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1. PREAMBLE

1.1 Aim

The main part of this book can be used as a graduate-level course that takes
the student who is familiar with elementary quantum mechanics and statistical
mechanics to research-level. This book is about the language that is necessary to
understand the physics of large assemblies of interacting particles. This book is
thus about physical principles, as well as mathematical formalism.
In quantum mechanics in general, what we normally call the �Physics�is very

much tied to the calculational tools. If you think of the wave function of a system
with N degrees of freedom, it gives one complex number for any given speci�ed
value of the N degrees of freedom. What can you tell from this? In principle
everything, but in practice the size of the space over which this complex number
is de�ned grows exponentially with the number of degrees of freedom and it is
not very illuminating. As usual in quantum mechanics, we need to focus on
observables, i.e. expectation values, or if you want, averages in a quantum state.
In addition, when we work at �nite temperature, we need to take thermal averages
over states. The average density at a point, that we can extract from the wave
function, is an example of observable that has physical content. Similarly, the
average of the product of the density at a point, times the density at some other
point and some other time has meaning. It is a correlation function, that tells
us how a density perturbation will propagate, how changing the density at one
point in�uences density at another point. Furthermore, this correlation function
is measurable and, as usual in quantum mechanics, by focusing on observables,
much is gained.
By analogy with the case of density correlation functions, in quantum mechan-

ics we can look at amplitudes, namely we can ask what is the amplitude for an
electron to go from one point at one time to another point at another time. This
is a correlation function, the Green�s function, that, in conjunction to perturba-
tion theory, behaves in the way that is closest to the concept of a particle that
propagates and interacts with other particles.
In fact, without perturbation theory, describing the �Physics�often becomes

impossible, or extremely di¢ cult. Other emergent concepts that come out of these
calculational tools are that of self-energy and vertex functions. Self-energy will, in
a way, play the same role as viscosity in ordinary hydrodynamics and vertex the
role of collision amplitude. They are quantities where much of our ignorance about
the exact solution to the problem can be hidden. Identifying these hidding places,
is part of what it means to understand the physics of a problem. We work part
with images, part with formalism, but in quantum mechanics, often the images or
physical intuitions are meaningless without the formalism.
This book is thus both about calculational tools and about the physics that

comes out of these tools.
In a way this book is about applications of �eld-theory to Many-Body physics.

There are many classic books on this subject. (?? Add comments on other books)
In any book on this topic, one needs to discuss the notions of Green�s functions,

self-energy, vertex functions, spectral weights, sum rules etc. that have withstood
the test of time and are the basis, in fact the language of this �eld. On the
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other hand, most classic books focus on perturbation theory to do calculations
that relate to experiments. Indeed, the original methods of many-body theory
that were born in Quantum Electrodynamics, as treated by Feynman, Tomonaga
and Schwinger, were based on perturbation theory. In that context, the more
physically transparent methods of Feynman became widespread. However, in
the last decades, non-perturbative approaches have become necessary to describe
phenomena that are characteristic of strong interactions, such as the interaction-
induced metal-insulator transition, the so-called Mott transition. It is in this
context that the methods of Schwinger display their power.
There are many subtle points in Many-Body theory that I try to point out

explicitly in various remarks spread throughout the book. These subtleties are
often glanced over in many books: violation of the Pauli exclusion principle by
certain approximations, limitations of various approximations for the self-energy
with regards to sum rules, how irreversibility arises in the limit of an in�nite
system, etc...

1.2 In broad strokes, adiabatic continuity and bro-
ken symmetry

Summarizing this book in broad strokes, it introduces the general notions as-
sociated with Green�s functions and explains both the Feynman and Schwinger
approaches to compute them. The Coulomb gas is discussed in a way that makes
natural the non-perturbative treatment of the Hubbard model by the two-particle
self-consistent approach. In the Schwinger approach, the dynamical-mean-�eld
theory of the Mott transition becomes natural. There is thus in this book an
emphasis on Schwinger�s methods and non-perturbative approaches that is not
found in many other books. Functional integral methods would be another useful
method to discuss non-perturbative problems. Solitons, tunneling can be treated
elegantly with functional integrals. This approach is thus introduced, mostly in
the last part of this book, but it is not necessary to understand the main topics.
Dealing with both Feynman�s and Schwinger�s approach without getting lost in
formalism is already di¢ cult enough.
The Coulomb gas and the Hubbard model are the two models that serve as par-

adigms throughout this book. The Coulomb gas is useful to understand screening
and simple metals. The Hubbard model becomes natural once screening is under-
stood and is a paradigm for interaction-induced metal-insulator transitions (Mott
transition) high-temperature superconductors and for many other materials that
exhibit strong correlations.
These two models allow us to illustrate very general key principles that are

behind assemblies of many particles. One of them is adiabatic continuity. It is
possible to describe a �phase�, say the normal state of a metal, by starting from
a simple Hamiltonian with known properties, such as that of band electrons, and
including interactions with perturbation theory. This is the subject of many parts
of this book, in particular those related to the Coulomb gas. In the presence
of interactions, �quasiparticles�are adiabatically connected to our notion of free
electrons. But they are not the same as free electrons. In studying this, we un-
derstand the limitations of the ordinary band theory of solids. The quasiparticles
we have in mind, are those of the Fermi-liquid theory, put forward by Landau in
the 1960�s.
But eventually, perturbation theory breaks down and interactions lead to phase
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transitions, in other words to new phases of matter that are not adiabiatically
connected to the original Hamiltonian. At phase transitions, the free energy has
mathematical singularities that cannot be treated by perturbation theory. These
new phases can very often be connected to a new Hamiltonian, that must some-
times be �guessed�, a Hamiltonian that breaks some of the symmetries present in
the original phase. The Stoner approach to the Hubbard model description of fer-
romagnetism is an easy way approach the main underlying principle of importance,
namely that of broken symmetries.
Adiabatic continuity and broken symmetry are the two most important basic

principles of condensed matter physics, according to P.W. Anderson. The all
important example of superconductivity, perhaps the deepest example of broken
symmetry, is also treated taking the jellium model to justify attractive electron-
phonon interactions.
Why broken symmetries? Because �More is di¤erent�, as emphasized by P.W.

Anderson [11]. Suppose we give ourselves the Hamiltonian that should su¢ ce to
describe all homogeneous substances at room temperature and normal pressure.
It consists in the sum over individual kinetic energies, plus pairwise interactions
between constituents, plus spin-orbit interactions (a relativistic e¤ect that can be
deduced from perturbation theory). The energy scales involved are of the order
of 10 to 100 eV. All physics at these energy scales and less should be contained
in that Hamiltonian. But the challenge we are facing is enormous. Suppose we
write down the Hamiltonian for a piece of aluminum. It is a superconductor at
a few degrees Kelvin, or if you want at energies of the order of about 10�4 eV.
This means that to predict from �rst principles the presence of superconductivity
in aluminum, we need a precision of 105 to 106 in a calculation that involves a
macroscopic number of degrees of freedom, say 1023. The di¤erence in time scales
and length scales between the atoms and a piece of matter are similarly enormous.
What we need to proceed are new concepts, new principles, new laws if you want,
that �emerge�from the basic theory.
I have used this expression�emergent�a number of times above without ever

specifying what I meant. Entropy and irreversibility and even absolute temper-
ature are concepts that emerge when an extremely large number of particles is
present in a piece of matter, the subject of statistical mechanics. Another simple
example of an emergent phenomenon is the Fermi surface. An aluminium atom
has a discrete absorption spectrum. Yet, a piece of aluminium meral is shiny. Its
abosroption spectrum is completly di¤erent. In particular, it can absorb radiation
of arbitrary small energy instead of the minimum energy we have in the atom.
It is because we now have a Fermi surface. Another emergent property related
to the Fermi surface is topology. What to I mean by that. The band structure,
or electronic structure, is de�ned on a torus in wave-vector space and the wave
function describing several bands can be thought of as a vector that lives on that
torus. Upon transporting that vector on that torus, one discovers that certain
electronic structures have non-trivial topology. This is a subject in itself that I
will not touch in this book, except to show that Green�s functions can detect that
non-trivial topology. There are a number of books on the topic of topology in
condensed matter. (?? books)
Other emergent properties in broken symmetry states include collective modes

known as Goldstone modes and Mermin-Wagner theorem, both of which can be
illustrated with the simple ferromagnetic example.
The concept of broken symmetry is necessary to study an emergent phenom-

enon such as superconductivity. And before that concept emerges, other concep-
tual steps had to be taken: the Born-Oppenheimer approximation, the introduc-
tion of collective quantum coordinates such as phonons, density functional theory
to obtain a �rst guess at the structure of electronic energy levels, Migdal�s approx-
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imation for electron-phonon interaction... Once in the broken symmetry states,
new collective modes appear. For example, when the symmetry that is broken is
continuous, then Goldstone�s theorem shows that collective modes appear. The
modes restore the symmetry in the in�nite wavelength limit. Remarkably, one can
argue that di¤erent states of matter in general, and broken symmetries in particu-
lar, each correspond to a new universe, containing its own interacting elementary
particles, spin wave and phonons being simple examples. In this way, the �eld of
quantum materials, or condensed matter physics if you want, is extremely rich.
Despite what I have said above, much progress has been made in recent years

in devising �rst-principle methods that start with the full Hamiltonian and make
materials-speci�c predictions. These methods are based on bringing together ideas
from density functional theory and calculations on model Hamiltonians. While I
focus on model Hamiltonians in this book, the methods that are present are also
useful in these �rst-principle �realistic materials� calculations, including mod-
ern treatments that combine dynamical mean-�eld theory with density functional
methods. Model Hamiltonians hide the presence of other energy scales in e¤ective
parameters, for example hopping integrals and screened electron-electron inter-
actions. Physics is indeed a question of scale. Even though we know the basic
laws of Physics, say at the level of quarks and gluons, much of the structure of
the laws at this level are of no relevance for atomic Physics. Exchange of gluons
between quarks in the atomic nucleus will in�uence the di¤erence between energy
levels of the atom, but in such a minute way that it is essentially insigni�cant.
These details are for all practical purposes irrelevant. In some sense this is a con-
sequence of the structure of quantum mechanics itself. The in�uence of physics
at a high energy scale on physics at a lower energy scale that is well separated
from the former can be estimated with perturbation theory. More generally, the
�renormalization group� tells us how to construct e¤ective theories that depend
on the scale. The Coulomb gas and the Hubbard model that we study in detail
in this book are e¤ective models that we do not fully justify from a completely
�rst-principles approach.
Note that indi¤erence to details about higher energy scales, or shorter distances

if you wish, also occurs in purely classical mechanics. Ordinary hydrodynamics, as
contained in the Navier-Stokes equation, is a theory that is valid for a very broad
class of liquids. The speci�c atomic details will come in for example in determining
the speci�c value of viscosity for example, but the concept of viscosity is a notion
that emerges at long wave lengths and large time scales. Examples of emergent
concepts that come out of these calculational tools that we develop here are those
of self-energy and vertex functions. The imaginary part of these quantities, in a
way, play the same role as viscosities in ordinary hydrodynamics.

1.3 Contents

The �rst part of this book begins with the elementary example of a classical,
driven damped harmonic oscillator. With this simple example, one can illustrate
what happens when we focus on a single degree of freedom in contact with many
others whose detailed motion we do not care about: frequency is renormalized,
absorption occurs over a �nite frequency range, and the real and imaginary parts of
the response are related by Kramers-Kronig relations. One can even introduce the
analog of a Green�s function, the polarisation operator, the �uctuation-dissipation
theorem and work out explicitely examples that show how irreversibility arises as

28 PREAMBLE



a consequence of interactions with an in�nite number of degrees of freedom. We
will even be able to introduce the concept of hybridization.
The second part is about general properties of correlation functions and their

relation to experiments. It is shown that scattering experiments measure �uctu-
ations whereas transport experiments measure dissipation. But there is a deep
relation between �uctuations and dissipation. In this part of the book, it is shown
that correlation functions obey properties, such as the one just mentioned, that
are extremely general and do not depend on any explicit calculation of these
correlations functions. Causality, Kramers-Kronig relations, Lehmann represen-
tation, sum rules are important exact results that are introduced and that guide
us throughout this book. General properties that follow from symmetry are also
introduced. The famous Kubo formula for conductivity allows one to discuss
Drude weight and the fundamental di¤erences between an insulating gap and a
superconducting gap for example.
The Green�s function appears explicitly in part III as an alternate approach to

one-body physics as described by the Schrödinger equation. The Green�s function
is explained as a special case of correlation functions, obeying sum rules, Kramers-
Kronig relations and the like. Perturbation theory gives glimpse of what Feynman
diagrams are about. It is even possible to discuss self-energy rather simply. The
impurity averaging method allows one to introduce more complicated Feynman
diagrams and general resummation methods. The Feynman path integral as an
alternate way of computing the Green�s function appears naturally.
Second quantization is introduced only in the fourth part that focuses on the

one-particle Green�s function at �nite temperature. This late introduction of sec-
ond quantization is in line with the general idea that one should allow you to
separate what is a general property of correlation functions from the machin-
ery nessary to compute these correlation functions. The de�nition is motivated
formally and through the link with angle-resolved photoemission spectroscopy.
Perturbation theory makes time-ordered products a natural concept so that the
Matsubara Green�s function does not appear so strange. Its link to the retarded
Green function is established through both the Lehmann representation and ana-
lytic continuation along a contour in imaginary time. Its imaginary-time boundary
conditions follow from the same procedure as that which gave the �uctuation-
dissipation theorem for correlation functions. The physical meaning of Green�s
function and how they naturally lead to the concept of quasiparticles is discussed.
The section ends with three general theorems that are useful in many-body the-
ory, namely Wick�s theorem, the linked cluster theorem and Feynman�s variational
principle.
The Coulomb gas treated in the long �fth part is a classic subject that can-

not be avoided. This is where perturbation theory and diagrams make their �rst
appearance. You can choose two roads. Either the classic Feynman approach or
the functional derivative approach of Schwinger and Martin. Although less intu-
itive, the latter approach has the virtue of being more natural for non-perturbative
approches. For example, the link between irreducible vertices and functional deriv-
atives of the self-energy appears naturally. Similarly, certain consistency relations,
for example between self-energy and density �uctuations, are quite natural. Col-
lective modes are discussed with simple phenomenological approaches before they
are treated in full detail with many-body methods in the random phase approxima-
tion (RPA). As usual, the best self-energy for the electron gas is obtained after the
collective modes are under control. This leads to the so-called GW approximation,
a special case of Hedin�s equations that are also introduced.
The sixth part takes us to a topic of current interest, namely interacting fermi-

ons on a lattice. Density functional theory is the starting point. Then the Hubbard
model is introduced and solved approximately following the two step process of
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the electron gas, namely �nd the collective modes, then the self-energy. This is the
procedure followed by the two-particle self-consistent (TPSC) method. Sum rules
play a more prominent role in this non-perturbative approach than in the case
of the electron gas. They allow one to �nd renormalized vertices whose physical
description goes back to Kanamori and Brückner. TPSC cures many limitations
of RPA: RPA violates the Pauli exclusion principle, which is a severe limitation
for a one-band model on a lattice. RPA also leads to phase transitions in two
dimensions that violate the Mermin Wagner theorem. Benchmark Monte Carlo
calculations show that TPSC is more accurate than other known methods in the
weak to intermediate correlation limit. The hallmark of strong correlations is the
Mott transition. Dynamical Mean-Field Theory (DMFT) is the best method to
describe this. That method is presented in the last section of Part VI.
Broken symmetry is a key concept of many-particle physics. Part VII is devoted

to various examples. Stoner ferromagnetism is the simplest one. Antiferromag-
netism is another one. The latter allows us to discuss the pseudogap in electron-
doped cuprates. The Hubbard Stratonovich transformation is a common tool in
many-body physics that is introduced in this part of the book. Phonons make
their debut as a prelude to the theory of superconductivity. As for other phase
transitions, the Bardeen Cooper Schrie¤er (BCS) theory of superconductivity is
introduced as an instability of the normal state and then studied in the broken
symmetry state. The Bogoliubov transformation is introduced in a way that makes
the phase of the order parameter appear naturally. Note that mean-�eld theory
in this part of the book is presented in several di¤erent ways. The Green�s func-
tion e¤ective medium point of view is useful to understand the Eliashberg-Migdal
theory of superconductivity even if this theory is not treated in detail here.
Before we conclude with Part IX, which is a short version of the book for

the advanced student or the expert, Part VIII discusses alternate approaches to
Many-Body theory, leading to a broader perspective on the �eld. It introduces
the Luttinger-Ward functional and the self-energy functional approach to DMFT.
Coherent-state functional integrals are explained. The book could have been based
on that approach: As emphasized by Feynman, there is often no unique starting
point in Physics. While some may be more fundamental, it is hard to know from
the start which is best. As stated by Feynman, contrary to the axiomatic approach
of the Greeks, the Babylonian approach, where one has many tools and possible
starting points, is often useful since some problems are easier to handle in one
approach than in the other.

1.4 Summary

This is work in progress. Many-body physics is an open frontier. Everyday new
materials lead to new surprises, new phases, new phenomena appear, and often
new calculational tools must be developed. This course is about the foundations.
Much of it will be like learning spelling and grammar, but rest assured, there are
great novels, great stories to be read while you grasp the rules of this language.
And whether you are a theorist or an experimentalist, this language is indispens-
able. It is behind the calculations, but it is also behind the interpretation of the
experiments, it is behind the workings of nature.

To the lecturer:
This book is partly a set of lecture notes and partly a monography. In lecture

notes, one aims at pedagogy. A monography should give a complete overview of a

30 PREAMBLE



speci�c �eld, but for the student it is often overcomplete and not very pedagogical.
The two styles are di¢ cult to reconcile. The following guide should help the
lecturer focus on the sections and chapters of this book that are essential for a
�rst encounter with that �eld. (??? To come)

� The introduction introduces the language of correlation functions in the very
simple context of the harmonic oscillator.?? If it is skipped, then the
student will need to go back to some of the formulas later.

� Section 7.2 on the detailed cross-section calculation can be skipped on
�rst reading.
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Part I

Classical hamonic oscillator
to introduce basic

mathematical tools and
concepts
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In many-body physics, we are concerned with the behavior of a an electron,
or of the local density, or in general of some observable. What complicates the
problem is the e¤ect of all other particles, namely of the environment, on the
quantity we are interested in. Focusing on a single observable, we have to average
over the coordinates of all other particles. We will see that this leads us naturally
to the calculation of correlation functions.
You are probably eager to learn about Green�s functions, Feynman diagrams

and all that. And indeed, sometimes, the �rst thing you hear about in many-body
physics is Green functions. You �nd out all sort of properties of that object, such
as analyticity, spectral representations, irreversibility and so on. But in fact, many
of these concepts are not special to Green�s functions. Hence, before I drag you
through Green�s functions, I consider in this introductory chapter the simplest
case of a many-body system, namely a classical harmonic oscillator coupled to an
environment.[150] You will wonder why all this formalism for something as simple
as the harmonic oscilator. I ask you to look at it the other way. This simple exam-
ple will allow me to introduce in this very simple context much of the machinery
we need for the many-body problem and almost all the undergraduate mathemat-
ics that we need. This will refresh our memory and demystify much of what will
come later. To understand the physics hidden behing the mathematics, in many
cases you will be able to return to the harmonic oscillator. We will encounter for
example the Kramers-Kronig relations that follow simply from causality and have
wide applicability in all of physics.
In the case of the harmonic oscillator, we are used to represent the environment

by a damping constant, whose role will be played by the self-energy later. Taking
the damping constant as just a number is sometimes a good approximation even
for more complicated many-body systems. We will see however that there are
limitations to the representation of the environment by a single number. For deep
reasons, the damping constant should be frequency dependent. More speci�cally,
we will see that certain sum rules are not satis�ed with a frequency independent
damping constant. And by the way, we will also see what sum rules are and
why they are important as the few results that are known exactly in many cases.
Sum-rules will come back very often in this book.
We will show that the response to an external force can be described by a

response function (susceptibility) that is the analog of a propagator, or Green
function. This susceptibility describes the dissipation and obeys a very important
theorem, the �uctuation-dissipation theorem. So the susceptibility is related to
a correlation function. Its poles have special signi�cance, as they do for Green�s
functions. We will see how irreversibility emerges in the limit where the oscillator is
connected to an in�nite bath. We will even encounter the concept of hybridization
that arises in quantum impurity problems. These are all very general results that
we will see again and again in this book. This introduction is inspired by lecture
notes of Paul Martin [151].
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2. THE DAMPED, DRIVEN, HAR-
MONIC OSCILLATOR

Back to basics. This is where we go back in time to undergraduate days of the
harmonic oscillator and Fourier transforms. You are perhaps not so familiar with
the consequences of causality on analytic properties of functions that describe
the response to external forces. That is where we will introduce Kramers-Kronig
relations.

2.1 The driven harmonic oscilator

Take a simple one-dimensional harmonic oscillator in a bath described by the
displacement x from equilibrium, as illustrated in Fig.(2-1).
It is described by the equation of motion

m
d2x

dt2
= �kx+ F int (t) (2.1)

where m is the mass, k is the spring constant and F int (t) represents the e¤ect
of all other particles on the system. Experiment teaches us that on average, the
e¤ect of all other particles may be approximated by a force that depends linearly
on velocity. More speci�cally, we write



F int (t)

�
n:e:

= �mdx
dt
: (2.2)

The average on the left hin:e: is a non-equilibrium average. It is over a time that
is long enough that we do not see the individual collisions, but short enough that
the oscillator does not have time to relax completely. To keep the notation simple,
we do not put an average on the coordinate x: Here  has units of frequency, or
inverse relaxation time. We then have to solve the equation of motion

Figure 2-1 Damped forced harmonic oscillator in one dimension. The mass is m the
spring constant k: It interacts with an environment that is modeled by a damping
constant :
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m
d2x

dt2
= �mdx

dt
� kx (2.3)

which we do using the usual trick for linear equations. Namely, we posit

x = Ae�i!t (2.4)

which gives us the equation for !;

�m!2 � i!m + k = 0: (2.5)

With the usual de�nition !20 = k=m, we have

� !2 � i! + !20 = 0 (2.6)

whose solution is

! = �i
2
� !R ; !R =

r
!20 �

2

4
: (2.7)

As you can see, the natural frequency !0 is modi�ed by the presence of damping.
We assume that the oscillator is not overdamped, namely !20 >

2

4 : The resulting
displacement for free motion is

x (t) = e�t=2 (A cos!Rt+B sin!Rt) (2.8)

where the constants A and B are determined from the initial conditions on the
position and on the velocity.

Remark 1 This example illustrates that it is impossible to include damping with-
out also changing the resonance frequency. In the jargon, we say that the frequency
is renormalized by interactions with an evironment. .

In many body-physics, we want to know how a physical system responds to an
external probe, for example light, sound, magnetic �eld etc. Let us thus add an
external driving force

m
d2x

dt2
+m

dx

dt
+ kx = F (t) : (2.9)

Taking again a single harmonic motion, we end up with the equation�
�!2 � i! + !20

�
x (!) =

1

m
F (!) : (2.10)

The solution of this equation will give us x (!) as a function of F (!) from which
we can extract the solution x (t) which is appropriate once the transients, obtained
from the solution of the equation with F (t) = 0 above, have been damped out.

2.2 Interlude: A reminder of some de�nitions and
theorems on Fourier transforms and integrals of
functions of a complex number

I seem obsessed with Fourier transforms and frequency. Why is that? If I were a
communication engineer trying to use a carrier frequency for radio that would seem
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more natural. Well, it is very natural for us as well because in quantum mechanics,
frequency is assocciated with energy, Planck�s constant ~ helping. When we send a
photon or a neutron of a given energy to probe a piece of material, we are sending
it at a given frequency. So that is one of the reasons it is so important. I will also
use the opportunity of this mathematical chapter to remind you of some theorems
on complex variables that we will need.
The time and frequency components are de�ned byZ 1

�1
ei!tx (t) dt = x (!) (2.11)Z 1

�1
e�i!tx (!)

d!

2�
= x (t) (2.12)

whose consistency is garanteed by the resultZ 1

�1
ei!tdt = 2�� (!) = T �!;0: (2.13)

Here, T �!;0 is not really rigorous, but it tells us that if we had a discrete set of
frequencies de�ned over a periodic time interval T , the same T as that used above,
then the integral would be equal to T time a Kronecker delta function, de�ned by

�!;0 = 1 if ! = 0

= 0 otherwise. (2.14)

One of the important theorems is the convolution theorem which states that the
Fourier transform of a convolution is the product of the Fourier transformsZ 1

�1
dt ei!t

�Z 1

�1
dt0 (t� t0) f (t0)

�
=  (!) f (!) : (2.15)

Also, Parseval�s identity takes the formZ 1

�1
 (�t) f (t) dt =

Z 1

�1
 (!) f (!)

d!

2�
: (2.16)

or, more commonly Z 1

�1
 (t) f (t) dt =

Z 1

�1
 (!) f (�!) d!

2�
: (2.17)

Proof. To prove the convolution theorem, it su¢ ces to use the Fourier repre-
sentation of  (t� t0) and of f (t0)Z 1

�1
dtei!t

�Z 1

�1
dt0 (t� t0) f (t0)

�
=

Z 1

�1
dtei!t

�Z 1

�1
dt0
Z 1

�1

d!0

2�
e�i!

0(t�t0) (!0)

�
Z 1

�1

d!00

2�
e�i!

00t0f (!00)

�
:

Performing the integral over t on the right-hand side gives 2�� (! � !0) while the
integral over t0 gives 2�� (!0 � !00). With these two delta functions, we can do the
the integrals over !0 and !00 trivially and obtain the result.
Parseval�s identity follows by taking

R1
�1

d!
2� on both sides of the convolution

theorem and noting that on the left-hand side
R1
�1

d!
2� gives � (t). The alternate

form of the theorem is more commonly used. You can proove it easily for yourself.
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Remark 2 I pay tribute to the usual bad habit of physicists by denoting with the
same symbol  the function in both time and frequency space. Only the argument
tells us where we are. Clearly,  (t) and  (!) are di¤erent functions of, respec-
tively, t and !:

Two other important theorems for functions of a complex variable that we will
need are
a) Cauchy�s theorem stating that this integral over a closed contour vanishesI

f (z) dz = 0 (2.18)

if f (z) has no singularity inside the contour, in other words if it is analytic (holo-
morphic inside the contour).
b) The residue theorem, that states that if f (z) is analytic, then the following

contour integral over a closed contour encircling z0 is given byI
f (z)

z � z0
dz = 2�i f (z0) (2.19)

where f (z0) is called the residue. Using integration by partsI
f (z)

(z � z0)n
dz (2.20)

can be related to derivatives of f (z) evaluated at z0:

2.3 The e¤ect of damping can be retarded. Where
we encounter the consequences of causality and
the Kramers-Kronig relations

At very high frequency, or very short time, there is no time to interact with the
environment and the damping should disappear. In other words, the most general
damping is frequency dependent. This re�ects retardation, namely the fact that
the position may depend on what happened in the environment much earlier, not
just instantaneously. We have seen that in the presence of damping, the frequency
is renormalized in a way that depends on damping. There is a generalization of
this in the presence of a frequency-dependent damping: there is a corresponding
frequency-dependent renormalization. This is embodied in the Kramers Kronig
relation Eqs. (2.31) and (2.32) that are the important results of this section.
Expressed in the time domain, retardation means that the internal force coming

from the environment depends on what happened on previous times. Stated as an
equation, we have

m
d2x

dt2
+m

Z 1

�1
dt0 (t� t0) dx

dt0
+ kx = F (t) : (2.21)

In frequency space, the convolution theorem allows us to write

�
�!2 � i! (!) + !20

�
x (!) =

1

m
F (!) : (2.22)
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As I said above, if  (!) has a real and an imaginary part, the imaginary part will
renormalize !0 and the real part will give dissipation. The resonance frequency
will be modi�ed by both the real and the imaginary parts of  (!) :
Causality implies that the damping force coming from the environment cannot

depend on the future. Mathematically, this means that

 (t� t0) = 0 if t� t0 < 0: (2.23)

This result has an elegant counter part in frequency space. The analytic con-
tinuation of  (!) in the complex plane is holomorphic everywhere in the upper
half-plane, a complicated way of saying it does not have poles there. We will say
say that  (!) is analytic in the upper complex ! half-plane.
Proof. Consider the expression

 (t) =

Z 1

�1
e�i!t (!)

d!

2�
: (2.24)

If  (!) is analytic in the upper half-plane, then we can satisfy the constraint
that if t < 0 then  (t) = 0. Indeed, assume that ! has both a real, !1; and an
imaginary, !2; part. With ! = !1+ i!2 we can complete the contour in the upper
half-plane, i.e. take , !2 > 0; and use Cauchy�s theorem to obtain  (t < 0) = 0.
To prove this in the other direction, note from the de�nition and from the fact

that  (t) = 0 for t < 0 that

 (!) =

Z 1

�1
ei!t (t) dt (2.25)

=

Z 1

0

ei!t (t) dt: (2.26)

If ! is in the upper half plane, ei!t = ei!1t�!2t with !2 > 0 and the factor e�!2t

makes the integral converge for t > 0. For this to be true on the real axis as well,
where !2 = 0, all we need is that the Fourier transform exists. Given all this,
there cannot be poles.

De�nition 1 A function that is analytic in the upper half-pane is called�retarded�,
as suggested by the fact that the e¤ect comes after the cause. A function that is
analytic in the lower-half plane is called �advanced�because the e¤ect occurs before
the cause. Not very physical in the latter case, but mathematically well de�ned,
and even useful as we shall see.

Using analyticity in the upper half-plane, we can derive the Kramers-Kronig
relations that have wide applicability in physics and engineering since they relate
real and imaginary parts of response functions, such as impedance when we talk
about electrical circuits. The integralI

d!0

2�

 (!0)�  (! =1)
!0 � ! = 0 (2.27)

vanishes on the contour illustrated in Fig. (2-2). Indeed, the contour has two
parts, and assuming that  (!0) �  (! =1) vanishes at least like a small power
of !0 in the upper half-plane, the two parts add up to zero since we can complete
the contour in the upper half-plane and there is no singularity there.
The contour on the in�nitesimal half-circle is easy to do. It su¢ ces to take

a half-circle around the singularity and to go to cylindrical coordinates with
(z � !) = R ei�. Since  has no singularity in the upper half-plane, limR!0


�
! +Rei�

�
=  (!) and the integral is

lim
R!0
�
Z 0

��

�
Rei�

�
id�

2�


�
! +Rei�

�
�  (1)

Rei�
= � i

2
( (!)�  (1)) (2.28)
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Figure 2-2 Integration contour in the !0 complex plane used to prove the Kramers-
Kronig relations. The integral has two contributions, one on the real axis C1 that
stops short of the singularity at ! and a semi-circle C2 around the singularity. We will
always work with functions that vanish su¢ ciently fast at in�nity that the integral
over C2 vanishes. This is related to Jordan�s lemma in complex analysis. When the
contour is completed with C3, there is no singularity inside the contour since the
function is analytic in the upper half-plane. Hence the integral vanishes.

The minus sign above comes from the di¤erential because the integral is done in the
anti-trigonometric direction. The rest of the integral is, by de�nition, a principal-
part integral. Using this, the vanishing of the integral because of causality Eq.
2.27 can then be rewritten as

P
Z 1

�1

 (!0)�  (1)
!0 � !

d!0

2�
� i

2
( (!)�  (1)) = 0 (2.29)

where P denotes the principal part.
If we write explicitly as 0 (!) the real part of  (!) and as 00 (!) its imaginary

part,
 (!) = 0 (!) + i00 (!) (2.30)

the imaginary and real parts of this equation give us, respectively, the following
two results that are known as the Kramers-Kronig relations

P
R1
�1

00(!0)�00(1)

!0�!
d!0

� = 0 (!)� 0 (1) (2.31)

�P
R1
�1

0(!0)�0(1)

!0�!
d!0

� = 00 (!)� 00 (1) : (2.32)

This is a very important result that applies to all causal response functions, such
as optical conductivity, impedance of an electrical circuit, you name it. It means
that if I know for all frequencies either the real or the imaginary part of a response
functions, I can �nd the missing one with the Kramers-Kronig relations.
In practice then, if we know for example 00 (!0) � 00 (1), we de�ne the so-

called spectral representation

 (z) =
R1
�1

d!0

�

00(!0)�00(1)

!0�z (2.33)
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where z is a complex variable. Taking z = ! + i� in the limit � ! 0 1 we �nd

R (!) = lim
�!0

 (! + i�) (2.34)

the causal, or retarded function R (!) = 0 (!)+ i00 (!) with real and imaginary
parts that obey the Kramers-Kronig relation. To see that, it su¢ ces to use the
Sokhatsky-Weierstrass formula

lim�!0+
1

!�i� = lim�!0
!�i�
!2+�2 = lim�!0

�
!

