

Random-Field Ferromagnetism in Single Crystals of Molecular Magnet Mn₁₂-acetate

Andrew D. Kent

Department of Physics, New York University

Collaborators

- Pradeep Subedi (NYU)
- Bo Wen, Lin Bo, Shiqi Li, Myriam Sarachik (CCNY)
- Yosi Yeshurun (Bar-Ilan)
- Shreya Mukherjee, Christos Lampropoulos, George Christou (UF)
- Andrew Millis (Columbia U.)

Outline

I. Introduction

-Motivation: study for long range order in Mn₁₂-ac

-Energy scales in Mn₁₂-acetate

II. Experiment

- -Setup/measurements
- -Susceptibility data
- -Experimental phase diagram

III. Models

-Comparison to MFT -Why randomness is needed?

-Our random field model

IV. Recent Results: Hall bar array, SQUID results

V. Summary/Perspectives

Potential realization of a transverse field Ising system

$$H = -\sum_{ij} J_{ij} S_i^z S_j^z - h \sum_i S_i^x$$

<u>A ferromagnetic phase was predicted:</u> -Fernandez and Alonso, PRB 2000 -Garanin and Chudnovsky, PRB 2008

Interesting ferromagnetic domain dynamics predicted

Neutron scattering data shows low-T ferromagnetic order: -Luis et al., PRL 2005

<u>Magnetic susceptibility had not been studied as a function of</u> <u>transverse field</u>

3 QCPS-III Workshop in Orlando

Neutron Scattering Study

PRL 95, 227202 (2005)

PHYSICAL REVIEW LETTERS

week ending 25 NOVEMBER 2005

Long-Range Ferromagnetism of Mn₁₂ Acetate Single-Molecule Magnets under a Transverse Magnetic Field

F. Luis,^{1,*} J. Campo,¹ J. Gómez,² G. J. McIntyre,³ J. Luzón,¹ and D. Ruiz-Molina²

-Blue points are at 4T -Red points are at 0T data taken after applying 6T before setting the above fields.

Mn₁₂-acetate

- Body centered tetragonal lattice a=1.7 nm, b=1.2 nm
- Strong uniaxial magnetic anisotropy (~60 K)
- Weak intermolecular dipole interactions (~0.1 K)
- Discrete disorder

Experimental Setup

Measurements taken between 0.4 K to 6 K in a ³He refrigerator with a 3D superconducting vector magnet.

Experimental Setup

New to experimental setup:

- 1) Hall bar array
- 2) Reference Hall bar
- 3) Measure the applied field

Quantum Tunneling of Magnetization

- Applying H_{\perp} breaks the symmetry and lifts the degeneracies by mixing the eigenstates of \hat{S}_z .
- Increasing H_{\perp} promotes quantum tunneling, accelerating the relaxation towards thermal equilibrium.

Blocking Temperature

T_B depends on sweep rate and transverse field.

•
$$T_B = \frac{U}{k_B \ln\left(\frac{t_m}{\tau_0}\right)}$$

-The equilibrium susceptibility can be measured for $T>T_B(H_\perp)$

Blocking Temperature

T_B depends on sweep rate and transverse field.

•
$$T_B = \frac{U}{k_B \ln\left(\frac{t_m}{\tau_0}\right)}$$

•
$$\chi = \partial M_z / \partial H_z|_{H_z=0}$$

in equilibrium.

11 QCPS-III Workshop in Orlando *as shown in F. Luis et al., PRL 2005

T_{cw} decreases much more rapidly than predicted by MFT*

*MFT due to Garanin and Chudnovsky PRB 2008 & Millis et al. PRB 2010

Ordering due to Dipole Interactions

•Presence of a transverse field canting, $\langle S_x \rangle \neq 0$ Random field on S_{zi}

NYU (

Randomness in Mn₁₂-acetate

Disorder in the solvent molecules generates a discrete set of isomers with second order anisotropy and easy axis tilts A. Cornia et al., Phys. Rev. Lett. 89, 257201 (2002) MnⅢ $\pm E(S_x^2 - S_y^2)$ n=2 "trans" n=2 "cis" n=4 a. Most probable $E \neq 0$ b. Equal populations of: average of 2 CH₃COOH molecules per Mn₁₂ n=3 n=1 $+E(S_x^2 - S_y^2)$ n=0 with 4 possible positions head tail C - C - HH H - O $-E(S_x^2 - S_v^2)$ S. Takahashi et al., PRB 2004 E. del Barco, ADK, S. Hill et al., JLTP 2005 Easy axis tilts up to 1.7 deg 18 QCPS-III Workshop in Or

 Applied transverse magnetic field, H_⊥, is perpendicular to the crystal c-axis but NOT the spin quantization axis of the tilted molecules.

easy axis tilts \Rightarrow random field

- Some of the tilted molecules experience a field, H_{||}, along their easy axis.
- Isomers are distributed randomly.
- Random distribution gives rise to random-field along the easy axis of tilted molecules.

