Spin (in)coherence of phosphorous donor electron qubits near the c-Si/SiO$_2$ interface

Christoph Boehme
Department of Physics University of Utah
Spin will play an increasingly important role in (silicon based) electronics

Quantum Information Processing

Electron spin T_2 time of 31P donor > 600ms (electron spin) *

How does the readout of 31P qubit work? SPIN – SELECTION RULES!

*A. M. TYRYSHKIN et al. PHYSICAL REVIEW B 68, 193207 (2003)
PHOSPHOROUS SPIN READOUT AT THE SILICONDIOXIDE INTERFACE

The c-Si (111)/SiO₂ interface

³¹P SPIN READOUT USING SPIN-SELECTION RULES

OBSERVATION OF THE PHOSPHOROUS – INTERFACE DEFECT TRANSITION

\[|\Psi\rangle = |\Psi\rangle(\tau, B_1, \omega) \]

\[Q = Q(\tau, B_1, \omega) \]

\[Q \propto |\langle S | \Psi \rangle|^2 \]

T = 5K

$|\Psi (r = 0)|^2 \propto \Delta \text{HFS} = 4.2 \text{ mT} \propto a^{-3}$

ELECTRICAL DETECTION OF 31P DONOR STATES

$T = 5K$

ELECTRICAL DETECTION OF 31P DONOR STATES

$T = 5K$

$Q \propto \left| \langle S | \Psi \rangle \right|^2$

T = 5K

T = 5K

Weakly coupled 31P-P$_b$ spin pairs

ELECTRICALLY DETECTED HAHN-ECHOES OF NEAR INTERFACE 31P

Increase dephasing time τ → Echo intensity decays → Decay time: T_2 coherence time

T$_2$ time at interface is constant at different temperatures.

ESR T$_2$ has temperature dependence: T$_1$ limits T$_2$ in the ESR measurement.*

T$_2$ time at interface is much shorter than in bulk T$_2$ at low temperature.

ELECTRICALLY DETECTED INVERSION RECOVERY EXPERIMENT

Is spin relaxation time truly limited by electronic transition or is field fluctuations at interface?

$T_1 = 4.0(5) \mu s$

$T_2 = 1.3(8) \mu s$ at low HF ^{31}P peak

$T_2 = 2.1(7) \mu s$ at high HF ^{31}P peak
ELECTRICALLY T_1 RELAXATION AT LOWER INTERFACE STATE DENSITIES

c-Si/SiO_2 INTERFACE WITH 4 TIMES SMALLER INTERFACE DENSITY

CONCLUSIONS

- EDMR T_1, T_2 times are much shorter than ESR T_2 time.

- Electronic transition time probably limits T_1 relaxation time.

- Incoherence time T_2 of ^{31}P qubit is shortened due to the interface states.

<table>
<thead>
<tr>
<th>$T = 5K$</th>
<th>High field ^{31}P</th>
<th>Low field ^{31}P / P_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDMR T_1</td>
<td>14(3)μs</td>
<td>13(3)μs</td>
</tr>
<tr>
<td>EDMR T_2</td>
<td>4.0(5)μs</td>
<td>1.0(2)μs</td>
</tr>
</tbody>
</table>

Silicon-based QCs using ^{31}P qubits (AND READOUT) need to overcome the limitation imposed by interface defects.

Spin-Dependent Trapping at Bulk Phosphorous in Silicon

- **Spin Trapping**

 Quasi-optical
 Superheterodyne EPR System

Spin-trapping is only visible when electrons are strongly polarized – at very high magnetic fields

See Gavin Morley's talk that will come next

Questions?

Christoph Boehme
Department of Physics University of Utah