!2+�2 �
i�

!2+�2

�
(2.35)

lim�!0+
1

!�i� = P
�
1
!

�
� i�� (!) (2.36)

which has meaning only when appearing in an integral, which is how we will use
it. You can look at the �rst remark below and do Exercise (6.0.1).
Correspondingly, the advanced function is

A (!) = lim
�!0

 (! � i�) : (2.37)

It has poles only in the upper half of the complex plane because 00 (!) in the
spectral representation Eq. 2.33 is real. This function is acausal, in other words,
the e¤ect always happen before the cause.

Remark 3 Another argument for the Sokhatsky-Weierstrass formula is the fol-
lowing. Using Cauchy�s residue theorem in the following integral, we �nd

lim
�!0+

Z 1

�1

 (!0)�  (1)
!0 � ! � i�

d!0

2�
= i ( (!)�  (1)) : (2.38)

because there is only one pole in the upper half-plane and it is at ! + i� if  (!0)
is causal so that its extension in the upper half-plane is analytic: We can set
lim�!0  (! + i�) =  (!) without problem because, again,  (!) is analytic in the
upper half-plane. We recover the previous two equations (2.31) and (2.32) by using
the Sokhatsky-Weirstrass formula. Indeed, our integral in Eq.(2.38) then becomes

P
Z 1

�1

 (!0)�  (1)
!0 � !

d!0

2�
+
1

2
i ( (!)�  (1)) = i ( (!)�  (1)) : (2.39)

which, using the de�nition  (!) = 0 (!) + i00 (!) and taking the real and imagi-
nary parts of previous equation, recovers the Kramers Kronig relation Eqs. (2.31)
and (2.32). Given that these two equations have already been proven, we can see
the last derivation as a proof that the Sokhatsky-Weierstrass formula is consistent
with what we know from Kramers-Kronig. Working backwards, we can start from
the �rst equation (2.38), assume that Kramers Kronig are satis�ed and deduce
that Sokhatsky-Weierstrass formula must be true.

Remark 4 While strictly speaking all frequencies contribute, in practice the in-
tegrand shows that the real part at a given frequency is mainly determined by the
imaginary part in a close frequency range and vice-versa.

Remark 5 Each of (2.31) and (2.32) is called a Hilbert transform. Like Fourier
transforms, we see that, apart from a sign, the Hilbert transform of a Hilbert
transform is the identity, in other words the Hilbert transform is an involution.
One can see the Hilbert transform as the unique way of extending a function of a
real variable, say 00 (!), into a function equal to  (!) = 0 (!) + i00 (!) on the
real axis that is analytic when extended in the complex half-plane.

1We will always take � as a real, positive in�nitesimal.
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Remark 6 The absorption, here described by 0 (!) ; always decays to zero with
frequency at high frequency. This will become clearer later, but it is intuitively clear
that there is no eigenmode available to absorb energy at high enough frequency.

Remark 7 Numerics: To evaluate a Hilbert transform numerically, one way to
avoid the singularity is to do part of the job analytically. For example, you can
write

P
Z b

a

f (!0)

!0 � !
d!0

�
=

Z b

a

f (!0)� f (!)
!0 � !

d!0

�
+ f (!)P

Z b

a

1

!0 � !
d!0

�
(2.40)

where the limits a and b have to be chosen large enough that the result converges
and where the principal part has been removed in front of the �rst integral since
it does not have any singularity as long as f (!) is di¤erentiable once. The last
integral can be performed analytically so that the �nal result is

P
Z b

a

f (!0)

!0 � !
d!

�
=

Z b

a

f (!0)� f (!)
!0 � !

d!

�
+
1

�
f (!) ln

����! � b! � a

���� : (2.41)

It is important to recall that in the rest of these notes, starting immediately
with the following section, I will mostly be concerned with response functions. For
response functions, imaginary parts will generally be associated with dissipation
and real parts with reactive response. There are exceptions. For example, it is the
real part of the conductivity that leads to absorption, in analogy with our 0 (!)
here.
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3. SUSCEPTIBILITY, PROPAGA-
TOR: SOME GENERAL PROPER-
TIES

In this book, you will learn to �talk susceptibility�. Susceptibilities are measurable
quantities as we will see. In the quantum mechanical case of phonons the suscepti-
bility will be a propagator, or a certain type of Green�s function if you want. Most
of the formal, exact properties of the susceptibility, or of the boson-type Green
functions, are very general and easy to understand with our simple example of the
harmonic oscillator. These properties include sum rules, Kramers-Kronig relation,
positivity and the very important theorem that relates �uctuations to dissipation
in the linear response regime.
I will introduce the retarded response function Eq. (3.4) that gives the ampli-

tude of the response to a given external force, its spectral representation Eq. (3.18),
the relation that is imposed by the fact that a passive system is necessarily dissi-
pative Eq. 3.28 and �nally the �uctuation-dissipation (or Nyquist�s) theorem, that
relates the dissipative response to �uctuations, as its name suggests.

3.1 De�nition of the susceptibility and preview of
some of its properties

Eq. (2.10), describing the response to an external force, can be written as

x (!) =
1=m

(�!2 � i! (!) + !20)
F (!) : (3.1)

If we know the response to a driving force that is a delta function � (t) in time,
i.e. frequency independent, we can calculate the response for any force as we will
see. It is useful to de�ne the susceptibility, or propagator, �R (!), as follows:

x (!) = �R (!)F (!) (3.2)

�R (!) � 1=m

(�!2 � i! (!) + !20)
(3.3)

�R (!) is precisely the response to a driving force that is independent of frequency
and equal to unity, which, in the time domain, is a delta function. The response is
peaked around two frequencies, �!R when  (!) is taken small. The superscript
R on the susceptibility reminds us that the response is �retarded�, or causal if you
wish.

De�nition 2 In the context of the harmonic oscillator, or more generally of a
bosonic mode, one usually calls �R (!) a susceptibility. Since �R (t) describes
the response to � (t) ; mathematically it is a Green�s function (also known as a
propagator, for reasons we will see later).
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In the context of quantized lattice vibration, one encounters the propagator
DR (!) (which will have Bose statistics in the quantum case)

�R (!) = DR (!) � 1=m
�!2+!20+2!0�R(!)

(3.4)

where one can identify the so-called polarization operator �R as being equal to

�R (!) = �i!(!)
2!0

: (3.5)

De�nition 3 It is usual to de�ne

�R (!) = �0 (!) + i�00 (!) (3.6)

where �0 (!) and �00 (!) are both real functions of a real variable !:

Remark 8 Since �R (!) is causal, it is real and imaginary parts must obey Kramers-
Kronig relations, just like  (!) :

There are many properties of �R (!) that are worth noting:

� �R (!) represents the response to a driving force, hence it is causal and is
thus analytic in the upper-half of the complex frequency plane. It has poles
in the lower half-plane only, as one can check in the simple case where 
is a constant by referring to our previous results with the free oscillator,
Eq.(2.5).

� The poles of �R (!) describe the response independently of the driving force.
For example, at  (!) = 0; the poles are at the natural frequency of the
oscillator, !0: A pole corresponds to an in�nite response to an in�nitesimal
force, hence they represent the collective modes of the system. If the pole is
in the complex plane, then the imaginary part represents damping. This is
a very general result that will come back over and over again.

� If  = 0; we still want oscillations to damp out at in�nity. That forces us to
take ! ! !+ i� with � a positive in�nitesimal part, consistent with what we
found earlier from causality. The susceptibility �R (!) ;which contains both
real and imaginary parts of the response, must be an analytic function in the
upper half plane. Another way to see that is with the spectral representation

�R (!) =

Z 1

�1

d!0

�

�00 (!0)

!0 � (! + i�) : (3.7)

When there is no damping, �00 (!0) is just a delta function since energy is
absorbed only at the resonnant frequency.

� For rather deep reasons related to sum rules,  (!) cannot be frequency
independent, as will be demonstrated in exercice (6.0.3). It vanishes at
in�nity, as I will show in the speci�c example of the Caldeira-Leggett model.
Which leads us to the next property.

� Note that at high frequency, the response is that of a free particle, �R (!) =
DR (!) � 1

�m!2 :When we derive the results quantum mechanically, we will
see that a few of the coe¢ cients of the expansion in powers of 1=!2n can
often be calculated exactly.

� In a section 3.3 below, we will see that 2kBT!�00 (!) = !2Sxx (!) where
Sxx (!) is an even function of ! that represents �uctuations:
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� In the quantum mechanical case, we will see that even though Sxx (!) is not
even or odd with respect to a change of sign of !, �00 (!) itself remains odd.

� !�00 (!) > 0: This follows from the positivity of the dissipation, as will be
seen in Sec. 3.3

� As we discuss in the quantum mechanical derivation Sec. 10.3, �00 (!) itself
is odd, namely �00 (!) = ��00 (�!) : The latter statement is consistent with
a) the positivity of dissipation, !�00 (!) > 0; and b) with the fact that  (!)
cannot change sign if causality is to be respected (See Eq.(3.29))

3.2 Real-time version of the retarded susceptibility

Eq.(3.2) x (!) = �R (!)F (!) for the response to an external force is, using the
convolution theorem, equivalent to

x (t) =

Z 1

�1
dt0�R (t� t0)F (t0) : (3.8)

Because �R (t) is causal, its Fourier transform must be analytic in the upper half-
plane and have a spectral representation of the form

�R (!) =
R1
�1

d!0

�

�00(!0)
!0�(!+i�) ; (3.9)

or, equivalently it must satisfy the Kramers Kronig formulas (2.31) and (2.32)

P
R1
�1

�00(!)
!0�!

d!
� = �0 (!) (3.10)

�P
R1
�1

�0(!)
!0�!

d!
� = �00 (!) : (3.11)

De�nition 4 The spectral representation for the retarded susceptibility is Eq.(3.9).

Let us now have a look at what �R (!) looks like in time. This will be useful
when we do linear response theory in the quantum case. We just need to work
out the Fourier transformZ 1

�1

d!

2�
e�i!t�R (!) =

Z 1

�1

d!

2�
e�i!t

Z 1

�1

d!0

2�

�00 (!0)

!0 � (! + i�) : (3.12)

If t is less than zero, we must complete the contour in the upper half-plane since
it is there that e�i!t is convergent, and we obtain zero because of the absence of
poles in that half-plane. If t is larger than zero, we must complete the contour in
the lower half-plane and there is a single pole there. This means that, using the
residue theorem Eq. (2.19)Z 1

�1

d!

2�
e�i!t�R (!) =

�
2�i

2�

Z 1

�1

d!0

�
e�i(!

0�i�)t�00 (!0)

�
� (t) = 2i�00 (t) � (t) e��t

(3.13)
or

�R (t) = 2i�00 (t) � (t) e��t. (3.14)
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This vanishes at in�nite time. In other words, we can write the retarded response
Eq. (3.8) in real time in the form

x (t) = 2i

Z 1

�1
dt0�00 (t� t0) � (t� t0) e��(t�t

0)F (t0) : (3.15)

Remark 9 We can interpret the in�nitesimal damping as the physical statement
that a force at time t0 cannot in�uence the response at a time t in�nitely larger
than t0 in any physical system that interacts ever so weakly with its environment.

Remark 10 Another way that is often used to justify the above results is to take
time t �nite and � in�nitesimal in such as way that �t! 0: Then e��(t�t

0) becomes
e�t

0
and it is as if the force e�t

0
F (t0) was �turned on� adiabatically from t0 = �1

(where we cannot set �t0 to zero).

Remark 11 Numerics: Fast Fourier transforms and the real-time expression Eq.
(3.14) provide another convenient way of doing Kramers Kronig transformations.

As long as we take the limit � ! 0 at the end of calculations only, it is always
possible to go back and forth between functions in time and in frequency using
Fourier transforms. To show this, let us start from �R (t) in Eq. (3.14) and �nd
its Fourier transform

�R (!) = 2i

Z 1

�1
dtei!t�00 (t) � (t) e��t = 2i

Z 1

0

dtei(!+i�)t�00 (t) : (3.16)

The last expression is a Laplace transform, often used in engineering. Using the
Fourier representation for �00; it follows that

�R (!) = 2i

Z 1

0

dtei(!+i�)t
Z 1

�1

d!0

2�
e�i!

0t�00 (!0)

= 2i

Z 1

�1

d!0

2�
e�i!

0t �00 (!0) ei(!+i�)t

�i (!0 � (! + i�))

����t=1
t=0

=

Z 1

�1

d!0

�

�00 (!0)

!0 � (! + i�) :

which is what we set to prove. Using the Weirstrauss-Stokhaski formula, Eq.
(2.36), the last result demonstrates that

Im�R (!) = �00 (!) : (3.17)

Remark 12 Signi�cance of i� : One can also see the choice of i� as a choice of
initial condition for the real-time version of the equation, as can be seen from the
discussion in Section 144. If we had chosen �i� instead, we would have obtained
the advanced function, as is clear from the de�nition of the advanced function. .

In general, one de�nes a function of a complex variable

� (z) =
R1
�1

d!0

�

�00(!0)
!0�z (3.18)

which becomes the retarded function, �R (!) when z = ! + i� and the advanced
function �A (!) when z = ! � i�; in complete analogy with what we did for the
damping Eq. (2.33) earlier. Note that � (z) has a branch cut along the real axis
and that the discontinuity across that branch cut is 2�00 (!) :

�R (!)� �A (!) = 2i�00 (!) (3.19)
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Remark 13 The concept of branch cut probably brings to mind the concept of
Riemann sheets. Depending on �00 (!0), the function � (z) could be extended or
not to several Riemann sheets. The concept of Riemann sheets in our context is
never used.

De�nition 5 The quantity �00 (!) in the context of the spectral representation is
called a spectral weight.

Remark 14 The real-time version of the response, Eq. (3.14) shows that all the
physics is contained in the spectral weight �00:

3.3 Positivity of the power absorbed, implies that
!�00 (!) is positive

The �rst constraint we can impose is that the work done by the external force is
positive. While for a short instant we can absorb energy from a system, entropy
considerations force us to impose that on average we can only dissipate energy in
the system. This will have the important consequence that !�00 (!) � 0; as we
now proceed to demonstrate. The work done by the external force is

dW (t) = F (t) dx (t) (3.20)

so that
dW

dt
= F (t)

dx (t)

dt
: (3.21)

Taking a single harmonic component F (t) = Re
�
F (!) e�i!t

�
, we de�ne the aver-

age power density P (!) in that frequency interval by

P (!)
d!

2�
= lim

T!1

1

T

Z T =2

�T =2

dW

dt
dt (3.22)

= lim
T!1

1

T

Z T =2

�T =2
F (t)

dx (t)

dt
dt (3.23)

where T is some large time over which we average. It determines the bandwidth.
Substituting our expression Re

�
F (!) e�i!t

�
for the force, we obtain

P (!)
d!

2�
= Re

"
F (!) lim

T!1

1

T

Z T =2

�T =2
e�i!t

dx (t)

dt
dt

#
: (3.24)

Integrating by parts, assuming periodic boundary conditions so that the integrated
term vanishes,

P (!)
d!

2�
= Re

"
F (!) lim

T!1

1

T (i!)
 Z T =2

�T =2
e�i!tx (t) dt

!#
P (!) = � Im [F (!)!x� (!)] (3.25)

By analogy with quantization in a box,we have used d! = 2�=T . Since x (t)
is real, we also used x (�!) = x� (!) : Since the de�nition of the susceptibility
Eq.(3.2) gives us x� (!) = �R� (!)F � (!) ; we �nd

P (!) = � Im
�
F (!)!�R� (!)F � (!)

�
(3.26)

= jF (!)j2 !�00 (!) : (3.27)
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Hence, since P (!) is positive, the product !�00 (!) is also positive. The result

!�00 (!) � 0 (3.28)

is general and important.
There is a consequence of this on the damping  (!). Our expression for the

susceptibility Eq.(3.3), tells us that

�00 (!) =
1

m

!0 (!)

(�!2 + !20 + !00 (!))
2
+ (!0 (!))

2
(3.29)

which means that
0 (!) � 0

if we want to impose that heat cannot be transformed into work without an addi-
tional cold reservoir. An external force doing work on a system can only dissipate
energy into heat, as required by the second law of thermodynamics.

Remark 15 When  is a constant, as in the simple phenomenological model, the
positivity of  is obvious from Eq.(2.8) for the general solution since if  were
negative, it would also have led to a displacement that ampli�es without applied
external force. That positivity must obviously be satis�ed at all frequencies.

Remark 16 The de�nition of susceptibility, Eq. (3.6) � = �0 + i�00 suggests that
the response that is out of phase by �=2 with respect to the force is �00; the imag-
inary part. And our experience with the simple harmonic oscillator tells us that
this is where absorption occurs.
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4. DISSIPATIONAND IRREVERSIBIL-
ITY EMERGE IN THE LIMIT OF
AN INFINITE NUMBER OF DE-
GREES OF FREEDOM

Looking at the problem of coupled harmonic oscillators, we will discover in this
Chapter that in the limit where there is an in�nite number of oscillators, irre-
versibility appears. Otherwise, the motion is periodic, or quasi-periodic.1 This is
a very general result that demonstrates in a very simple context how irreversibility
emerges in the limit of an in�nite number of degrees of freedom. The model in
Fig. (4-1) that we consider will give us Eq. (4.14) which allows us to explain how
damping comes about. In practice, if we take the in�nite-size limit before we take
the � ! 0 limit, the response of the system will be irreversible.

4.1 Example of an oscillator attached to a bath of
harmonic oscillators: A model in the Caldeira-
Leggett category

This model is a classical analog of what is known as the Caldeira-Leggett[47] model
[47] that was used to include the e¤ect of dissipation on the tunneling of a macro-
scopic but quantum degree of freedom, namely the phase of a superconducting
Josephson junction. The fermionic analog of this problem plays an important role
in dynamical mean-�eld theory.
This is the case of a harmonic oscillator attached to a one-dimensional chain

of harmonic oscillators that plays the role of a bath or of a reservoir if you wish.̧

1The periodic motion in the case of a �nite number of degrees of freedom reminds us of Rabi
oscillations in quantum optics, although the analogy cannot be taken litterally

Figure 4-1 An oscillator of mass M is attached to a one-dimensional chain of
oscillators that play the role of a bath. There are N = 3 masses in that bath in this
example.
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As illustrated in Fig. (4-1) a mass M is attached on the left to a wall with
a spring of constant k and on the right to a one-dimensional chain of oscillators.
The deviation of the mass M with respect to equilibrium is denoted by x: Each of
the masses m of the one-dimensional chain of oscillators is attached to its neighbor
by a spring of constant k0; except for the �rst link between M and m that I call
k00 because it will play the role of a coupling constant between the bath and the
mass M . The deviation from equilibrium of the mass at position i is ui. A force
F is also applied to the mass M . The potential energy is thus

V (x; fuig) = �Fx+
1

2
kx2 +

k00

2
(x� u1)2 +

k0

2
(u2 � u1)2 +

k0

2
(u3 � u2)2 + : : : ;

(4.1)
from which, recalling that the force on particle i is �@V=@ui; we �nd the following
equations of motion in Fourier space (taking !+ i� as we know we need to do for
causality):

�M (! + i�)
2
x = �kx� k00 (x� u1) + F (4.2)

�m (! + i�)2 u1 = �k00 (u1 � x)� k0 (u1 � u2) (4.3)

�m (! + i�)2 u2 = �k0 (u2 � u1)� k0 (u2 � u3) (4.4)

: : : (4.5)

With the de�nition z = ! + i� these equations take the following form in matrix
notation:26666664
�Mz2 + (k + k00) �k00 0 0 : : : 0

�k00 �mz2 + k0 + k00 �k0 0 : : : 0
0 �k0 �mz2 + 2k0 �k0 : : : 0
: : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :
0 0 0 : : : �k0 �mz2 + 2k0

37777775

26666664
x
u1
u2
: : :
: : :
uN

37777775 =
26666664

F
0
0
: : :
: : :
0

37777775 :
(4.6)

Using the de�nition of the propagator in Eqs. (3.2) and (3.3) we rewrite the fol-
lowing shorthand �

D�10 (z) V T

V D�1b (z)

� �
x
u

�
=

�
F
0

�
(4.7)

where D�10 (z) = �Mz2 + (k + k0) is a scalar, V is a N � 1 vector, V T is its
transpose, D�1b (z) is an N � N matrix for the bath, and u is a vector whose N
components are ui. The bottom block can easily be solved for u as follows in
matrix notation, with Einstein summation implied

ua = �Dabb (z)V bx: (4.8)

Substituting in the �rst line we �nd

x =
�
D�10 (z)� V TDb (z)V

��1
F; (4.9)

where
�
D�10 (z)� V TDb (z)V

�
is a scalar. In the case where there are no degrees

of freedom in the bath, there is a single pair of eigenfrequencies at D�10 (z) = 0;

i.e. two poles in�nitesimally close to the real axis at !+ i� = �
p
(k + k00) =M: In

the presence of the bath, there will be N +1 pairs of poles. We can see that more
explicitly as follows.
De�ning K as the real symmetric matrix of spring constants, we have

D�1b (z) =
p
m

�
�z2 + 1p

m
K

1p
m

�p
m: (4.10)
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Figure 4-2 a) Poles of retarded susceptibility for N = 6 particles in the bath. b)
The corresponding value of the imaginary part of the susceptibility on the real axis.

Let O the orthogonal matrix that diagonalizes 1p
m
K 1p

m
, then2 1p

m
K 1p

m
=

OTDO; and

D�1b (z) =
p
mOT

�
�z2 +D

�
O
p
m (4.11)

Db (z) =
1p
m
OT

�
�z2 +D

��1
O

1p
m

(4.12)

so that the propagator Eq. (4.9) with the bath is now

D (z) =
�
D�10 (z)� TT

�
�z2 +D

��1
T
��1

(4.13)

where we de�ned the N � 1 vector T = O 1p
m
V . Since V has units of a spring

constant and O is dimensionless, T has units of
p
k!. Labeling the eigenvalues by

�; the poles in the presence of the bath are then given by the solution to

�M (! + i�)
2
+ (k + k00)�

NX
�=1

T�
1

�(!+i�)2+!2�
Ta = 0: (4.14)

Rewriting with a common denominator, you see that we are looking for the zeros
of a polynomial of order N +1 in (! + i�)2 : The propagator will have N +1 pairs
of poles located symmetrically about the imaginary axis in the lower half plane,
in�nitesimally close to the real axis, as illustrated in Fig.(4-2a).
Any motion of the mass M can be written as a sum of oscillations at discrete

frequencies. The motion may look complicated because the frequencies may not
be commensurable, but it is in principle periodic. Physically, the mass M in the
presence of the bath is a �nite system and a disturbance will oscillate back and
forth.
To see that the imaginary part of the retarded propagator, or susceptibility, is

odd in frequency, note the retarded propagator, de�ned by x (!) = DR (!)F (!)
can be rewritten as

DR (!) = �R (!) = lim
�!0

1=M

� (! + i�)2 + (k+k00)
M � 1

M

NX
�=1

T�
1
2!�

h
1

!+i�+!�
� 1

!+i��!�

i
TTa

(4.15)
so that it may look like Fig.(4-2b) where I represent the weight of the delta function
for some case.

2This notation suggests how to take into account the general case where the masses are all
di¤erent. Then, m is simply a diagonal matrix.
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Remark 17 The e¤ective equation that we obtained for the coordinate x takes into
account the one-dimensional set of oscillators, that acts like a �bath�or reservoir.
We have �integrated out� the bath, to obtain an equation of motion for the degree
of liberty that we are interested in. The result, Eq. (4.14) contains VDb (z)V T
that will be called a hybridization function in the context of the Anderson impurity
problem that arises in dynamical mean-�eld theory. Also, Db (z) is a propagator
in the bath. It takes into account that a wave produced by a motion of x can go in
the one-dimensional bath and come back in a retarded way later.

Remark 18 In mathematics, D�10 (z)� VDb (z)V T is known as the Schur com-
plement of D�10 (z) :

4.2 Irreversibity emerges in the limit of an in�nite
bath

What happens if the bath is in�nite? Then, it looks as if the massM was attached
to some sort of in�nite transmission line. A disturbance will propagate in the bath
and never come back. This is how irreversibility arises. Mathematically, it is as if
the motion was now represented by Fourier transforms instead of Fourier series.
Let us go back to our expression Eq. (4.14) for the poles of D (z) in the presence

of the bath. If we take the number of degrees of freedom of the bath N to in�nity,
the poles are located at D�1 (z) = 0, namely

M�1D�1 (! + i�) = � (! + i�)2 + !20 �
Z 1

0

N
�

2
� 1

� (! + i�)2 +
2
d
�

2
�
= 0

(4.16)
where we de�ned the �bare�frequency !20 = (k + k

00) =M and the bath density of
states, in the limit � ! 0;by

N
�

2
�
=
1

M

NX
�=1

�
�

2 � !2�

�
T�T

T
a : (4.17)

In the limit where the number of eigenmodes goes to in�nity, the coupling to the
mass M represented by T�TTa will scale as 1=N , in other words, the more modes
there are, the smaller the coupling to any given mode if we want a well de�ned

continuum limit. Then 1
N

NX
�=1

can be transformed to an integral, and N
�

2
�

becomes a continuous function.

Remark 19 Another way to look at this is to return to a �nite �; in other words
to the Lorentzian representation of the delta function. If within a width � there
are many modes !�, then the function N

�

2
�
appears continuous. It is with a

continuous N
�

2
�
that irreversibility appears as we shall see. In other words, if we

take the limit of an in�nite bath before the limit � ! 0, we introduce irreversibility.

Remark 20 This representation in terms of sum over poles is the equivalent of
the spectral representation discussed in Chapter 3.2.

Let us continue our derivation. We will see that any damping function  (!)
can be represented by an appropriately constructed in�nite bath. Since

1

� (! + i�)2 +
2
=

1

2


�
1

! + i� +

� 1

! + i� � 


�
; (4.18)
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Eq. (4.16) for the poles in the presence of an in�nite bath becomes,

�!2 + !20 � P
Z 1

0

N
�

2
�

2


�
1

! +

� 1

! � 


�
2
d
 (4.19)

+i�

Z 1

0

N
�

2
�

2

(� (! +
)� � (! � 
)) 2
d
 = 0: (4.20)

Several things have happened here. I have used the Sokhatsky-Weierstrass formula
Eq. (2.36) inside the integral, and I have removed the +i� in the �rst term since
it is no longer necessary, as we see from performing the last integral. Indeed, you
can see that we obtain

�!2 + !20 � P
Z 1

0

N
�

2
�� 1

! +

� 1

! � 


�
d
 (4.21)

�i�N
�
!2
�
(� (!)� � (�!)) = 0 (4.22)

where � (!) is Heaviside�s theta function that, I recall, equals unity for ! positive
and 0 otherwise. Since we saw that N

�
!2
�
> 0; we can de�ne

�N
�
!2
�
(� (!)� � (�!)) = !0 (!) (4.23)

where 0 (!) > 0 is a real even function. By taking an in�nite number of oscillators
and assuming that this leads to a smooth N

�
!2
�
we introduced irreversibility.

Mathematically, this was achieved by going from a discrete sum to an integral.
The propagator can thus be written as

DR (!) = 1=M

�!2 + !20 � P
R1
0
N (
2)

�
1

!+
 �
1

!�


�
d
� i!0 (!)

(4.24)

which corresponds to our general form Eqs. (3.4) and (3.5).
The frequency dependence of the damping will depend on the nature of the

bath. If we can assume that 0 (!) is independent of frequency in an interval
around !0, we see that we recover the simple damped harmonic oscillator. In
reality, unless the eigenenergies of the bath can become in�nite, 0 (!) vanishes
at in�nity. That can be seen from the de�nition of N

�

2
�
in Eq.(4.17) and its

relation to 0 in Eq.(4.23). At high enough frequency, there will be no eigenmodes
in the one-dimensional bath formed by the chain of masses and springs. The
renormalization of the bare frequency coming from the principal part integral will
also then vanish at ! in�nity, meaning that in this limit we recover free-particle
behavior, as expected.
Irreversibility is discussed further in Exercise (6.0.4).

Remark 21 Order of limits: It is very important to take the in�nite volume, or
in�nite bath limit, before we take the � �! 0 limit. These limits do not commute.
We can physically understand that this is the proper limit by noticing that the
separation of levels in a large system will always be smaller than the inverse time we
have to measure accurately, or if you want to make an accurate Fourier transform.

Remark 22 As argued before, �00 (!) = Im�R (!) = ImDR (!) is an odd func-
tion of frequency.

Remark 23 As we saw above, partial fractions allow us to writeZ 1

0

N
�

2
� 1

� (! + i�)2 +
2
d
�

2
�
=

Z 1

0

N
�

2
� 1
2


�
1

! + i� +

� 1

! + i� � 


�
d
�

2
�

=

Z 1

�1
N
�

2
� 1


� (! + i�) sgn (
) d (
) ; (4.25)
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Figure 4-3 a) In the limit of an in�nite bath, the retarded susceptibility �R (!) =
DR (!) has cuts in the lower half-plane. b) The value of its imaginary part on the
real axis is given by an odd continuous function. c) Pole structure of the retarded
susceptibility when its imaginary part is approximated by Lorentzians as in d).

which shows the relation to the spectral representation of the damping, Eq. (2.33)
since the correspondance between our starting point Eq. (4.16) and the phenom-
enological oscillator model Eq. (2.22) shows that the above quantity is i! (!).

Remark 24 As you can see from Eq.(4.17), unless the eigenfrequencies of the
bath do not vanish at in�nity, 0 (!) vanishes at in�nity in such a way that all
sum rules will be satis�ed, contrary to the problem encountered in exercice (6.0.3)
with the simple harmonic oscillator.

Remark 25 The real and imaginary parts of the integral in Eq. (4.16) are related
by Kramers-Kronig relations, in other words, damping and frequency renormaliza-
tion are related by these relations, as we found above for  (!) in Sec. (2.3) above.

Remark 26 It is important to notice that the results above imply that any  (!)
can be mimicked by an appropriately built in�nite bath.

Remark 27 Fig. (4-3a) shows that in the in�nite size limit, the poles of in�nites-
imally below the real axis collapse into a branch cut. The corresponding imaginary
part of the susceptibility in Fig. (4-3b) is a continuous function. If we decide to
approximate this continuous function by two Lorentzians, as in Fig. (4-3d) then
the pole structure changes. There are now only two isolated poles far below the real
axis as in Fig. (4-3c). The fact that the poles are no longer close to the real axis
is often not a problem. We are just approximating continuous function represent-
ing the imaginary part of the susceptibility di¤erently. However, the Lorentzian
approximation has problems at high frequency so that sum rules can be violated.

