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 2Out of equilibrium & strong correlations

Pump probe Ultra-cold atomsNano-electronics

• Many experiments : Pump probe,  quantum dots,  ultra-cold atoms, cavities.

• Computational physics challenge : 

• Exact methods for out of equilibrium systems, at strong coupling

• Control, speed and precision

• Long time (after quench), steady state.  Resolve various energy/time scales.  
Early Monte Carlo have sign problem Muelbacher et al. PRB 2009; Werner et al PRB 2009; Schiro PRB  2009.  



•  Anderson model with two leads (L, R).

 3Example : a simple model for a quantum dot

R

Charge transport through single molecules, quantum dots, and quantum wires 27
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Figure 8. (color online) Two fundamental quantum dot models. (a) is the Kondo
model, a spin- 12 coupled via exchange couplings Jz,⊥ to two reservoirs. (b) is the IRLM,
a spinless 1-level quantum dot coupled via tunneling rates ΓL,R and Coulomb couplings
UL,R to two reservoirs. The electrochemical potentials are given by µL/R = ±V/2

for the couplings. Similar schemes can be developed for the calculation of the transport

current [5] and correlation functions [189]. All RG equations involve resolvents similar

to the one occurring in (16) where z is replaced by Λ together with other physical energy

scales. As a consequence, it can be shown that, besides temperature, each term of the

RG equation has a specific cutoff scale Λi, which is generically of the form

Λi = |E +
∑

j

njµαj − hi + iΓi| ≡ |δi + iΓi| . (17)

Here, E is the real part of the Laplace variable, nj are integer numbers, and µα denotes

the electrochemical potential of reservoir α. It shows that the cutoff scale is given by the

distance δi to resonances. Furthermore, it provides the generic proof that, at resonance
δi = 0, the cutoff scale is given by the corresponding rate Γi. This issue was under

debate for some time because it was speculated that electrons tunneling in and out via

the same reservoir correspond to low-energy processes, which could possibly lead to a

strong coupling fixed point even in the presence of a finite bias voltage [195]. However,

it was argued that voltage-induced decay rates prevent the system from approaching

the strong coupling regime [177, 196, 197]. The microscopic inclusion of decay rates as
cutoff scales into nonequilibrium RG methods was achieved within RTRG [185–187],

flow equation methods [180], and RTRG-FS [5].

5.2. Applications

The two models used to illustrate the basic physics of spin and charge fluctuations are
sketched in figure 8. One model is the Kondo model at finite magnetic field h already

discussed in section 4, where a spin-1/2 couples via anisotropic exchange couplings Jz/⊥

to the spins of two reservoirs. We have assumed a symmetric coupling to the leads and

note that during the exchange it is also allowed that a particle is transferred between the

reservoirs. The model results from the Coulomb blockade regime of a quantum dot with

one level, where charge fluctuations are frozen out and only the spin can fluctuate. This

leads to an effective band width of the reservoirs of the order of the charging energy U .
Anisotropic exchange couplings can be realized for a molecular magnet, see section 2.

The other model is the IRLM, where the quantum dot consists of a single spinless energy

level at position ε. The dot interacts with the reservoirs via tunneling processes, which

ε
Vb
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• Questions :  Spectral function ? Kondo temperature ? Current ?
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Bath Local orbital Hybridization

We want a precise solution, at low temperature, any Vb, in steady state

transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is)75 nm). The
2DEG with electron density nS! 2.6* 1015 m+2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size)200 nm by
200 nm, containing )100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is )100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! +448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! +1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at +448 mV. The red line in the right inset highlights the logarithmic T dependence between )90 and )500 mK for Vgl !
+413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! +413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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 4Summary of the approach

1. Works even at long time, even in strong coupling regime (e.g. Kondo effect)

2. How to compute Qn(t) ? Cost O(2n). 
High dimensional integrals.  
Real time “diagrammatic” Quantum Monte Carlo 
Beyond stochastic methods : Quasi-Monte Carlo (QQMC)

3. How to sum the series ? 

Q(t, U) =
K

∑
n=0

Qn(t)Un

Time
Interaction

• Perturbation theory in interaction U (10-15 orders) for physical quantities.

• See also : Expansion around atomic limit. 
“Inchworm” approach. Cohen, Gull, Reichman, Millis PRL (2015)
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Schwinger-Keldysh
1- Notations



Three diagrammatic techniques. 

• T=0 : Ground state

• Matsubara : finite T, in thermal equilibrium

• Schwinger-Keldysh 

• General.  Equilibrium or out of equilibrium. Real time.

• A bit more complex technically. 
It is not possible to write diagrams with only one Green function.

• Conceptually simpler.   
Bath are explicitly included, no hidden relaxation (or Gell-Man Low theorem).

 6



Notations  7

• Canonical fermion operator 

• a,b = multi-index : k, x, spin, ... everything but time.

