Emergence of the Hidden Order State from the Fano Lattice Electronic Structure of the Heavy-Fermion Material URu₂Si₂

J.C. Séamus Davis

Cornell/McMaster URu₂Si₂ Team

Prof. Graeme LukeDr. Peter WahlMohammad HamidianDr. Andy SchmidtMcMasterCornell/MPI StuttgartCornell / BNLCornell / BNL

Kondo Lattice & Heavy Fermions

Kondo Effect

Below T_K impurity spin is progressively screened: Kondo singlet

Heavy Fermion Effects in f-electron Lattices

- Lattice of certain *f*-electrons (most Ce, Yb or U) in metallic environment
- La³⁺: 4 f^0 , Ce³⁺: 4 f^1 (J = 5/2), Yb³⁺: 4 f^{13} (J = 7/2)
- partially filled inner 4f/5f shells → localized magnetic moment

Kondo Impurity & Kondo Lattice

Interactions bring f level close to E=0 and result in a d-f hybridization and a sharp DOS(E) resonance

Heavy Fermion Effects in Kondo Lattices

Challenge: atomically resolved image of d-f electron hybridization and heavy band formation ?

Heavy Fermion Spectroscopic Imaging STM

Spectroscopic Imaging STM

Spectroscopic Imaging STM Systems Rev. Sci. Inst. 70, 1459 (1999).

Spectroscopic Imaging STM Systems Rev. Sci. Inst. 70, 1459 (1999).

Spectroscopic Imaging STM Systems

Rev. Sci. Inst. 70, 1459 (1999).

10 mK / 9 Tesla / SI-STM

Heavy Fermion QPI Example: Sr₃Ru₂O₇

1% Ti atoms on Ru sites 280 Å 0

 $g(\vec{r}, \overline{E})$ Spectroscopic Image

Heavy Fermion QPI Example: Sr₃Ru₂O₇

1% Ti atoms on Ru sites

 $g(\vec{r}, E)$ Spectroscopic Image

Heavy Fermion QPI Example: Sr₃Ru₂O₇

QPI identification of heavy d-electron (α_2) band

Can we explore Kondo-Lattice Heavy Fermions similarly?

Single Adatom Kondo Effect

Single Magnetic Adatom Kondo Resonance

M. Plihal und J.W. Gadzuk, Phys. Rev. B 63, 085404 (2001)O. Újsághy, J. Kroha, L. Szunyogh und A. Zawadowski, Phys. Rev. Lett. 85, 2557 (2000)

Single Magnetic Adatom Kondo Resonance

V. Madhavan et al, Science 280, 567 (1998)

'Fano Spectrum' of Kondo Resonance

V. Madhavan *et al,* Science 280, 567 (1998)
H. Manoharan *et al Nature* 403, 512-515 (2000).
N. Knorr, *et al. Phys. Rev. Lett.* 88, 096804 (2002).

Physical Significance of Fano Signature

$$g(r,E) \propto \frac{(q+E')^2}{E'^2+1}; E' = \frac{(E-\varepsilon_0)}{\Gamma/2}$$

 \mathcal{E}_0 energy of many-body state screening spin

 Γ width of resonance (simple Kondo $2k_BT_k$)

q Ratio of matrix elements linking tip state to resonance and to continuum

$$q(r) = \frac{\operatorname{Re} G(r) + t(r)}{\operatorname{Im} G(r)} \qquad t(r) = t_0 e^{-\frac{d(r)}{\alpha}}$$

M. Plihal und J.W. Gadzuk, Phys. Rev. B 63, 085404 (2001)

Kondo Lattice system: Perhaps one might expect a 'Fano Lattice'?

'Fano Lattice' Theories

Haule K. & Kotliar G, *Nature Phys.* **5**, 796 (2009). Maltseva, M., Dzero, M. & Coleman P. *Phys. Rev. Lett.* **10**, 206402 (2009)

URu₂Si₂ is a modestly heavy fermion system


```
(same as CeCu<sub>2</sub>Si<sub>2</sub> with U and Ru instead of
Ce and Cu);
a=4.124Å; c=9.582Å (PRL65-3189)
```

URu₂Si₂ is a modestly heavy fermion system T*~55K

URu₂Si₂ is a modestly heavy fermion system T*~55K with an additional 'Hidden Order' phase transition at 17.5K

Why URu₂Si₂?

- Heavy fermion system
- Perfect cleave surface
- Lattice of f-atoms at surface
- Scattering interference

Si-layer termination

40nm x 40nm Si surface topography (70619)

Fano-like spectrum at every Si atom

40nm x 40nm topography

Fano Signature Analysis

$$g(r,E) \propto \frac{\left(q+E'\right)^2}{E'^2+1}; E' = \frac{\left(E-\varepsilon_0\right)}{\Gamma/2}$$

 \mathcal{E}_0 energy of many-body state screening spin

 Γ width of resonance (simple Kondo $2k_BT_k$)

q Ratio matrix elements linking tip state to resonance and continuum

$$q(r) = \frac{\operatorname{Re} G(r) + t(r)}{\operatorname{Im} G(r)} \qquad t(r) = t_0 e^{-\frac{d(r)}{\alpha}}$$