Remark 28 We will encounter a similar problem for the so-called quantum impu-
rity. The non-interacting bath will also be described by a �hybridization function�
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which will be the analog ofZ 1

0

N
�

2
� 1

� (! + i�)2 +
2
d
�

2
�
=

NX
�=1

T�
1

� (! + i�)2 + !2�
TTa : (4.26)

4.3 *Fluctuations and dissipation are related

There is a very deep relation between �uctuations and the damping observed in
response to an external force, as long as that response is linear in the external force.
That is what we discuss here. There are marked di¤erences with the quantum case
in the derivation I am going to give, although it is possible to obtain more closely
related derivations. The quantum result we will reduce to the classical one in the
limit ~! � kBT , as expected for the classical limit of a simple undamped classical
harmonic oscillator.
Experimentalists can measure the electrical noise of a resistor for example. In

such a case, they would characterize the noise by taking the modulus square of the
Fourier transform of the signal. They can repeat the measurement several times
and average that modulus square over measurements, which for us corresponds
to taking a thermal average, represented here by the symbol h i. This is the
usual canonical ensemble thermal average you are used to, the one that leads to
the equipartition theorem for variables entering quadratically in the Hamiltonian.
There are other ways correlation functions of this type can be measured, as we
will see in the next chapter.
I will want to use the equipatition theorem. Since whatever the nature of

the bath, the kinetic energy will enter quadratically in the Hamiltonian, it is the
velocity of the mass M that we will be interested in.
In short, the measurement mentioned above corresponds to the following cor-

relation function

h _x (!) _x (�!)i = h _x (!) _x� (!)i (4.27)

=

�Z 1

�1
ei!t

dx (t)

dt
dt

Z 1

�1
e�i!t

0 dx (t0)

dt
dt0
�

(4.28)

= T
Z 1

�1
ei!(t�t

0) h _x (t) _x (t0)i d (t� t0) : (4.29)

To obtain the above result, we have changed integration variables to t � t0 and
(t+ t0) =2 and used the fact that in equilibrium we have time-translation invari-
ance. This transforms the integral over (t+ t0) =2 into the total time T . Using
time translational invariance h _x (t) _x (t0)i = h _x (t� t0) _x (0)i :
Remark 29 A famous �uctuation-dissipation theorem is that by Nyquist that re-
lates the voltage �uctuations, measured as above, to resistance. More speci�cally,
hV (!)V (�!)i = T 2R kBT: where V (!) is a measured �uctuating voltage and
V (�!) = V � (!) since V (t) is real.

The �nal result we are looking for is

M
T h _x (!) _x (�!)i = S _x _x (!) =

2kBT
! �00_x _x (!) (4.30)

//To compute the integral we change integration variable and divide it in two
parts

h _x (!) _x (�!)i = T
Z 1

0

ei!t h _x (t) _x (0)i dt+ T
Z 0

�1
ei!t h _x (t) _x (0)i dt: (4.31)
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In the �rst integral, we can replace _x (t) by
R t
0
�R_x _x (t

0) _x (0) dt0; where �R_x _x (t) is
the susceptibility for the velocity v = _x. The �rst term becomes

Z 1

0

ei!t
�Z t

0

�R_x _x (t
0) dt0

�
dt h _x (0) _x (0)i : (4.32)

Focussing on the integral, integrating by parts,

Z 1

0

ei!t
�Z t

0

�R_x _x (t
0) dt0

�
dt =

ei!t

i!

Z t

0

�R_x _x (t
0) dt0

����1
0

�
Z 1

0

ei!t

i!
�R_x _x (t) dt(4.33)

=
ei!1

i!

Z 1

0

�R_x _x (t
0) dt0 � 1

i!
�R_x _x (!) : (4.34)

The second term for h _x (!) _x (�!)i Eq. 4.29 involves time t smaller than 0: Here,
we can invoque time reversal symmetry. If we look at the signal for �uctuations,
we cannot tell whether time is running backwards or forward. So we simply
have to use the advanced susceptibility. Or, equivalently, from time translational
invariance and a change of variable we can use the previous result

Z 0

�1
ei!t h _x (t) _x (0)i dt =

Z 0

�1
ei!t h _x (0) _x (�t)i dt (4.35)

=

Z 1

0

e�i!t h _x (0) _x (t)i dt (4.36)

=
e�i!1

i!

Z 1

0

�R_x _x (t
0) dt0 +

1

i!
�R_x _x (�!) (4.37)

where I have just made the replacement ! ! �! in the preceeding result. Note
that because the velocity is a real variable as a function of time, �R_x _x (�!) =
�R�_x _x (!) = �A_x _x (!) : Adding everything up, and using equipartition

h _x (0) _x (0)i = kBT

M
(4.38)

we have

M

T h _x (!) _x (�!)i =

�
� 1
i!
�R (!) +

1

i!
�A (!)

�
M h _x (0) _x (0)i (4.39)

S _x _x (!) =
i

!

�
�R (!)� �A (!)

�
kBT = �

2kBT

!
�00_x _x (!) (4.40)

The minus sign is de�nitly wrong Q.E.D.

Remark 30 We have tacitly assumed the so-called Onsager�s regression hypoth-
esis, namely that the �uctuations decay just like the macroscopic motion.
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4.4 *Fluctuations may also be seen as generated
from �uctuating internal forces. and sum-rules
come out naturally. The Langevin approach

If the �uctuations in x our caused by some spontaneously generated by internal
forces that �uctuate, using our de�nition of the propagator, we can write

hx (!)x� (!)i = �R (!)�R� (!)
D
jFin (!)j2

E
(4.41)

=
(1=m)

2

(!2 � !20 + !00 (!))
2
+ (!0 (!))

2

D
jFin (!)j2

E
: (4.42)

Where
D
jFin (!)j2

E
is the spectrum of the internal force that I will �nd here in

the simple case of a constant damping constant: It can also be found in the more
general case of a frequency dependent damping constant by comparison with the
result found in the previous section.

Remark 31 The internal force Fin here is called a Langevin force. If the equation
of motion is written with that force acting on the oscillator, it is known as a
stochastic Langevin equation.

One can use the equipartition theorem to determine the value of
D
jFin (!)j2

E
.

Indeed, in such a case, equipartition tells us that

1

2
M

*�
dx

dt

�2+
=
1

2
kBT: (4.43)

The quantity in brackets is related to an integral over the correlation function.
More speci�cally, taking the integral of the equation (4.29) that relates the corre-
lation function in frequency and in time, we �nd, integrating by parts,Z 1

�1
!2 hx (!)x� (!)i d!

2�
= T

��
dx

dt

��
dx

dt

��
= T kBT

m
(4.44)

where again we assumed time-translational invariance, i.e. that hx (t)x (t0)i is a
function only of t� t0:
I will study only the case where 0 =  is a constant, i.e. when  (!) is

independent of !. In that case, we can assume that
D
jFin (!)j2

E
is independent

of frequency. The integral can then be done as follows:Z 1

�1
!2 hx (!)x� (!)i d!

2�
=

Z 1

�1

(1=m)
2
!2

(!2 � !20)
2
+ (!)

2

D
jFinj2

E d!
2�

(4.45)

=

Z 1

�1

!2

m2!
Im

�
1

�!2 + !20 � i!

�D
jFinj2

E d!
2�
(4.46)

=

Z 1

�1

!2

m2!
Im

(
�1�e!+ � e!��

�
1

! � e!+ (4.47)

� 1

! � e!�
��D

jFinj2
E d!
2�

(4.48)
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Figure 4-4 Pole structure of the imaginary part of the susceptibility. One can add
the contour at in�nity to the integral on the real axis. This closed contour can be
deformed to the contour C0 which goes around the two poles in the lower half-pane.

In the third line of that equation we have decomposed in partial fractions. The
poles of the last integrand are those found in Eq.(2.7), e!� = �i2 � !R: Those of
the integrand in the �rst line above are illustrated in Fig.(4-4).
The integral converges only if the all the terms implicit in taking the imaginary

part are included. The original integral converges, so does the sum of all the terms,
but not each of the terms individually. This means that if we decide to complete
the contour, say, in the lower half-plane, we must do it for all the terms. We
cannot complete the contour in the lower half-plane for some of the terms, and
in the upper half-plane for others. There is no contribution from a semi-circular
contour at in�nity C1. Hence, we can choose to close the contour in the lower
half-plane, using ImX = (1=2i) (X +X�), so that Cauchy�s theorem allows us
to deform the contour so that it becomes C0 around the two poles of the lower
half-plane, giving usZ 1

�1
!2 hx (!)x� (!)i d!

2�
= i

1

m2

1

2i

�e!+ � e!���e!+ � e!��
D
jFinj2

E
= T kBT

m
(4.49)

from which we �nd D
jFinj2

E
= T 2mkBT:D

jFin (!)j2
E
is independent of frequency for a delta correlated noise, hFin (t)Fin (t0)i =

A� (t) :
We can now substitute in the expression (4.42) relating the �uctuations to the

force to obtain,

Sxx (!) � 1
T hx (!)x

� (!)i =
R1
�1 ei!(t�t

0) hx (t)x (t0)i d (t� t0)(4.50)

=
(1=m)

2

(!2 � !20)
2
+ (!)

2
2mkBT

Sxx (!) = �00 (!) 2kBT! (4.51)

where in the last line we used our result for the imaginary part of the susceptibility,
Eq. (3.29). The last equation is the classical limit of the �uctuation-dissipation
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theorem. Note that the last equalities prove that 2kBT!�00 (!) = !2Sxx (!) where
Sxx (!) is clearly an even function of !:3

The propagator is now expressed in terms of an equilibrium correlation function

�00 (!) = !
2kBT

R1
�1 ei!(t�t

0) hx (t)x (t0)i d (t� t0) (4.52)

We will see that a representation of the susceptibility in terms of a correlation
function can always be found.

Remark 32 The result for the �uctuation-dissipation theorem in the classical
limit Eq.(4.51) is valid even when the damping is frequency dependent. In that
case, the spectrum of the �uctuating force is not white since it becomes frequency

dependent
D
jFin (!)j2

E
= T 2m0 (!) kBT: This is a sort of detailed-balance condi-

tion, which we shall see in more detail later. The �uctuating force in any frequency
interval is related to the dissipation in that same frequency range. A proof of the
general �uctuation-dissipation theorem Eq.(4.51) using the Caldeira-Leggett [47]
representation of  (!), presented above, may be found in the lecture notes of De-
voret [67] on electrical circuits.

Remark 33 In the quantum case, the prefactor entering the proportionality be-
tween �00 (!) and Sxx (!) must be modi�ed, but the dissipation �00 (!) remains
related to the �uctuations Sxx (!) through a prefactor that depends only on fre-
quency and absolute temperature. This is a truly remarkable result.

Remark 34 Especially in the context of electrical circuits, the �uctuation-dissipation
theorem is known as Nyquist�s theorem, as we mentioned above. The relation be-
tween di¤usion constant and viscosity discovered by Einstein is another form of
the �uctuation-dissipation theorem. Indeed, the viscosity appears in the response
to an external force whereas di¤usion controls density �uctuations.

Remark 35 Given Sxx (!) = �00 (!) 2kBT! , the relation

1

T

Z 1

�1
hx (!)x� (!)i d!

2�
=

Z 1

�1
Sxx (!)

d!

2�
(4.53)

= hx (0)x (0)i = kBT

k
=
kBT

m!20
(4.54)

that also follows from the equipartition theorem only in the Caldeira-Leggett ex-
ample where x enters quadiatically in the Hamiltonian, translates intoZ 1

�1
Sxx (!)

d!

2�
= kBT

Z 1

�1

�00 (!)

!

d!

�
=
kBT

k
: (4.55)

This is our �rst example of a thermodynamic sum rule.

Remark 36 Eq.(4.44) also implies the sum ruleZ 1

�1
!2Sxx (!)

d!

2�
= kBT

Z 1

�1
!�00 (!)

d!

�
=
kBT

m
(4.56)Z 1

�1
!�00 (!)

d!

�
=
1

m

It will be clear in the next chapter that the latter sum-rule follows classically from
the equal-time Poisson bracket between momentum and position. This is our �rst
example of an f-sum rule. Note that in the last integral, high frequencies are more
important. And in the end, the integral does not depend on dissipation at all! This
is quite general. High-frequency response is reactive, not dissipative.

3This is valid only in the classical limit. The �uctuations do not have a speci�c parity in the
quantum mechanical case.
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5. IRREDUCIBLE SELF-ENERGY
AND VIRTUAL PARTICULES IN A
(ALMOST) CLASSICAL CONTEXT

You can begin to understand rather easily the concepts of self-energy and virtual
particules in the simple context of the classical harmonic oscillator. There are
limitations to this analogy, but it is not too bad. I will work with the propagator
in Eq.(4.24) that we obtained for an in�nite bath. Recall that in this chapter, the
propagator and the susceptibility are the same. This is not always the case.

5.1 The concept of self-energy emerges naturally
when one does a power series expansion

Suppose I write the propagator DR (!) in the form more standard for phonons,
namely Eq.(3.4). The quantity �R (!) is proportional to the square of the coupling
k00 between the original oscillator of frequency !0 and the in�nite bath, namely it
depends on the square of the only non-zero element of V (de�ned in the matrix
form Eq.(4.7)) that describes the coupling of the mass M with the bath of oscilla-
tor. Let �Rn (!) be the order n expansion of �

R (!) in powers of k00: This means
that if I have a perturbation theory that allows me to compute the propagator, to
fourth order in V for example, I will obtain

DR (!) � 1=M

� (! + i�)2 + !20
�
(1=M)

2 �
2!0�

R
2 (!) + 2!0�

R
4 (!)

�
M�

� (! + i�)2 + !20
�2

+
(1=M)

3
�
2!0�

(2)R
2 (!)M

�2
�
� (! + i�)2 + !20

�3 + : : : (5.1)

Figure 5-1 Power series expansion for the harmonic oscillator with mass M:The thin
black curly line is the bare propagator for that oscillator, the thin blue curly line is the
bare propagator for the bath and the thick black curly line is the dressed propagator
for the oscillator of mass M . The last line resums the series to in�nite order.
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I can represent this series diagrammatically as illustrated in Fig.(5-1). The black
wavy line represents the unperturbed propagator

DR0 (!) =
1=M

� (! + i�)2 + !20
(5.2)

and the blue wavy line represents the so-called irreducible self-energy calculated
to only second order in V ,

2!0�
R
2 (!)M: (5.3)

You can check that the constant k00 that couples the oscillator !0 to the bath in
the detailed matrix form Eq.(4.6) also enters the �rst diagonal matrix element of
the bath (and also in !0 but we assume we have taken it into account there).
Hence, that is why to fourth-order in V;there is an extra term in the power series
expansion Eq.(5.1) for the propagator. Since what we are after is the position of
the poles of DR (!) that represent the true eigenmodes of the system, what clearly
makes more sense is to compute �R (!) only to second order in V and to put it
back in the form of Eq.(3.4), namely

DR (!) ' 1=M�
� (! + i�)2 + !20 + 2!0�R2 (!)

� : (5.4)

In other words, what makes most sense is to �nd a power series for the self-energy.
This is where we hide our ignorance.

Remark 37 The expression �irreducible�can have slightly di¤erent meanings de-
pending on context. Here we mean that the self-energy is the set of diagrams in
Fig. (5-1) that cannot be cut in two by removing a bare propagator line.

Remark 38 Self-energy: One encounters the self-energy mostly in the context of
interactions. In the present context, one would instead speak of a hybridization
function. Nevertheless, the mathematics is well illustrated by the above example.

Remark 39 Why resum: Another reason to resum the series expansion Eq.(5.1),
is that if we stop at some �nite order, we see that DR (!) has poles of order two,
three etc, instead of the simple poles expected from the spectral representation.

5.2 Virtual particles

The notion of virtual particles is not always clear. Let me try a somewhat clumsy
analogy to explain this with the harmonic oscillator. Let me begin with the
de�nition of a �particle� in this special context. When the harmonic oscillator
is quantized, its energy takes discrete values separated by ~!: When the energy
goes up by ~!, we say that there is one more phonon in the system. A phonon
is a �particle�because it is corresponds to a transition between eigenstates of a
quadratic Hamiltonian that a) has a well de�ned quantized energy and that b)
can be measured.
Let us then consider the excitations at frequency !0 of our original harmonic

oscillator example as phonons, and the excitations of the eigenmodes of the bath
of oscillators as phonons as well. What happens if we couple the two sets of
phonons? We say that they hybridize. But there is another way to look at this
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here.1 Damping of the oscillator at !0 corresponds to emitting phonons that
dissipate in the bath by creating phonons there. When !0 is much less than the
lowest eigenenergy of the bath !mina or much larger than the largest !maxa of the
bath, there is no dissipation since 0 (!0) = 0. Nevertheless, the position of the
pole is no-longer !0, it takes a renormalized value, say !R;because even if the
damping constant 0 (!R) vanishes;by Kramers-Kronig 00 (!R) does not vanish
as long as there is absorption at some frequency because 00 (!R) depends on
absorption at all other frequencies

00 (!R) = �P
Z 1

�1

d!0

�

 0 (!0)

!0 � !R
: (5.5)

This moves the position of the poles as seen from Eq.(3.29) (we can take 0 in-
�nitesimal to recover a delta function).2 The eigenmode at this renormalized
frequency now contains virtual particles. We say virtual particles because in this
situation, the bath does not emit or absorb energy, i.e. no �real�phonon, or mea-
surable quantum of energy, is involved. The wavy blue lines in Fig.(5-1) can be
virtual particles from the point of view of the original oscillator at frequency !0:

Remark 40 A �particle� in general occupies a single-particle state that does not
need to be an energy eigenstate. The de�nition looks somewhat circular. This
is rooted deeply into wave-particle duality in quantum mechanics and the notion
will become clearer when I introduce second quantization. More generally, many
quantized excitations of a system can qualify as �quasiparticles�.

1We take all frequencies as positive in the rest of this section.
2Note that when 0 = 0, it is no longer justi�ed to neglect the i�: The spectral weight becomes

then a delta function.
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6. EXERCICES FOR PART I

Exercise 6.0.1 Starting from Eq. (2.38) assume that the Kramers Kronig rela-
tions Eqs. (2.31) and (2.32) are true and prove that this implies that the Sokhatsky-
Weirstrass formulas (2.36) are true.

Exercise 6.0.2 En partant de l�éq. (2.38) supposez que les relations de Kramers
Kronig (2.31) et (2.32) sont valides et prouvez que ceci implique la validité de la
formule de Sokhatsky-Weirstrass (2.36).

Exercise 6.0.3 Spectral representation, high-frequency expansion and moments:
Let � (z) a function of the complex variable z be de�ned by

� (z) =

Z 1

�1

d!0

�

�00 (!0)

!0 � z : (6.1)

We have shown that this function becomes equal to �R (!) de�ned in this chapter
when z = ! + i�:

a) Derive the following high-frequency limit (that assumes that �00 (!) vanishes
exactly at high-frequency, which is always the case as we will see)

� (z) ' �1
z

1X
n=0

Z 1

�1

d!0

�
�00 (!0)

�
!0

z

�n
: (6.2)

One calls the coe¢ cients of the expansion in powers of 1=z the �moments� of
�00 (!) :

b) Show that if � is the propagator for the position of the harmonic oscillator
then

kBT

Z 1

�1

d!

�
!2n�1�00 (!) =

*�
dnx (t)

dtn

�2+
(6.3)

while the even moments Z 1

�1

d!

�
!2n�00 (!) (6.4)

vanish because of time-reversal symmetry. Equations such as 6.9 are called sum
rules. They relate the moments of the function that describes dissipation to equal-
time correlation functions.

c) Show that our phenomenological model for the harmonic oscillator Eq.(3.3)
gives an in�nite result for Z 1

�1

d!

�
!3�00 (!) (6.5)

when one takes  (!) independent of !: This is in disagreement with the fact that

the average of the square of the acceleration,
��

d2x(t)
dt2

�2�
, cannot be in�nite,

which demonstrates that one must absolutely take a frequency-dependent  (!) : In
practice, one often needs to live with the fact that all sum-rules cannot be satis�ed
exactly. One can however use sum rules to improve phenonenological models. Note
that despite that fact that the relation (4.51) between �uctuation and dissipation
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was established while assuming  (!) independent of frequency, it is valid much
more generally as we will see. In other words, the disagreement found here is
not because the �uctuation-dissipation theorem is not valid. The response of the
harmonic oscillator is always related to an equilibrium correlation function, at
least to linear order in the applied external force F:

Exercise 6.0.4 Approximating the imaginary part of the propopagator by a con-
tinuous function and its consequences on analyticity:
As long as the bath is �nite, D (z = ! + i�) has a �nite set of poles, in�nitesimally
close to the real axis so that ImD (! + i�) is a set of delta functions. By going
to the continuum limit, these poles coaless into a branch cut and ImD (! + i�)
becomes a continuous function.
a) Show the relation between ImD (! + i�) and the discontinuity of D (z) across
the real axis, in otherwords the di¤erence between D (! + i�) and D (! � i�)
b) Show that when the continuous function ImD (! + i�) is approximated by a
Lorentzian, the propagator has a pair of isolated poles in the lower-half plane.

Exercise 6.0.5 Soit la fonction d�une variable complexe z dé�nie par

� (z) =

Z 1

�1

d!0

�

�00 (!0)

!0 � z : (6.6)

Cette fonction devient égale à �R (!) lorsque z = ! + i�:

b) Obtenez le développement haute-fréquence suivant (qui suppose que �00 (!) s�annule
exactement à haute fréquence, ce qui est toujours vrai comme nous verrons)

� (z) ' �1
z

1X
n=0

Z 1

�1

d!0

�
�00 (!0)

�
!0

z

�n
: (6.7)

On appelle les coe¢ cients du développement en puissance de 1=z les �moments�
de �00 (!) :

c) Démontrez la règle de somme dite thermodynamique pour l�oscillateur har-
monique,

� (0) =

Z 1

�1

d!

�

�00 (!)

!
=

1

kBT

D
x (t)

2
E
: (6.8)

d) Montrez que

kBT

Z 1

�1

d!

�
!2n�1�00 (!) =

*�
dnx (t)

dtn

�2+
(6.9)

alors que les autres moments, Z 1

�1

d!

�
!2n�00 (!) (6.10)

s�annulent par symétrie sous inversion du temps. Les équations comme 6.9 s�appellent
règles de somme. Elles relient les moments de la fonction décrivant la dissipation
à des fonctions de corrélation à temps égal.

e) Montrez que notre modèle phénoménologique pour l�oscillateur, Eq.(3.3) donne
un résultat in�ni pour Z 1

�1

d!

�
!3�00 (!) (6.11)
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lorsqu�on prend  (!) indépendant de !: Ceci est en désaccord avec le fait que

la moyenne du carré de l�accélération
��

d2x(t)
dt2

�2�
ne peut être in�nie, ce qui

démontre qu�il faut absolument que  (!) dépende de !: En pratique, il faudra
vivre avec le fait que toutes les règles de somme ne pourront pas être satisfaites
exactement. On peut cependant utiliser les règles de somme pour améliorer les
modèles phénoménologiques. Notez que bien que la relation (4.51) entre �uctuation
et dissipation ait été établie en supposant  (!) independant de la fréquence, elle
est valable beaucoup plus généralement, comme nous allons le voir bientôt. Le
désaccord trouvé ci-dessus n�est pas causé par le fait que le théorème de �uctuation-
dissipation ne s�applique pas de façon générale, du moins à l�ordre linéaire en F .

6.1 Devoir 2, fonctions de réponse, théorème de
Kramers Kronig

Exercise 6.1.1 Fonction de relaxation de Kubo: Dans la limite classique, le
théorème de �uctuation-dissipation devient:

�"
AiAj

(r; r0;!) =
�!

2
S
AiAj

(r; r0;!):

Dé�nissons une fonction C
AiAj

telle que la relation précédente soit toujours vraie,
c�est-à-dire que même pour un système quantique on veut que:

i
d

dt
C
AiAj

(r; r0; t) =
2

�
�"

AiAj
(r; r0; t):

Montrez que cette dernière relation est satisfaite par la dé�nition suivante de C
AiAj

C
AiAj

(r; r0; t� t0) = ��1
Z �

0

d�0[< Ai(r; t)Aj(r
0; t0 + i~�0) > � < Ai >< Aj >]:

Ceci est une autre fonction de corrélation due a Kubo et qui décrit la relaxation.

Exercise 6.1.2 Constante diélectrique et Kramers-Kronig. Considérons la con-
stante diélectrique d�un milieu isotrope �(t) comme une fonction de réponse, sans
nous soucier de sa représentation en terme de commutateurs. En utilisant le
principe de causalité (�(t) = 0 pour t < 0), demontrez que �(!) est analytique
dans le plan complexe supérieur. Determinez aussi la parité de �1 et �2 (�(!) =
�1(!) + i�2(!)) sous changement de signe de !. En utilisant ensuite le théorème
de Cauchy sur les intégrales des fonctions analytiques, dérivez deux relations de
Kramers-Krönig entre les parties réelles et imaginaires de �(!):

�1(!)� �1(1) =
2

�
P
Z 1

0

d�
��2(�)

�2 � !2
(6.12)

�2(!) = �
2

�
!P

Z 1

0

d�
�1(�)� �1(1)

�2 � !2
(6.13)
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Part II

Correlation functions,
general properties

71





Here we start to use quantum mechanics. Whenever the N-body problem can
be solved exactly in d dimensions, the result is a function of Nd coordinates and
of time, 	(x1; y1; :::; xd; yd; :::; t). Variational approaches, such as that used in the
description of the fractional Quantum-Hall e¤ect, start from such a wave-function.
While all the Physics is in the wave-function, it is sometimes not easy to develop
a physical intuition for the result. One case where it is possible is when the
wave function has a simple variational form with very few physically motivated
parameters. We encounter this in the fractional Quantum Hall e¤ect for example,
or in BCS theory. Modern numerical methods such as tensor networks or density
matrix renormalization group [43] focus on the wave function. But in the cases
where perturbation theory can be applied instead, Feynman diagrams help develop
a physical intuition.
Whether perturbation theory is applicable or not, we rarely need all the in-

formation contained in the wave-function. A reduced description in terms of only
a few variables su¢ ces if it allows us to explain what can be observed by experi-
mental probes. Correlation functions o¤er us such a description.
As for any physical theory, one must �rst discuss which quantities are observ-

able, or in other words, what it is that we want to compute. Starting this time
from quantum theory, we will see that what is measured by experimental probes
can in general be expressed as a correlation function, whether the experiment is
a scattering experiment, such as neutron di¤raction, or a transport measurement,
such as conductivity, as long as we are in the linear response regime. It is quite
remarkable that whatever the appropriate microscopic description of the system,
or whatever the underlying broken symmetry, the result of any of the above two
types of experiments can be expressed as a speci�c correlation function.
We will need to treat two di¤erent aspects of correlation functions.
a) The �rst aspect consists in general properties, which are independent from

the speci�c manner in which we compute correlation functions. We have already
extensively discussed these general properties in the context of the classical har-
monic oscillator. The properties I have in mind include, for example

� Symmetries

� Positivity

� Fluctuation-dissipation theorems relating linear response and equilibrium
�uctuations

� Kramers-Kronig transformations, which follow from causality

� Kubo relations, such as that relating linear response to a speci�c correlation
function.

� Sum rules

� Goldstone theorem, which follows from Bogoliubov inequalities

b) The second aspect concerns methods we need to compute speci�c correla-
tion functions. Sometimes, phenomenological considerations su¢ ce, like we saw in
the harmonic oscillator case with the phenomenological damping constant. Phe-
nomenology sometimes allows to �nd, with unknown parameters, the functional
dependence of correlations functions on, say, wave-vector and frequency. These
phenomenological considerations apply in particular in the hydrodynamic regime,
and whenever projection operator techniques are used.
As I mentioned in the introduction to part I, microscopic calculations based on

speci�c Hamiltonians and quantum mechanics will lead us to use another type of
correlation functions, namely Green�s functions. They will occupy a large fraction
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of this book. In fact, Green�s function are just one type of correlation function.
They will appear very naturally. Furthermore, many of the general properties
of correlation functions, which we discuss in the present chapter will transpose
directly to these functions. Much of this chapter is inspired from Forster [75]
which in turn draws heavlily on work of Kadano¤ and Martin. [111]
In this part of the book, I intend to

� Show that scattering experiments are a measure of equilibrium �uctuations

� Linear response to an external perturbation can be expressed as an equilib-
rium correlation function

And this correlation function can be related to equilibrium �uctuations by the
�uctuation-dissipation theorem.

� Then I discuss general properties of correlation functions

� and give a speci�c example of sum-rule calculation.
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7. RELATION BETWEEN COR-
RELATION FUNCTIONS AND EX-
PERIMENTS

Physical theories are rooted in experiment, hence, the �rst question is about mea-
surement and how it is performed. If you want to know something about a macro-
scopic system, you probe it. The elegance of Condensed Matter Physics stems in
part from the plethora of probes that can be used. Neutron scattering, electron
scattering, nuclear magnetic resonance, resistivity, thermopower, thermal conduc-
tivity, Raman and Infrared scattering, muon resonance, the list is long. What
they all have in common is that they are weak probes. Quantum mechanics, tells
us that all probes in�uence what they measure. Nevertheless, by looking at the
probe, we can tell something about the state of the system. Even the Green�s
function is a correlation function that can be measured by photoemission, as we
will see later.

In this chapter, I want to �rst illustrate the fact that scattering experiments
with weak probes usually measure various equilibrium correlation functions of a
system. This is one of the reasons why we will be so concerned with correlation
functions. The other reason will be that they also come out from linear response.
What I mean by �weak probes�is simply that Fermi�s Golden rule and the Born
approximation are all that we need to describe the e¤ect of the system on the
external probe, and vice-versa. The correlation functions that are measured by
scattering experiments are generally refered to as ��uctuations�. They will be
related to correlation functions that describe the linear response to external forces,
and the associated dissipation, by the �uctuation-dissipation theorem.

As an example, I describe in detail in Section (7.2) the case of inelastic electron
scattering but it should be clear that similar considerations apply to a large number
of cases: inelastic light scattering, neutron scattering, etc. The �rst �gure, (7-1),
in that section illustrates what I have in mind. The plan is simply to use Fermi�s
Golden Rule to compute the di¤erential cross section. We will obtain

d�
d�fd
f

=
h

m2

(2�)3~5
kf
ki

��V c�q��2i R dt ei!t 
�q(t)��q(0)� : (7.1)

Forgetting for the moment all the details, the key point is that the cross section is
related to the Fourier transform of the density-density correlation function. The
trick, due to Van Hove, to derive this formula from the Golden rule is to use the
Dirac representation of the delta function for energy conservation and the Heisen-
berg representation to express the �nal result as a correlation function. Since in
the Born approximation, incident and �nal states of the probe are plane waves,
everything about the probe is known. The only reference to it will be through ex-
plicitly known matrix elements and quantum numbers, such as momentum, energy,
spin etc...
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7.1 Quite generally, Fermi�s golden rule in either
scattering or relaxation experiments lead ob-
servables that are time-dependent correlation
functions

To illustrate the main ideas in a simple but sketchy manner, before entering the
nitty gritty details, recall that the Hamiltonian for the combined probe and sys-
tems is

H = H0
p +Hs +Hps (7.2)

where H0
p is the Hamiltonian that describes the evolution of the probe, Hs the

Hamiltonian for the system, and Hps the describes the interaction of the probe
with the system. In general H0

p is simple. It describes the propagation of a free
electron for example. The interaction of the system and the probe will generally
take the form

Hps = gAs 
Ap (7.3)

where g is some coupling constant while As and Ap are operators that belong
respectively to the system and to the probe. In the case where you shoot an
electron, these operators are the charge density of each system.
I assume that the �nal state of the probe belongs to a continuum. Then we

can use Fermi�s Golden rule that tells us that the transition rate from an initial
state i to a �nal state f is given by

Pi!f =
2�
~ jVfij

2
�(Ef � Ei � ~!) (7.4)

where Ei is the initial energy of the system and Ef the �nal one. The quantum
of energy ~! is the energy lost by the probe, or gained by the system. In other
words, ~! = "i � "f ;where "i and "f refer to the probe, in such a way that there
is energy conservation for system plus probe: Ef + "f = Ei + �i: The transition
matrix element Vfi is given by

Vfi = hsf j 
 hpf jHps jpii 
 jsii = g hsf j 
 hpf jAsAp jpii 
 jsii
= g hpf jAp jpii hsf jAs jsii (7.5)

where at the beginning and at the end of the experiment, probe and system do
not interact, which means that the state of the system is a direct product of the
system jsii and probe jpii states. Hence, we �nd

Pi!f =
2�

~

h
g2 jhpf jAp jpiij2

i
jhsf jAs jsiij2 �(Ef � Ei � ~!): (7.6)

The transition probability has thus factored into a prefactor, in square brackets,
that is completely independent of the system that is probed. If we know about free
electrons, or free neutrons, or whatever the probe, we can compute the prefactor.
What we are interested in is what the transition probability tells us about the

system. The �nal state of the probe is measured. That state can be entangled
with many states of the system hsf j, that are not measured. The correct transition
probability for the probe then must be computed by summing over all �nal states
of the system hsf j. This is like taking the trace over the unobserved states. In
other words, what we need isX

sf

Pi!f =

�
g2

~2
jhpf jAp jpiij2

�
2�~

X
sf

jhsf jAs jsiij2 �(Ef � Ei � ~!): (7.7)
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The fact that not all �nal states are allowed is taken into account by selection
rules in the matrix element and by the energy conserving delta function. The sum
over sf can be taken as unrestricted.
The next elegant step in the derivation is due to van Hove, as mentioned

above. It takes advantage of the fact that there is a as sum over �nal states that
can allow us to take advantage of the completeness relation. Using the integral
representation of the delta function, As = Ays; and the Heisenberg representation
with Hs the system Hamiltonian, A (t) = eiHst=~Ase

�iHst=~, you see that

2�~
X
sf

jhsf jAs jsiij2 �(Ef � Ei � ~!) =
X
sf

hsijAs jsf i hsf jAs jsii
Z
dt ei!te�i(Ef�Ei)t=~

=

Z
dt ei!t

X
sf

hsij eiHst=~Ase
�iHst=~ jsf i hsf jAs jsii

=

Z
dt ei!t hsij eiHst=~Ase

�iHst=~As jsii (7.8)

=

Z
dt ei!t hsijAs (t)As jsii (7.9)

where in the last equation I have used the completeness relation. Clearly then, the
transition probability of the probe is proportionnal to the time Fourier transform
of hsijAs (t)As jsii :This object is what is called a correlation function.
In general, at �nite temperature we do not know the initial state. All we know

is that the probability of each initial state is given by the canonical or grand-
canonical distribution for a system in thermal equilibrium with a reservoir. In
this case, to compute the transition probability for the probe we simply need
the proper thermal average over the initial states of the system, namely it is the
following expectation value that enters the transition probability:

De�nition 6 De�nition of average:P
i e
��Ei hsijAs (t)As jsiiP

i e
��Ei

=
Tr
�
e��HsAs (t)As

�
Tr [e��Hs ]

(7.10)

� hAs (t)Asi : (7.11)

In the above equation, I have given the important de�nition of what is meant
by averages hi : There is a quantum mechanical expectation value and a thermal
average.