Chapter 1

Schwinger-Keldysh formalism

1.1 Introduction

Let us consider a many-body system, of fermions or bosons. We will denote the creation and
annihilation operators as c†a/ca and b†a/ba respectively, where a stands for a generic index con-
taining e.g. the momentum ⌥k, the position ⌥x, the band or lead index �, the spin index ⇧ or any
combination thereof. Our only requirement is that the c and b operators fullful the canonical
relations :

{c†a, cb} = ⇥ab [ba, b†b] = ⇥ab (1.1)

In the following, we will use a unified notation for bosons and fermions, and denote by ⌃a a
canonical fermionic or bosonic field, which satisfy :

[⌃a,⌃†
b ]�� = ⇥ab (1.2a)

�
A,B

⇥
�
⇥ AB � ⇤BA (1.2b)

⇤⇥ =

⇤
⇧

⌅
1 for bosons

�1 for fermions
(1.2c)

Moreover, the chronological (resp. anti-chronological) product T (resp. Ť ) will be denoted as :

TA(t)B(t�) = ⌅(t� t�)A(t)B(t�) + ⇤AB⌅(t� � t)B(t�)A(t) (1.3a)

ŤA(t)B(t�) = ⌅(t� � t)A(t)B(t�) + ⇤AB⌅(t� t�)B(t�)A(t) (1.3b)

Exercise: Show explicitely that under T product, operators (anti-)commute.
We denote by H the Hamiltonian of the system. Let us emphasize that in quantum systems,

the Hamiltonian determines the dynamics of the system. It is not consistent to choose another
dynamic for time evolution, contrary to what is often done in classical systems. H contains the
system to be studied and its baths and coupling to these baths. For example in the case of a
quantum dot, H will be the Hamiltonian of the coupled system dot+leads. Moreover, H may

5

• Chronological product

{ca, c†b} = �ab

⇣AB = ±1 A, B both fermionic ? -1 else +1



Hamiltonian evolution 

• Total Hamiltonian of the system, e.g. 
          
                               H = Hdot + Hbath + Hdot-bath 

• H(t) determines the dynamics in real time. Can be time dependent.
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• Evolution operator UH : evolves the state of the system from t0 to t

Chapter 1

Schwinger-Keldysh formalism

1.1 Introduction

Generality on non-eq.
Definition of the density matrix.
Let us consider a many-body system, of fermions or bosons. We will denote the creation

and annihilation operators as c†a/ca and b†a/ba respectively, where a stands for a generic index
containing e.g. the momentum ⌃k, the position ⌃x, the band or lead index �, the spin index ⌅ or
any combination thereof. Our only requirement is that the c and b operators fullful the canonical
relations :

{c†a, cb} = ⇥ab [ba, b†b] = ⇥ab (1.1)

We will denote by ⇧a a canonical fermionic or bosonic field, and by ⇤� (or ⇤ when context will
be clear) the corresponding sign :

⇤� =

�
⇤

⇥
1 for bosons

�1 for fermions
(1.2)

We denote by H the Hamiltonian of the system. Let us emphasize that in quantum systems,
the Hamiltonian determines the dynamics of the system. It is not consistent to choose another
dynamic for time evolution, contrary to what is often done in classical systems. H contains the
system to be studied and its baths and coupling to these baths. For example in the case of a
quantum dot, H will be the Hamiltonian of the coupled system dot+leads. Moreover, H may
depend explicitely on time. We know that the total system evolves under Hamiltonian evolution
with the unitary evolution operator, defined by :

|⇧(t)⇥ = UH(t, t0) |⇧(t0)⇥ (1.3)

If H is time independent, then UH is given by :

UH(t, t⇥) = e�iH(t�t�) (1.4)

5

6 CHAPTER 1. SCHWINGER-KELDYSH FORMALISM

For a more general expression, see XXX. We will use the Heisenberg picture for operators.

A(t) ⇥ U†
H(t, t0)A(t0)UH(t, t0) (1.5)

The density matrix encode the state of the system, in particular how various energy levels
are populated. It has the following properties :

Tr⌅̄ = 1 (1.6a)

⌅̄† = ⌅̄ (1.6b)

⌅̄ ⇤ 0 (1.6c)

i⌃t⌅̄(t) = [H(t), ⌅̄(t)] (1.6d)

⌅̄(t) = UH(t, t0)⌅̄(t0)U†
H(t, t0) (1.6e)

⌅A(t)⇧ ⇥ Tr(⌅̄(t)A(t0)) = Tr(⌅̄(t0)A(t)) for any operator A (1.6f)

The last equation defines what we mean by the averaging in the density matrix ⌅̄. Note that
the time evolution di�ers from the time evolution of operators, as it should to satisfy the last
equality, which express the equivalence between Schödinger and Heisenberg pictures.
In thermal equilibrium with inverse temperature � = 1/T , the density matrix is given by :

⌅̄ =
1
Z

e��H , Z = Tre��H for canonical ensemble (1.7a)