M. Plihal und J.W. Gadzuk, Phys. Rev. B 63, 085404 (2001)

'Fano Lattice' Electronic Structure $(T>T_{O})$

URu₂Si₂ 'Hidden Order' State

'Hidden Order' Transition T_o=17.5K

'Hidden Order' Transition T_o=17.5K

- Heavy fermion material
- Superconductor below $T_c \sim 1.5 K$
- Energy-gap ~10+-2 mV (Photo, INS, Cp)
- Palstra, T.T.M., Menovsky, A.A., & Mydosh, J.A. Superconducting and magnetic transitions in the heavyfermion system URu₂Si₂. *Phys. Rev. Lett.* **55**, 2727-2730 (1985).
- •[[]Broholm, C. *et al*. Magnetic excitations and order in the heavyelectron superconductor URu₂Si₂. *Phys. Rev. Lett.* **58**, 1467-1470 (1987).
- Bonn, D.A. *et al.* Far-infrared properties of URu₂Si₂. *Phys. Rev. Lett.* **61**, 1305-1308 (1988).
- Wiebe, C.R. *et al*. Gapped Itinerant spin excitations account for missing entropy in the hidden order state of URu₂Si₂. *Nature Phys.* **3**, 96-99 (2007).
- •] Santander-Syro, A.F. *et al.* Fermi-surface instability at the 'hidden-order' transition of URu₂Si₂. *Nature Phys.* **5**, 637-641 (2009).

FIG. 1. Specific heat of URu₂Si₂ plotted as C/T vs T^2 (above) yielding γ and Θ_D , and as C/T vs T (below) showing the entropy balance.

'Hidden Order' Transition T_=17.5K

'Conventional' Density Wave

Broholm, C. *et al.* Magnetic excitations in the heavy-fermion superconductor URu₂Si₂. *Phys. Rev. B.* **43**, 809-822 (1991).

Ikeda, H. & Ohashi, Y. Theory of unconventional spin density wave: a possible mechanism Ubased heavy fermion compounds. *Phys. Rev. Lett.* **81**, 3723-3726 (1998).

Chandra, P. *et al.* Hidden orbital order in the heavy fermion metal URu₂Si₂. *Nature* **417**, 831-834 (2002).

Varma, C.M. & Lijun, Z. Helicity order: Hidden order parameter in URu₂Si₂. *Phys. Rev. Lett.* **96**, 036405-1-036405-4 (2006).

Balatsky, A.V. *et al.* Incommensurate spin resonance in URu₂Si₂. *Phys. Rev. B.* **79**, 214413 (2009).

'Altered' Kondo Effect

Santini, P. Crystal field model of the mag properties of URu₂Si₂. *Phys. Rev. Lett.* **73**, 1027-1030 (1994).

Barzykin, V. & Gor'kov, L.P. Singlet magnetism in heavy fermions. *Phys. Rev. Lett.* **74**, 4301-4304 (1995).

Haule K. & Kotliar G. Arrested Kondo effect and hidden order in URu₂Si₂. *Nature Phys.* **5**, 796-799 (2009).

Haule K. & Kotliar G. Complex Landau Ginzburg theory of the hidden order of URu₂Si₂. Preprint available arXiv:0907.3892.

Emergence of 'Hidden Order' DOS(E) from the Heavy Fermion Fano Spectrum

Alterations in Fano signature at HO Transition

U-terminated

Si-layer Quasiparticle Interference Imaging

Rotated to overlap with 4.2K map

12

QPI inversion to identify bands was unachievable

Rotated to overlap with 4.2K map

U-layer termination

 $\mathsf{U}_{0.99}\mathsf{Th}_{0.01}\mathsf{Ru}_2\mathsf{Si}_2$

40nm x 40nm Topography (70619)

Signature of HO near E=0 on dI/dV spectrum at U-layer

- Extremely rapid k(E) heavy fermions
- Within range of hidden-order gap only
- Highly anisotropic QPI & gap structure
- Completely different E<0 : E>0
- No static Q* (density wave) at any energy

Extremely rapid T-dependence of band structure

- 1010

2 mV

'Hidden Order' splits light band into two heavy bands

Conclusions

Challenge: atomically resolved image of d-f electron hybridization and heavy band formation in Kondo lattice?

'Fano Lattice' Imaging: New approach to heavy fermion physics

'Hidden Order' Transition T_o=17.5K

HO transition in LDOS emerges from 'Fano Lattice' signature

Light d-band splits rapidly into two heavy bands below T_a

- Conventional density wave, non-dispersive modulations at *Q** should appear in the gap-edge states both above and below E_r. But the high-DOS gap-edge states of 'hidden order' state are at a completely different *k*-space locations
- Instead, light band crossing E_F near $k = 0.3(\pi/a_0)$ above T_o which undergoes rapid temperature changes below T_o .
- The result is its splitting into two far heavier bands widely separated in *k*-space and with quite different anisotropies
- The *k*-space hybridization gap and the DOS(E) changes detected in *r*-space occur within the same narrow energy range (consistent with the energy ranges deduced from thermodynamics and other spectroscopies),

'Hidden Order' State - Change in Kondo Effect at U atoms

'Hidden order' transition is caused primarily by a sudden alteration of the many-body state centered upon each U atom, with associated alterations to the *r*-space /*k*-space hybridization processes