Correlation functions will essentially always be computed in thermal equilib-
rium, as above. There is no need to average over the initial state of the probe
which is assumed to be in a pure state.
The density matrix is de�ned by

% = e��Hs=Tr
�
e��Hs

�
: (7.12)

In the grand canonical ensemble, that we will use essentially all the time, you
can think of Hs as containing ��N; where � is the chemical potential and N the
number of operator. Then, we can write

hAs (t)Asi = Tr [%As (t)As] : (7.13)

Overall then, we have thatP
i e
��EiP

sf
Pi!fP

i e
��Ei

=

�
g2

~2
jhpf jAp jpiij2

� Z
dt ei!t hAs (t)Asi : (7.14)
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Everything about the prefactor representing a weak probe should be known, in-
cluding the coupling constant g. That quantity is just the electric charge for
example in the cas of electron scattering. The information on the system is in the
Fourier transform of the �uctuations of the operator As.
Clearly, the above is a canevas that can be used for a wide range of probes of

materials. With linear response theory, it forms the foundation of measurement
theory for us. In the next section, I perform the detailed calculation for electron
scattering. You can skip that section on �rst reading.

De�nition 7 Density matrix: As we mentioned, the quantity

% � e��H

Tr[e��H ]
(7.15)

is often called the density matrix. The fact that thermal averages are traces is an
important fact that we will often use later. In the grand canonical ensemble, which
will be used most of the time, we have instead

% � e��(H��N)

Tr[e��(H��N)]
(7.16)

Appendix (A.1) gives a more general refresher on the concept of density matrix.

Remark 41 In atomic physics (quantum information) when a two-level system (a
qubit) is in an excited state, this is not a stationnary state of the whole system. It
can decay to the ground state because of its coupling to the electromagnetic �eld. In
this case, the �probe� is the atom (qubit) and the �system� is the electromagnetic
environment. With a coupling of the form j �A; where j is the current and A the
vector potential, we see that the decay rate depends on the correlation function
between the vector potential at two di¤erent times, in other words, it depends on
vacuum �uctuations of the electromagnetic �eld. More precisely, it is the size of
the vacuum �uctuations at the transition frequency of the qubit that determines
the transition rate.

Remark 42 In the case of a nuclear spin coupled to electron spins on a lattice,
the relaxation of the nuclear spin can be considered as a measure of the local elec-
tron spin �uctuations at the frequency that corresponds to the Zeeman splitting of
the nuclear-spin energy levels. (1=T1) � hSs (!)Sz (!)i : That energy is minuscule
compared with energy scales in condensed matter. A �eld of 1 T corresponds to
a nuclear Zeeman splitting of about 0; 5 � 10�3 K, which is smaller than typical
electronic Zeeman splitting by the ratio of the mass of the electron to the mass
of the proton. Since the frequency is so low, we can use the classical �uctuation
dissipation theorem, which means that (1=T1) � kBT �00SzSz (!) =!. When the sus-
ceptibility is wave-vector dependent, we must sum over all wave vectors to obtain
the local spin susceptibility.

7.2 *Details of the derivation for the speci�c case
of electron scattering

I follow Ref. [75]. Consider the experiment illustrated on �gure (7-1). V is the
volume of the system, and 
 a quantization volume.
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Figure 7-1 Electron scattering experiment. 
 is the quantization volume for the
incoming and outgoing plane waves while V is the sample�s volume. Each charge
inside is labeled by e� while the probe�s charge is e and the incident and outgoing
momenta are resprectively ki and kf :

Figure 7-2 Energy loss spectroscopy for scattering from 2p1=2 and 2p3=2 states (L 2

and L 2) of Nickel to empty 3d electrons that form the valence band, compared with
band structure calculations. The calculations are for the Fourier transform of the
density-density correlation function, as discussed in this section. That correlation
function is evaluated in the dipole approximation, i.e. from the �rst term in the
expansion of e�iq�r, because this is the leading matrix element for the atomic
transition from 2p to 3d: Figure reproduced from R.D. Leapman, L.A. Grunes, and
P.L. Fejes, Phys. Rev. B 26, 614 (1982).
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This experiment is also known as EELS, energy loss electron spectroscopy.
Comparison between theory and experiment for Ni is shown in Fig.(7-2).
The Hamiltonian of the system is H and the interaction between the probe

electron and the system is simply the potential energy v(R) felt by the probe-
electron of charge e at position R due to the N other charged particles inside the
system, namely

v(R) =
NX
�=1

e�V
c(R� r�) =

Z
d3r�(r)V c(R� r) (7.17)

with V c(R) the Coulomb potential and

�(r) =
NX
�=1

e��(r� r�) (7.18)

the charge density operator for the system being probed. Fermi�s Golden rule tells
us that the transition rate from an initial state i to a �nal state f is given by

Pi!f =
2�
~ jVfij

2
�(Ef � Ei � ~!) (7.19)

where Ei is the initial energy of the system and Ef the �nal one. Correspondingly,
the initial and �nal energies and momentum of the probe electron are given by,

�f = �i � ~!

~kf = ~ki � ~q: (7.20)

We proceed to evaluate the matrix element as far as we can. It should be
easy to eliminate explicit reference to the probe electron since it has rather trivial
plane-wave initial and �nal states. It is natural to work in the basis where the
system�s initial and �nal eigenstates are energy eigenstates, respectively jii and
jfi ; while for the probe electron they are jkii and jkf i. The latter eigenstates in
the box of volume 
 are plane waves:

hR jkii =
1


1=2
eiki�R

Then, in the Born approximation, we have that

Vfi = hf j 
 hkf j
Z
d3r�(r)V c(R� r) jkii 
 jii (7.21)

where the plane-wave matrix element can easily be evaluatedZ
d3R hkf j Ri V c(R� r) hRj kii = 
�1

Z
d3Rei(ki�kf )�RV c(R� r) =

V c�q



eiq�r

(7.22)
so that substitution in the expression for the matrix element gives,

Vfi =
V c�q



Z
d3r hf j �(r) jii eiq�r =

V c�q


hf j ��q jii : (7.23)

Substituting back in Fermi�s Golden rule (7.19), we obtain

Pi!f =
2�

~

����V c�q

����2 hij �q jfi hf j ��q jii �(Ef � Ei � ~!): (7.24)

Only the momentum and energy of the probe electron appear in this �nal expres-
sion, as we had hoped.
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De�nition 8 Note in passing that we use the following de�nitions for Fourier
transforms in the continuum

fq =
R
d3r f(r)e

�iq�r (7.25)

f(r) =
R

d3k
(2�)3

fqe
iq�r (7.26)

g! =
R
dt g(t)ei!t (7.27)

g(t) =
R
d!
2� g!e

�i!t (7.28)

To compute the cross section of that probe electron, one proceeds in the usual
manner described in textbooks. We will use a standard approach, but a more
satisfactory derivation of cross section based on incident wave packets can be
found in Ref.([83]). The total cross section, whose units are those of a surface, is
equal to

� =
Number of transitions per unit time

Number of incident particles per unit time per unit surface
(7.29)

What we want is the di¤erential cross section, in other words we want the cross
section per solid angle d
f and per energy interval d�f . This is computed as
follows. Since we cannot resolve the �nal electron state to better than d�fd
f
all the �nal states in this interval should be counted. In other words, we should
multiply Pi!f by the number of free electron states in this interval, namely


d3kf=(2�)
3 = 
kfmd�fd
f~�2=(2�)3: (7.30)

We should also trace over all �nal states jfi of the system since those are not
measured. These states are constrained by conservation laws as we can see from
the fact that energy conservation is insured explicitly by the delta function, while
momentum conservation should come out automatically from the matrix element.
The initial state of the system is also unknown. On the other hand, we know that
the system is in thermal equilibrium, so a canonical average over energy eigenstates
should give us the expected result. The di¤erential cross section for scattering in
an energy interval d�f and solid angle d
f should then read,

d�

d�fd
f
=
Number of transitions per unit time in given solid angle and energy interval

Number of incident particules per unit time per unit surface
:

(7.31)

=

�

kfm~�2=(2�)3

~ki=(m
)

� P
i e
��EiP

f Pi!fP
i e
��Ei

where we have used that the number of incident particles per unit time per unit
surface is the velocity ~ki=m divided by the volume.
When we substitute the explicit expression for the transition probability in this

last equation, it is possible to make the result look like an equilibrium correlation
function by using Van Hove�s trick to rewrite the matrix elements coming in the
transition probability. Using the Heisenberg representation for the time evolution
of the operators

O(t) = eiHt=~Oe�iHt=~ (7.32)

and taking H as the Hamiltonian for the system excluding probe electron, we
have, H jii = Ei jii so that

2�~ hij �q jfi �(Ef � Ei � ~!) =
Z
dt ei!t hij �q jfi e�i(Ef�Ei)t=~ (7.33)
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=

Z
dt ei!t hij eiHt=~�qe�iHt=~ jfi =

Z
dt ei!t hij �q(t) jfi : (7.34)

Substituting this expression in the equation for the transition probability, (7.24)

X
f

Pi!f =

����V c�q
~
����2 Z dt ei!t hij �q(t)��q(0) jii (7.35)

the cross section is proportional toP
i e
��Ei

R
dt ei!t hij �q(t)��q(0) jiiP

i e
��Ei

=

P
i

R
dt ei!t hij e��H�q(t)��q(0) jiiP

i e
��Ei

(7.36)

=

Z
dt ei!t

Tr
�
e��H�q(t)��q(0)

�
Tr [e��H ]

=

Z
dt ei!t



�q(t)��q(0)

�
: (7.37)

More explicitly, we �nd Eq.(7.1) quoted at the beginning of the section. We
thus have succeeded in expressing the inelastic electron-scattering experiment as
a measurement of equilibrium density �uctuations!
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8. TIME-DEPENDENT PERTUR-
BATION THEORY

To compute the response of a system to a weak external probe, such as an applied
electric �eld or temperature gradient, as opposed to a scattering probe as above,
it seems natural to use perturbation theory. We will be interested in the response
to linear order in the external probe. In fact, perturbation theory will be useful in
many other contexts in this book, since this is the method that is behind adiabatic
continuity. In this chapter we thus �rst pause to recall the various representations,
or pictures, of quantum mechanics, introducing the interaction representation as
the framework where perturbation theory is most easily formulated. Then we go
on to derive linear response theory in the next chapter. If you already know about
perturbation theory, you can skip to the next chapter.

8.1 Schrödinger and Heisenberg pictures.

Whether in classical or quantum mechanics, a basic property of the Hamiltonian
is that it is the generator of in�nitesimal time translations, Schrödinger�s equation
for a time-dependent Hamiltonian takes the form,

i~@j S(t)i@t = H(t) j S (t)i : (8.1)

It may look strange to have a Hamiltonian that depends on time. But when there
is a semi-classical external probe, like a large electric �eld, acting on a system,
then the part of the Hamiltonian that contains the external probe will just be a
number (not an operator), leading to a time-dependent electric �eld.
Using the fact thatH(t) is Hermitian, one can easily prove that @ h S j Si =@t =

0, in other words that probability is conserved. Hence, the solution of this equation
will be given by

j S (t)i = U(t; t0) j S(t0)i (8.2)

where U(t; t0) is a unitary operator, equal to an exponential only when H(t) is
time independent. In general

U(t0; t0) = 1 (8.3)

and

i~@U(t;t0)@t = H(t)U(t; t0): (8.4)

If time-reversal symmetry applies then

U(t0; t)U(t; t0) = 1: (8.5a)

The adjoint is de�ned as usual

h S (t)j = hU(t; t0) S(t0)j
= h S(t0)jU (t; t0)

y
; (8.6)

TIME-DEPENDENT PERTURBATION THEORY 83



where we used the usual de�nition of the adjoint of an operator A : hkj Ali =

Ayk

�� li : Note that one takes the adjoint, but in the case of interest, that does
not mean transposing t and t0.
Conservation of probability gives

U(t; t0)
yU(t; t0) = 1 (8.7)

so that combining the last result with the de�nition of the inverse, we have,

U(t; t0)
�1 = Uy(t; t0): (8.8)

Furthermore, when we can use time-reversal symmetry, Eq.(8.5a), (and only in
that case) we also have

U(t; t0)
�1 = U(t0; t): (8.9)

By de�nition, for all values of t, the expectation value of an operator is the
same in either the Schrödinger, or the Heisenberg picture.

h S (t)j OS j S (t)i = h H j OH (t) j Hi : (8.10)

In the Heisenberg picture the operators are time-dependent while in the Schrödinger
picture, only the wave functions are time dependent. Let us choose t = 0 to be
the time where both representations coincide. The choice of this time is arbitrary,
but taking t = 0 simpli�es greatly the notation. We have then that

OS(t = 0) = OH(t = 0) � OS (8.11)

 S (t = 0) =  H (t = 0) �  S (8.12)

Using the expression for the time-dependent wave function, and the equality of
matrix elements Eq.(8.10), we obtain

OH(t) = Uy(t; 0)OSU(t; 0): (8.13)

One recovers all the usual results for time-independent Hamiltonians by noting
that in this case, the solution of Schrödinger�s equation is,

U(t; t0) = e�iH(t�t0)=~: (8.14)

Remark 43 When there is time-reversal invariance, then it is useful to replace
the adjoint by the time-reversed operator, so that the connection between Heisen-
berg and Schrödinger picture Eq.(8.13) becomes

OH(t) = U(0; t)OSU(t; 0): (8.15)

Because we do not want to assume for the time being that there is time-reversal
invariance, we shall stick here with the usual expression Eq.(8.13) but in much
of the later chapters, the above representation will be used. Aharonov and others
have been proponents of this time symmetric formulation of quantum mechanics
(Physics Today, Novembre 2010).

8.2 Interaction picture and perturbation theory

Perturbation theory is best formulated in the �interaction representation�. In this
picture, one can think of both operators and wave functions as evolving, as we
will see. We take

H (t) = H0 + �H(t) (8.16)
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where H0 is time-independent as above, but the proof can be generalized to time-
dependent H0 simply by replacing eiH0t=~ everywhere below by the appropriate
evolution operator. The de�nition of the evolution operator in the interaction
representation UI(t; 0) is given by

U(t; 0) � e�iH0t=~UI(t; 0): (8.17)

If t is less than zero, then the interaction picture is de�ned by

U(0; t) � UI(0; t)eiH0t=~: (8.18)

The two de�nitions coincide at t = 0; namely UI (0; 0) = 1: This de�nition is
useful because when we can assume time-reversal symmetry, the above de�nitions
are consistent with U(t; 0)U(0; t) = I: In general then, when we have t0 < 0 then
the evolution operator is given by

U(t; t0) � e�iH0t=~UI(t; t0)e
iH0t0=~ : (8.19)

We have used the fact that UI(t; t0) obeys the same general properties of unitarity
as an ordinary evolution operator, as can easily be checked. Again the interaction
representation will coincide with the other two at t = t0 = 0.
If we write again the equality of matrix elements in the general case, without

assuming time-reversal symmetry, we obtain

h S (t)j OS j S (t)i = h S jUy(t; 0)OSU(t; 0) j Si (8.20)

= h S jU
y
I (t; 0)e

iH0t=~OSe�iH0t=~UI(t; 0) j Si (8.21)

= h S jU
y
I (t; 0)OI (t)UI(t; 0) j Si (8.22)

This last result is important. It can be interpreted as saying that the operators
in the interaction representation evolve with

OI (t) = eiH0t=~OSe�iH0t=~ (8.23)

while the wave functions obey

j I (t)i = UI(t; 0) j Si (8.24)

In other words, in the interaction picture both the operators and the wave function
evolve and at t = 0 they coincide.

Remark 44 The justi�cation for the de�nition of UI above is that when the ex-
ternal perturbation �H(t) is small, UI(t; 0) is close to unity. The corresponding
wave-function in the interaction picture evolves slowly as the last equation shows.
It is as if we had gotten rid of the rapid time evolution caused by H0: This is some-
times referred to as going to the rotating frame, espectially in the �eld of nuclear
magnetic resonance or quantum computing.

We still have to �nd the equation of motion for UI(t; t0). The result will
justify why we introduced the interaction representation. Start from Schrödinger�s
equation, which as we saw above in Eq. (8.4) is equivalent to

i~
@U(t; t0)

@t
= H(t)U(t; t0) (8.25)

then the equation of motion for UI(t; 0), namely

H0e
�iH0t=~UI(t; 0) + e

�iH0t=~i~
@

@t
UI(t; 0) = H(t)e�iH0t=~UI(t; 0) (8.26)
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i~
@

@t
UI(t; 0) = eiH0t=~�H(t)e�iH0t=~UI(t; 0): (8.27)

so that using the de�nition of time evolution of an arbitrary operator in the inter-
action representation as above (8.23), the equation for the time evolution operator
UI(t; 0) in the interaction representation may be written,

i~
@

@t
UI(t; 0) = �HI(t)UI(t; 0) (8.28)

with the initial condition
UI(0; 0) = 1: (8.29)

As expected, Eq.(8.28) tells us that, if there is no perturbation, UI is equal to
unity for all times and only the operators and not the wave function evolve. The
interaction representation then reduces to the Heisenberg representation. Multi-
plying the equation of motion from the right by UI(0; t0), where t0 is less than 0,
we have for an arbitrary initial time

i~ @@tUI(t; t0) = �HI(t)UI(t; t0) (8.30)

We will come back later to a formal solution of this equation. To linear order
in the external perturbation, it is an easy equation to solve by iteration using
the initial condition as the initial guess. Indeed, integrating on both sides of the
equation of motion (8.30) and using the initial condition, UI(t0; t0) = 1 we have

UI(t; t0) = 1� i
~
R t
t0
dt0 �HI(t0)UI(t0; t0) (8.31)

which, iterated to �rst order, gives,

UI(t; t0) = 1�
i

~

Z t

t0

dt0 �HI(t0) +O(�H2I) (8.32)

and correspondingly

UyI (t; t0) = 1 +
i

~

Z t

t0

dt0 �HI(t0) +O(�H2I) (8.33)

because Hamiltonians are self adjoint.

Remark 45 The number 1 that appears on the right-hand side of the last two
equation operates on the Hilbert space as the identity matrix.

Remark 46 Other interpretation of the interaction picture: As we will see later,
another possible interpretation of the interaction representation is that one needs
to sum over all possible quantum histories, namely, for example, sum over all
possible scatterings of electrons between themselves if the perturbation is the inter-
action between the electrons. This is where the physical picture is dependent on
perturbation theory.
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9. LINEAR-RESPONSE THEORY

We are interested in the response of a system to a weak external perturbation.
The electrical conductivity is the response to a weak applied �eld, the thermal
conductivity the response to a weak thermal gradient etc. The result will be again
an equilibrium correlation function. In fact, we can already guess that if we evolve
some operator B in the interaction representation with a UI on the right and a
UyI on the left to �rst order in �HI(t0) as in the last two equations of the previous
section, we will simply end up with the thermal average of a commutator. We will
be able to relate the latter correlation function to equilibrium correlation functions
of the type just calculated at the end of the last section by relying on the general
quantum version of the ��uctuation-dissipation theorem�encountered in Part I.
The plan to compute the e¤ect of an external perturbation is to add it to the
Hamiltonian and then to treat it as a perturbation, taking the full interacting
Hamiltonian of the system H as the unperturbed Hamiltonian. Let us move to
the details, that are unfortunately a bit messy, but really straightforward.
Let

H (t) = H + �H(t) (9.1)

where H is the Hamiltonian of the system under study (that we called Hs in the
example of system interacting wih probe above) and �H(t) is the perturbation
that does not commmute with H in general. The time-dependent Hamiltonian is
de�ned as

�H(t)= �
R
d3rAi(r)ai(r;t): (9.2)

In this expression, Ai is some observable of the system (excluding external per-
turbation) in the Schrödinger representation, while ai(r;t) is a classical external
�eld. Examples of such couplings to external �elds include the coupling to a mag-
netic �eld h through the magnetization M, (Ai (r) = Mz (r) ; ai(r;t) = hz(r; t))
or the coupling to an electromagnetic vector potential A through a current j,
(Ai (r) = jx(r)�i;x; ai(r;t) = Ax(r;t)�i;x) or that of a scalar potential � through
the density � (Ai (r) = � (r) ; ai(r;t) = �(r; t)). In this approach, it is clear that
the external perturbation is represented in the semi-classical approximation, in
other words it is not quantized, by contrast again with the scattering of a probe
with a system that we discussed above.
In the case of interest to us the external perturbation in the interaction repre-

sentation is of the form,

�HI(t)= �
R
d3rAi(r; t)ai(r;t) (9.3)

where for short we wrote Ai(r; t) to represent a system�s observable evolving in
the system�s Heisenberg representation,

Ai(r; t) = eiHt=~Ai(r)e
�iHt=~: (9.4)

Suppose we want the expectation value of the observable B in the presence
of the external perturbation turned on at time t0. Then, starting from a thermal
equilibrium state b% = e��H=Tr

�
e��H

�
at time t0, it su¢ ces to evolve the operator

B (r) de�ned in the Schrödinger picture with the full evolution operator, including
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the external perturbation 1

hB(r; t)n:e:i =


Uy(t; t0)B(r)U(t; t0)

�
: (9.5)

In this expression, the subscript n:e: on the left reminds us that the time depen-
dence includes that from the external perturbation. Using the interaction repre-
sentation Eq.(8.19), with H now playing the role of H0 in the previous section,
the last equation becomes

hB(r; t)n:e:i =
D
e�iHt0=~UyI (t; t0)e

iHt=~B(r)e�iHt=~UI(t; t0)e
iHt0=~

E
(9.6)

hB(r; t)n:e:i =
D
UyI (t; t0)B(r; t)UI(t; t0)

E
: (9.7)

In this last expression, B(r; t) on the right-hand side is now in the system�s Heisen-
berg representation without the external perturbation. In the previous section, this
Hamiltonian was called H0: To cancel the extra e�iHt0=~ and eiHt0=~ appearing
in the equation for the evolution operator in Eq.(8.19), we used the facts that
the trace has the cyclic property and that the density matrix Eq. (7.12), namelyb% = e��H=Tr

�
e��H

�
commutes with eiHt0=~. This expression for the density

matrix is justi�ed by the fact that initially the external probe is absent.
Using the explicit expression Eq.(9.3) for the external perturbation in the equa-

tion for the evolution operator in the interaction representation (8.32), we have
that the term linear in applied �eld

� hB(r; t)i � hB(r; t)n:e:i � hB(r; t)i (9.8)

is then given by,

� hB(r; t)i = i

~

Z t

t0

dt0
Z
d3r0 h[B(r; t); Ai(r0; t0)]i ai(r0;t0): (9.9)

It is customary to take t0 = �1; assuming that the perturbation is turned-on
adiabatically slowly. One then de�nes a �retarded�response function, or suscep-
tibility �R, by

� hB(r; t)i =
R1
�1 dt0

R
d3r0 �RBAi

(r; t; r0; t0)ai(r
0;t0) (9.10)

with,

�RBAi
(r; t; r0; t0) = i

~ h[B(r; t); Ai(r
0; t0)]i : (9.11)

Following our previous de�nition with the harmonic oscillator Eq. (3.14), this is
also written in the form

�RBAi
(r; t; r0; t0) = 2i�00BAi

(r; t; r0; t0)�(t� t0); (9.12)

where you can read o¤ the de�nition of �00BAi
(r; t; r0; t0) by comparing the last two

equations: This response function �RBAi
(r; t; r0; t0) is called �retarded�because the

response always comes after the perturbation, as expected in a causal system. The
function �(t � t0) ensures this causality. One can also de�ne anti-causal response
functions. We come back to this later. We notice that the linear response is
given by an equilibrium correlation function where everything is determined by
the Hamiltonian H without the external probe.
This completes our derivation of the di¤erent types of correlation functions

measured by the two great types of weak probes: scattering probes and semiclas-
sical probes. We move on to discuss properties of these correlation functions and
relations between them.

1We let the density matrix take its initial equilibrium value. This is physically appealing. But
we could have as well started from a representation where it is the density matrix that evolves
in time and the operators that are constant.
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Remark 47 Translationally invariant case: Since we compute equilibrium aver-
ages, the susceptibility �RBAi

(r; t; r0; t0) can depend only on the time di¤erence.
In the translationally invariant case, the susceptibility is also a function of only
r � r0 so that Fourier transforming the expression for the linear response (9.10),
we obtain from the convolution theorem in this case,

� hB(q; !)i = �RBAi
(q; !)ai(q; !): (9.13)

Remark 48 Frequency of the response: The response is at the same frequency as
the external �eld, a feature which does not survive in non-linear response.

Remark 49 Onsager reciprocity relations: Given the expression for the response
function in terms of a commutator of Hermitian operators, it is clear that the
response of the operator B to an external perturbation that couples to A is simply
related to the response of A to a perturbation that couples to B; in other words
where the operators have reversed roles. These are �Onsager�s reciprocity rela-
tions�. A classic example occurs in the context of thermopower. In that case,
there is a relation the case where a thermal gradient causes a voltage di¤erence
and the case where a voltage di¤erence causes a thermal gradient. In the �rst case,
we refer to the Seebeck e¤ect and the other case the Peltier e¤ect.

Remark 50 Validity of linear response and heating: Finally, we can ask whether
it is really justi�ed to linearize the response. Not always since the external pertur-
bation can be large. But certain arguments suggest that it is basically never correct
in practice to linearize the response. Indeed, assume we apply an external electric
�eld E. As long as the energy gained by the action of the �eld is smaller than
kBT , the linearization should be correct. In other words, linear response theory
should be valid for a time

t <
kBT

eEv
: (9.14)

This is unfortunately a ridiculously small time. Taking v �
p
kBT=m the condi-

tion becomes t <
p
mkBT=eE with E = 1V=cm,

p
mkBT=eE �

p
10�3010�23102=10�19 �

10�6s. If we take the Fermi velocity for v, the time is even smaller. One �nds
that unless there is a temperature gradient, or an explicit interaction with a system
in equilibrium (such as phonons), the second order term in perturbation theory is
secular, i.e. it grows linearly with time. This is nothing more than the phenom-
enon of Joule heating.[234] We are then forced to conclude that linear response
theory applies, only as long as the system is maintained in equilibrium by some
means: for example by explicitly including interactions with phonons which are
by force taken to be in thermal equilibrium, or by allowing for a thermal gradient
in the system that carries heat to the boundaries. From the point of view of the
Boltzmann equation, one can see explicitly that if the second-order term in E is
kept small by collisions with a system in thermal equilibrium, then the linear term
is basically equal to what we would have obtained by never going to second-order
in the �rst place.[234][235][238]

Remark 51 Reversibility and linear response: Other arguments against linear
response theory center on the fact that a correlation function where operators all
evolve reversibly cannot describe irreversible processes. [241] We have seen in
Part I and will see explicitly again later that it is possible to compute irreversible
absorption with this approach. Irreversibility appears in the in�nite-volume limit.

Remark 52 At the operator level, causality comes automatically from the equa-
tions of motion for the evolution operator Eq. (8.32). In other words, the value of
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the evolution operator at time t, or of the wave function, depends only on what hap-
pened at previous times. But we know that in the measurement process of a single
event, the results can only be predicted with a certain probability. That probability
can be calculated from the wave function, but there is a fundamental randomness in
quantum mechanics that makes certain events appear without precise cause. Here
I will always compute expectation values, so we have strict causality and we are
never directly confronted with this problem.
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10. GENERAL PROPERTIES OF
CORRELATION FUNCTIONS

There are unfortunately very few things that one can know exactly about a piece
of condensed matter. Turning this around, it is in fact remarkable that we know
at least a few things. So it is useful to become familiar with such exact results.
We begin with analytic properties that do not depend on the microscopic model
considered. This has at least two advantages: a) to check whether approximation
schemes satisfy these exact relations b) to formulate phenomenological relations
which are consistent. We will see that approximate calculations usually cannot
satisfy all known exact relations for correlation functions, but it will be obvious
that violating certain relations is more harmful than violating others. Many of
the general properties which we will discuss in the present context have trivial
generalizations for Green�s function. Working on these general properties now
will make them look more natural later when we introduce the curious Green�s
function beast!

10.1 Notations and de�nition of �00

To start with, recall the de�nition

�RBA(r; t; r
0; t0) =

i

~
h[B(r; t); A(r0; t0)]i �(t� t0): (10.1)

I de�ne one more correlation function which will, in most cases of physical interest,
play the role of the quantity that describes absorption. Welcome �00

�00BA(r; t; r
0; t0) = 1

2} h[B(r; t); A(r
0; t0)]i : (10.2)

Why do I do this? With this de�nition, we have

�RBA(r; t; r
0; t0) = 2i�00BA(r; t; r

0; t0)�(t� t0): (10.3)

Look at back at our harmonic oscillator and see how retarded functions look when
transformed back to time by staring at Eq. (3.14). The � can be seen as ensuring
that the Fourier transform back to frequency exists and has the right properties.
A much more detailed discussion appears in Remark (65).
The de�nition now looks natural. The factor of two in the denominator of

the de�nition looks strange, but it will allow �00 to generally satisfy the Kramers-
Kronig relations in their standard form. The quantity �00BA has symmetry prop-
erties, discussed below, that su¢ ce to �nd those of the retarded response. It also
contains all the physics, except causality that is represented by the � function.
To shorten the notation, we will also use the short hand

�RAiAj
(t� t0) = i

~ h[Ai(t); Aj(t
0)]i �(t� t0): (10.4)

where we include in the indices i and j the positions as well as any other label
of the operator such as vector or spin component. In this notation, we have
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not assumed translational invariance. We did however assume time-translation
invariance. Since we are working with equilibrium averages above, this is always
true.
Corresponding to the short-hand notation, we have

�00AiAj
(t� t0) � 1

2~ h[Ai(t); Aj(t
0)]i : (10.5)

�RAiAj
(t� t0) = 2i�00AiAj

(t� t0)�(t� t0): (10.6)

Remark 53 All the physics will be in �00AiAj
(t�t0) clearly. And, following our dis-

cussion of the response of the classical harmonic oscillator, the Fourier transform
of the retarded susceptibilities �RAiAj

(t�t0) will obey Kramers-Kronig relations and
have a spectral representation.