⌅̄ =
1
Z

e��(H�µN̂), Z = Tre��(H�µN̂) for grand canonical ensemble (1.7b)

1.2 One particle Green functions

1.2.1 Definition

Let us first define all the Green functions which are necessary in the following. The seven real
time Green function are defined by :

G++
ab (t, t⇥) ⇥ �i

⇤
T⇧a(t)⇧†

b(t
⇥)

⌅
(1.8a)

G��
ab (t, t⇥) ⇥ �i

⇤
Ť⇧a(t)⇧†

b(t
⇥)

⌅
(1.8b)

G+�
ab (t, t⇥) = G<

ab(t, t
⇥) ⇥ �i⇥⇤

⇤
⇧†

b(t
⇥)⇧a(t)

⌅
(1.8c)

G�+
ab (t, t⇥) = G>

ab(t, t
⇥) ⇥ �i

⇤
⇧a(t)⇧†

b(t
⇥)

⌅
(1.8d)

GR
ab(t, t

⇥) = Rab(t, t⇥) ⇥ �i⇤(t� t⇥)
⇤�

⇧a(t),⇧†
b(t

⇥)
⇥
⇥�

⌅
(1.8e)

GA
ab(t, t

⇥) = Aab(t, t⇥) ⇥ +i⇤(t⇥ � t)
⇤�

⇧a(t),⇧†
b(t

⇥)
⇥
⇥�

⌅
(1.8f)

GK
ab(t, t

⇥) = Kab(t, t⇥) ⇥ �i
⇤�

⇧a(t),⇧†
b(t

⇥)
⇥
�⇥�

⌅
(1.8g)

• Heisenberg representation for operator A



Reminder : density matrix

• For the whole system (e.g. dot + baths)

• Describes the occupation of the levels.
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⇢̄ =
1

Z
e��H , Z = Tre��H

⇢̄ =
1

Z
e��(H�µN̂), Z = Tre��(H�µN̂)

• Thermal equilibrium : 

• Out of equilibrium : 2 independents objects. H and ρ.

Tr⇢ = 1

⇢
† = ⇢

⇢ � 0

i@t⇢(t) = [H(t), ⇢(t)]

⇢(t) = UH(t, t0)⇢(t0)U
†
H
(t, t0)

hA(t)i ⌘ Tr
�
⇢(t)A(t0)

�
= Tr

�
⇢(t0)A(t)

�
for any operator A

Study evolution of ρ 
or correlators



One particle Green functions  10

+,- : just notations 
for the moment

G++
ab (t, t0) ⌘ �i

D
Tca(t)c

†
b(t

0)
E

G��
ab (t, t0) ⌘ �i

D
Ť ca(t)c

†
b(t

0)
E

G+�
ab (t, t0) = G<

ab(t, t
0) ⌘ i

D
c†b(t

0)ca(t)
E

G�+
ab (t, t0) = G>

ab(t, t
0) ⌘ �i

D
ca(t)c

†
b(t

0)
E

• Definitions

• Only 2 Green functions are independents (from the definition of  T)

G++
ab (t, t0) = ✓(t� t0)G>

ab(t, t
0) + ✓(t0 � t)G<

ab(t, t
0)

G��
ab (t, t0) = ✓(t0 � t)G>

ab(t, t
0) + ✓(t� t0)G<

ab(t, t
0)

• In equilibrium, only one ! 
Fluctuation-Dissipation theorem, Kubo-Martin-Schwinger relation

G<
ab(!) = �e��!G>

ab(!)
D
c†b(t

0)ca(t)
E
=

D
ca(t)c

†
b(t

0 + i�)
E
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Schwinger-Keldysh
2- Diagrammatic expansion



General strategy

• Start at t = t0 (=0 in most slides below) 

• With initial condition :  
ρ = ρ0 at thermal equilibrium with non interacting Hamiltonian H0 
at a temperature β

• NB : it is possible to start with interacting equilibrium. Baym-Kadanoff contour.  
Not covered here.

• Study the expansion of correlators at finite time.

 12

Tr(⇢0A(t)B(t0)...)

• Build the diagrammatic at finite time.

• If needed, take the limit t, t0 ! 1 or t0 ! �1

• Separate diagrams technique & thermalization/relaxation/bath questions.



Interaction picture

• Hamiltonian evolution of whole system (dot + bath)
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Interaction (U term)Non interacting part

H = H0 + V (t)

• Operator in interaction picture (≠ Heisenberg picture).