Randomness in Mn₁₂-acetate

- •Transverse field leads directly to a random field longitudinal field on misaligned sites (red spins)
- These spins "freeze-out" (become 'slave' to the random field for h_{rand}~J_{ij}) and cannot participate in the LRO
- •This leads to an effective dilution which reduces $T_{\rm c}$ and produces an additional random field

Hamiltonian for interacting Ising spins in transverse field that includes random fields

$$egin{aligned} &\mathcal{H} = \mathcal{H}_{mol}^{0} + \mathcal{H}_{mol}^{ran,i} + \mathcal{H}_{dipole} & ext{[Millis et al. PRB 81, 024423(2010)]} \ &\mathcal{H}_{mol}^{0} = -DS_{z}^{2} - BS_{z}^{4} + C\left(S_{+}^{4} + S_{-}^{4}
ight) + g\mu_{B}ec{H}_{\perp}\cdotec{S}_{\perp} \ &\mathcal{H}_{mol}^{ran,i} = heta_{i}\cos(\phi_{i} + \phi_{H})g\mu_{B}H_{\perp}S_{z} + E_{i}\left(S_{x}^{2} - S_{y}^{2}
ight) \end{aligned}$$

where,

- \mathcal{H}_{mol}^{0} is a single-molecule Hamiltonian.
- $\mathcal{H}_{mol}^{ran,i}$ is a site-dependent random field Hamiltonian.
 - θ , ϕ are polar and azimuthal tilt angles.
 - D=0.548 K, B=0.0012 K, $C=1.44 imes10^{-5}$ K

Comparison to Experimental Data

۰Z

Phase Diagram and Curie-Weiss Temperature

Recent Results

Spatially Resolved Susceptibility Measurements

Effective intermolecule spin-spin interaction position dependent crystal

long-range

short-range

 $J_{SR}(0.7) \approx 1.23$

$$J_F = E_{dip} \left[2J_{SR} \left(\frac{c}{a} \right) + \frac{8\pi}{3} - 2\Lambda \right]$$
 A. J. Millis *et al.*, PRB 2010

demagnetization factor

 $\Lambda(ec{r})$

27 **QCPS-III Workshop in Orlando**

NYU

SQUID Data

•Dilution -random interactions ("SG" behavior for x<0.2)

•Transverse field

-spin-canting+dipole interactions produces a random field along the Ising axis

> randomly located spins that are uniformly polarized along x produce a random field along z.

Hyperfine interactions ~
 dipolar interactions

•Critical behavior can be studied experimentally

•No dilution

-In zero-transverse field Mn₁₂-ac is essentially a pure Ising system

•Transverse field

-random field along the Ising axis of misaligned molecules

-large random fields

misaligned spins `slave' to random field and do not order

randomly located and randomly polarized `slave' spins produce an additional random field along the Ising axis*

•Weak hyperfine interactions

•Slow QTM relaxation prevents study of the critical behavior (at least for now).

*not included in mft (i.e. Millis et al, ArXiv:2009)

- •Mn₁₂-ac is an experimental realization of random field Ising ferromagnetism (RFIFM) in SMMs
- •From the susceptibility's dependence on the transverse magnetic field and temperature, we can get quantitative information about the strength and the distribution of the random field
- •The random field can be externally tunable via the transverse field.

A. J. Millis *et al.*, PRB 81, 024423 (2010)
B. Wen *et al.*, PRB 82, 014406 (2010)
S. Li *et al.*, PRB 82, 174405 (2010)

Open Questions/Research Directions in RFIFM

- -Test model of disorder in Mn₁₂-ac.
- -SMM with larger quantum fluctuations to enable study of the of PM->FM phase transition and the quantum critical point
- -Vary the scale of the random fields
- -Examine the domain structure and relaxation into FM phase -Vary lattice parameters c/a to vary intermolecular interactions (including exchange interactions).