Remark 54 If A and B are Hermitian, then �RBA(r; t; r
0; t0) must be real, which

means that �00BA(r; t; r
0; t0) is purely imaginary, as we expect from the commutator

of any pair of Hermitian operators, such as [x; p] = i~. This phase di¤erence of
�=2 will be responsible with the fact that �00BA(r; t; r

0; t0) will often be related to
dissipation. We saw an example of that in Section (3.3).

Remark 55 Classical limit: In the classical limit, commutators divided by i~
become Poisson brackets. Sum rules arise from evaluating commutators at equal-
time (t = t0), as will become clear shortly. Similarly then, in the classical limit, one
can obtain sum rules from the evaluation of Poisson brackets at equal time. Sum
rules also exist in classical mechanics, as we saw from our example of the simple
harmonic oscillator. The relation between Poisson brackets and commutators gives
us a deeper reason to understand why sum rules exist in both the quantum and
classical realm.

10.2 Symmetry properties of H and symmetry of
the response functions

The quantity �00AiAj
(t�t0) contains all the non-trivial information on the response.

Indeed, the causal response is simply obtained by multiplying by a trivial �(t� t0)
function. Certain symmetries of this response function depend on the particular
symmetry of the Hamiltonian, others are quite general. We begin with properties
that depend on the symmetry of H: [75]
Let S be a symmetry of the Hamiltonian. By this we mean that the operator

S representing the symmetry commutes with the Hamiltonian

[H;S] = 0 (10.7)

To be more precise, in the context of statistical mechanics we say that S is a
symmetry of the system when it commutes with the density matrix

[%; S] = 0 (10.8)

In other words,
S%S�1 = % (10.9)

thus the spectrum of the density matrix is una¤ected by the symmetry operation.
The operator S is in general unitary or antiunitary as we will see below.
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To extract non-trivial consequences of the existence of a symmetry, note that
the cyclic property of the trace allows us to act on the operators instead of on the
basis functions. In other words, we have

hOi = Tr[�O] = Tr[S%S�1O]
= Tr[%S�1OS]


S�1OS
�
= hOi (10.10)

It is because S and O in general do not commute that the above equation leads
to non-trivial consequences. When two di¤erent operators are involved in the
expectation value, as will be the case below for �00, note that


S�1O1O2S
�
=

�
S�1O1S

� �
S�1O2S

��
(10.11)

which is valid even if O1 and O2 are not at the same time since by hypothesis S
commutes with H and hence with the time-evolution operator.
Let us look in turn at the consequences of translational invariance and of

invariance under a parity transformation r�! �r�:

10.2.1 Translational invariance

When there is translational invariance, it means that if all operators are translated
by R; the thermal averages are unchanged. In other words,

�00BA(r; t; r
0; t0) = �00BA(r+R; t; r

0 +R; t0) (10.12)

so that �00BA is a function of r� r0 only. Since we already know that �00BA is a
function only of t� t0, in such cases we write

�00BA(r; t; r
0; t0) = �00BA(r� r0; t� t0) (10.13)

In the general case, to go to Fourier space one needs two wave vectors, corre-
sponding respectively to r and r0 but in the translationally invariant case, only
one wave vector su¢ ces. (You can prove this by changing integration variables in
the Fourier transform to the center of mass and di¤erence variables).

10.2.2 *Parity

Under a parity transformation, operators transform as follows

P�1O (r)P = "PO (�r) (10.14)

where "P = �1: This number is known as the �signature�under parity transfor-
mation. That "P = �1 is the only possibility for simple operators like density
and momentum follows from the fact that applying the parity operation twice is
the same as doing nothing. In other words, P 2 = 1: To be more speci�c, "P� = 1
for density since performing the symmetry operation r�! �r� for every particle
coordinate appearing in the density operator in �rst quantization

�(r) =

NX
�=1

e��(r� r�) (10.15)
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we �nd

P�1�(r)P=
NX
�=1

e��(r+ r�) =
NX
�=1

e��(�r� r�) = �(�r): (10.16)

For the momentum operator, "Pp = �1, as we can show by the following ma-
nipulations

p(r) =
NX
�=1

}
i
rr��(r� r�) (10.17)

P�1p(r)P =
NX
�=1

�}
i
rr��(r+ r�) = �

NX
�=1

}
i
rr��(�r� r�) = �p(�r):

In general then, this implies that

�00BA(r; t; r
0; t0) = "PB"

P
A�

00
BA(�r; t;�r0; t0) (10.18)

When we also have translational invariance, the last result means that �00BA(r� r0; t�
t0) is even or odd in r� r0 depending on whether the operators have the same or
opposite signatures under parity. Correspondingly, the Fourier transform in the
translationally invariant case is odd or even, as can easily be proven by a change
of integration variables in the Fourier transform

�00BA(q; t� t0) = "PB"
P
A�

00
BA(�q; t� t0) (10.19)

Remark 56 To clarify the meaning of the operators above, recall that for example
to obtain the charge density of a two-particle wave function, you need to compute

h j � (r) j i = e

Z
d3r1

Z
dr2 

� (r1; r2) � (r) (r1; r2)

= e

Z
d3r2 

� (r; r2) (r; r2) + e

Z
d3r1 

� (r1; r) (r1; r)(10.20)

which gives the contributions to the charge density at point r from all the particles.

10.2.3 Time-reversal symmetry in the absence of spin is represented by complex
conjugation for the wave function and by the transpose for operators

What happens to operators under time reversal we can easily guess by knowing
the classical limit. To take simple cases, position does not change but velocity and
momentum change sign. To achieve the latter result with the momentum density
operator

p(r) =
NX
�=1

}
i
rr��(r� r�) (10.21)

it appears that complex conjugation su¢ ces. It works because p(r) is hermitian
so that complex conjugation su¢ ces as I will show belos. Does this mean that for
the wave function, the operation of time reversal is simply complex conjugation?
The answer is yes, except that in the most general case, there can be an additional
unitary operation. We will encounter the latter in the case of spin in the following
subsection. What we cannot guess from the classical limit is what happens to the
wave function under time reversal. But inspired by the case of momentum, it is
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natural to suggest that in the simplest case, time reversal corresponds to complex
conjugation. Inverting time again would mean taking the complex conjugate again
and hence returning to the original state. That is reassuring. If we accept that time
reversing an operator is taking its complex conjugate, then H� should correspond
to time inversion of H:
We can give another plausibility argument. Consider the solution of the

Schrödinger equation for a time-independent Hamiltonian:

 S (t) = e�iHt=~ S (0) : (10.22)

Suppose that H involves the square of momentum and some space dependent
potential so that it is clearly invariant under time reversal. Then, evolving some
state backwards from an initial state e S (0) means thate S (�t) = eiHt=~e S (0) : (10.23)

But by taking the complex conjugate of the Schrödinger equation and noting that
the Hamiltonian we have in mind has the property H = H�; we �nd that

 �S (t) = eiHt=~e �S (0) : (10.24)

It thus looks as if the complex conjugate just evolves backward in time.
We can see the full time-inversion invariance in an alternate manner by doing

the quantum mechanical analog of the following classical calculation for equations
of motion that are time-reversal invariant. Evolve a system for a time t0; stop
and invert all velocities and evolve again for a time t0: If we change the sign
of all velocities again we should have recovered the initial state. The quantum
mechanical analog is as follows. a) Start from  S (0) :b) Evolve it until time t0:We
then have the state  S (t0) = e�iHt0=~ S (0) :c) Take time inversion on that state.
This is the equivalent in classical mechanics of inverting all velocities. Quantum
mechanically, the new state is  �S (t0) = eiH

�t0=~ �S (0) : d) Evolve that state for
a time t; again using the usual time evolution operator for the usual Shcrödinger
equation, not its complex conjugate i.e.  �S (t0 + t) = e�iHt=~

�
eiH

�t0=~ �S (0)
�
. If

we follow our classical analogy, when t = t0; we should have returned to our initial
state if H is time-reversal invariant, except that the velocities have changed sign.
In quantum mechanics, time reversal invariant means H = H�: When this is the
case, what we �nd for the quantum mechanical state is  �S (t0 + t0) =  �S (0) :The
equivalent of changing the velocities again in the classical case is that we take
complex conjugation. That returns us indeed to the original state  S (0). That
is all there is in the simplest scalar case. Time inversion means taking complex
conjugate.
A system in equilibrium obeys time-inversion symmetry, unless an external

magnetic �eld is applied. This means that equilibrium averages evaluated with
time-reversed states are equal to equilibrium averages evaluated with the original
bases. In fact time-inversion symmetry is a very subtle subject. A very complete
discussion may be found in Gottfried [83] and Sakurai [207]. We present an over-
simpli�ed discussion. Let us call Tt the operator that time-reverses a state. This is
the operation of complex conjugation that we will call K: The �rst thing to notice
it that it is unlike any other operator in quantum mechanics. In particular, the
Dirac notation must be used with extreme care. Indeed, for standard operators,
say X; we have the associative axiom

h�jX j�i = h�j (X j�i) = (h�jX) j�i (10.25)

This is clearly incorrect if X is the complex conjugation operator. Hence, we must
absolutely specify if it acts on the right or on the left. Hence, we will write K�!
when we want to take the complex conjugate of a ket, and K � to take the complex
conjugate of a bra.
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Proposition 9 Remark 57 Antiunitary operators: Time reversal is an antiuni-
tary operation. The key property that di¤erentiates an anti-unitary operator from
a unitary one is its action on a linear combination

Tt (a1 j 1i+ a2 j 2i) = a�1Tt j 1i+ a�2Tt j 2i (10.26)

In general such an operator is called antilinear. Antiunitarity comes in when we
restrict ourselves to antilinear operators that preserve the norm. The time reversal
operator is such an operator. Under time reversal, an arbitrary matrix element
preserves its norm, but not its phase. This is easy to see from the fact that for an
arbitrary matrix element h 1jK �K�!j 2i = h 2 j 1i 6= h 1 j 2i the phase changes
sign under complex conjugation while the square modulus h 2 j 1i h 1 j 2i is in-
variant. Gottfried[83] shows that only discrete transformations (not continuous
ones) can be described by anti-unitary operators. This reference also discusses the
theorem by Wigner that states that if we declare that two descriptions of quantum
mechanics are equivalent if jh 2 j 1ij =

��
 02 �� 01��� (equality of �rays�) then both
unitary and anti-unitary transformations are allowed.

� Remark 58 The adjoint is not the inverse. Note that T yt Tt = K �K�!, so this
last quantity is not the identity because the rightmost complex conjugation
operator acts to the right, and the leftmost one to the left. Again, it is not
convenient to talk about time-reversal in the usual Dirac notation.

Returning to the action of the time reversal operation on a Schrödinger op-
erator, we see that the expectation value of an arbitrary operator between time
reversed states is

hijK �OK�!jji =
�
hijK �

��
K�!O

� jji
�
=
�
hijK �K�!jO

�ji
�
= hjj Oy� jii : (10.27)

In the above expression, we used one of the properties of the hermitian product,
namely hk jli� = hl jki ; as well as the de�nition of the adjoint of an operator A :
hkj Ali =



Ayk

�� li which implies, that hkj A jli� = hlj Ay jki : Applying this ex-
pression Eq.(10.27) for diagonal expectation values, and recalling that the density
matrix is real and hermitian, we �nd for equilibrium averages,D

K �OK�!
E
=


Oy�

�
= "t



Oy
�
: (10.28)

The last equality de�nes the signature of the time-reversal operation for operators.
One easily �nds that �t = +1 for position while �t = �1 for velocity or momentum,
etc... Note that Oy� is the transpose of the operator. The signature under complex
conjugation can only be �1, since applying complex conjugation twice is equivalent
to the identity.
We can use this last result to �nd the e¤ect of the time-reversal invariance

on general correlation functions. The action of time reversal Eq.(10.28) gives,
when A and B are self-adjoint operators, and in addition the Hamiltonian is real
(K�!H = HK�! ) D

K �A(t)BK�!
E

=
D
B�e�iHt=}A�eiHt=}

E
= �tA�

t
B hBA(�t)i (10.29)

In addition to the signature, the order of operators is changed as well as the sign
of time. For �00AiAj

(t� t0) this immediately leads to

�00AiAj
(t� t0) = �tAi

�tAj
�00AjAi

(�t0 � (�t)) (10.30)
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and for the corresponding Fourier transform in frequency,

�00AiAj
(!) = �tAi

�tAj
�00AjAi

(!) : (10.31)

Seeing �00AiAj
(!) as a matrix in AiAj , helps to remember this result a stating that

time reversal transposes this matrix and multiplies it by the signature of each of
its operators.

� Remark 59 In the case of an equilibrium average where both the density
matrix and the Hamiltonian commute with the time-reversal operation, we
have, as in Eq.(10.10), 


T�1t OTt
�
= hOi : (10.32)

Hence as expected, Eqs.(10.28) and (10.32) together imply that Hermitian
operators that have an odd signature with respect to time reversal symmetry
have a vanishing expectation value in equilibrium.

10.2.4 *Time-reversal symmetry in the presence of spin necessitates a matrix repre-
sentation

Spin should transform under time reversal like angular momentum r� p; in other
words it should change sign since r does not while p does. Complex conjugation
has this property for r� p but not for spin represented by Pauli matrices. We
should really wait for the section where we treat fermions to discuss this problem
but we can start to address it here. To come out from the problem that complex
conjugation does not su¢ ce anymore, it su¢ ces to notice that in general the
time reversal operator has to be represented by a unitary operator times complex
conjugation. The resulting operator is still anti-unitary, as can easily be proven.
Let us thus write

Tt = K�!U (10.33)

where K�! is complex conjugation again and U is a unitary operator UyU = 1 in
spin space that we need to �nd. Note that the action on a bra is given by

UyK � (10.34)

Let us �rst repeat the steps of calculating expectation values in time-reversed
states, as in Eq.(10.27), but for the more general case

hijUyK �OK�!U jji =
�
hijUyK �

��
K�!O

�U jji
�
=
�
hUijK �K�!jO

�Uji
�
= hjjUyOy�U jii

(10.35)
Computing the equilibrium trace with UyOy�U is thus equivalent to computing
the equilibrium trace in time-reversed states but with O. If we take for O the spin
�, the net e¤ect of the time-reversal operation should be to change the direction
of the spin, in other words, we want

Uy�y�U = �� (10.36)

The expression for U will depend on the basis states for spin. Using the Pauli
matrix basis

�x �
�
0 1
1 0

�
; �y �

�
0 �i
i 0

�
; �z �

�
1 0
0 �1

�
(10.37)
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we have �y = �; and ��x = �x; �
�
y = ��y; ��z = �z so that Eq.(10.36) for time

reversal gives us the following set of equations for the unitary operator U

Uy�xU = ��x (10.38)

Uy�yU = �y (10.39)

Uy�zU = ��z (10.40)

Given the fundamental properties of Pauli matrices

�i�j + �j�i = 0 for i 6= j

�2i = 1 (10.41)

�i�j = i�k (10.42)

where i; j; k are cyclic permutations of x; y; z; the solution to the set of equations
for U is

U = ei��y (10.43)

where � is an arbitrary real phase. This is like a � rotation along the y axis so
that already we can expect that up will be transformed into down as we were
hoping intuitively. In summary, the time reversal operator in the presence of spin
multiplies the spin part by ei��y and takes the complex conjugate.

Tt = K�!e
i��y (10.44)

Note the action of this operator on real spinors quantized along the z direction

Tt j"i = �ie�i� j#i (10.45)

Tt j#i = ie�i� j"i (10.46)

The time reversal operator thus transforms up into down and vice versa but with
a phase. Even if we can choose ei� = i to make the phase real, the prefactor
cannot be +1 for both of the above equations. In particular, note that TtTt j"i =
� j"i ; another strange property of spinors. The application of two time reversal
operations on spinors is like a 2� rotation around y so that it changes the phase
of the spinor. It can be proven that this result is independent of the choice of
quantization axis, as we can expect.[83] As far as the main topic of the present
section is concerned, observables such as angular momentum will have a simple
signature under time reversal (they are always two spinors that come in for each
observable Ai) so that the results of the previous section are basically unmodi�ed.
When �00AiAj

(!) is real, the properties of being a commutator (10.48) and of
Hermiticity (10.50) allow us to further show that �00AiAi

(!) is also an odd function
of frequency, an important result that we show in the following section.

10.3 Properties that follow from the de�nition and
proof that �00�q��q(!) = ��

00
�q��q

(�!)

In this section, several exact results are shown, but the one I will use most of-
ten is �00�q��q(!) = ��

00
�q��q

(�!): Let us thus write down the general symmetry
properties of �00AiAj

(t � t0) that simply follow from its de�nition (10.5). These
properties are independent of the speci�c form of the Hamiltonian. It only needs
to be Hermitian.
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� Commutator: Since it is a commutator, we have

�00AiAj
(t� t0) = ��00AjAi

(t0 � t) (10.47)

which when we move to frequency space with
R
dt ei!t reads,

�00AiAj
(!) = ��00AjAi

(�!) : (10.48)

� Hermiticity: Taking the observables as Hermitian, as is the case most of
the time (superconductivity leads to an exception), one can use the cyclic
property of the trace and the Hermiticity of the density matrix to show that

�00AiAj
(t� t0) =

h
�00AjAi

(t0 � t)
i�
. (10.49)

(Proof for Hermitian operators: h[Ai; Aj ]i� = Tr f�AiAj � �AjAig�

= Tr fAjAi��AiAj�g = Tr f� [Aj ; Ai]g with � the density matrix.)

In Fourier space, this becomes,

�00AiAj
(!) =

h
�00AjAi

(!)
i�
: (10.50)

In other words, seen as a matrix in the indices Ai; Aj ; the matrix �00AiAj
(!) is

hermitian at all frequencies.

Remark 60 Non-hermitian operators: It is important to note that the operators
Ai may be non-Hermitian, as is the case for superconductivity. In such cases, one
should remember that the above property may not be satis�ed.

As an example of the use of the last equation, consider �00�r�r0 (!) for den-

sity response. We obtain the equality �00�r�r0 (!) =
h
�00�r0�r(!)

i�
: Taking Fourier

transforms in space, this implies that this response function, measurable through
energy-loss electron spectroscopy, is real:

�00�q��q(!) =
h
�00�q��q(!)

i�
: (10.51)

Quite generally, using the commutator property Eq.(10.48) and time-reversal
symmetry Eq.(10.31) to interchange the two operators, we see that for operators
that have the same signature under time reversal

�00AiAj
(!) = ��00AiAj

(�!); (10.52)

in other words, that function, �00AiAj
(!), that we will call the spectral function

below, is odd (and continuous it turns out so that it vanishes at ! = 0), a property
we will use for thermodynamic sum rules below.
Most useful property: The most important consequence of this section that I

will often use is that correlation functions such as �00�q��q(!) are not only real but
also odd in frequency as follows directly from the last equation,

�00�q��q(!) = ��
00
�q��q

(�!): (10.53)
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Remark 61 Here is a less general way of deriving �00�q��q(!) = ��
00
�q��q

(�!)
that rests on invariance under parity. We �rst use Hermiticity Eq.(10.50) in the
form

�00�r�r0 (!) =
h
�00�r0�r(!)

i�
(10.54)

to show that �00�q��q(!) is real

�00�q��q(!) =

Z
d3r

Z
d3r0e�iq�(r�r

0)�00�r�r0 (!) (10.55)

=

�Z
d3r

Z
d3r0eiq�(r�r

0)�00�r0�r(!)

��
(10.56)

=
h
�00�q��q(!)

i�
(10.57)

The commutator property Eq.(10.48), �00�q��q(!) = ��
00
��q�q

(�!) and symmetry
under parity transformation Eq.(10.19), �00��q�q(�!) = �00�q��q(�!) then su¢ ce
to show that �00�q��q(!) is also odd in frequency �

00
�q��q

(!) = ��00�q��q(�!).

10.4 Kramers-Kronig relations follow from causality

You are familiar with optical conductivity for example, or with frequency de-
pendent impedance. Generally one can measure the real and imaginary parts of
frequency-dependent response functions, namely the dissipative and reactive parts
of the response. Those are not independent. In reality, all the information on the
system is in �00AiAj

(!): That is the single function containing the physics. We have
already encountered the Kramers-Kronig relations in the introduction with the
simple harmonic oscillator. So this section is repetitive.
Since the physics is in a single function, there are relations between real and

imaginary parts of response functions. These are the Kramers-Kronig relation.
These are by far the best known and most useful properties for response functions.
The Kramers-Kronig relation follows simply from causality. Causality is insured
by the presence of the � function in the expression for the response functions
Eq.(10.6). Causality simply states that the response to an applied �eld at time
t0 occurs only at time t later. This is satis�ed in general in our formalism, as
can be seen by looking back at the formula for the linear response Eq.(9.10).
Kramers-Kronig relations are the same causality statement as above, seen from
the perspective of Fourier transforms.
Let us recall what was done before. The fact that there is a Heaviside �(t� t0)

function implies that the Fourier transform of �RAiAj
(t�t0) cannot have any pole in

the complex upper half-plane of frequency because of the exponential. Conversely,
analyticity of �RAiAj

(!) implies that in time there is a �(t�t0) function. Analyticity
of the response �RAiAj

(!) in the upper half-plane and the contour shown in Fig. (2-
2) that avoids the singularity on the real axis implies that if we de�ne �RAiAj

(!) =

Re�RAiAj
(!) + i Im�RAiAj

(!) then the Kramers-Kronig relation follow:

Re�RAiAj
(!) = P

R
d!0

�

Im�RAiAj
(!)

!0�! (10.58)

Im�RAiAj
(!) = �P

R
d!0

�

Re�RAiAj
(!)

!0�! : (10.59)
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This is completely general.

Remark 62 The above Kramers-Kronig relations assume that �RAiAj
(!) falls o¤

at least as a small power of ! at in�nity. If there is a term that does not decay, it
needs to be subtracted o¤ before we can apply the Hilbert transforms.

Remark 63 Kramers-Kronig and time reversal: The Kramers Krönig relations
do not depend on subtleties of signatures under time-reversal. Everything about the
system is in �00AiAj

(!). The following special cases are the most often encountered:
When Ai and Aj are hermitian, we have seen in Eq. (10.50) that �00AiAj

(!) =h
�00AjAi

(!)
i�
. This implies that �00AjAi

(!) is real when either Ai = Aj or when

there is time-reversal symmetry Eq. (10.31) with Ai and Aj that have the same
signature under time reversal. Correspondingly, �0AiAj

(!) is real, as implied by
the Kramers Kronig relation. So, if we write �RAiAj

(!) = �0AiAj
(!) + i�00AiAj

(!)

then �0AiAj
(!) is the real part of �RAiAj

(!) and �00AiAj
(!) the imaginary part.

Im
h
�RAiAj

(!)
i
= �00AiAj

(!) (10.60)

Remark 64 For two hermitian operators Ai; Aj with opposite signatures under
time reversal, Eqs.(10.31) and hermiticity (10.50) imply that �00AiAj

(!0) is purely
imaginary. In this case,

Re
h
�RAiAj

(!)
i
= i�00AiAj

(!) : (10.61)

10.5 Spectral representation andKramers-Kronig re-
lations

It is instructive to perform a derivation of Kramers-Kronig relations that starts
from our explicit expression for the susceptibility in terms of �00. Inspired by what
we found for the harmonic oscillator in Chapter (3.2) I recall that in real time,
our response looks similar to what we had in Eq. (3.14), namely

�RAiAj
(t� t0)e��(t�t

0) = 2i�00AiAj
(t� t0)�(t� t0)e��(t�t

0): (10.62)

If

�RAiAj
(!) =

Z
d!0

�

�00AiAj
(!0)

!0 � (! + i�) ; (10.63)

then Fourier transforming this equation will give us the previous one in time, as
we saw for the harmonic oscillator, without the need of any assumption about
whether �00AiAj

(!0) is real or imaginary.
If we start from �RAiAj

(t� t0), we proceed just as in Chapter (3.2). The steps
will not be repeated.1 As long as � is �nite, we can go back and forth between
the time and the frequency representation. And whether we are interested in
�RAiAj

(t � t0) or in �RAiAj
(!), the physical response is always obtained by taking

the � ! 0 limit at the end.

1Here it is not generally true that Im�RAiAj (!) = �00AiAj (!) :The special case Ai = Aj gives

an example where the previous equality is correct. This was the case for our harmonic oscillator
example.
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Remark 65 Another explanation of � : We want to know � hB(r; t)i : To insure
a steady state when we integrate di¤erential equations forward in time, we want
to damp out residual e¤ects of the initial conditions at t!1: This is like for the
solution in time of the harmonic oscillator that we did in the introductory chap-
ters, but in the limit of in�nitesimal damping. To this end, it su¢ ces to multiply
� hB(r; t)i by e��t where � is in�nitesimal.The equation for the response in time
(10.6) is then simply multiplied by e��t = e��(t�t

0)e��t
0
, so that �RAiAj

(t� t0) still
depends only on the time di¤erence and the analogous factor, e��t

0
, multiplies the

external �eld. When we take Fourier transforms,
R1
�1 d(t� t0)ei!(t�t0), everything

proceeds as before, except that we can use the extra convergence factor e��(t�t
0),

to make sense out of the Fourier transform of the Heaviside theta function if the
convolution theorem is used.

Remark 66 It is important to note that the external �eld is also multiplied by
e��t

0
so that its Fourier transform will also show ! + i�:

This function is called the �retarded response�to distinguish it from what we
would have obtained with �(t0 � t) instead of �(t � t0). The retarded response is
causal, in other words, the response occurs only after the perturbation. In the anti-
causal case (�advanced response�) the response all occurs before the perturbation
is applied. In the latter case, the convergence factor is e��(t

0�t) instead of e�(t
0�t).

Introducing a new function de�ned in the whole complex plane z;

�AiAj
(z) =

R
d!0

�

�00AiAj
(!0)

!0�z (10.64)

we can write for the retarded response,

�RAiAj
(!) = lim�!0 �AiAj

(z)jz=!+i� (10.65)

and for the advanced one, which we hereby de�ne,

�AAiAj
(!) = lim�!0 �AiAj

(z)jz=!�i�: (10.66)

Using the above results, it is easy to see that �RAiAj
(!) is analytic in the upper-half

plane, while �AAiAj
(!) is analytic in the lower-half plane. The advanced function

is useful mathematically but it is acausal, in other words the response occurs
before the perturbation. In the time representation it involves � (t0 � t) instead of
� (t� t0) :

�AiAj
(z) is a function which is equal to �RAiAj

(!) for z in�nitesimally above
the real axis, and to �AAiAj

(!) for z in�nitesimally below the real axis. On the
real axis of the complex z plane �AiAj

(z) has a cut whenever �00AiAj
(!) 6= 0 since,

using the Sokhatsky Weirstrass formula Eq. (2.36)h
�AiAj

(! + i�)� �AiAj
(! � i�)

i
= 2i�00AiAj

(!) (10.67)

�RAiAj
(!)� �AAiAj

(!) = 2i�00AiAj
(!) (10.68)

Remark 67 The last result does not rely on �00AiAj
(!) being real, so it is an

important general result.

De�nition 10 Equations such as (10.64) are called spectral representations.

So much for taking the Fourier transform of a response which is so simple
looking in its ordinary time version Eq.(10.6).
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10.6 *Positivity of !�00(!) and dissipation

The proof of this section essentially follows the steps used for the simple harmonic
oscillator in Chapter (3.3).
We want to show that the key function of the previous discussion, namely

�00AiAj
(!), contains all the information on the dissipation. Since stability of a

thermodynamic system implies that an external applied �eld of any frequency
must do work the dissipation must be positive, which in turns means, as we now
demonstrate, that !�00AiAj

(!) is a positive-de�nite matrix.
Since the change in the energy of the system due to the external perturbation

is given by the perturbation Hamiltonian Eq.(9.2), this means that the power
dissipated by the external world is

dW

dt
=
d�H(t)
dt

= �
Z
d3rAi(r)

dai(r;t)

dt
= �Ai

dai(t)

dt
: (10.69)

In the last equality, we have used our short-hand notation and included position
in the index i. The integral over r then becomes a sum over i which is not written
explicitly since we take the convention that repeated indices are summed
over. Taking the expectation value in the presence of the external perturbation,
we �nd

dW

dt
= � [hAii+ h�Aii]

dai(t)

dt
(10.70)

where hAii is the equilibrium expectation value, and h�Aii the linear response.
Taking the total energy absorbed over some long period of time T , the condition
for the dissipated energy to be positive is,

W = �
Z T=2

�T=2
dt h�Ai(t)i

dai(t)

dt
> 0: (10.71)

For h�Aii we have written explicitly all the time dependence in the operator in-
stead. Taking T ! 1 and getting help from Parseval�s theorem, the last result
may be written,

�
Z
d!

2�
h�Ai(!)i i!ai(�!) >0: (10.72)

Finally, linear response theory gives

�
Z
d!

2�
ai(�!)�RAiAj

(!)i!aj(!) > 0 (10.73)

Changing dummy indices as follows, ! ! �!, i ! j, j ! i and adding the new
expression to the old one, we obtain the requirement,

W = �1
2

Z
d!

2�
ai(�!)

h
�RAiAj

(!)� �RAjAi
(�!)

i
i!aj(!) > 0: (10.74)

Calling the spectral representation (10.65) to the rescue, we can writeh
�RAiAj

(!)� �RAjAi
(�!)

i
=

Z
d!0

�

�00AiAj
(!0)

!0 � (! + i�) �
Z
d!0

�

�00AjAi
(!0)

!0 � (�! + i�) :

(10.75)
We know from the fact that �00AiAj

is a commutator that (10.48) �00AiAj
(!) =

��00AjAi
(�!). Using this identity and the change of variables !0 ! �!0 in the last

integral, we immediately have thath
�RAiAj

(!)� �RAjAi
(�!)

i
=

Z
d!0

�
�00AiAj

(!0)

�
1

!0 � ! � i� +
1

�!0 + ! � i�

�
(10.76)
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= 2i�00AiAj
(!): (10.77)

Substituting all this back into the last equation for the dissipated energy, and
using the fact that since the applied �eld is real, then ai(�!) =a�i (!), we getZ

d!

2�
a�i (!)

h
�00AiAj

(!)!
i
aj(!) > 0: (10.78)

This is true whatever the time-reversal signature of the operators Ai; Aj . Further-
more, since we can apply the external �eld at any frequency, we must have

a�i (!)
h
�00AiAj

(!)!
i
aj(!) > 0 (10.79)

for all frequencies. For hermitian operators we have seen in Eq. (10.50) that
�00AiAj

(!) behaves as a Hermitian matrix. So its eigenvalues are real. Going to
the basis where �00AiAj

is diagonal, we see that the previous equation implies that
all the eigenvalues are positive. This is the de�nition of a positive-de�nite matrix.
Also, when there is only one kind of external perturbation applied,

�00AiAi
(!)! > 0: (10.80)

We have seen that for Hermitian operators with the same signature under time
reversal, �00AiAi

(!) is a real and odd function of frequency so the above equation
is satis�ed.
One can check explicitely that �00AiAi

(!) contains spectral information about
excited states by doing backwards the steps that lead us from Fermi�s golden rule
to correlation functions.

Remark 68 For Hermitian operators Ai; Aj ; the matrix �00AiAi
(!) is Hermitian,

hence its eigenvalues are real, even if o¤-diagonal matrix elements between opera-
tors that do not have the same signature under time reversal are purely imaginary.

10.7 A short summary of basic symmetry properties
and constraints on �00

We summarize the results of the last few sections that concern �00: In the �rst
row, we explicitly write the r; r0 dependence, in the second rwo we take the space
fourier transform and in the rest the spatial indices are hidden in the indicies i
and j appearing with Ai: �tAi

is the signature under time reversal of the operator
Ai; while �PAi

is the signature under parity of the operator Ai:

Basic property Implies for �00

H is invariant under translation �00BA(r; t; r
0; t0) = �00BA(r� r0; t� t0)

H is invariant under parity �00BA(q;!) = "PB"
P
A�

00
BA(�q;!)

H is invariant under time reversal �00AiAj
(!) = �tAi

�tAj
�00AjAi

(!)