Â(t) ⌘ eiH0tAe�iH0t

U(t) ⌘ eiH0tUH(t)

i@tU(t) = V̂ (t)U(t)

U(0) = 1

U(t) = T exp

✓
�i

Z t

0
V̂ (u)du

◆

• Evolution operator in interaction picture



Time evolution of a physical quantity

• Average of an operator A
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hA(t)i = Tr (⇢0A(t))

= Tr
⇣
⇢0
�
U(t)

�†
Â(t)U(t)

⌘

= Tr

✓
⇢0Ť exp

✓
+i

Z t

0
V̂ (u)du

◆
Â(t)T exp

✓
�i

Z t

0
V̂ (u)du

◆◆

U(t) = T exp

✓
�i

Z t

0
V̂ (u)du

◆

Average in 
initial state

• Start at t=0 (t0) from a non-interacting equilibrium density matrix ρ0

• Expand the exp.

• Problem : not a T ordered product ! How to use a Wick theorem ?



Wick theorem : reminder

• H0 a quadratic (gaussian) Hamiltonian for fermions
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H0 = c
†
aMabcb

hXi0 ⌘ 1

Z0
Tr

�
e��H0X

�

Z0 = Tr
�
e��H0

�

• Requires a “gaussian” density matrix ρ0

• Wick theorem is valid on any contour, as long as a time ordering is defined.

• Then the N body correlator is given by (ζ(P) is the signature of P)
D
Tca1(t1) . . . can(tn)c

†
a0
n
(t0n) . . . c

†
a0
1
(t01)

E

0
=

X

P2Sn

⇣(P )
nY

k=1

D
Tcak(tk)c

†
a0
P (k)

(t0P (k))
E

0

= det
1i,jn

hD
Tcai(ti)c

†
a0
j
(t0j)

E

0

i



Schwinger Keldysh double contour  16

• Every times is now a couple (t,a),  a = ± 1 (Keldysh indices)

t� t0�

t+ t0++ C

�
t

hA(t)i = Tr

✓
⇢0Ť exp

✓
+i

Z t

0
V̂ (u)du

◆
Â(t)T exp

✓
�i

Z t

0
V̂ (u)du

◆◆

=

⌧
TCÂ(t) exp

✓
�i

Z

C
V̂ (u)du

◆�

hTCA(t,↵)B(t0,↵0)i =
⌧
TCÂ(t,↵)B̂(t0,↵0) exp

✓
�i

Z

C
V̂ (u)du

◆�
• Correlation function 

0

• Diagrams : expand the exponential.



Fundamental relation

• Connect the notations +/- to the double contour
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t� t0�

t+ t0++ C

�
t

G++
ab (t, t0) ⌘ �i

D
Tca(t)c

†
b(t

0)
E

G��
ab (t, t0) ⌘ �i

D
Ť ca(t)c

†
b(t

0)
E

G+�
ab (t, t0) ⌘ i

D
c†b(t

0)ca(t)
E

G�+
ab (t, t0) ⌘ �i

D
ca(t)c

†
b(t

0)
E

G ⌘ �i
D
TCca(t,↵)c

†
b(t

0,↵0)
E
=

✓
G++

ab (t, t0) G+�
ab (t, t0)

G�+
ab (t, t0) G��

ab (t, t0)

◆

t� t0�

t+ t0++ C

�
t

t� t0�

t+ t0++ C

�
t

t� t0�

t+ t0++ C

�
t



Diagrammatics
• Same diagrams (topology, ...) as ordinary T=0 (or Matsubara) diagrams.  

But with an additional index α for each time

• Any diagrammatic approximation (large N, DMFT, ….) can be generalized to non equilibrium
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a b

c d

a b

c dα α

α α

b a

t’ tPropagator

Vertex Vabcd α Vabcd

T=0 “ordinary formalism” Keldysh

iGab(t, t
0) iG↵↵0

ab (t, t0)

• Vacuum diagrams canceled 
by denominator

• No Vacuum diagram 
Z=1

bα’ aα
t’ t



Z=1  19

• A = 1 .   <1> = 1

• No “partition function”, no “vacuum diagrams”

hA(t)i = Tr (⇢0A(t))

= Tr
⇣
⇢0
�
U(t)

�†
Â(t)U(t)

⌘

= Tr

✓
⇢0Ť exp

✓
+i

Z t

0
V̂ (u)du

◆
Â(t)T exp

✓
�i

Z t

0
V̂ (u)du

◆◆
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• Schwinger-Keldysh formalism 
Qn is a n-dimensional integral

How to compute Qn(t) ?

Switch on  
interaction

t� t0�

t+ t0++ C

�
t

t0
tu1 u2 u3

α1 α2 α3 α

Vertices. Times ui.  
Keldysh indices α = -1,1

Profumo, Messio, OP,  Waintal  
PRB 91, 245154 (2015)

Qn(t) =
1
n! ∫

∞

t0

du1…dun ∑
αi=±1

∏
i

αi det(…)

(Quasi) Monte Carlo

≡ fn(t, u1, …, un)

Explicit sum

• fn is centered around t.  Massive cancellations in the sum.



Interaction expansion of the Green function  21

g : U=0  
Green function.

M�({uk}, {↵k}) =

2

6664

g<� (u1, u1) g↵1↵2
� (u1, u2) . . . g↵1↵n

� (u1, un) g↵1↵
0

� (u1, t0)
...

