—=
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Adiabatic I|Impulse|I Adiabatic
= — t Defects
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For a linear quench:




Adiabatic I|Impulse|I Adiabatic
=50 * Defects

r—=— ) = [ LU - )

For a linear quench:

~
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4

[ff\/ TVZ/(VZ—|—1) ; ‘S(f) ~ TV/(I/z—I—l) : nex(tf) ~ T—du/(l/z—l—l)J
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A MAIN QUESTION
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A MAIN QUESTION

[ To what extent universal quantum scaling
persist out-of-equilibrium and encode
information about the equilibrium phase

diagram?
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A MAIN QUESTION

To what extent universal quantum scaling
persist out-of-equilibrium and encode
information about the equilibrium phase
diagram?

How universal ?
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A MAIN MESSAGE
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One needs in general path-dependent
(non-static) exponents
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A MAIN MESSAGE

One needs in general path-dependent
(non-static) exponents

Adiabatic II Impulse II Adiabatic
—t1 t=0

Dynamical asymmetry
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A MAIN MESSAGE

One needs in general path-dependent
(non-static) exponents

Important:

Time-dependent excitation pattern

Details about initial and final phases

Appropriate Landau-Zener analysis
when applicable is OK
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ULTIMATE GOAL

Develop a theory and understanding of non-equilibrium

scaling for quenches across
quantum (multi)critical points and regions
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ULTIMATE GOAL

Develop a theory and understanding of non-equilibrium

scaling for quenches across
quantum (multi)critical points and regions

This talk:

Elementary integrable (Lie algebraic) toy model
Surprises emerge: Departure from KZS

-— Isolated QCP

— Isolated Multicritical QCP
-— Search for understanding
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MODEL SYSTEM

When y=0 = U(l) Symmetry  Multicritical QCP

4 N 2

1 1 1 1 ) ) )
i _2{2 oroy '+ sohoyt =[h— (-) 5]%}

\_ 1=1 y,
ﬁ::k’ — W—“—kH/ﬂ:k:W::k

Wy = (a},b}) W, = (a—k,b_s)

! 20 TF2cos k
= 20l + ( T2cosk T20 )

Appropriate for a Landau-Zener analysis

4.}
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MODEL SYSTEM

(W) = ( . u,{C )aka , + u,i )bT bl , + u,g )a,zb]t . ,g Vol ka + u,i )a,kaT kb};bT_k) [vac)

€1 < €r2 S €3 S €4 with €g1,€k,2 <0  occupied

1/2
[Ak = 4[h2 + 6% +cos’ k + 2 sin® k — 2\/h2 cos2 k + 62(h2 4+ 42 sin” k)} ]

-
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QUANTUM PHASE DIAGRAM
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UNIVERSALITY CLASSES
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UNIVERSALITY CLASSES
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UNIVERSALITY CLASSES

Phase boundaries:

Chr =67 +1
i 5°=h+y°
Four universality classes:
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UNIVERSALITY CLASSES

Phase boundaries:
C ht =67 +1

L=k +y’

<

Four universality classes:

’)/=O < V=j_,Z=2
v=Lz=1(0)

U(1l) Symmetry
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Lifshitz universality class
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UNIVERSALITY CLASSES

Phase boundaries:

Chr =67 +1
i 52 _ h2 _I_yz
Four universality classes:
v=I1z=1
y=0 { v=2z=1

DM
. C
\
‘N N\ e
\
\
.
] ) ]
PM - ; o 5 5 PM
]
' came
’,, TS .
F-’
2 A N
y RN
DM NN
A| \'\
I I
.55 2 25

Monday, January 3, 2011




QUENCH DYNAMICS:ADIABATIC

AND SUDDEN QUENCHES
H(t) = H. + [A\(t) — A\ H H_ :quantum-critical in the TL
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QUENCH DYNAMICS:ADIABATIC

AND SUDDEN QUENCHES
H(t) = H. + [ A\(t) — A\ |H1 H_ :quantum-critical in the TL

Cihd ) = HOWW) T € [tity))

Adiabatic quenches Sudden quenches
H) = H,+ |22 sign(t— )8, | B = B+ 2600t — t.)\H
— o= 7_ S121 c 1 ()— clﬁ(_c)l
o = 1 — Linear quench
H(t) He H(t)




PURE (GROUND AND EXCITED
STATES) AND MIXED

H(t)hbm (t)> = Enm (t)|wm¥(t)>

snapshot




PURE (GROUND AND EXCITED
STATES) AND MIXED

H(t)hbm (t)> = b (t)|wm¥(t)>

snapshot
One may consider different classes of initial states: ¢ = ¢;

Ground state: P(ti)) = [Vas(ti)) = [o(ti))
Excited (eigen)state: (i) = [hm(t))
Excited state: U(t;)) = Z A |V (Ei))

___Thermal state: p(t;) = e PHE)




ISOLATED NON-MC QCP
(ADIABATIC QUENCHES)