�00 is a commutator �00AiAj
(!) = ��00AjAi

(�!):
�00 contains hermitian operators only �00AiAj

(!) =
h
�00AjAi

(!)
i�
:

Positivity of dissipation �00AiAj
(!)! is a positive de�nite matrix
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Remark 69 The result concerning time reversal invariance can be remembered
from the fact that apart from the signatures, it looks like transposition, which is
basically what time reversal does for the thermal average of an operator. Similarly
if we look at Ai and Aj as indices, the relation coming from hermiticity looks like
hermiticity of the �00AiAj

(!) matrix.

A result we will use later that is a consequence of hermiticity and time-reversal
symmetry is that �00�q��q(!) is real and an odd function of frequency �

00
�q��q

(!) =

��00�q��q(�!):

10.8 *Fluctuation-dissipation theorem

In this section, I generalize the �uctuation-dissipation theorem that seemed very
special with the constant-damping approximation I considered for the simple har-
monic oscillator. That theorem is very important and much more general. This
very useful theorem relates linear response to equilibrium �uctuations measured
in scattering experiments. Here I give the derivation in the general quantum case.
It takes the form,

SAiAj
(!) = 2~

1�e��~! �
00
AiAj

(!) = 2~(1 + nB (!))�00AiAj
(!) (10.81)

where nB (!) = 1=
�
e�~! � 1

�
is the Bose factor while the �structure factor� or

correlation function is de�ned by,

SAiAj
(t) � hAi(t)Aji � hAii hAji = h(Ai(t)� hAii) (Aj(0)� hAji)i (10.82)

� h�Ai(t)�Aji : (10.83)

(Note that hAi (t)i = hAi (0)i = hAii) This is also known as the Callen-Welton
[48] a more general version of the Nyquist-Johnson theorem [179].We have already
encountered the charge structure factor in the context of inelastic neutron scatter-
ing. Clearly, the left-hand side of the �uctuation-dissipation theorem Eq.(G.13)
is a correlation function for �uctuations while the right-hand side contains the
dissipation function �00 just discussed. This is a key theorem of statistical physics.

Remark 70 We recover the classical �uctuation-dissipation theorem in the usual
classical limit where ~! � kBT: Indeed, in that case the Bose function becomes
nB (!) = 1=

�
e�~! � 1

�
' 1=�~! = kBT=~! which is much larger than unity so

that the �uctuation-dissipation theorem Eq.(G.13) becomes SAiAj
(!) = (2kBT=!)�

00
AiAj

(!)

as we had found in Eq.(4.51). Returning to the derivation of our cross-sections in
Sec.(7) with the golden rule (Ai = Aj), you see that ~! is the energy given to the
system by the probe. Negative ! means that the system gives energy to the probe.
We thus expect that SAiAj

(!) = 0 at T = 0 when ! is negative since a system in
its ground state cannot give energy: On the other hand, at positive !; the system
absorbs energy, which it can always do. That is what the above formula predicts,
as can be checked in the quantum limit, namely j�~!j ! 1: Indeed, in that case
2~=

�
1� e��~!

�
! 2~ for positive !, and 2~=

�
1� e��~!

�
! 0 for negative !:

Fluctuations do not vanish in a quantum system at T = 0: Classical mechanics,
by contrast, would predict that all �uctuations disappear. We pointed out at the
end of Chapter (7) that the transition rate between an excited atomic level and the
ground state is proportional to the �uctuations of the electromagnetic �eld at the
transition frequency. This implies that the electromagnetic �eld is also quantized,
otherwise excited states of atoms would not decay.
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To prove the theorem, it su¢ ces to trivially relate the de�nitions,

�00AiAj
(t) =

1

2~
h[Ai(t); Aj ]i =

1

2~
h[�Ai(t); �Aj ]i (10.84)

=
1

2~
h�Ai(t)�Aj � �Aj�Ai(t)i (10.85)

=
1

2~
�
SAiAj

(t)� SAjAi
(�t)

�
(10.86)

then to use the key following identity that we set to prove,

SAjAi
(�t) = SAiAj

(t� i~�) : (10.87)

This kind of periodicity of equilibrium correlation functions will be used over and
over in the context of Green�s functions. It will allow to de�ne Fourier expansions
in terms of so-called Matsubara frequencies.
The proof of the identity simply uses the de�nition of the time evolution opera-

tor and the cyclic property of the trace. More speci�cally using the cyclic property
of the trace, we start with,

SAjAi
(�t) = Z�1Tr

�
e��H�Aj�Ai(t)

�
= Z�1Tr

�
�Ai(t)e

��H�Aj
�
: (10.88)

Using e��He�H = 1 to recover the density matrix on the left, simple manipulations
and Heisenberg�s representation for the time-evolution of the operators gives,

SAjAi
(�t) = Z�1Tr

�
e��He�H�Ai(t)e

��H�Aj
�

(10.89)

= Z�1Tr
�
e��H�Ai(t� i~�)�Aj

�
= SAiAj

(t� i~�): (10.90)

This is precisely what we wanted to prove. The rest is an exercise in Fourier
transforms,Z

dtei!tSAiAj
(t� i~�) =

Z
dtei!(t+i~�)SAiAj

(t) = e��~!SAiAj
(!): (10.91)

To prove the last result, we had to move the integration contour from t to t+ i~�,
in other words in the imaginary time direction. Because of the convergence factor
e��H in the traces, expectations of any number of operators of the type eiHtAe�iHt

are analytic in the imaginary time direction for �i~� < t < i~�, hence it is
permissible to displace the integration contour as we did. Fourier transforming
the relation between �00AiAj

(t) and susceptibility Eq.(10.84), one then recovers the
�uctuation-dissipation theorem (G.13).
A few remarks before concluding.

Remark 71 Alternate derivation: Formally, the Fourier transform gives the same
result as what we found above if we use the exponential representation of the Taylor
series,

SAiAj (t� i~�) = e�i~�
@
@tSAiAj (t):

Remark 72 Relation to detailed balance: The Fourier-space version of the peri-
odicity condition (10.87) is a statement of detailed balance:

SAjAi
(�!) = e��~!SAiAj

(!) : (10.92)

Indeed, in one case the energy ~! is absorbed in the process, while in the other
case it has the opposite sign (is emitted). In Raman spectroscopy, when the photon
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comes out with less energy than it had, we have Stokes scattering. In the reverse
process, with a frequency transfer ! of opposite sign, it comes out with more energy.
This is called anti-Stokes scattering. The cross section for Stokes scattering say,
will be proportional to SAiAj (!) as we saw with our golden rule calculation. The
ratio of the anti-Stokes and the Stokes cross sections will be given by the Boltzmann
factor e��~!; which is a statement of detailed balance. This is one way of seeing
the basic physical reason for the existence of the �uctuation-dissipation theorem:
Even though the response apparently had two di¤erent orders for the operators,
the order of the operators in thermal equilibrium can be reversed using the cyclic
property of the trace, or equivalently the principle of detailed balance.

Remark 73 Physical explanation of �uctuation-dissipation theorem: Physically,
the �uctuation-dissipation theorem is a statement that the return to equilibrium is
governed by the same laws, whether the perturbation was created by an external
�eld or by a spontaneous �uctuation. This is the Onsager regression hypothesis
that we discussed in the context of the simple harmonic oscillator in the introduc-
tion.

10.9 Lehmann representation and spectral represen-
tation

De�nition 11 The function that contains the information on the physics, �00AiAj
(!0)

is called the spectral function.

The reason for this name is that, as we discussed in section (10.6), �00AiAj
(!0)

contains information on dissipation or, alternatively, on the spectrum of excita-
tions. Hence, in that kind of equations, the response is expressed in terms of the
spectrum of excitations. We will also have spectral representations for Green�s
functions.
In this section, I introduce the Lehmann representation. It is extremely useful

to prove exact properties of the spectral function and to obtain relations between
di¤erent kinds of correlation function. For example, here I will show again the
�uctuation-dissipation theorem. Later, the relation between retarded functions
and their expression in Matsubara frequencies will also be easy to see from the
Lehmann representation. That representation also allows us to see the connection
with the spectrum of excitations and develop physical intuition, since it express
�00AiAj

(!0) in terms of matrix elements and excitation energies.
I begin with the de�nition and use the Heisenberg equations of motion and

insert a complete set of energy eigenstates so that we �nd

�00AiAj
(t) =

1

2~
Tr [% (Ai (t)Aj (0)�Aj (0)Ai (t))] (10.93)

=
1

2~
X
n;m

e��En

Z

h
hnj eiEnt=~Aie�iEmt=~ jmi hmjAj jni

� hnjAj jmi hmj eiEmt=~Aie�iEnt=~ jni
i

(10.94)

Changing dummy summation indices m and n in the last term, we have

�00AiAj
(t) =

1

2~
X
n;m

e��En � e��Em
Z

hnjAi jmi hmjAj jni ei(En�Em)t=~ (10.95)
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so that the Fourier transform is

�00AiAj
(!) =

X
n;m

e��En � e��Em
Z

hnjAi jmi hmjAj jni � � (~! � (Em � En))(10.96)

�00AiAj
(!) =

X
n;m

e��En

Z
hnjAi jmi hmjAj jni � � (~! � (Em � En))

�
1� e��~!

�
: (10.97)

Substituting in the spectral representation Eq.(10.64), we �nd

�AiAj
(z) =

P
n;m

e��En�e��Em
Z

hnjAijmihmjAj jni
(Em�En)�~z (10.98)

From this, one trivially deduces, by letting z ! !+ i�, the so-called Lehmann
representation for the retarded response function. The poles are indeed simple
poles in the lower-half frequency plane, as we wanted to prove. They are just
below the real axis, a distance � along the imaginary direction. The position of
the poles carries information on the excitation energies of the system. The residue
at a given pole will depend on the value of �00AiAj

at the corresponding value of the
real coordinate of the pole. The residues tell us how strongly the external probe
and system connect the two states. The Lehmann representation reminds us of
low order perturbation theory in the external probe.
Note that doing the replacement ! ! �! is equivalent to exchanging the

indices m and n and Ai for Aj so that

�00AiAj
(!) = ��00AjAi

(�!) (10.99)

which we found above in Eq. (10.48) as a consequence of the commutator property.
You can do something similar for other properties.

Remark 74 The poles of the reponse function for the simple harmonic oscilla-
tor were near the resonance frequency !0: For the quantum version, !0 should
be obtained from the di¤erence in energy between two eigenstates, divided by ~.
The above result for the poles of the response functions are not surprising in this
context.

Remark 75 Bohr�s correspondence principle: Consider the diagonal case, Ai =
Aj :We have seen in Sec.(10.6) that �00AiAi

(!) is related to absorption. From the
explicit form for that quantity, Eq.(10.96), we see the the absorption will occur
at energies ~! that correspond to the di¤erence in energy between eigenstates,
Em � En, in accord with Bohr�s correspondence principle.

Remark 76 From the form Eq. (10.97) of the spectral representation, the �uctuation-
dissipation theorem Eq. (G.13) follows immediately.

To re�ne our physical understanding of �00AiAj
(!) let us go back to the original

form we found in the time domain, Eq.(10.94), before we changed dummy indices.
Taking Fourier transforms directly on this function, we �nd

�00AiAj
(!) =

X
n;m

e��En

Z
[hnjAi jmi hmjAj jni � � (~! � (Em � En))

� hnjAj jmi hmjAi jni � � (~! � (En � Em))] : (10.100)

If we take the zero temperature limit, � !1; we are left with Z = e��E0 where
E0 is the ground state energy and the above formula reduces to

lim
�!1

�00AiAj
(!) =

X
m

[h0jAi jmi hmjAj j0i � � (~! � (Em � E0))

� h0jAj jmi hmjAi j0i � � (~! � (E0 � Em))] :(10.101)
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Form = 0, �00AiAj
(!) vanishes. Then, only excited states contribute and Em�E0 >

0: For positive frequencies only the �rst term contributes and it contributes only
if ~! is equal to the energy of an excitation in the system, namely Em � E0;
and if the external probe through Aj ; and the measured operator Ai, have a non-
vanishing matrix element that connects the excited and ground state. Clearly then,
�00AiAj

(!) is related to absorption. The second term contributes only for negative
frequencies. External probes that are in cos (!t) =

�
ei!t + e�i!t

�
=2 couple to

both positive and negative frequencies. It is not surprising that both positive
and negative frequencies enter �00AiAj

(!): At �nite temperature, contributions to
positive frequencies can also come from the second term and contributions to
negative frequencies can also come from the �rst term.

Remark 77 Clearly, the spectral representation is valid, whether �00AiAj
(!) is real

or not, odd or not.

Remark 78 In an in�nite system, if �00AiAj
(!0) is a continuous function and then

the poles of �AiAj
(z) are below the real axis, but not ncessarily close to it if we

make an approximation for �00AiAj
(!0). The passage from a series of poles to a

continuous function is what introduces irreversibility in many-body systems, as
we have seen with the simple harmonic oscillator in Chapter (4). This is also
discussed in problem (6.0.4).

Remark 79 Since hnjA jmi hmjA jni is equal to jhmjA jnij2 for a Hermitian op-
erator A, it is clear that the spectral weight �00AiAj

(!) is positive when Ai = Aj.
This will be the case when we compute conductivity for example, but this is not the
case for thermopower, for example, where the measured quantity Ai is electrical
current and the perturbation is a temperature gradient that couples to the energy
density Aj.

10.10 Sum rules

All the many-body Physics of the response or scattering experiments is in the cal-
culation of unequal-time commutators. These commutators in general involve the
time evolution of the systems and thus they are non-trivial to evaluate. However,
equal-time commutators are easy to evaluate in general using the usual commu-
tation relations. Equal-time corresponds to integral over frequency as seen from
Fourier space. Hence the name sum rules. We will not in general be able to
satisfy all possible sum-rules since this would mean basically an exact solution
to the problem, or computing in�nite-order high-frequency expansion. In brief,
sum-rules are useful to

� Relate di¤erent experiments to each other.

� Establish high frequency limits of correlation functions.

� Provide constraints on phenomenological parameters or on approximate the-
ories.
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10.10.1 Thermodynamic sum-rules

In this section, I show that our formalism is consistent with well known facts
in elementary quantum statistical mechanics. Recall that in the grand canonical
ensemble, the average number of particles is given by,

hNi = Tr
h
e��(H��N)N

i
=Z: (10.102)

Since total particle number is conserved, N commutes with the Hamiltonian, and
we have the classical result

hNNi � hNi2 = 1

�

�
@N

@�

�
T;V

: (10.103)

The hNi2 comes from th derivative of Z with respect to �: In a way, this is a
relation between �uctuations on the left-hand side, and response on the right-
hand side. Let us see if this can be derived from the relation we found between
�uctuations and response, namely the �uctuation-dissipation theorem.
By de�nition,

hNNi � hNi2 = lim
q!0

Z 1

�1

d!

2�
Snn(q; !) (10.104)

Because nq for q = 0 is simply the total number of particles N and hence is
conserved, hnq=0 (t)nq=0i is time independent. In frequency space then, this
correlation function is a delta function in frequency. This can be con�rmed from
the Lehmann representation. For such a conserved quantity, we expect that the
long-wavelength response, namely at small q, all the weight will be near zero
frequency so for q su¢ ciently small, the �uctuation-dissipation theorem Eq.(G.13)
becomes

lim
q!0

Snn(q; !) = lim
q!0

2~
1� e��~! �

00
nn(q; !) = lim

q!0

2

�!
�00nn(q; !) (10.105)

from which we obtain

hNNi � hNi2 = lim
q!0

Z 1

�1

d!

2�
Snn(q; !) (10.106)

= lim
q!0

Z 1

�1

d!

�

�00nn(q; !)

�!
=
1

�

�
@N

@�

�
T;V

� 1

�
�nn: (10.107)

where �nn is a �susceptibility�. Another way to write this is

kBT�nn = Snn. (10.108)

In this form, the density �uctuations are related to the response (@N=@�)T;V (itself
related to the compressibility) and we have what is known as the thermodynamic
sum rule

lim
q!0

Z 1

�1

d!

�

�00nn(q;!)

!
=

�
@N

@�

�
T;V

= �nn; (10.109)

which in this case is known as the compressibility sum rule.
Thermodynamic sum rules can be seen from another point of view. Suppose we

compute the linear response to a time-independent perturbation. In addition to
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the previous example where we looked at the response of the the density to a chem-
ical potential shift, another example would be the response of the magnetization
to a time-independent magnetic �eld. This should be the magnetic susceptibility.
To remain general, I look at the response of operator Ai to the external �eld aj
coupled to Aj : However, I have to assume that Ai and Aj are conserved quantities
so that the above assumptions about the limit q! 0 apply.
Naturally, we have to leave the adiabatic switching-on, i.e. the in�nitesimal �.

Returning to the notation where q is explicitly written, we have

� hAi(q;! = 0)i = �RAiAj
(q;! = 0)aj(q; ! = 0) (10.110)

Recalling that the thermodynamic derivatives are in general for uniform (q = 0)
applied probes, the above formula becomes,

limq!0 �
R
AiAj

(q;! = 0) = @Ai

@aj
� �AiAj

. (10.111)

where �AiAj
is a thermodynamic susceptibility. But the spectral representation

(10.64) gives us

�RAiAj
(q;! = 0) =

Z 1

�1

d!

�

�00AiAj
(q;!)

! � i� : (10.112)

Assuming that Ai and Aj have the same signature under time reversal, the usual
Sokhatsky-Weirstrass relation Eq. (2.36) tells us that

�RAiAj
(q;! = 0) = P

Z 1

�1

d!

�

�00AiAj
(q;!)

!
+

Z 1

�1

d!

�
�00AiAj

(q;!)i�� (!) : (10.113)

so that �RAiAj
(q;! = 0) does not have an imaginary part because �00AiAj

(q;0)

vanishes since �00AiAj
(q;!) is odd and continuous at ! = 0. Physically, there is

no contribution from the imaginary part on the grounds that there can be no
zero-frequency dissipation in a stable system. But we know from our use of the

�uctuation-disssipation theorem above that limq!0

R1
�1

d!
�

�00AiAj
(q;!)

! converges.
So the principal part in the above equation is then super�uous as expected from
the fact that �00AiAj

(q;!) vanishes linearly in ! for small ! when it is odd. This can
be con�rmed from the Lehmann representation. The limit � ! 0 that is usually
taken after the integral is done can be taken before since there is no singularity.
We thus obtain the following general expression relating susceptibility �AiAj

to
�00AiAj

through a sum rule

�AiAj
= limq!0

R1
�1

d!
�

�00AiAj
(q;!)

! : (10.114)

�AiAj
= lim

q!0
lim
!!0

�RAiAj
(q;!) : (10.115)

For thermodynamic quantities, the ! ! 0 limit is always taken before the q! 0
limit. It will be the other way around for transport coe¢ cients.

Remark 80 To be completly general, one can keep the principal part. But if you
do, the � ! 0 limit must be taken before the q! 0 limit. The above is the general
form of thermodynamic sum rules.

Remark 81 Thermodynamic sum-rule and moments: Thermodynamic sum-rules
are in a sense the inverse �rst moment over frequency of �00AiAj

(q;!) (the latter
being analogous to the weight). Other sum-rules are over positive moments, as we
now demonstrate.

SUM RULES 111



Remark 82 Another way to see that we can neglect the � is that the perturbation
can be time independent for this kind of response, so we do not need to worry about
causality. There is no dissipation, so the response is completely time symmetric.
This is the famous quasistatic limit in thermodynamics.

10.10.2 The order of limits when ! or q tends to zero is important for �

It is extremely important to note that for thermodynamic sum rules, the ! ! 0
limit is taken �rst, before the q ! 0 limit as stated in one of the last remarks.
The other limit describes transport properties as we shall see. Take as an example
of a q = 0 quantity the total number of particles. Then

�00NN (t) =
1

2~
h[N (t) ; N ]i = 0 (10.116)

This quantity vanishes for all times because N being a conserved quantity it is
independent of time, and it commutes with itself. Taking Fourier transforms,
�00NN (!) vanishes for all frequencies. This implies that for conserved quantities

�RAiAj
(q = 0;!) = 0: (10.117)

Hence, we must take the q! 0 limit after the ! ! 0 limit to obtain thermody-
namic sum rules.
Another important question is that of the principal part integral. If we take

the q! 0 limit at the end, as suggested above, we do not run into problems. As
follows from a problem,14.0.1 where we have a di¤usion. In the long wave length
limit one �nds

�00nn(q;!) =
2Dq2!

!2 + (Dq2)
2�nn (10.118)

where D is the di¤usion constant. One can check explicitly, with that expression,
that at any �nite q, it does not matter whether we take or not the principal part
integral. We did not take it in Eq.(10.109). If we take the limit q! 0 before
doing the integral however, limq!0 �

00
nn(q;!) is proportionnal to �nn!� (!) so it

is important NOT to take the principal part integral to get the correct result.

Remark 83 Order of limits for the termodynamic sum rules: The last result
can be stated as follows. Under the integral sign the � ! 0 limit of the spectral
representation Eq. (10.113) must be taken before the q! 0 limit. We also see this
as follows. If we return to the original form lim�!0 1=(! � i�) = lim�!0 !=(!

2 +
�2) + i�=(!2 + �2); and then do the integral of the �rst term (real part), we can
check that we have to take the � ! 0 limit under the integral sign before the q! 0
limit to recover the result obtained by doing the integral at �nite q and then taking
the q! 0 limit (the latter is unambiguous and does not depend on the presence
of the principal part in the integral). Physically, this means that the adiabatic
turning-on time must be longer than the di¤usion time to allow the conserved
quantity to relax. This is summarized by the following set of equations

lim
q!0
P
Z 1

�1

d!

�

�00nn(q;!)

!
= lim

q!0

Z 1

�1

d!

�

�00nn(q;!)

!
(10.119)

6= P
Z 1

�1

d!

�
lim
q!0

�00nn(q;!)

!
(10.120)
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Remark 84 Extracting the di¤usion constant from a limit: The phenomenological
hydrodynamic limit Eq.(10.118) shows that the di¤usion constant can be obtained
from

2D�nn = lim
!!0

lim
q!0

!

q2
�00nn(q;!):

The order of limits is crucial. This has been extensively discussed by Kadano¤
and Martin.[111] For quantities related to transport, it is limq!0 that comes �rst,
contrary to the thermodynamic sum-rule case.

Remark 85 The fact that the q! 0 and ! ! 0 limits cannot be inverted is
intimaterlyt related to the in �nite size limit that we are considering. Dissipation
in the ! ! 0 limit is an emergent phenomenon that can be observed in the in�nite
size limit, namely when q! 0 �rst.

10.10.3 Moments, sum rules, and their relation to high-frequency expansions.

The n0th moment of a probability distribution is de�ned as the average of the
random variable to the power n. By analogy, we de�ne the n0th moment of the
spectral function by

R1
�1

d!
� !

n�00AiAj
(!): For operators with the same signature

under time reversal, even moments vanish while odd moments of �00AiAj
are related

to equal-time commutators that are easy to compute, at least formally:Z 1

�1

d!

�
!n�00AiAj

(!) =

�Z 1

�1

d!

2�

�
i
@

@t

�n
e�i!t2�00AiAj

(!)

�
t=0

(10.121)

=
1

~

���
i
@

@t

�n
Ai(t); Aj(0)

��
t=0

=
1

~

����
Ai(t);

H

~

�
;
H

~

�
:::; Aj(0)

��
t=0

:

(10.122)
This may all easily be computed through n equal-time commutations with the
Hamiltonian.
These moments determine the high frequency behavior of response functions.

One does expect that high frequencies are related to short times, and if time is
short enough it is natural that commutators be involved. Let us see this. Sup-
pose the spectrum of excitations is bounded, as usually happens when the input
momentum q is �nite. Then, �00AiAj

(!0) = 0 for !0 > � where � is some large
frequency. Then, for ! > �, we can expand the denominator since the condition
!0=! � 1 will always be satis�ed within the integration range. This gives us a
high-frequency expansion,

�RAiAj
(q;!) =

R1
�1

d!0

�

�00AiAj
(q;!0)

!0�!�i� (10.123)

�
P1
n=1

�1
!2n

R1
�1

d!0

� (!0)
2n�1

�00AiAj
(q;!0) (10.124)

where we have assumed that we are in a situation where �00AiAj
is odd, which

implies that only odd moments of �00AiAj
do not vanish. Clearly, in the ! ! 1

limit, the susceptibilities in general scale as 1=!2, a property we will use later in
the context of analytic continuations.

Remark 86 Classical limit: Note that there are as many 1=~ as there are com-
mutators in the expression for the moments Eq. (10.122).This means that there is
a classical limit since commutators divided by ~ turn into Poisson brackets in the
classical limit.
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10.10.4 The f-sum rule as an example

The f -sum rule is one of the most widely used moment of a correlation function,
particularly in the context of optical conductivity experiments. It is quite remark-
able that this sum rule does not depend on interactions, so it should be valid
independently of many details of the system. If we return to our high-frequency
expansion in terms of moments, Eq.(10.124), we will �nd that

�Rnn(q;!) �
�1
!2

Z 1

�1

d!0

�
!0�00nn(q;!

0) + : : : = � nq
2

m!2
+ : : : : (10.125)

This is equivalent to saying that at very high frequency the system reacts as if
it was composed of free particles. It is the inertia that determines the response,
like for a harmonic oscilator well above the resonance frequency.You can return
to Eq.(3.3) for the simple oscillator to verify this result from our introductory
example.
Let us derive that sum rule, which is basically a consequence of particle con-

servation. When the potential-energy part of the Hamiltonian commutes with the
density operator, while the kinetic-energy part is that of free electrons (not true
for tight-binding electrons) we �nd thatR1

�1
d!
� !�

00
nn(q; !) =

nq2

m : (10.126)

This is the f sum-rule. It is valid for an arbitrary value of the wave vector q: It is a
direct consequence of the commutation-relation between momentum and position,
and has been �rst discussed in the context of electronic transitions in atoms.
Just a bit of notation before I begin the proof. Using translational invariance

one can write,Z
d (r� r0) e�iq�(r�r

0)f(r� r0) = 1

V

Z
dre�iq�r

Z
dr0e�iq�r

0
f(r� r0) (10.127)

where V is the integration volume. This follows by changing coordinates to center
of mass and relative coordinates in the integration. The integral over center of
mass gives the factor of volume.
The proof of the f�sum rule is as follows. From the above results for momentsZ 1

�1

d!

�
!�00nn(q; !) =

i

~V

��
@nq(t)

@t
; n�q(t)

��
(10.128)

= � 1

~2V h[[H;nq(t)] ; n�q(t)]i : (10.129)

The interaction term commutes with the density, so only the kinetic-energy part of
H contributes. The computation of the equal-time commutator is self-explanatory.

nq =

Z
dre�iq�r

X
�

�(r� r�) =
X
�

e�iq�r� (10.130)

�
px� ; nq

�
=
~
i

"
@

@x�
;
X
�

e�iq�r�

#
= �~qxe�iq�r� : (10.131)

where px� is the momentum in the direction x of particle � and r�; r� are position
operators. Since [p � p; n] = p [p; n] + [p; n]p we have

[H;nq(t)] =
X
�

"
p2�
2m

;nq

#
=

1

2m

X
�

�
p� �

�
�~qe�iq�r�

�
+
�
�~qe�iq�r�

�
� p�

�
(10.132)
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[[H;nq(t)] ; n�q(t)] = �
1

m

NX
�=1

~2q2e�iq�r�eiq�r� = �~
2q2N

m
(10.133)

which proves the result (G.12) when substituted in the expression in terms of
commutator (10.129) with n � N=V. The result of the commutators is a number
not an operator, so the thermodynamic average is trivial in this case! (Things will
be di¤erent with tight-binding models.)

Remark 87 High order moments: For higher-order moments, there are generally
averages of operators to evaluate.
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11. KUBO FORMULAE FOR THE
CONDUCTIVITY

A very useful formula in practice is Kubo�s formula for the conductivity. The
general formula applies to frequency and momentum dependent probes so that it
is of more general applicability than only DC conductivity. In fact there are many
versions of that formula, that also have analogs for other transport properties.
These formula are used in practice to make predictions about light scattering
experiments as well as microwave measurements. At the end of this section we
will see that conductivity is simply related to dielectric constant by macroscopic
electrodynamics. This explains the wide applicability of the Kubo formula. We
will see that the f�sum rule can be used to obtain a corresponding sum rule
on the conductivity that is widely used in practice, for example in infrared light
scattering experiments on solids. On a more formal basis, the general properties
of the Kubo formula will allow us, following Kohn, to better de�ne what is meant
by a superconductor, an insulator and a metal.
After a general discussion of the coupling of light to matter, I discuss in turn

longitudinal and transverse response, exposing the consequences of gauge invari-
ance. Follows a brief application to the de�nition of superconductors, metals and
insulators, where I make the connection between conductivity and dielectric con-
stant. I �nish with a most interesting application of sum rules that allows us to
extract the penetration depth of a superconductor from an optical conductivity
measurement.

Remark 88 We adopt the Système International (SI) units for electromagnetic
�elds.

11.1 Coupling between electromagnetic �elds and
matter, and gauge invariance

Electric �eld and the magnetic induction are related to vector and scalar potentials
by, respectively,

E = �@A
@t
�r� (11.1)

B =r�A: (11.2)

The gauge transformation
A! A+r� (11.3)

�! �� @�

@t
(11.4)

leaves the electric and magnetic �elds invariant. This representation by vector and
scalar potentials ensures that the magnetic induction is divergence free, r�B = 0,
and that Faraday�s law is obeyed, r � E = �@B=@t: We say that the theory is
gauge invariant. In other words, there are many equivalent ways of representing
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the same physics. As emphasized by Wen,[253] this is not a symmetry in the usual
sense, it is just a statement about equivalent descriptions.
I will give a more detailed derivation in the next subsection, but you only

need to know the so-called minimal-coupling prescription to couple matter and
electromagnetic �eld,[24] one of the most elegant results in physics

p� =
~
i
r� !

~
i
r� � eA(r�; t): (11.5)

i~
@

@t
! i~

@

@t
� e�(r�; t):: (11.6)

In this expression e is the charge of the particle, not the elementary charge. The
derivatives to the right are called covariant.

Remark 89 Note that the quantity that has canonical commutation relations with
the position operator in all gauges is the conjugate moment operator p� = ~

ir�:
Note also that while the following equation

�
r� ;

~
ir� + f(r)

�
= i~��;� ; where f

is an arbitrary function, could suggest some ambiguity in the de�nition of the
conjugate moment operator, the simple requirement that it should be translationally
invariant implies that f(r) vanishes:

Given this, Schrödinger�s equation in the presence of an electromagnetic �eld
should read�

i~
@

@t
� e�(r�; t)

�
 =

1

2m

�
~
i
r� � eA(r�; t)

�2
 + V  (11.7)

where V is some potential energy. Suppose we write the equation in a di¤erent
gauge�
i~
@

@t
� e�(r�; t) + e

@�(r�; t)

@t

�
 0 =

1

2m

�
~
i
r� � eA(r�; t)� er�(r�; t)

�2
 0+V  0:

The solution  0 is di¤erent since it is not the same equation. There should be
such a  0 since gauge invariance implies that all physical observables should be
independent of the gauge, the eigenenergies in particular. Assume that  and  0

correspond to an eigenstate with the same value of the eigenenergy. Then, the
solution  0 that we �nd is related to  with the same eigenvalue in the following
way

 0(r�; t) = eie�(r�;t)=~ (r�; t) : (11.8)

That is easy to check since if we substitute in the equation for  0; then we recover
the previous equation for  : This result applies to all eigenstates, hence it is
completely general.
Observables should be gauge invariant. That is clearly the case for the poten-

tial, Z
d3r �V  =

Z
d3r 0�V  0 (11.9)

since the phases cancel. The conjugate momentum operator however is not gauge
invariant Z

d3r �
~
i
r 6=

Z
d3r 0�

~
i
r 0 (11.10)

since r� 6= 0: On the other hand, the following quantity
�~
ir� eA(r�; t)

�
is

gauge invariant sinceZ
d3r �

�
~
i
r� eA(r�; t)

�
 =

Z
d3r 0�

�
~
i
r� eA(r�; t)� er�

�
 0:

(11.11)
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That quantity is the expectation of the mass times the velocity and is thus an
observable. This expression is necessary to establish the correct expression for the
current.