...
...

g↵n↵1
� (un, u1) g↵n↵2

� (un, u2) . . . g<� (u1, un) g↵n↵
0
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G↵,↵0
(t, t0) =

1X

n=0
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n!

Z
du1du2 . . . dun
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U(ui)

!
⇥

X

↵i=±1

nY

i=1

↵i detM"({ui}, {↵i}) detP#({ui}, {↵i})
Keldysh indices  

Times Vertices

"

• Integrand cancels except if ui are close to t = t’
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Clusterization around time t=t’. Cancellations. 
Illustration at n = 2

7
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FIG. 2. Qn as a function of ✏d for n = 0, 1, 2 and 3.
The calculations are performed using a direct evaluations of
the integrals in Eq. (14) using the Simpson rule for t = 20,
� = 0.5 and T = 0.

of Keldysh indices (a1, a2). We see that this integrand
decays slowly as a function of u1 � u2 and even more
slowly as u1 or u2 get away from the time t where the
charge is measured. The sign of the integrand changes as
one changes the Keldysh indices. Fig. 3 should be con-
trasted with Fig. 4 which shows the same integrand but
now summed over the four Keldysh indices. The inte-
grand shown in Fig. 4 now decays fast as u1 or u2 gets
away from t. This observation can be proven and gener-
alized for higher orders: the integrand decays to 0 when
a group of ui is far from the time t where the physical
observable is measured, Cf. Appendix B. Finally, Fig. 5
shows the same as Fig. 3 but for the matrix P2 associ-
ated with the partition function. Note that for P2, the
sum on the Keldysh indices simply vanishes, so there is
no analogous Figure as Fig. 4 for P2. In the next section,
we will use these observations to design a better sampling
strategy for the Monte-Carlo method.

V. QUANTUM MONTE-CARLO

The direct method of the previous section works in
principle but is limited in practice to very small orders
due to its prohibitive computational cost. Stochastic
methods, such as the Metropolis algorithm, can be ex-
tremely e�cient at calculating integrals in high dimen-
sions. In this section, we propose a new route to sample
the interacting series by constructing a Markov process
in the Fock configuration space (i.e. that not only sam-
ples the integrals themselves but also samples the various
orders n within one process).

FIG. 3. Colorplot of the integrand of Q2 as a function of
the two times u1 and u2 for model A with µL = µR = 0,
✏d = 0, T = 0 and t = 10. The four panels correspond
to the 4 possible values of the two Keldysh indices a1 and
a2. The explicit form of the integrand is f(u1, u2, a1, a2) =
�=m(�1)

P
i ai detM2(u1, u2, a1, a2).

FIG. 4. Same parameters as in Fig. 3 but the integrand has
now been summed over Keldysh indices. The colorplot repre-
sents f(u1, u2) = i

P
a1,a2

(�1)
P

i ai detM2(u1, u2, a1, a2) (f
is real). Note that the integrand is now real, positive and
concentrated around u1 = u2 = t.

A. Sampling strategy

Our algorithm is inspired by the conclusion of the pre-
vious section. It consists in i) sampling directly the phys-
ical quantity to be computed (and not the partition func-
tion, which is Z = 1 anyway in the Keldysh formalism),
and ii) summing explicitly over the Keldysh indices to re-
store unitarity (the symmetry between the two Keldysh
contours) for all configurations. Indeed, it is clear from
the contrast observed between Fig. 4 and Fig. 5 that it
is a much better choice, since the integration region is in
the first case well localized around the time t at which the
quantity is computed. Sampling P2 would result in sam-
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� = 0.5 and T = 0.
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trasted with Fig. 4 which shows the same integrand but
now summed over the four Keldysh indices. The inte-
grand shown in Fig. 4 now decays fast as u1 or u2 gets
away from t. This observation can be proven and gener-
alized for higher orders: the integrand decays to 0 when
a group of ui is far from the time t where the physical
observable is measured, Cf. Appendix B. Finally, Fig. 5
shows the same as Fig. 3 but for the matrix P2 associ-
ated with the partition function. Note that for P2, the
sum on the Keldysh indices simply vanishes, so there is
no analogous Figure as Fig. 4 for P2. In the next section,
we will use these observations to design a better sampling
strategy for the Monte-Carlo method.
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The direct method of the previous section works in
principle but is limited in practice to very small orders
due to its prohibitive computational cost. Stochastic
methods, such as the Metropolis algorithm, can be ex-
tremely e�cient at calculating integrals in high dimen-
sions. In this section, we propose a new route to sample
the interacting series by constructing a Markov process
in the Fock configuration space (i.e. that not only sam-
ples the integrals themselves but also samples the various
orders n within one process).