SIMPLE ISOLATED QCP

Alternating universality class

4th order QPT

DAy —=]

AXX R
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SIMPLE ISOLATED QCP

neaz(t) = T—V/(I/Z—I—l)Fn (t —ftc>

\

Scaling function

For a general observable:

(W(1)] O (1)) — (s (1) O s (1)) = 7+/0++D o (° }tc)

AO(t)
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SIMPLE ISOLATED QCP

neaz(t) = T—V/(I/Z—I—l)Fn (t —ftc>

\

Scaling function

For a general observable:

(6(1)] O (1)) I (s(t)] O s (t)) = r—+0)/ =+ Fo (22)

departure from adiabaticity

AO(t)

-

-y @ S
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SIMPLE ISOLATED QCP

neaz(t) = T—V/(I/Z—I—l)Fn (t _tAtC>

\

Scaling function

For a general observable:

AO(t) = (¥(1)| O [9(1)) + I (s (t)] O las (b)) = TV =+ R (2 —;c)
departure from adiabaticity
Examples
Za VN = AM, (1) = 7Cv—r=+D/ =D G((¢ — 1) /D)
e 1

Zaz HOIN = AXX(H) =7/ Ve — ¢

W
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ISOLATED MULTICRITICAL QCP




Adiabatic Control Paths

0 —
2 > | , |
I I
U 1 ! FM_ -
: o4
A /
— = 01 pMm : """""""" *\PM '
I / g I \ 3
=15} —1} I 2
1 FMy 1
I I
5 EE 0 1 2
h
Path v z  Quench Scheme Dynamical Scaling
1 1 2 v ()=8 (t)=t/t,h=1 n, ~t -3 _ o v vz
2 1 0 Y (t):t/ﬁ[; =38 =1 N, ~t ~1/3 — oy
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Important Observations

Paths 1 and 2 start and end in the same phase.
The excitation spectrum is symmetric under A — —A

KZS
Along Paths 3 and 4 the MCPs A and B belong to the

Lifshitz universality class
non-KZS

, ' -
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Path 2-3

1/3

o

AH*T2/3
O = N W

KZS
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LANDAU-ZENER ANALYSIS

This analysis is sharp but limited to two-level systems

T =
27TV2
Transition probability: p = e RIF|
Adiabatict diti A > 1
tic1t tion: -
iabaticity condition WE|

-

4” =
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LANDAU-ZENER ANALYSIS

This analysis is sharp but limited to two-level systems

L) =
27TV2
Transition probability: p = e *IF|
e Infinite time expression
Adiabaticity condition: hE| > 1 (asymptotic t; — 0o )

Monday, January 3, 2011



Landau-Zener Analysis of Path 4

Path4 8§ =0, v(@)=t/t, h{)=1+y(?) 1 I
H = ZA;H,{A,{, where 4, = (C_k,c];) o PM /A/p;ﬂ
H, H,, ~h+cosk vy sink R S S
= = : U HU!
H,,, -H., Y sink  h-cosk H

Hy 11 = —2(1 — cos k) cos 2q), — 2t/7(cos 2q;, — sin k sin 2q;,)

Hj 15 = 2(1 — cos k) sin 2¢;,
where tan2q, = —sin k

LZ formula: C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932)

P = —2m(1 cos k)*sin qu/(cos2qk—s1nksm2qk) = e—mk6/2 L —
— ~ =

e
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Path 5

1! 5
FM

) - -

—2 = 0 1 2

Ny ~ - /4
non-KZS
Path v z  Quench Scheme
5 12 2  h@)=1+y@)|=1+|t/t],0 =0

n

Dynamical Scaling

€X

=24k

-3/4

=T

—v /(v z+1)

, T

-1/6
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Path 5

Ney ™ 7-_3/4
non-KZS

Path v z  Quench Scheme Dynamical Scaling
5 12 2 h@®=1+y@]=1+|tk|,6 =0 n_~t " =tV g7"°

€X

4 | .
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. 4
=5 >
c® = 6]
0.02¢t <
—8t

K X Xe X.X.XXXX%X 7
I
N

N=400
' 5 o0,,.5 10

L

|
N
I
N
o

1/2 2
tit

Ney ™ 7-_3/4
non-KZS

Path v z  Quench Scheme

0 0 kO =1y@|=1:|tc|5=0 n_

Dynamical Scaling
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Finite Time Landau-Zener Analysis of Half-Path 5

I)k(tf) = e—nm2/4 m)z/z(T \/_€l3n/4)COSG(T )_E —m/4 m)z/z I(T \/_€l3n/4)81ne(T )
-- N. V. Vitanov (1999) )
o = (1 -cosk)sin qu\/;/\/cos 2q, +sin2q, sink ~ By M,
| 0 2| VIR .o Y
Tf=—oo/smk~—k2\/1?, _1 \5
0(T,)=1/2arctan(w /T,) +7 /2 B S
h