Remark 90 Conjugate moment and current are clearly di¤erent operators. Cur-
rent is observable. More on this to come.

11.1.1 *Invariant action, Lagrangian and coupling of matter and electromagnetic
�eld

[215]
This section is not necessary to understand any other section. It is just useful

to recall the fundamental ideas about coupling electromagnetic �elds and matter.
Take a single particle of charge e in classical mechanics. The action that

couples that particle, or piece of charged matter, to the electromagnetic �eld
should be invariant under a Lorentz transformation and a gauge transformation.
The simplest candidate that satis�es this requirement is

Se�m = e

Z
A�dr

� (11.12)

where we used the summation convention as usual and the four-vectors with r�

the contravariant four-vector for position

A� = (��=c;Aa) ; r� =
�

ct
ra

�
(11.13)

and the following �at-space metric tensor

��� = ��� =

2664
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 : (11.14)

The action is clearly Lorentz invariant. It is also gauge invariant since, with

@� =

�
1

c@t
;r
�
;

the gauge transformation

Se�m ! e

Z
(A� + @��) dr

� (11.15)

only adds a total time derivative to the Lagrangian

e

Z
(@��) dr

� = e

Z
(@��)

dr�

dt
dt = e

Z
d�

dt
dt (11.16)

and in the variational principle the Lagrangian does not vary at the limits of time
integration.

Remark 91 In the action, the coordinates of the particle are parametrized by
time, in other words, r (t) is what is integrated in the action.
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Speaking of the Lagrangian for light-matter interaction, it can be deduced from

Se�m = e

Z
A�

dr�

dt
dt =

Z �
�e�+ eA�dr

dt

�
dt =

Z
Le�mdt (11.17)

The coupling of light to matter appears at two places in the equations of motion
obtained from the Euler-Lagrange equations. It appears in the Euler-Lagrange
equations for matter that involve particle coordinates, and in the Euler-Lagrange
equations for the electromagnetic �eld that involve electromagnetic potentials
playing the role of coordinates. The former give Newton�s equations with the
Lorentz force and the latter Maxwell�s equations.
The part of the Lagrangian that involve particle coordinates, neglecting po-

tential energy terms that do not play any role in this derivation, is given by
L = mv2=2 + Le�m; namely

L = 1
2mv

2 � e
�
��A�drdt

�
(11.18)

L = 1
2mv

2 � e (��A � v) (11.19)

It can be veri�ed that the Euler-Lagrange equations with position as the dynamical
variable give Newton�s equation with the Lorentz force

m
dv

dt
= eE+ v �B: (11.20)

The conjugate moment is

pa =
�
@L
@va

�
r;A

= mva + eAa ! ~
i
@
@ra
.

(11.21)

It is the conjugate moment p that obeys commutation relations with position
in quantum mechanics, in other words it is p� that becomes ~

ir: I do not add
any function of position on that gradient, even though it would give the same
commutation relation for two reasons. That function of position is arbitrary, so
I can choose it to vanish, but more importantly, as an operator I want p� to be
translationally invariant.
To �nd the Hamiltonian, recall also that, with Einstein�s summation conven-

tion,

H = pava � L = (mva + eAa) va �
1

2
mvava + e (��Aava)

=
1

2
mvava + e� =

1

2m
(pa � eAa)2 + e�: (11.22)

In the last equation we used the relation between velocity and momentum Eq.(11.21).
The action of the electromagnetic �eld by itself is written in terms of the

Faraday tensor. What is important for our discussion is that the current that
appears in Maxwell�s equation for r�B is generated by the following term

ja = eva=
�
@Le�m
@Aa

�
r;v
= e

m (pa � eAa) (11.23)

where in the last equation we have used the equation that relates the conjugate
moment to the velocity and vector potential Eq.(11.21). Physically this makes a
lot of sense. The current is simply charge times velocity.
In condensed matter physics, we do not generally write down the part of the

Hamiltonian that involves only the pure electromagnetic �eld. But we are inter-
ested in coupling matter to the electromagnetic �eld and we would like to have the
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expression for the current that follows from the Hamiltonian where the minimal-
coupling prescription has been used. It is indeed possible to satisfy this wish and
to obtain the current from the Hamiltonian. It proceeds as follows. Taking for
L the full Lagrangian, except for the part that contains only the electromagnetic
�eld, we obtain �

@L

@Aa

�
r;v

=

�
@ (pbvb �H)

@Aa

�
r;v

(11.24)

where p (r;v;A) is written in terms of r;v and A using the equation for the
conjugate moment Eq.(11.23). With the chain rule, we thus �nd (components of
p that are not di¤erentiated are also kept constant)�

@ (pbvb �H)
@Aa

�
r;v

=

�
@pb
@Aa

�
r;v

vb �
�
@H

@pb

�
r;A

�
@pb
@Aa

�
r;v

�
�
@H

@Aa

�
p;r

:

(11.25)

Since Hamilton�s equations give
�
@H
@pb

�
r;A

= vb; we are left with

ja = eva=
�
@L
@Aa

�
r;v
= �

�
@H
@Aa

�
p;r
.

(11.26)

This result comes out because, as usual in a Legendre transform, the �rst derivative
with respect to the conjugate variable p vanishes. The above expression for the
current in terms of a derivative of the Hamiltonian is often used in practice. In
this expression, H does not contain the part that involves only electromagnetic
potentials.

Remark 92 In the four-vector notation of the present section, the prescription
for minimal coupling, is

@� ! @� � ieA�/~. (11.27)

Remark 93 Eq. (11.26) is a special case of a very general property of Legendre
transforms. For

Remark 94 In thermodynamics pressure is obtained from a derivative of the en-
ergy with respect to volume p = � (@E=@V )S if it is the entropy that is kept
constant since dE = TdS � pdV . But if it is the temperature p = � (@F=@V )T
that is kept constant, one performs a Legendre transform between S and T and
it is the Helmholtz free energy that must be di¤erentiated with respect to volume
to obtain pressure since dF = �SdT � pdV . If you recall this result, it may help
understand why Eq.(11.26) makes sense.

11.1.2 *Lagrangian for the electromagnetic �eld

With our convention for ��� , we have

@� =

�
� 1

c@t
;r
�
; (11.28)

which allows to write the Faraday tensor as

F�� = @�A� � @�A�: (11.29)
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This means, for example that F 01 = @0A1 � @1A0 = E1=c, F 31 = @3A1 � @1A3 =
B2: The electromagnetic Lagrangian density then reads

Le = �
1

4�0
F��F�� =

"0
2
E �E� 1

2�o
B �B ="0

2
E �E��0

2
H�H, (11.30)

with B the magnetic induction, H the magnetic intensity, "0 = 8:85 � 10�12
farad/meter is the permittivity of vacuum and �0 = 4� � 10�7 henry/meter its
permeability. I have used the usual result, "0�0 = 1=c

2:
If we include all pieces of the Lagrangian that contain the electromagnetic

scalar and vector poentials, including the one for the interaction with matter
Eq.(11.17), we have

L = � 1

4�0
F��F�� + eA�

dr�

dt
; (11.31)

which give Maxwell�s equations Eqs.(13) in S.I. units when A� is taken as a dy-
namical variable. The Lorentz force is obtained when we also add the Lagrangian
for matter alone.

Remark 95 In the 2019 version of S.I. units1 , the electric charge and the speed
of light are de�ned. If one can measure one of "0 or �0, the other is known since
"0c

2 = 4�=�0 � 107:

11.2 Response of the current to external vector and
scalar potentials

We need to �nd the terms �H(t) = �H(t)� + �H(t)A added to the Hamiltonian
by the presence of the electromagnetic �eld. Let us begin by the term �H(t)A
coming from the vector potential. Under the minimal coupling prescription, we
�nd (recall that the gradient will also act on the wave function that will multiply
the operator)

� ~2

2m
r2� ! �

~2

2m
r2� �

e~
2mi

(A(r�; t) � r� +r� �A(r�; t)) +
e2

2m
A2(r�; t):

(11.32)
This means that to linear order in the vector potential, the change in the Hamil-
tonian is

�H(t)A = �
X
�

e~
2mi

(A(r�; t) � r� +r� �A(r�; t)) = �
Z
drA(r;t) � j(r):

(11.33)
where, continuing with our �rst-quantization point of view, we de�ned the para-
magnetic current for particles of charge e

j(r) =
e

2m

X
�

(�(r� r�)p� + p��(r� r�)) : (11.34)

It is important to note that A(r;t) here plays the role of the external vector po-
tential. It is just a number that commutes with all operators. It is only A (r�; t)
that does not commute with momentum p� because of the argument of the vec-
tor potential. Given the fact that [r� ;p�] = i~��;� there is an ambiguity in

1https ://physicstoday.scitation.org/do/10.1063/PT.6.2.20181116a/full/
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the position of the � function with respect to the momentum operator: We can
have p��(r� r�) or �(r� r�)p�. We see that the symmetrized form comes out
naturally from the coupling to the electromagnetic �eld. We have allowed the
semi-classical external �eld to depend on time.
The paramagnetic current that we found above is the same as that which

is found from Schrödinger�s equation in the absence of electromagnetic �eld by
requiring that probability density  � be conserved. Unless the system is neutral,
it is not observable since it is not gauge invariant. There are two ways to �nd the
observable current. I start with the minimal coupling prescription, Eq.(11.5) and
the considerations of Sec.11.1 on gauge invariance of observables. The observable
current operator jA(r) is obtained from applying the minimal coupling prescription
to the paramagnetic current operator Eq.(11.34)

jA(r) = j(r)�e
2

m

X
�

A(r�)�(r� r�) = j(r)�
e

m
A(r)�(r) (11.35)

where I have de�ned the charge density as before

�(r) =en(r) =e
X
�

� (r� r�) : (11.36)

The last term in the equation for the current is called the diamagnetic current.
This is the second time we applied the minimal coupling prediction.

Remark 96 Other approach: The current jA(r) can also be obtained from �
�
@H
@Aa

�
p;A
,

as explained in the previous section. The last term in the expression for the current
Eq. (11.35) comes from the term of order A2 in the Hamiltonian.

Remark 97 Our de�nition of the current-density operator Eq.(11.34) automati-
cally takes care of the relative position of the vector potential and of the gradients
in the above equation.

It is easier to add an ordinary scalar potential. From Schrödinger�s equation in
the presence of an electromagnetic �eld Eq.(11.7), the presence of a scalar potential
introduces a term

�H(t)� =
Z
dr�(r;t)�(r) (11.37)

in the Hamiltonian.
Using the explicit expression for the current Eq.(11.35) and our linear-response

formulae in Chapter 9, we �nally come to the general expression for the response
of the current in direction a to the vector potential,

�


jAa (q;!)

�
=
h
�Rjajb(q; !)�

ne2

m �ab

i
Ab(q; !)� �Rja�(q; !)�(q;!): (11.38)

There is a sum over the repeated spatial indices b as usual. The term proportional
to �ne2m �ab in this expression, called the diamagnetic term,?? comes from the
last term in the expression for the gauge invariant current Eq.(11.35). Since the
density operator there is already multiplied by the vector potential, its average can
be taken for the equilibrium ensemble where the average density is independent
of position.
The above expression is not gauge invariant in an obvious way. The response

is not given in terms of gauge invariant �elds. We will show below, using current
conservation, that there is indeed gauge invariance. We begin with the case of the
transverse response, which is easier.

Remark 98 Important, what are the perturbations: The vector and scalar poten-
tial above are the ones induced by external charges. There is also in general a
self-consistent response that I will discuss later.
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11.3 Kubo formula for the transverse conductivity

The above relation between current and electromagnetic potential still does not
give us the conductivity. The conductivity relates current to electric �eld, not to
potential. Roughly, for the conductivity � we have j = �E: We thus need to go
back to the �elds. In addition, the �rst thing to realize is that the conductivity
is a tensor since it relates current in one direction to �eld applied in any other
direction. Moreover, the electromagnetic �elds can be transverse or longitudinal,
i.e. perpendicular or transverse to the direction of propagation. More generally,
the divergence of the transverse part vanishes and the curl of the longitudinal part
vanishes. But I will stick with the simpler case of translationally invariant system
where wave vectors su¢ ce. Let us begin by discussing this point.
When we study the response to applied �elds whose direction is perpendicular

to the direction of the wave vector q, we say that we are studying the transverse (or
selenoidal) response. In this case, q �E(q; !)=0: The scalar potential contributes
only to the longitudinal component of the �eld (along with the longitudinal con-
tribution from the vector potential) since the gradient is always along q. We
can thus disregard for the moment the contribution from the scalar potential and
leave it for our study of the longitudinal response, where we will study in detail the
question of gauge invariance. The magnetic induction is always transverse since
r � B =r �r�A =0. Let us decompose the vector potential into a transverse
and a longitudinal part. This is easily done by using the unit vector bq = q= jqj

AL � bqbq �A �bq (bq �A) (11.39)

AT �
� !
I �bqbq� �A: (11.40)

In the last expression bqbq is a so-called �dyadic product� representation of the
matrix (bqbq)ab = bqabqb. The �rst bq acts on the left and the second one to the right.
In the last equation,

 !
I is the vector notation for �ab. We introduced the following

notation for the multiplication of tensors with vectors,

( !� �A)a =
X
b

�abAb: (11.41)

The transverse and longitudinal parts of the conductivity tensor for a homogeneous
isotropic system are obtained as follows,

 !
�T (q; !) =

� !
I �bqbq� �  !� (q; !) � � !I �bqbq� (11.42)

 !
�L(q; !) = bqbq �  !� (q; !) � bqbq (11.43)

Remark 99 In a homogeneous system in the absence of a magnetic �eld, the

above gives us all the components of the conductivity,  !� (q; !) =
 !
�T (q; !) +

 !
�L(q; !) because the o¤-diagonal components vanish, namely bqbq� !� (q; !)�� !I �bqbq� =
0:There are exceptions however. Topological materials, such as topological insula-
tors and Weyl semimetals have a so-called anomalous Hall e¤ect, in other words

a non-vanishing bqbq �  !� (q; !) � � !I �bqbq� that occurs in the absence of an applied
magnetic �eld. This will be discussed later. In both of these cases, we are dealing
with materials that have at least two bands.

To simplify the notation, we take the current and applied electric �eld in the
y direction, and the spatial dependence in the x direction. This is what happens
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Figure 11-1 Application of a transverse electric �eld: skin e¤ect.

usually in a wire made of homogeneous and isotropic material in the presence of
the skin e¤ect. This is illustrated in Fig.(11-1).
Then the transverse conductivity de�ned by

�


jAy (qx;!)

�
� �yy(qx; !)Ey(qx; !) (11.44)

for such a homogeneous system follows from the relation between current and
vector potential Eq.(11.38) and from the relation between electric �eld and vector
potential E = �@A=@t:

Ey(qx; !) = i(! + i�)Ay(qx; !) (11.45)

which gives for the transverse conductivity

�yy(qx; !) =
1

i(!+i�)

h
�Rjyjy (qx; !)�

ne2

m

i
(11.46)

Remark 100 The �rst term in the above equation is usually called the paramag-
netic current, and the last term the diamagnetic current.

Remark 101 A trick for Fourier transforms: The results that involve Fourier
transforms are easier to derive if we think of a single Fourier component, such
that Ay (r; t) = eiq�r�i(!+i�)t Ay (q; !) :

Remark 102 Causality and time Fourier transforms: We used the trick explained
in the context of Kramers-Kronig relations which amounts to using !+ i� because
the �eld is adiabatically switched on.

Remark 103 De�nitions of transverse conductivity: In the presence of a mag-
netic �eld, o¤-diagonal pieces of the conductivity tensor do not vanish, in other
words, �xy(0; !) for example, can be di¤erent from zero. One often calls this the
transverse conductivity. This is most often called the Hall conductivity. The de-
�nition of transverse and longitudinal above is related to the relative direction of
the current and its spatial dependence.
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11.4 Kubo formula for the longitudinal conductivity
and f-sum rule

When q is in the direction of the electric �eld, we say that we are considering the
longitudinal (or potential) response. Using the consequences of charge conserva-
tion on the response functions �00; it is possible to rewrite the expression which
involves both scalar and vector potential Eq.(11.38) in a way that makes the re-
sponse look explicitly invariant under gauge transformations. This is the plan for
this section.

11.4.1 A gauge invariant expression for the longitudinal conductivity that follows
from current conservation

As usual current conservation and gauge invariance are intimately related. We
know, roughly, that the scalar potential couples to density while the vector po-
tential couples to current. Since gauge invariance implies that the same (longitu-
dinal) electric �eld can represented by either a scalar or a vector potential, it is
clear that there is a consequence for the relation between charge and current. This
consequence is current conservation. In more technical terms, Noether�s theorem
states that to each continuous transformation that leaves the action invariant,
corresponds a conserved quantity. Using this theorem, gauge invariance leads to
current conservation, namely

@�(r; t)

@t
= �r � j(r; t) (11.47)

@�(q; t)

@t
= �iq � j(q; t): (11.48)

We can use current conservation to replace the charge-density operator in the
term describing the response of the scalar potential by a current density, which
will make the response Eq.(11.38) look more gauge invariant. Take q in the x
direction to be speci�c. Some gymnastics on the time-dependent susceptibility in
terms of commutator and Heaviside function gives,

@�Rjx�(qx; t)

@t
= �(t)

i

~V h[jx(qx;0); �(�qx; 0)]i+�(t)
i

~V (�iqx) h[jx(qx;0); jx(�qx;�t)]i :
(11.49)

In the last term above, I have transferred the time dependence on the charge-
density operator using time-translation invariance, and then used @�(�qx;�t)

@t =
�iqxjx(�qx;�t): Many minus signs are involved. The equal-time commutator is
calculated from the f sum rule. First use the de�nition of �00jx�(qx;!)

i

~V h[jx(qx;0); �(�qx; 0)]i = i

Z
d!

�
�00jx�(qx;!) (11.50)

then current conservation

= i

Z
d!

�

!

qx
�00��(qx;!) (11.51)

and �nally the f sum rule Eq.(G.12) to rewrite the last expression as

= iqx
ne2

m
(11.52)
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Substituting back in the expression for the time derivative of the current-charge
susceptibility Eq.(11.49) and Fourier transforming in frequency, we have

�i(! + i�)�Rjx�(qx; !) = iqx
ne2

m � iqx�
R
jxjx

(qx; !): (11.53)

Using this in the general formula for the response of the current Eq.(11.38) the
longitudinal linear response function can be written in terms of the gauge invariant
electric �eld in two di¤erent ways:

�


jAx (qx;!)

�
=

1

i(! + i�)

�
�Rjxjx(qx; !)�

ne2

m

�
(i(! + i�)Ax(qx; !)� iqx�(qx;!))

(11.54)

=

�
1

iqx
�Rjx�(qx; !)

�
(i(! + i�)Ax(qx; !)� iqx�(qx;!)) : (11.55)

Hence, replacing the gauge-invariant combination of potentials by the �eld,

Ex(qx; !) = i(! + i�)Ax(qx; !)� iqx�(qx;!) (11.56)

we �nd the following Kubo formulae for the longitudinal conductivity �


jAx (qx;!

�
�

�xx(qx; !)Ex(qx; !)

�xx(qx; !) =
1

i(!+i�)

h
�Rjxjx(qx; !)�

ne2

m

i
=
h
1
iqx
�Rjx�(qx; !)

i
: (11.57)

Using gauge invariance and the f�sum rule, the above result for the longitudinal
response will soon be rewritten in an even more convenient manner in Eq. (11.74).

11.4.2 Further consequences of gauge invariance and relation to f sum-rule.

The electric and magnetic �elds, as well as all observable quantities are invariant
under gauge transformations,

A! A+r� (11.58)

�! �� @�

@t
(11.59)

Let � = 0. Then

�


jAx (qx;!)

�
=

�
�Rjxjx(qx; !)�

ne2

m

�
Ax(qx; !) (11.60)

Doing a gauge transformation with �(x; 0) independent of time (! = 0) does
not induce a new scalar potential (� = 0). The response to this pure gauge
�eld through the vector potential r� should be zero since it corresponds to
zero electric �eld. This will be the case ifh

�Rjxjx(qx; 0)�
ne2

m

i
= 0 : (11.61)

This can be proven explicitly by using the spectral representation and �00jxjx(qx; 0) =
0,

�Rjxjx(qx; 0) =

Z
d!0

�

�00jxjx(qx; !
0)

!0
(11.62)
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as well as the conservation of charge,

=

Z
d!0

�

�00jxjx(qx; !
0)

!0
=

Z
d!0

�

!0�00��(qx; !
0)

q2x
(11.63)

and the f -sum rule (G.12)

=
1

q2x

Z
d!0

�
!0�00��(qx; !

0) =
ne2

m
= �Rjxjx(qx; 0): (11.64)

The form R
d!0

�

�00jxjx (qx;!
0)

!0 = ne2

m (11.65)

of the above result, obtained by combining Eqs.(11.61) and (11.62) will be
used quite often below.

Remark 104 Order of limits: An important consequence of the above result Eq.
(11.61) is that to obtain the longitudinal DC conductivity (i.e. ! = 0) the qx = 0
limit must be taken �rst. We obtain zero if we take the ! = 0 limit �rst. Taking
the ! = 0 limit �rst corresponds to looking at a thermodynamic quantity. We will
do that for the transverse response of a superconductor to a magnetic �eld.

Another possibility is to let A =0. Then, the general Kubo formula (11.38)
gives

� hjx (q;!)i = ��Rjx�(q; !)�(q;!): (11.66)

If we let �(0; t) be independent of x, (q =0) then the vector potential remains
zero (A =0). Again, the response to this pure gauge �eld through the scalar
potential �@�=@t must be zero, hence

�Rjx�(0; !) = 0 : (11.67)

That this is true, again follows from current conservation since

�Rjx�(0; !) =

Z
d!0

�

�00jx�(0; !
0)

!0 � ! � i� (11.68)

and

�00jx�(0; !
0) =

Z
dtei!

0t 1

2~V

��Z
drj�(r;t);

Z
dr0�(r0)

��
= 0 (11.69)

where the last equality follows from the fact that the total charge
R
dr0�(r0) =

eN is a conserved quantity. In other words it commutes with the density
matrix, which allows, using the cyclic property of the trace, to show that the
commutator of eN with any operator that conserves the number of particles,
vanishes.

Remark 105 Both results Eq.(11.61) and Eq.(11.67) are consistent with the gen-
eral relation found between both types of correlation functions Eq.(11.53). It suf-
�ces to take the q ! 0 limit assuming that �Rjxjx(qx; !) is �nite or diverges less
slowly than 1=qx to prove Eq.(11.67) and to take ! ! 0 assuming that �Rj��(qx; !)
is �nite or diverges less slowly than 1=! to prove Eq.(11.61).
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11.4.3 Longitudinal conductivity sum-rule and a useful expression for the longitudinal
conductivity.

The expression for the longitudinal conductivity

�xx(qx; !) =
1

i(! + i�)

�
�Rjxjx(qx; !)�

ne2

m

�
(11.70)

can be written in an even more convenient manner by using our previous results
Eq.(11.65) obtained from the f�sum rule and the spectral representation for the
current-current correlation function

�xx(qx; !) =
1

i(! + i�)

"Z
d!0

�

�
00

jxjx
(qx; !

0)

!0 � ! � i� �
Z
d!0

�

�
00

jxjx
(qx; !

0)

!0

#
(11.71)

=
1

i(! + i�)

"Z
d!0

�

�
00

jxjx
(qx; !

0)(! + i�)

!0 (!0 � ! � i�)

#
(11.72)

�xx(qx; !) =
1
i

�R
d!0

�

�
00
jxjx

(qx;!
0)

!0(!0�!�i�)

�
(11.73)

From this formula, we easily obtain with the usual identity for principal parts,
Eq.(??)

Re�xx(qx; !) =
�
00
jxjx

(qx;!)

! (11.74)

from which we obtain the conductivity sum rule valid for arbitrary qx

R1
�1

d!
2� Re [�xx(qx; !)] =

R1
�1

d!
2�

�
00
jxjx

(qx;!)

! = ne2

2m =
"0!

2
p

2 (11.75)

directly from the f�sum rule Eq.(11.65). In the above expression, "0 is the per-
mittivity of the vacuum and !2p is the plasma frequency, which we will discuss
later. Using the fact that the real part of the conductivity is an even function
of !; as follows from the fact that �

00

jxjx
(qx; !) is odd, the above formula is often

written in the form of an integral from 0 to 1: The case qx = 0 needs a separate
discussion, presented in the following section.

Remark 106 Common expression for the f-sum rule applied to the optical con-
ductivity: This last expression for the optical conductivity sum rule is often written
in the form Z 1

0

d!Re [�xx(qx; !)] =
�ne2

2m
=
!2p;cgs
8

=
4�"0!

2
p

8
(11.76)

Here we have used the fact that the real part of the conductivity is even in frequency,
as follows from the fact that �

00

jxjx
(qx; !) is odd. Also, if we take the cgs units, the

plasma frequency is !2p;cgs = 4�ne
2=m; so that the right-hand side is then !2p;cgs=8.

In S.I., we have !2p = ne2= ("0m) : So the ratio !2p;cgs=!
2
p is given by 4�"0, which

just converts e2 in cgs to e2=4�"0 in S.I.

Remark 107 Alternate expression: There is no principal part in the integrals
appearing in the last expression. An equivalent but more cumbersome expression
for the longitudinal conductivity, namely,

�xx(qx; !) = P 1
i!

h
�Rjxjx(qx; !)�

ne2

m

i
� ��(!)

h
�Rjxjx(qx; !)�

ne2

m

i
(11.77)
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is obtained from Eq.(11.70) by using the expression for principal parts. It is also
possible to prove the optical-conductivity sum-rule from this starting point. Indeed,
taking the real part and integrating both sides,Z 1

�1

d!

2�
Re [�xx(qx; !)] = P

Z 1

�1

d!

2�

�00jxjx(qx; !)

!
�
Re�Rjxjx(qx; 0)

2
+
ne2

2m

=
ne2

2m
:

Note that since the conductivity sum rule is satis�ed for abitrary qx, it is also
satis�ed at qx = 0; a limit we will need when computing the conductivity in the
next section.

Remark 108 Practical use of sum rule: The n that appears in the conductivity
sum rule is the full electronic density. In pratical calculations for experiment, one
stops integrating at a �nite frequency, which is smaller than the binding energy
of core electrons. These electrons are then frozen, and the appropriate plasma
frequency is calculated with the free electronic density in the conduction band.

Remark 109 The case of interactions in lattice models: The f�sum rule is par-
ticularly useful because it gives a result that is independent of interactions. We
will see later that for models on a lattice, this is not quite true anymore.

Remark 110 If we need to consider the qx ! 0 limit, it is clearly taken last since
we integrate over all frequencies, including ! = 0; �rst. In addition, we are looking
at the longitudinal response, hence we need a small non-zero qx at least to decide
that we are looking at the longitudinal response.

Remark 111 Thermal and thermoelectric e¤ects: Thermal conductivity and ther-
moelectric coe¢ cients are longitudinal responses that can be treated in a manner
very similar to what was done in this section. There are analogs of the f sum-rule
as well.[218]
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12. DRUDE WEIGHT, METALS,
INSULATORS AND SUPERCON-
DUCTORS

All the above considerations about conductivity, correlation functions and sum
rules may seem rather formal, and even useless. Let us put what we learned to
work. In the present Chapter, we will �nd some powerful and unexpected results.
For example, one can measure the penetration depth, i.e. the distance over which
a static magnetic �eld is expelled by a superconductor, by doing instead a �nite
frequency conductivity measurement.
If we begin to talk about a superconductor, the �rst thing that comes to

mind is the DC conductivity. Even if in the end we will see that zero resistance or
in�nite conductivity is not what characterizes a superconductor, this is a legitimate
starting point. Suppose we are interested in the DC conductivity. We then need
the response for a uniform, or very long wavelength �eld, i.e. the limit qx ! 0
of our earlier formulae. It is important to notice that this is the proper way to
compute the DC conductivity: Take the q ! 0 limit, before the ! ! 0 limit. In
the opposite limit the response vanishes as we saw from gauge invariance (11.61).
Physically, transport probes dynamical quantities. A DC measurement can be seen
as the zero frequency limit of a microwave experiment for example. By taking the
q! 0 limit �rst, we ensure that we are looking at an in�nite volume, where energy
levels can be arbitrarely close in energy. Then only can we take the zero frequency
limit and still get absorption when the state is metallic. Otherwise the discrete
nature of the energy states would not allow absorption in the zero frequency limit.
By asking questions about the DC conductivity, we are clearly beginning to ask

what is the di¤erence between a perfect metal, a superconductor, and an insulator.
This is the question we will focus on in this chapter. Many of the answers were
given by Kohn [117]. The �rst step is to de�ne the Drude weight.

12.1 The Drude weight

In the correct limit qx = 0 �rst to obtain the uniform DC conductivity, the above
formulae (11.74) and (11.77) for conductivity give us either the simple formula,

Re [�xx(0; !)] =
�00jxjx(0; !)

!
(12.1)

or the more complicated-looking formula

Re [�xx(0; !)] = P
�00jxjx(0; !)

!
� ��(!)

�
Re
�
�Rjxjx(0; !)

�
� ne2

m

�
(12.2)

The coe¢ cient of the delta function at zero frequency �(!) is called the Drude
weight D:

D = � lim!!0

h
ne2

m � Re
�
�Rjxjx(0; !)

�i
: (12.3)

DRUDE WEIGHT, METALS, INSULATORS AND SUPERCONDUCTORS 131



The reason for this de�nition will become clear in the next section when we talk
about metals.

Remark 112 In practice, the delta function in optical experiments is broadened
by impurity scattering or scattering due to �nite temperature. Whenever there is
a peak in the conductivity centered at zero frequency, one refers to it as a Drude
peak. The integral under that peak is the Drude weight. One observes narrowing
of the Drude weight as the temperature is decreased, but a delta function is never
observed in practice in a real metal. Residual scattering from impurities does not
allow that to happen.

Remark 113 Alternate form: While the Drude weight is the strength of the delta
function response in the real part of the conductivity, one can see immediately
from the general expression for the longitudinal conductivity, Eq.(11.70), that it
can also be extracted from the imaginary part,

D = � lim
!!0

! Im [�xx(0; !)] : (12.4)

This is discussed further in Sec. 12.6.

Remark 114 Alternate derivation: To be reassured that the Drude weight would
also come out from the �rst expression for the conductivity Eq.(12.1), it su¢ ces
to show that both expressions are equal, namely that

�00jxjx(0; !)

!
� P

�00jxjx(0; !)

!
= ���(!)

�
Re
�
�Rjxjx(0; !)

�
� ne2

m

�
(12.5)

To show this, one �rst notes that given the de�nition of principal part, the di¤er-
ence on the left-hand side can only be proportional to a delta function. To prove
the equality of the coe¢ cients of the delta functions on both sides, it then su¢ ces
to integrate over frequency. One obtainsZ 1

�1

d!

�

�00jxjx(0; !)

!
� P

Z 1

�1

d!

�

�00jxjx(0; !)

!
(12.6)

= lim
!!0

lim
qx!0

�
ne2

m
� Re

�
�Rjxjx(qx; !)

��
(12.7)

an expression that is clearly correct, as can be shown by using the f�sum rule
Eq.(11.65) for the �rst term on the left-hand side and the spectral representation
(or Kramers-Kronig representation) of the current-current correlation function for
the second term on the left-hand side.

Remark 115 Contrary to what happened for conserved quantities in thermody-
namic sum rules, principal parts here are very relevant.

12.2 What is a metal

To understand what is a metal, let us �rst begin by asking what is the Drude weight
for free electrons. The answer is that for free electrons, the qx ! 0 conductivity
is a delta function at zero-frequency whose Drude weight is D = �ne2=m.
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Proof: Let the current be nev: Then, using Newton�s equation of motion in an
electric �eld we �nd ,

@j (q = 0;t)

@t
=
ne2

m
E (q = 0;t) (12.8)

or with a single applied frequency,

j (q = 0;!) = � 1

i (! + i�)

ne2

m
E (q = 0;!) : (12.9)

From this we see that the conductivity has only a Drude contribution (free
acceleration).