FIG. 3. Colorplot of the integrand of Q2 as a function of
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✏d = 0, T = 0 and t = 10. The four panels correspond
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FIG. 4. Same parameters as in Fig. 3 but the integrand has
now been summed over Keldysh indices. The colorplot repre-
sents f(u1, u2) = i

P
a1,a2

(�1)
P

i ai detM2(u1, u2, a1, a2) (f
is real). Note that the integrand is now real, positive and
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A. Sampling strategy

Our algorithm is inspired by the conclusion of the pre-
vious section. It consists in i) sampling directly the phys-
ical quantity to be computed (and not the partition func-
tion, which is Z = 1 anyway in the Keldysh formalism),
and ii) summing explicitly over the Keldysh indices to re-
store unitarity (the symmetry between the two Keldysh
contours) for all configurations. Indeed, it is clear from
the contrast observed between Fig. 4 and Fig. 5 that it
is a much better choice, since the integration region is in
the first case well localized around the time t at which the
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(t,t)

(t,t) (t,t)

(0,0)
(0,0)

α1 = − 1, α2 = − 1α1 = − 1, α2 = 1

α1 = 1, α2 = − 1α1 = 1, α2 = 1

∑
α1 = ± 1
α2 = ± 1

α1α2 det M(α1, α2, u1, u2)det M(α1, α2, u1, u2)

Profumo, Messio, OP,  Waintal  
PRB 91, 245154 (2015)



Z=1 Revisited 

• Expand Z
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1 =
1X

n=0

in

n!

Z
du1du2 . . . dun
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X
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nY
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• Expand Z
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1 =
1X

n=0

in

n!

Z
du1du2 . . . dun

 
nY

i=1

U(ui)

!
⇥

X

↵i=±1

nY

i=1

↵i detP"({ui}, {↵i}) detP#({ui}, {↵i})

| {z }
=0

• Proof : For fixed ui, cancellation. Take umax the largest ui.

• The dets do not depend on αmax, so it cancels the sum. 

g↵i+(ui, umax) = g↵i�(ui, umax) 8i
g+↵i(umax, ui) = g�↵i(umax, ui) 8i

G++
ab (t, t0) = ✓(t� t0)G�+

ab (t, t0) + ✓(t0 � t)G+�
ab (t, t0)

G��
ab (t, t0) = ✓(t0 � t)G�+

ab (t, t0) + ✓(t� t0)G+�
ab (t, t0)



 25

• Schwinger-Keldysh formalism 
Qn is a n-dimensional integral

How to compute Qn(t) ?

Switch on  
interaction

t� t0�

t+ t0++ C

�
t

t0
tu1 u2 u3

α1 α2 α3 α

Vertices. Times ui.  
Keldysh indices α = -1,1

Profumo, Messio, OP,  Waintal  
PRB 91, 245154 (2015)

Qn(t) =
1
n! ∫

∞

t0

du1…dun ∑
αi=±1

∏
i

αi det(…)

(Quasi) Monte Carlo

≡ fn(t, u1, …, un)

Explicit sum

• Long time limit t➝∞ is easy.  fn is centered around t.  Massive cancellations in the sum.

• O(2n) cost to compute fn(u). In practice, n = 10-15. 
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How to sum the series ?

Q(t, U) =
K

∑
n=0

Qn(t)Un

Time
Interaction



1. At finite time t, the series is convergent Bertrand et al. Phys. Rev. X 9, 041008 (2019)

2. A infinite t (steady state), the series has a finite radius of convergence (for impurity, lattice 
models). Need re-summation technique

3. Change the starting point, cf M. Ferrero’s talk, see also Profumo et al.  PRB 91, 245154 (2015) 
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Using the perturbative series:
three possibilities



 28Resum with conformal maps

U0

U complex plane

0

Weak coupling Strong coupling

Q = ∑
n≥0

QnUn

Converges at W0

Q = ∑
n≥0

QnUn = ∑
p≥0

Q̄pWp

• Change of variable W(U), with W(0) = 0

Profumo et al.  PRB 91, 245154 (2015) 
Bertrand et al. Phys. Rev. X 9, 041008 (2019) 

A finite radius of convergence !  
Singularities poles, branch cuts

W0=W(U0)

0

W complex plane

W(U)

Riemann  
Schwartz-Christoffel
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Let us end with some results 
(quantum dot)

1- Equilibrium. Benchmarks.



•  Anderson model with two leads (L, R).