Taylor expanding parabolic Cyhnder function around T, =0
(w < |Tf| < 1)

P(t,)=~(1-e™?)/2+cos’0(T,)e™ > =sin20(T,)/ 2sin ¥, Ja-e™3
~cosz@(Tf)e"“‘”2/2 ~ Kk’ — (k — kc)d2 do =0

= il - k. is not excited
na(t) = [ P (e dk ~ [ Kdk~
0 0

-
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Physical Understanding

I
h=1+y E > >
+
+
o+
*+ ++:++ ( ath )
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++++++
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+++++++
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~ A ot
++++++ +1 at et
+37 T+ +
*y T, Te +* + PSR
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ot + o + +
-, + + + +
+, %+ + +
*+. *. *al s +* +1 +*
b PPN > Sk Y Fa + + +7 4
23 CRRLS 4 FLAAN T Aot
oy TR FUPC oL U POt
44 s tasttt. *4,t 4 +F 4t
+++$¢¢ +, 14 +F Pty
+. + ot et
++4¥t T 15 g4t e
1 handh?s 5 ¢ L4
. . ’Y .

Standard KZS (1 and 2).

~vz/(vz+])

energy scale A~1
at QCP A, ~ Kk
determine kA ~k®
k

max

d —av /(vz+1)
n, ~ f dk ~t
0

Typical gap: A

Non-KZS (3 and 4):

~vz/(vz+])

energy scale A ~1
~ k>
A~k

max

along the path &

determine k_
k

max

nex . f ddk ~T —~vz/[(vz+])z,]
0

Minimum gap along the path:
OA (y,1+y,0)/dy =0

—(1-cosk)/(1+sin” k)
A=A ~(k-k)

More Generally:

-vz/(vz+l)

energy scale A ~T
~ k2
A~ k>

max

along the path A

determine k__
k

max

nex = f kdzddk N,C—(d+d2)vz/[(vz+1)22]
0

kmaac
nex:/ Py (t)dk
0
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WHAT HAVE WE LEARNED?

-} Only relevant modes matter in a dynamical process

Non-critical energy modes may dominate scaling

Anomalous (non-static) critical exponents may emerge

) Path-dependent minimum gap determines 22

Effective dimensionality exponent dqy £ (

Adiabatic II Impulse II Adiabatic
T e

Dynamical asymmetry

e

(shift of the center of impulse region)

-
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SEARCH FOR UNDERSTANDING

i )
Is it possible to develop some general framework for

dynamical critical scaling?

Monday, January 3, 2011



ADIABATIC RENORMALIZATION
H(t) = H. + [)‘(t) == Ac]Hl = H:+ (t = tc)/THI

& iteration
H ()| Ym (1)) = Em(8)|Ym (1)) W.ﬁ; 7 (1))

Ui (1)) = U;(8) |90, () f

ihoy [y (1)) = H’ ()[4 (1))

HI(t) =U!_H'U;_y —ihU]_,U;_,

B (1) = U], (t)--- UL (&)U (1)|¢°(2))
[P (ti))

Hope is: time-dependence

- 2
W disappears 47 (2))

aaaaaaaaaaaaaaaaaaaa




ADIABATIC RENORMALIZATION
H(t) = Hc == P‘(t) = Ac]Hl = Hc o (t = tc)/THl

H ()|t (1)) = Em(t)[tm(1))

Non-adiabatic correction:

() = co(t)[o(t)) + ) m(t)|tbm ()

. m=#£0
C(()l) () = e~ lo(?)

t / / /
W) (5 — o iTon(8) [ 1575 oy S ) H1 Y0 (E)) i fFas A (s)
S0 . /tdt ) e

Am(t) = En(t) — Eol(t)

--- A. Polkovnikov, PRB, 72 (2005) 161201

aaaaaaaaaaaaaaaaaaaa



Main scaling assumptions:

Em(t) — Eo(t) = OA(E)" fn (B (timin) [0A(E)7)

(W ()| HL [0 () = OAE)* g (A (Eain) 555 JEAE)72)

A (tmin) : minimum gap of mode m at tpmin

p(E) ~ BV

fon(2), gm(x)(z — 0) — constant

fm(x), gm(x)(x = 00) = x

-

.

4;
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CONCLUSIONS

) Dynamical Asymmetry of the Impulse region (non-K7)

Adiabatic II Impulse II Adiabatic

—t; t.=0 s

Relevant modes versus critical mode: minimum gap

Dynamical critical exponents not determined from equilibrium

® Knowledge about the path-dependent excitation process may be crucial and
non-equilibrium exponents cannot be fully predicted from equilibrium ones

) Quench across critical regions:

-— Dominant critical point

-

— Cancellation mechanism

-
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o For quenches involving isolated QCPs,non-ergodic
dynamical scaling is fully captured by first-order adiabatic
renormalization with appropriate scaling assumptions

3 Role of Initial State

a )

What happens away from integrability?

U _/

-

g

Monday, January 3, 2011




