Slow Magnetic Relaxation in a High-Spin Iron(II) Complex and a Series of 1D Coordination Solids

David Harris Dept. of Chemistry, UC Berkeley

Single-Molecule Magnets

• High-Spin Ground State (S)

 Molecular "Easy Axis" Stemming from Uniaxial Anisotropy (D)

Spin-Reversal Barrier:
U = S² | D |

Ε

Slow Magnetic Relaxation in Mononuclear f-Element Complexes

[Pc₂Ln]⁻ Ln = Tb, Dy, Ho

[(Ph₂BPz₂)₃U]

Ishikawa, et al *JACS* **2003**, *125*, 8694 Ishikawa, Sugita, Wernsdorfer *JACS* **2005**, *127*, 3650

Rinehart, Long *JACS* **2009**, *131*, 12558

• slow relaxation stems from highly-anisotropic ground-states

C₃-Symmetric High-Spin Iron(II) as a Source of Anisotropy

Zero-Field Splitting in Trigonal High-Spin Iron(II) Complexes

$D \ge 50 \text{ cm}^{-1}$

Andres, Bominaar, Smith, Eckert, Holland, Münck JACS 2001, 124, 3012 Popescu, Mock, Stoian, Dougherty, Yap, Riordan Inorg. Chem. **2009**, 48, 8317

A High-Spin Iron(II) Complex Approximating C₃ Symmetry

Selected Interatomic Distances (Å) and Angles (°)				
Fe-N _{apical}	2.172(1)			
Fe-N _{basal}	2.024(3)			
	2.008(3)			
	2.041(2)			
N _{basal} -Fe-N _{basal}	122.4(1)			
	115.3(1)			
	117.4(1)			

Confirmation of S = 2 Ground-State in [(tpa^{Mes})Fe]⁻

- high-temperature value of $\chi_M T = 3.32 \text{ cm}^3 \text{mol/K}$ confirms S = 2 ground-state
- downturn in $\chi_{M}T$ at low temperature indicative of magnetic anisotropy

Immense Magnetic Anisotropy in [(tpa^{Mes})Fe]⁻

- data fit using $\hat{H} = D\hat{S}_z^2 + E(\hat{S}_x^2 \hat{S}_y^2) + g_{iso}\mu_B S \cdot B$
- fit gives $D = -39.6 \text{ cm}^{-1}$ and $E = -0.4 \text{ cm}^{-1}$
- EPR silent to 14.5 T and v = 400 GHz

Theoretical Spin-Reversal Barrier for [(tpa^{Mes})Fe]⁻

high-spin ground-state: S = 2

uniaxial anisotropy: $D = -39.6 \text{ cm}^{-1}$

spin-reversal barrier: $U = S^2 |D| = 158 \text{ cm}^{-1}$

- ac susceptibility measurement shows no χ_M " signal at v < 1500 Hz and T > 1.8 K
- lack of slow relaxation likely due to quantum tunneling of magnetization

Slow Magnetic Relaxation in [(tpa^{Mes})Fe]⁻

- fit to high-temperature data gives $U_{\rm eff}$ = 42 cm⁻¹ and τ_0 = 2 x 10⁻⁹ s
- *τ* approaches pure tunneling regime at low temperature

A High-Spin Iron(II) Complex Approximating C₃ Symmetry

Selected Interatomic Distances (Å) and Angles (°)			
Fe-N _{apical}	2.172(1)		
Fe-N _{basal}	2.024(3)		
	2.008(3)		
	2.041(2)		
N _{basal} -Fe-N _{basal}	122.4(1)		
	115.3(1)		
	117.4(1)		

Field Dependence of Relaxation Time in [(tpa^{Mes})Fe]⁻

• maximum in relaxation time occurs at ca. 1500 Oe

Spin-Reversal Barrier in Single-Chain Magnets

$\Delta_{\tau} = 2\Delta_{\xi} + \Delta_{A} = S^{2}(8J + D)$

• relationships with *S*, *D*, and *J* only apply to Ising systems (D/J > 4/3) with narrow domain walls)