 30Reminder :  model for the quantum dot

R

Charge transport through single molecules, quantum dots, and quantum wires 27

µ RLµ
ΓL

LU
µ RLµ ε

RU

ΓRS
z / z /JJ

(a) (b)

Figure 8. (color online) Two fundamental quantum dot models. (a) is the Kondo
model, a spin- 12 coupled via exchange couplings Jz,⊥ to two reservoirs. (b) is the IRLM,
a spinless 1-level quantum dot coupled via tunneling rates ΓL,R and Coulomb couplings
UL,R to two reservoirs. The electrochemical potentials are given by µL/R = ±V/2

for the couplings. Similar schemes can be developed for the calculation of the transport

current [5] and correlation functions [189]. All RG equations involve resolvents similar

to the one occurring in (16) where z is replaced by Λ together with other physical energy

scales. As a consequence, it can be shown that, besides temperature, each term of the

RG equation has a specific cutoff scale Λi, which is generically of the form

Λi = |E +
∑

j

njµαj − hi + iΓi| ≡ |δi + iΓi| . (17)

Here, E is the real part of the Laplace variable, nj are integer numbers, and µα denotes

the electrochemical potential of reservoir α. It shows that the cutoff scale is given by the

distance δi to resonances. Furthermore, it provides the generic proof that, at resonance
δi = 0, the cutoff scale is given by the corresponding rate Γi. This issue was under

debate for some time because it was speculated that electrons tunneling in and out via

the same reservoir correspond to low-energy processes, which could possibly lead to a

strong coupling fixed point even in the presence of a finite bias voltage [195]. However,

it was argued that voltage-induced decay rates prevent the system from approaching

the strong coupling regime [177, 196, 197]. The microscopic inclusion of decay rates as
cutoff scales into nonequilibrium RG methods was achieved within RTRG [185–187],

flow equation methods [180], and RTRG-FS [5].

5.2. Applications

The two models used to illustrate the basic physics of spin and charge fluctuations are
sketched in figure 8. One model is the Kondo model at finite magnetic field h already

discussed in section 4, where a spin-1/2 couples via anisotropic exchange couplings Jz/⊥

to the spins of two reservoirs. We have assumed a symmetric coupling to the leads and

note that during the exchange it is also allowed that a particle is transferred between the

reservoirs. The model results from the Coulomb blockade regime of a quantum dot with

one level, where charge fluctuations are frozen out and only the spin can fluctuate. This

leads to an effective band width of the reservoirs of the order of the charging energy U .
Anisotropic exchange couplings can be realized for a molecular magnet, see section 2.

The other model is the IRLM, where the quantum dot consists of a single spinless energy

level at position ε. The dot interacts with the reservoirs via tunneling processes, which

ε
Vb

L R

• Questions :  Spectral function ? Kondo temperature ? Current ?

H =
X

k�
↵=L,R

"k↵c
†
k�↵ck�↵ +

X

�

"dd
†
�d� +Und"nd# +

X

k�
↵=L,R

gk�↵(c
†
k�↵d� + h.c.)

Bath Local orbital Hybridization

We want a precise solution, at low temperature, any Vb, in steady state

transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is)75 nm). The
2DEG with electron density nS! 2.6* 1015 m+2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size)200 nm by
200 nm, containing )100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is )100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! +448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! +1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at +448 mV. The red line in the right inset highlights the logarithmic T dependence between )90 and )500 mK for Vgl !
+413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! +413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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• Sum the series for each frequency 
independently

• Resumption of the series using 
conformal maps 

• Benchmark with NRG  
(numerical renormalisation group)
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Our result
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 33Fermi liquid at low energy 

Self energy (Re)

Self energy (Im)

• Equilibrium. Self-energy, away from particle-hole symmetry

ImΣ(ω) ∼ ω2

Our result

NRG

C. Bertrand et al.  
Phys. Rev. X 9, 041008 (2019) 

ϵd /Γ = 1
U/Γ = 6

T = 0



Benchmarks

• Tensor network (MPS) + time evolution

 34

C. Bertrand, D. Bauernfeind, P. Dumitrescu, M. Maček, 
X. Waintal, O.P. 

Phys. Rev. B 103, 155104 (2021)
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• Steady state inchworm 
by A. Erpenbeck et al.
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2-Non equilibrium



 36Out of equilibrium 
Spectral function

Bertrand et al. 2019 
Phys. Rev. X 9, 041008 (2019) 
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transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is)75 nm). The
2DEG with electron density nS! 2.6* 1015 m+2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size)200 nm by
200 nm, containing )100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is )100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! +448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! +1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at +448 mV. The red line in the right inset highlights the logarithmic T dependence between )90 and )500 mK for Vgl !
+413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! +413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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Vb increases

• Destruction of the Kondo resonance by voltage bias
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 37I-Vb Characteristics

• Particle hole asymmetric case
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transmission probability of much less than one.
In addition, the on-site Coulomb energy U tends
to block the state with an extra electron on the
dot. Although U is an order of magnitude larger
than the characteristic energy scale kBTK (kB is
the Boltzmann constant), the Kondo effect com-
pletely determines electron tunneling at low en-
ergies (i.e., low T and VSD). In the absence of the
Kondo effect (e.g., for electron number N !
even), the system consists of two separated
Fermi seas. In contrast, for N ! odd, the screen-
ing of the local spin creates a single, extended
many-body system with a single, well-defined
Fermi surface extending throughout the whole
system. The quasiparticles at this Fermi surface
no longer experience the repulsive barrier po-
tentials nor the on-site Coulomb repulsion. Be-
cause the local spin for N ! odd is completely
screened and because the dot has zero spin for

N ! even, the whole system of leads and dot is
in a singlet state over a wide gate voltage range
(between –430 and –350 mV in Fig. 2A), al-
though the nature of the ground state in the even
and odd valleys is very different.

