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Polarons:
Consider a typical lattice model description of electron-phonon interactions:

I will only discuss single polaron physics at T=0.

Results shown here are for a simple cubic-like lattice + nn hoping, and
Holstein model in d=1, 2, 3, with g(q) = g
1D breathing phonon mode model, where g(q) ~ sin(qa/2)

This approach can be generalized with the same level of accuracy to models with complex lattices 
(several electronic bands), multiple Einstein phonon modes, also to some g(k,q) couplings 

Three energy scales two dimensionless parameters: effective coupling + adiabaticity parameter
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Quantity of interest: the Green’s function G(k,w) and the spectral weight A(k,ω)

1, ,1, , 1, ,kH k E kαα α= eigenenergies and eigenfunctions (1 electron, total momentum 
k, α is collection of other quantum numbers)
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−� measured in (inverse) ARPES, also linked to LDOS measured 
by STM  



Holstein model:
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How does the spectral weight evolve between these two very different limits?



Calculating the Green’s function:
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For these polarons,  we need to sum to orders well above <g2>/Ω2 to get convergence. 

42913242145211Σ, SCBA
17083941104108162706741021Σ, exact
87654321n

Traditional approach: find a subclass of diagrams that can be summed, ignore the rest

self-consistent Born approximation (SCBA) – sums only non-crossed diagrams (much fewer)



New approach: the MA(n) (momentum average) hierarchy of approximations:

Idea:  generate the infinite hierarchy of coupled equations of motion for the propagator (BBGKY)
keep all of them instead of truncating and factorizing
simplify by ignoring terms that are exponentially small 

can solve the resulting equations analytically to find the self-energy
Depending on the level where we start making approximations n in MA(n) 

Equivalent to analytical summation of  ALL self-energy diagrams after discarding exponentially small 
contributions to each of them.
Results are EXACT in both asymptotic limits (zero el-ph coupling and zero bandwidth) and 
computationally trivial to evaluate for any values of the parameters.

Eg: MA(0) self-energy for the Holstein model: (0)

2
0

2
0 0

2
0 0

( )( )     
2 ( ) ( 2 )1
3 ( 2 ) ( 3 )1

...

MA
g g

g g g
g g g

ω
ω

ω ω
ω ω

−Ω
∑ =

−Ω − Ω
−

− Ω − Ω
−

0 0
. .

1 1( ) ( , )
(2 )dk kB Z

dkg G k
N i

ω ω
ω ε ηπ

= =
− +∑ ∫G G

GG

Note: for a model with g(q) dependence, the MA self-energy is momentum dependent for all n.

for Holstein model, momentum dependence appears only for n=2 and higher. 



What does this mean?

(i) Real-space argument: MA(0) means 0 , 0 , 0( , ) (0, ) ( )i j i jG i j G gω δ ω δ ω− → =
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At low energies ω ~ EGS < -2dt free electron Greens’ functions decrease exponentially 
with distance |i-j| MA(0) keeps the most important (diagonal) contribution. The 
approximation becomes better the more phonons are present, since the lower ω – n Ω is, 
the faster the decay.

(ii) Spectral weight sum rules (see PRB 74, 245104 (2006) for details)
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Keeping correct no. of diagrams is extremely important MA(0) satisfies exactly sum rules 
up to n=5, and is highly accurate for all higher n (predicts correctly the most important terms); 

MA(1) is exact up to n=7, MA(2) is exact up to n=9, …

Ratios of sum rules for MA(0) (red) and SCBA (blue) wrt exact sum rules, Holstein, 1D
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Lots of comparison against numerical results, agreement very good unless the phonon frequency is 
very small. Moreover, it can be systematically improved. [PRL 97, 036402 (2006); PRB 74, 245104 (2006); 
PRL 98, 209702 (2007); PRB 76, 165109 (2007), Can. J. Phys 86, 523 (2008) ].

Results for the polaron ground state (a) energy; (b) quasiparticle weight; 
(c) average number of phonons in the polaron cloud, vs. λ

Black circles are Quantum Monte Carlo data, red squares are MA 
predictions, other curves are various other known approximations
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3D Polaron dispersion

L. -C. Ku, S. A. Trugman and S. Bonca, Phys. Rev. B 65, 174306 (2002).



λ = 0.5 λ = 1

λ = 2

A(k,ω) in 1D

G. De Filippis et al, PRB 72, 014307 (2005)

MA becomes exact for small, large λ
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qag q i∝Coupling to breathing-mode phonon:

1, 2,( ) cos( ) cos(2 ) ...P eff effE k t ka t ka+ +∼

Numerics: Bayo Lau, M. Berciu and G. A. Sawatzky, Phys. Rev. B 76, 174305 (2007)

MA: Glen L. Goodvin and M. Berciu, Phys. Rev. B 78, 235120 (2008)



Many more things to say, eg about the (quasi)-variational meaning of these approximations, 
need to go to MA(1) or higher to properly capture polaron+phonon continuum, etc. 

Conclusion so far:

It is an approximation (not exact), however it is accurate enough and easy to use to allow 
one to explore quickly all parameter space and the whole energy spectrum to understand 
the polaron’s properties.  



MA(2) results for Holstein.

Note: color scale is not linear!1D, k=0, W=0.5t



Since the initial work for Holstein model, we have been successful in generalizing to

Holstein models with multiple phonon bands and/or complex latttices [L. Covaci and M. Berciu, EPL 
80, 67001, (2007); graphene PRL 100, 256405 (2008); spin-orbit coupling PRL 102, 185403 (2009) ]

generalizations to models with electron-phonon coupling g(q) [G.L. Goodvin and M. Berciu, PRB 78, 
235120 (2008)]

systems with broken translational invariance:

by disorder – either electronic on-site potentials, and/or inhomogeneities in the el-ph 
coupling or in the phonon frequencies (M. Berciu, A. Mishchenko, N. Nagaosa, arXiv:0609:1233)



Note: instantaneous approximations work very poorly if el-ph coupling is strong, because 
the el-ph interaction also renormalizes strongly (+ retardation) the impurity potential.

t = 1; Ω =0.5; g=1.1 λ =1.21

Sites 10-110: 1.05 < g < 1.15

Can also add inhomog. for Ω, t, 
on-site potentials, etc



Since the initial work for Holstein model, we have been successful in generalizing to

Holstein models with multiple phonon bands and/or complex latttices [L. Covaci and M. Berciu, EPL 
80, 67001, (2007); graphene PRL 100, 256405 (2008); spin-orbit coupling PRL 102, 185403 (2009) ]

generalizations to models with electron-phonon coupling g(q) [G.L. Goodvin and M. Berciu, PRB 78, 
235120 (2008)]
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by disorder – either electronic on-site potentials, and/or inhomogeneities in the el-ph 
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by surfaces (G. L. Goodvin, L. Covaci and M. Berciu, PRL 103, 176402 (2009)).
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under way: optical absorption, g(k,q) models (phonon-modulated hopping); finite-T, bipolarons …

stumble upon exactly solvable models [M. Berciu, PRB 75, 081101(R) (2007); M. Berciu and G. A. 
Sawatzky, EPL 81, 57008 (2008)]

with George Sawatzky, work on spin-polarons (M. Berciu and G. A. Sawatzky, PRB 79, 195116 
(2009)), electronic-polarons (next talk, PRB 79, 214507 (2009)), ….