Formation of a New Cyanometalate Building Unit

• magnetic measurements confirm $S = \frac{3}{2}$

Strong Magnetic Anisotropy in [(tpa^{Mes})Fe]⁻

• fits give $D = -14.4 \text{ cm}^{-1}$ and $E = -1 \times 10^{-3} \text{ cm}^{-1}$

Formation of a Series of 1D Coordination Solids

 $[\text{ReCl}_4(\text{CN})_2]^{2-} + [\text{M}(\text{H}_2\text{O})_6]^{2+} (\text{M} = \text{Mn}, \text{Fe}, \text{Co}, \text{Ni}, \text{Cu})$

(DMF)₄MReCl₄(CN)₂ (M = Mn, Fe, Co, Ni, Cu)

Variable-Temperature dc Susceptibility Data for MnRe(CN)₂ Solid

- minimum in $\chi_{\rm M}T$ indicative of intrachain AF coupling
- fit to the data gives $J = -5.5 \text{ cm}^{-1}$

Summary of Coupling Strength in 1D Solids

М	J	4 <i>JS</i> ₁ <i>S</i> ₂	Δ_{ξ}	Δ_{τ}	۵ _A
Mn	-5.5	68	19	31	7.6
Fe	4.8	64	28	56	30
Со	2.4	22	11	14	-
Ni	3.7	23	9.0	22	19

All energies are expressed in cm⁻¹.

Evaluating the 1D Nature of MnRe(CN)₂ Solid

 $\chi T \propto exp(\Delta_{\xi}/k_{B}T)$

Summary of Correlation Energies of 1D Solids

Does $\Delta_{\xi} = 4 |JS_1S_2|$?

М	J	4 <i>JS</i> ₁ S ₂	Δ _ξ	$\Delta_{ au}$	۵ _A
Mn	-5.5	68	19	31	7.6
Fe	4.8	64	28	56	30
Со	2.4	22	11	14	_
Ni	3.7	23	9.0	22	19

All energies are expressed in cm⁻¹.

• Not in Ising limit!

Magnetization Dynamics of MnRe(CN)₂ Solid

Arrhenius Dependence of Relaxation Time

 $\tau = \tau_0 exp(\Delta_{\tau}/k_{\rm B}T)$

Summary of Slow Relaxation in 1D Solids

М	J	4 <i>JS</i> ₁ <i>S</i> ₂	Δ_{ξ}	Δ _τ	۵ _A
Mn	-5.5	68	19	31	7.6
Fe	4.8	64	28	56	30
Со	2.4	22	11	14	_
Ni	3.7	23	9.0	22	19

All energies are expressed in cm⁻¹.

Classical Magnet Behavior in FeRe(CN)₂ Solid

Future Directions

 Rationalize trends in slow relaxation, anisotropy, and tunneling across series of [(tpa^R)Fe]⁻ complexes

 $R = {}^{t}Bu$, Ph, F₂Ph, *o*-Tol, Mes, ${}^{i}Pr_{3}Ph$

• Investigate other high-spin metal ions in coordination environments giving rise to unquenched orbital angular momentum

Acknowledgments

People

Prof. Jeffrey Long Dr. Rodolphe Clérac Danna Freedman **Hill Harman Miriam Bennett Prof. Stephen Hill** Dr. Andrew Ozarowski Jeff Rinehart

Funding

NSF Tyco Electronics

A Series of Trigonal Pyramidal High-Spin Iron(II) Complexes

High-Field EPR Spectra for [(tpa^{DFP})Fe]⁻

- negative sign of D obtained by temperature-dependence of spectra
- values comparable to those obtained from magnetization data (D = -6.22, E = -0.1 cm⁻¹)
- no observable slow magnetic relaxation in [(tpa^{DFP})Fe]⁻

Packing Diagram of (DMF)₄MReCl₄(CN)₂

Variable-Temperature dc Susceptibility Data for FeRe(CN)₂ Solid

- rise in $\chi_{M}T$ indicative of intrachain ferromagnetic coupling
- fit to the data gives $J = 4.8 \text{ cm}^{-1}$