For a quantitative analysis, we rewrite Eq.
1 as ln(TK) ! "ε0(ε0 # U )/$U # constant,
indicating a quadratic dependence for ln(TK)
on gate voltage Vgl (16 ). Following the work
in (17 ), we fit G versus T for different gate
voltages (Fig. 3C) to the empirical function

G%T & ! G0! T K
'2

T 2 " T K
'2" s

(2)

with TK' ! TK/(21/s – 1)1/2, where the fit
parameter s ( 0.2 for a spin-1⁄2 system (17,
18). Figure 3B shows the obtained Kondo
temperatures TK versus Vgl. The red parabola

demonstrates that the obtained values for TK

are in excellent agreement with Eq. 1 (19).
The Kondo temperature, as derived above,

is obtained from the linear response conduc-
tance. In earlier works (8–12), estimates for TK

were obtained from measurements of dI/dVSD

versus VSD (I is the current between source and
drain). In that case, the full width at half max-
imum (FWHM) was set equal to kBTK/e. How-
ever, applying a finite VSD introduces dephas-
ing even at T ! 0 (6, 20). To compare these two
methods, we also plot FWHM/kB measured for
different gate voltages at the base temperature
(Fig. 3B). Also, now we find a parabolic de-
pendence, but the values are larger than TK

obtained from linear-response measurements.
The difference may indicate the amount of
dephasing due to a nonzero VSD.

The normalized conductance, G/(2e2/h), is

Fig. 1 (left). (A) Atomic force microscope image of the device. An AB ring is
defined in a 2DEG by dry etching of the dark regions (depth is)75 nm). The
2DEG with electron density nS! 2.6* 1015 m+2 is situated 100 nm below
the surface of an AlGaAs/GaAs heterostructure. In both arms of the ring
(lithographic width, 0.5,m; inner perimeter, 6.6,m), a quantum dot can be
defined by applying negative voltages to gate electrodes. The gates at the
entry and exit of the ring are not used. A quantum dot of size)200 nm by
200 nm, containing )100 electrons, is formed in the lower arm using gate voltages Vgl and Vgr (the central plunger gate was not working). The average
energy spacing between single-particle states is )100 ,eV. The conductance of the upper arm, set by Vgu, is kept at zero, except for AB
measurements. (B) Color plot of the conductance G as function of Vgl and B for Vgr ! +448 mV and T ! 15 mK. The upper arm of the AB ring
is pinched off by Vgu ! +1.0 V. Red and blue correspond to high and low conductance, respectively. (C) Two selected traces G(Vgl) for B ! 0
and 0.4 T. The Coulomb oscillations at B ! 0 correspond to the oscillating color in (B). For some ranges of B, the valley conductance increases
considerably, reaching values close to 2e 2/h, i.e., the unitary limit [e.g., along the yellow dashed line at 0.4 T in (B)]. Fig. 2 (right). (A)
Coulomb oscillations in G versus Vgl at B ! 0.4 T for different temperatures. T ranges from 15 mK (thick black trace) up to 800 mK (thick red
trace). Vgr is fixed at +448 mV. The red line in the right inset highlights the logarithmic T dependence between )90 and )500 mK for Vgl !
+413 mV. The left inset explains the variables used in the text with $ ! $L # $R. ε0 is negative and measured from the Fermi level in the leads
at equilibrium. (B) Differential conductance dI/dVSD versus dc bias voltage between source and drain contacts VSD for T ranging from 15 mK (thick
black trace) up to 900 mK (thick red trace), at Vgl ! +413 mV and B ! 0.4 T. The inset shows that the width of the zero-bias peak, measured
from the FWHM, increases linearly with T. The red line indicates a slope of 1.7 kB/e. At 15 mK, the FWHM ! 64 ,V, and it starts to saturate
around 300 mK.
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• Equilibrium, for all U. Fermi function.

• Out of equilibrium for U = 0 (in the small g limit). Not a Fermi function 

 38Distribution function on the dot

f(ω)

μRμL

1

1/2

f(ω) = nF(ω − μR) =
1

1 + eβ(ω−μR)

f(ω) =
g2

LnF(ω − μL) + g2
RnF(ω − μR)

g2
L + g2

R

Illustration at T=0, gL = gR
Effect of interaction ?



• Finite U,  T=0

 39Out of equilibrium distribution function of the dot
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Conclusion

• Perturbation theory for real time/out of equilibrium systems.

• Success in quantum dots/nano-electronic systems.

• Beyond Monte-Carlo …

• Next steps : lattice, DMFT solver out of equilibrium.
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