Re
j (q = 0;!)

E (q = 0;!)
= Re� (q = 0;!) = �

ne2

m
� (!) (12.10)

For interacting electrons, the current of a single particle is no longer a conserved
quantity and there is a contribution from � lim!!0Re

�
�Rjxjx(0; !)

�
. The rest of

the weight is at �nite frequency. Hence, the criterion given by Kohn [117] for a
system to be a metal is that it has a non-zero Drude weight Eq.(12.3) at zero
temperature, in other words in�nite conductivity or zero resistance even in the
presence of interactions. In the presence of elastic scattering, by impurities for
example, the zero-temperature Drude weight is broadened. At �nite temperature
or when there is inelastic scattering with some other system, like the phonons, the
delta function is also broadened. The conductivity is not in�nite at zero frequency,
but it has a weight that can be close to the ideal Drude weight if there is not too
much broadening.

Remark 116 There is no damping in this problem. However, by analogy with the
simple case of the harmonic oscillator that we studied in the introductory chapters,
and as used erlier, we need to multiply j (q = 0;t) by an in�nitesimal damping e��t

to reach a steady state when di¤erential equations are propagated forward in time,
like we assume here. The +i� in 1

i(!+i�)comes from this procedure applied to
Eq.(12.8): All Fourier transforms in time behave as if ! ! ! + i� in the usual
de�nition when we consider causal processes.

Remark 117 Metals and emergence: Metallic behavior is an emergent property
that appears in the in�nite size limit, like dissipation. It is not a property of the
individual atoms. It is not surprising then that the qx ! 0 and the ! ! 0 limits
cannot be interchanged.

Remark 118 When there is more than a single band involved, a special kind of
metal can occur, Weyl semimetals, topological materials that can have an Anom-
alous Hall e¤ect and curious metallic states. More on this later.

12.3 What is an insulator

Kohn�s criterion [117] for a material to be an insulator is that it has a vanishing
DC conductivity (or equivalently D = 0). Remember that the qx ! 0 limit must
be taken �rst to obtain the DC conductivity. The DC conductivity then vanishes
whenever

lim
!!0

Re
�
�Rjxjx(0; !)

�
= lim
!!0
P
Z
d!0

�

�00jxjx(0; !
0)

!0 � ! =
ne2

m
: (12.11)
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Recalling the result obtained from the f�sum rule (or equivalently from gauge
invariance), (11.65)

�Rjxjx(qx; 0) =

Z
d!0

�

�00jxjx(qx; !
0)

!0
=
ne2

m
(12.12)

this means that when the order of limits can be inverted, the system is an insulator:

lim
!!0

lim
qx!0

Re
�
�Rjxjx(qx; !)

�
= lim
qx!0

lim
!!0

Re
�
�Rjxjx(qx; !)

�
: (12.13)

This occurs in particular when there is a gap �. In this case, then �
00

jxjx
(qx; !) = 0

for all qx as long as ! < �. In particular, there can be no contribution from zero
frequency since �

00

jxjx
(qx; 0) = 0 so that the principal part integral and the full

integral are equal.

Remark 119 Gapless insulators: The condition of having a gap is su¢ cient but
not necessary to have an insulator. There are examples where there is no gap in
the two-particle excitations but there is a vanishing DC conductivity. [56]

Remark 120 Insulators are not completely boring. When there is more than one
band, one can have a so-called �topological insulator� that has anomalous Hall
e¤ect and metallic surfaces despite being insulator in the bulk. More on this later.

12.4 What is a superconductor

Finally, superconductors are an interesting case. The superconducting state is
a state of matter that is thermodynamically stable. It expels magnetic �elds
whether the �elds are applied at a temperature above or below that where the
system becomes superconducting. Magnetic �elds are either expelled completely
by a superconductor (Type I) or they penetrate in quantized units (Type II).1 Let
us not worry about these di¤erences for now.
First, a bit of phenomenology about the Meissner e¤ect. London assumed

that the part of the current that depends on gradients did not contribute to the
response of the current to an applied vector potential. In other words, he assumed
that the wave function was �rigid�. So he assumed that only the response was
controlled only by the diamagnetic term. Hence, he wrote down

�


jAa (q;0)

T
�
= �nse

2

m
ATa (q; 0): (12.14)

To simplify the discussion, I take a simple case where the q dependence of the
prefactor ns can be neglected in the zero-frequency limit, (we keep the zeroth
order term in the power series in q). I have written ns to emphasize that this
quantity is in general di¤erent from the complete density n. This quantity, ns is
called the super�uid density. The above equation is the so-called London equation.
We take the curl on both sides of the Fourier transformed expression,

r� � hj(r;!=0)i = �nse
2

m
B(r; !=0) (12.15)

1The real situation is more complicated. Quantized �uxes can be trapped by impurities, so
that in practice there may be di¤erences between applying a magnetic �eld before or after taking
it below Tc:

134 DRUDE WEIGHT, METALS, INSULATORS AND SUPERCONDUCTORS



Figure 12-1 Penetration depth in a superconductor

and then multiply by �0, the permeability of the vacuum, and use Maxwell�s
equation r � B(r; !=0) = �0j(r;! = 0) as well as r � (r�B) = r (r �B) �
r2 (B) with r �B =0. The last equation takes the form,

r2 (B) = nse
2

m
�0B (12.16)

whose solution in the half-plane geometry shown in �gure (12-1) is,

By(x) = By(0)e
�x=�L

with the London penetration depth

��2L =
nse

2

m
�0: (12.17)

The �eld is completely expelled from a superconductor2 . This is perfect diamag-
netism.
I now show how the London equation follows from our formalism. Gauge in-

variance (or f�sum rule) implies (11.61) that the following ! = 0 thermodymamic
response to a vector potential vanishes:�

�Rjxjx(qx; 0)�
ne2

m

�
= 0: (12.18)

Super�cially then, it looks as if there can be no response of the current to a pure
vector potential. That is a correct assumption, but only for the longitudinal part
of the vector potential. Gauge invariance does not force the transverse response
to vanish. Indeed, gauge transformations (11.3) are always longitudinal. Hence,
it is possible to have, �

�Rjyjy (qx; 0)�
ne2

m

�
= �ns (qx) e

2

m
(12.19)

where ns is any density less than n. A superconductor will indeed have such a
non-vanishing �transverse Drude weight�. We will be interested in the long wave
length limit short-coherence length limit (that will be de�ned later) so that the
qx dependence in ns (qx) can be neglected. I will show in Eq.(12.34) below that
positivity of the dissipation implies that ns cannot be larger than n:

De�nition 12 ns is called the super�uid density.

2At least in so-called type I superconductor. In type II, the �eld can penetrate in quantized
units of �ux, h=(2e):
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Remark 121 The term �transverse Drude weight� is a very bad choice of termi-
nology since the order of limits for the Drude weight is very di¤erent than for this
transverse case.

A non-vanishing value of ns in Eq.(12.19) leads to perfect screening of mag-
netic �elds (the Meissner-Oschenfeld e¤ect) in superconductors because, from the
general formula for the response to a transverse static electromagnetic �eld (11.38)
(! = 0), we recover an explicit expression for the London equation:

�


jAy (qx;0)

T
�
=

��
�Rjyjy (qx; 0)

�T
� ne2

m

�
ATy (qx; 0):

Remark 122 The calculation that we did for the London penetration depth is
valid when the superconducting coherence length is smaller than the penetration
depth. When this is not the case, the q dependence of �Rjajb(q; 0) cannot be ne-
glected. We have non-local e¤ects that lead to the so-called Pippard penetration
depth.

Remark 123 Super�uid sti¤ness: The energy associated with a gradient in the
phase of the superconductor, is often written in the form 1

2�s (r�)
2
: The quantity

�s is known as the super�uid sti¤ness: �s�0 = ��2L .

Remark 124 In the case where ns = n, which often occurs at zero temperature
in BCS-like superconductors, we �nd

!2p�
2
L =

ne2

"0m

m

ne2�0
=

1

"0�0
= c2: (12.20)

Remark 125 Advantage of S.I. units: The result that we found for the penetra-
tion depth Eq.(??) illustrates an advantage of the S.I. units for electromagnetism.
Indeed, it is the permeability �0 that appears in the result. In other units, we would
have ��2L = nse

2

mc2 : Clearly, the velocity of light c has nothing to do with the physics
we are investigating here, which is all at zero frequency.

Remark 126 Since the magnetic induction B obeys B = �0 (H+M), another
way to look at this result is that the magnetic �eld intensity H is cancelled by the
magnetization M to yield a vanishing magnetic induction B.

Why are the transverse and longitudinal zero-frequency responses di¤erent in
a superconductor? By comparing the result of the f -sum rule Eq.(12.18) with the
de�nition of the transverse Drude weight Eq.(12.19) this can happen only if

lim
qx!0

�Rjxjx(qx; 0; ! = 0) 6= lim
qy!0

�Rjxjx(0; qy; ! = 0) (12.21)

or in other words

lim
qx!0

Z
dt

Z
dre�iqxx�Rjxjx(r; ! = 0) 6= lim

qy!0

Z
dt

Z
dre�iqyy�Rjxjx(r; ! = 0):

(12.22)
That is the true de�nition of a superconductor. A superconductor can have a �nite
conductivity in the presence of magnetic �ux quanta and have no gap like in a d-
wave superconductor. The above two limits cannot be inverted in a superconductor
because long-range order leads to �Rjxjx(r; ! = 0) that does not decay fast enough
for the integral to be uniformly convergent, i.e. independent of the order of limits:
�Rjxjx(r; ! = 0) does not decay the same way at in�nity for r along the direction
x of the current and perpendicular to it. More on this in a later chapter. In an
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ordinary metal there is no such long-range order and both limits are identical so
that the London penetration depth is in�nite, in other words ns = 0 for a metal.
Finally, a superconductor has in�nite DC conductivity, namely at ! = 0. While

the delta function Drude peak is an idealization in a metal, in a superconductor,
the delta function response at ! = 0 is really there. In other words, the full
transverse conductivity is

Re�yy(qx; !) = P
1

!

h
�00jyjy (qx; !)

i
� �� (!)

�
Re�Rjyjy (qx; !)�

ne2

m

�
(12.23)

12.5 Metal, insulator and superconductor, a sum-
mary

In all cases, gauge invariance Eq.(11.61), or equivalently particle conservation,
implies that �

�Rjxjx(qx; 0)�
ne2

m

�
= 0: (12.24)

The di¤erence between a metal, an insulator and a superconductor may be sum-
marized as follows. There are two limits which are relevant. The Drude weight
(12.3)

D (0; !) = � lim!!0

h
ne2

m � Re
�
�Rjxjx(0; !)

�i
(12.25)

and the transverse analog

DT
S (qx; 0) = � limqx!0

h
ne2

m � �
R
jyjy

(qx; 0)
i

(12.26)

of the f�sum rule,

DL
S (qx; 0) = � limqx!0

h
ne2

m � �
R
jxjx

(qx; 0)
i
= 0

(12.27)

As we just saw, contrary to its longitudinal analog, (note the order of limits) DS is
not constrained to vanish by gauge invariance. It is instead related to the inverse
penetration depth in a superconductor. Since the London penetration depth is
generally very long compared with the lattice spacing, the qx dependense of DS ;
or equivalently of the super�uid density, can be neglected. The table summarizes
the results.
A superconductor can unambiguously be de�ned by the non-vanishing of DS :

Indeed, a superconductor has a gap to single-particle excitations, like an insulator,
and it has a delta response in the longitudinal direction at zero wave vector, like
a metal. On the other hand, DS vanishes in both metal and insulators:

Remark 127 It is important to notice that DS is a thermodynamic quantity.
This is apparent from the fact that the ! ! 0 limit is taken �rst in the correlation
function expression Eq. (12.26).

Remark 128 Non-standard superconductors: Note that superconductors can be
gapless in the presence of magnetic impurities, and they can also have resistance
in the so-called mixed-state. These can nevertheless be described by the BCS theory
of superconductivity.[62]
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D (0; !) DL (qx; 0) DT (qx; 0)
Metal 6= 0 0 0
Insulator 0 0 0

Superconductor 6= 0 0 6= 0
Table 12.1 Di¤erence between metal, insulator and superconductor, as seen from
the limiting value of correlation functions.

12.6 Finding the London penetration depth from
optical conductivity

Let us imagine an experiment at �nite temperature where the Drude peak is
broadened in the non-superconducting state. It is easier to also use the fact that
the qx ! 0 and qy ! 0 limits can be interchanged in a metal and work with the
formula Eq. (11.74)

Re [�yy(0; !)] =
�00jyjy (0; !)

!
: (12.28)

which is valid even when the Drude peak is broadened.
When the wave vector and the current are in the same direction, the f -sum

rule Eq. (11.75), applies, namelyZ 1

�1

d!

2�
Re [�yy(qy; !)] =

Z 1

�1

d!
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1

!

h
�00jyjy (qy; !)

i
=
ne2

2m
(12.29)

In the long wavelength limit, q! 0, it does not matter for a metal if q is along
the direction of the current, or perpendicular. The limit is smooth. So we also
have

lim
qy!0

Z 1

�1

d!

2�
Re [�yy(qy; !)] = lim

qx!0

Z 1

�1

d!

2�
Re [�yy(qx; !)] =

ne2

2m
: (12.30)

However the f -sum rule strictly applies only when q and j are in the same direction
since it is only in this case that our derivations using either charge conservation
or gauge invariance cannot be dismissed.
In an infrared absorption experiment, the electric �eld and the current are

perpendicular to the direction of propagation towards the material. The exper-
iment can be performed �rst above the superconducting transition temperature
for example and the integral over frequency done, as in the last equation, to �nd
the value of the right-hand side. I will show momentarily that if the objective is
to �nd the penetration depth, it is not necessary to perform this integral in the
normal state all the way to in�nity.
Now, assume the system becomes a superconductor, then as we just saw a

superconductor exhibits a true zero-frequency delta function response at �nite
wave-vector in the transverse response. We already know that

Re�yy(qx; !) = P
1

!

h
�00jyjy (qx; !)

i
� �� (!)

�
Re�Rjyjy (qx; !)�

ne2

m

�
(12.31)

This means that Eq.(12.31) for the transverse conductivity may be written

Re�yy(qx; !) = P
�00jyjy (qx; !)

!
+DS (qx) � (!) : (12.32)

In that case, a conductivity experiment with electromagnetic radiation will not
pick up the piece proportional to � (!) in the transverse response Eq.(12.32), so
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doing the integral we will obtain

lim
qx!0
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d!
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Re�Rjyjy (qx; 0) (12.33)

=
(n� ns) e2

2m
(12.34)

where we used the result Eq.(12.19) for Re�Rjyjy (qx; 0). Note that there is no dif-
ference here between Re�Rjyjy (qx; 0) and �

R
jyjy

(qx; 0) since this is a thermodynamic
quantity (in other words ! = 0 �rst) at small qx. For the term proportional to
DS the delta function forces us to take the ! = 0 limit �rst. The missing weight
for the transverse response is in the delta function at the origin. The weight of
that delta function is DS= (2�) = nse

2=2m: It is necessarily less than ne2= (2m)
because the real part of the conductivity is necessarily positive for stability. This
means that ns < n as we had promised to prove. This is called the Ferrell-Glover-
Tinkham sum rule [72][231]. It is quite remarkable that the penetration depth can
be obtained from an optical conductivity experiment by looking at the missing
weight in the f-sum rule.

Remark 129 Since there is no di¤erence between Re�Rjyjy (qx; 0) and �
R
jyjy

(qx; 0),
one sees that if we include the delta function in the integral over limqx!0Re [�yy(qx; !)] ;
the f-sum rule is obeyed even for the transverse conductivity.

As a recent example[133] of how this sum rule can be used is shown on Fig.
(12-2). The nice aspect is that we do not need the frequency integral up to in-
�nity. Indeed, at su¢ ciently high frequency, the absorption in the normal and in
the superconducting state become identical, so the penetration depth is obtained
from the missing area by using our previous result Eq.(12.17), namely ��2L =
�0nse

2=2m; to relate the two quantities. In a superconductor, many of the exci-
tations are gapped, in other words they do not contribute to absorption. Let us
call the typical gap energy �: For frequencies larger than a few times �, the re-
sults in the superconducting and in the normal state must become identical when
~! becomes larger than the largest gap. For the example given here, this occurs
around 6�:
In the cuprates, there is suggestion that there is missing weight when one tries

to relate c axis conductivity to penetration depth in the underdoped regime.[22]
The in-plane optical conductivity of YBa2Cu3O7�x satis�es the sum-rule for the
penetration depth but, in the underdoped case, the missing area extends over an
unusually broad frequency range, suggesting that simple models based on Fermi
liquids do not apply. [96]

Remark 130 This is a very elegant result that relates two apparently very dif-
ferent experiments. We can obtain the zero frequency penetration depth from a
�nite-frequency conductivity experiment. This result does not depend on details of
the interaction.

Remark 131 Other manifestation of delta function response: Note that in the
imaginary part of the conductivity, the existence of a non-zero DS has observable
consequences at �nite frequency since the delta function in the real part gives a
long 1=! tail in the imaginary part. More speci�cally,

Im�yy(qx; !) =
1

!

�
ne2

m
� Re�Rjyjy (qx; !)

�
� �� (!)�00jyjy (qx; !)(12.35)

lim
!!0

! Im�yy(qx; !) =
DS

�
(12.36)
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Figure 12-2 A penetration depth of 2080 _A was obtained from the missing aread in
this infrared conductivity experiment on the pnictide Ba0:6K0:4Fe2As2 with a Tc of
37 K:Figure taken from Ref. [133]

since �00jyjy (qx; 0) = 0:That is another way to obtain the London penetration depth.
In that case we do not need to know the conductivity at all frequencies, but only
its tail in 1=! near ! = 0: In practice, the normal state also contributes to
Im�yy(qx; !) near ! = 0, so one must take care of this background correctly to
extract the super�uid Drude weight.

Remark 132 f-sum rule in a �nite band: Note however that the f-sum rule must
be modi�ed when the integral is not taken to in�nity, which is usually the case.
When the integral is taken only across a band, it can be used to de�ne an e¤ective
number of carriers. In a single-band tight binding model however, the f-sum rule
is related to something close to a kinetic energy. We refer to the literature.[?] This
has implications for the sum-rules that I discussed here: [?][?]
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13. *RELATION BETWEEN CON-
DUCTIVITYANDDIELECTRICCON-
STANT

The relation between dielectric constant and conductivity is a matter of macro-
scopic electromagnetism. Hence, since we already know the relation beween con-
ductivity and correlation functions, we will be able to relate dielectric constant
and correlation functions that we can compute later. The dielectric constant is
basic to optical measurements. In infrared spectroscopy for example, one mea-
sures the re�ectivity or the transmission coe¢ cient, either of which is related to
the complex index of refraction which follows from the dielectric constant.
We start from Maxwell�s equations. We consider a translationally invariant

system, so that it su¢ ces to consider the Fourier-space version

iq �E = �

"0
(13.1)

iq�E =i (! + i�)B (13.2)

iq �B =0 (13.3)

iq�B =�0j�
i (! + i�)

c2
E: (13.4)

where "0 = 8:85 � 10�12 farad/meter is the permittivity of vacuum and �0 its
permeability is given by �0 = 4� � 10�7 henry/meter. The speed of light is
related to these quantities by "0�0 = 1=c

2.

13.1 *Transverse dielectric constant.

Using the de�nition of transverse conductivity, the last of Maxwell�s equations
reads,

iq�B =�0
 !
�T �E� i (! + i�)

c2
E: (13.5)

Using the second Maxwell equation on the left-hand side, as well as iq �E = 0 for
transverse response and q� (q�E) = q (q �E)� q2E, we have

q2E =�0i (! + i�)
 !
�T �E+(! + i�)

2

c2
E � (! + i�)

2

c2

 !
�T

"0
E (13.6)

where the last equality is the de�nition of the dielectric tensor. If there was no
coupling to matter, the electric �eld would have the usual pole for light ! = cq.
In general then,

 !
�T (q; !) = "0 +

ic2"0�0
(! + i�)

 !
�T = "0 +

i

(! + i�)

 !
�T (13.7)
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In the simple case where the dielectric tensor is diagonal, it is related to the
dielectric constant n and the attenuation constant � through

p
� = n+ i�. Using

the Kubo formula for the conductivity in terms of response function Eq.(11.46),
we have that

 !
�T (q; !) = "0

�
1� !2p

(!+i�)2

� !
I + 1

(!+i�)2

� !
�Rjj(q; !)

�T
: (13.8)

Remark 133 Bound charges: When one can separate the charges into bound
and free in the calculation of

 !
�Rjj(q; !), the contribution of the bound charges to

1
(!+i�)2

 !
�Rjj(q; !) is usually included with the 1 and called,

 !
�T bound.

Remark 134 Transverse current and plasmons: The transverse current-current
correlation function does not contain the plasmon pole since transverse current
does not couple to charge. (One can check this explicitly in diagrammatic calcu-
lations: The correlation function between charge and transverse current vanishes
in a homogeneous system because the wave-vector for the charge and the vector
for the current direction are orthogonal, leaving no possibility of forming a scalar.
The equilibrium expectation value of a vector vanishes in a homogenous system.
In fact it vanishes even in less general situations which are not enumerated here.)

Remark 135 Electromagnetic �eld and plasmon: One can see from the equation
for the electric �eld (13.6) that in general the electromagnetic �eld does see the
plasmon (negative dielectric constant for ! < !p in Eq.(13.8) means no propaga-
tion below the plasma frequency).

13.2 Longitudinal dielectric constant

Let the system be subjected to some external charge �e(q;!). The electric �eld
depends on the total charge, including the induced one

iq �E =(�e + � h�i)
"0

: (13.9)

The longitudinal dielectric constant is de�ned by

iq�
 !
�L �E =�e: (13.10)

 !
�L depends on q and !; it is a retarded response function. With a longitudinal
applied �eld, the ratio of the above two equations leads to�

�L
��1

=
�e + � h�i
"0�e

: (13.11)

In the Landau gauge, where r �A = 0, the linear response to an external charge
can be computed from the response to the scalar potential it induces

�e(q; !) =
1

"0q2
�e(q; !): (13.12)

As above, linear response to

�H(t) =
Z
dr� (r)�e (r;t) (13.13)
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is given by
� h�(q; !)i = ��R��(q; !)�e(q; !) (13.14)

so that simple substitution in the equation for
�
�L
��1

gives,

1
�L(q;!)

= 1
"0

�
1� 1

q2"0
�R��(q; !)

�
: (13.15)

Remark 136 Density response and plasmon: The density-density correlation func-
tion appearing there still contains the plasmon pole.

The longitudinal dielectric constant is simply related to the cross section for
inelastic electron scattering encountered in Section (7.2). Indeed, the �uctuation-
dissipation theorem gives us

S��(q; !) =
2~

1� e��~! Im
�
�R��(q; !)

�
= � 2~

1� e��~! q
2 Im

�
"0

�L(q; !)

�
: (13.16)

The following properties of the dielectric constants are worthy of interest

Remark 137 Kramers-Kronig: �T (q; !) and 1
�L(q;!)

� 1 obey Kramers-Krönig
relations since they are causal. Since they are expressed in terms of correlation
functions, they also obey sum rules which follow simply from those already derived,
in particular the f�sum rule.

Remark 138 �L(q; !) 6= �T (q; !) in general

Looking in what follows at the case ! << cq, we assume thatr�E = �@B@t � 0:
Then there are simple things to say about the signi�cance of the poles and zeros
of the dielectric constant.

Remark 139 Collective transverse excitations: The poles of �T are at the collec-
tive transverse excitations. Indeed, let us look since r �D =0 (no free charge) is
garanteed by the fact the excitation is transverse, while r�E =0 implies zero elec-
tric �eld in a transverse mode. Nevertheless, DT 6=0 can occur even if the electric
�eld is zero when �T = 1. The corresponding poles are those of the transverse
part of �Rjj(q; !).

Remark 140 Collective longitudinal excitations: The zeros of �L locate the lon-
gitudinal collective modes since

�
�L
��1

= �e+�h�i
"0�e

= 1 corresponds to internal

charge oscillations. Alternatively, DL = 0 as required by the no-free-charge con-
straint r � D =0 but nevertheless EL 6= 0 is allowed if �L = 0. (r � E =0 is
automatic in a longitudinal mode). The corresponding collective modes are also
the poles of �R��(q; !).
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14. EXERCICES FOR PART II

Exercise 14.0.1 Other derivation of linear response theory: Rederive linear re-
sponse theory, this time assuming that it is the density matrix instead of the op-
erator that is evolving.

Exercise 14.0.2 Derive a Lehmann representation for the �uctuations S00AiAj
(!),

and by comparing with the Lehmann representation for �00AiAj
(!) ; show that the

�uctuation-dissipation theorem follows.

Exercise 14.0.3 Autre dérivation de la réponse linéaire: Redérivez la théorie de
la réponse linéaire mais cette fois-ci en laissant l�Hamiltonien exterieur n�in�uencer
que la matrice densité plutôt que l�operateur dont on veut calculer la réponse.

Exercise 14.0.4 Règle de somme f et formule invariante de jauge pour la con-
ductivité longitudinale

a) En utilisant l�équation de continuité pour la charge électrique et la règle de
somme f , démontrez que

� i(! + i�)�Rjx�(qx; !) = iqx
ne2

m
� iqx�Rjxjx(qx; !) (14.1)

b) À partir de

�


jAa (q;!)

�
=

�
�Rjajb(q; !)�

ne2

m
�ab

�
Ab(q; !)� �Rja�(q; !)�(q;!) (14.2)

et du résultat en a), trouvez deux expressions di¤érentes mais équivalentes pour
la conductivité longitudinale invariante de jauge.

14.0.1 Lien entre fonctions de réponses, constante de di¤usion et dérivées thermo-
dynamiques. Rôle des règles de somme.

Soit un système uniforme de spins 1=2, comme par exemple l�helium 3He: Les
interactions dans le système de spin ne dépendent pas du spin. Donc, l�aimantation
totale dans la direction z; que nous noterons M; est conservée, c�est-à-dire que

@tM (r; t) +r � jM (r;t) = 0 (14.3)

où jM est le courant d�aimantation. Sur une base purement phénoménologique,
ce courant dépend du gradient d�aimantation. En d�autres mots, comme M est
conservée, il obéit à une dynamique di¤usive. Dans un processus hors d�équilibre,
(mais pas trop loin de l�équilibre!) et sur des échelles hydrodynamiques, (grand
temps et grandes longueurs d�ondes) nous aurons donc


jM (r;t)
�
he
= �DrhM (r;t)ihe (14.4)

où la moyenne fait référence à une moyenne hors d�équilibre.
Soit la fonction de corrélation aimantation-aimantation

SMM (r;t) = hM (r;t)M (0;0)i (14.5)
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Cette fonction de corrélation est accessible par exemple par di¤usion neutronique.
a) Phénoménologie: En utilisant le fait que le couplage entre aimantation et

champ magnétique est donné par

Hint = �
Z
d3rM (r)h (14.6)

et que l�Hamiltonien commute avec l�aimantation totale, montrez que

lim
k!0

SMM (k;t=0) =
1

�

�
@M

@h

�
h=0

� 1

�
�MM : (14.7)

En supposant ensuite que la dynamique pour hM (r;t)M (0;0)i avec t > 0 est
la même que celle obtenue phénoménologiquement pour une perturbation hors
d�équilibre et en utilisant la réversibilité, soit

hM (r;t)M (0;0)i = hM (0;0)M (r;�t)i (14.8)

pour déduire le résultat lorsque t < 0, montrez qu�aux grandes longueurs d�onde
(c�est-à-dire dans la limite hydrodynamique)

SMM (k;!) =
2Dk2

!2 + (Dk2)
2SMM (k;t = 0) �

2Dk2

!2 + (Dk2)
2

1

�
�MM (14.9)

� Vous pouvez utiliser l�invariance sous la transformation de parité r! �r.

� L�hypothèses menant à ce résultat est connue sous le nom d�hypothèse de ré-
gression d�Onsager: �Les �uctuations spontanées à l�équilibre régressent vers
l�équilibre de la même façon que les perturbations provoquées de l�extérieur,
en autant que ces perturbations ne soient pas trop fortes (réponse linéaire).�

b) Lien entre calcul phénoménologique et microscopique. En utilisant le théorème
de �uctuation-dissipation, obtenez une prédiction phénoménologique pour �

00

MM (k;!)
à partir de SMM (k;!). Montrez ensuite que si un calcul microscopique nous donne
�
00

MM (k;!) alors la constante de di¤usion peut être obtenue de ce calcul micro-
scopique en de la façon suivante:

D�MM = lim
!!0

�
lim
k!0

!

k2
�
00

MM (k;!)

�
(14.10)

tandis que la susceptibilité magnétique uniforme elle, s�obtient de

�MM = lim
k!0

Z
d!

�

�
00

MM (k;!)

!
(14.11)

c) Règles de somme: La dernière équation ci-dessus est connue comme la règle
de somme thermodynamique pour la susceptibilité �

00

MM (k;!) : Notre expression
phénoménologique pour �

00

MM (k;!) satisfait cette règle de somme. Considérons
maintenant la règle de somme f: L�expression microsopique pour l�aimantation est

M (r) =
NX
�=1

2�s�� (r� r�) (14.12)

où, dans ce système paramagnétique, s� = � 12 et � est le moment magnétique,
alors que l�expression correspondante pour le courant d�aimantation est

jM (r) =
�

m

NX
�=1

s�

�
}
i
rr�� (r� r�) + � (r� r�)

}
i
rr�

�
(14.13)
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avec m la masse. Utilisant ces expressions, démontrez la règle de somme f pour
ce système de spins, soit Z

d!

�
!�

00

MM (k;!) =
n

m
�2k2 (14.14)

où n est la densité. Il su¢ t de suivre de près la preuve de la règle de somme
f faite à la section (10.10.4). Véri�ez ensuite que l�expression phénoménologique
trouvée ci-dessus pour �

00

MM (k;!) à partir de considérations hydrodynamiques, ne
satisfait pas la règle de somme f . Laquelle de nos hypothèses phénoménologiques
devrait être ra¢ née pour arriver à satisfaire cette règle de somme?

14.0.2 Fonction de relaxation de Kubo.

Dans la limite classique, le théorème de �uctuation-dissipation devient:

�"
AiAj

(r; r0;!) =
�!

2
S
AiAj

(r; r0;!):

Dé�nissons une fonction C
AiAj

telle que la relation précédente soit toujours vraie,
c�est-à-dire que même pour un système quantique on veut que:

i
d

dt
C
AiAj

(r; r0; t) =
2

�
�"

AiAj
(r; r0; t):

Montrez que cette dernière relation est satisfaite par la dé�nition suivante de C
AiAj

C
AiAj

(r; r0; t� t0) = ��1
Z �

0

d�0[< Ai(r; t)Aj(r
0; t0 + i~�0) > � < Ai >< Aj >]:

Ceci est une autre fonction de corrélation due a Kubo et qui décrit la relaxation.

14.0.3 Constante diélectrique et Kramers-Kronig.

Considérons la constante diélectrique d�un milieu isotrope �(t) comme une fonction
de réponse, sans nous soucier de sa représentation en terme de commutateurs. En
utilisant le principe de causalité (�(t) = 0 pour t < 0), demontrez que �(!) est
analytique dans le plan complexe supérieur. Determinez aussi la parité de �1 et
�2 (�(!) = �1(!) + i�2(!)) sous changement de signe de !. En utilisant ensuite
le théorème de Cauchy sur les intégrales des fonctions analytiques, dérivez deux
relations de Kramers-Krönig entre les parties réelles et imaginaires de �(!):

�1(!)� �1(1) =
2

�
P
Z 1

0

d�
��2(�)

�2 � !2
(14.15)

�2(!) = �
2

�
!P

Z 1

0

d�
�1(�)� �1(1)

�2 � !2
(14.16)
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Part III

Introduction to Green�s
functions. One-body
Schrödinger equation

149





We now know that correlation functions of charge, spin, current etc... allow
us to predict the results of various experiments. In quantum mechanics, all these
quantities, such as charge, spin, current, are bilinear in the Schrödinger wave
function 	(r; t), i.e � (r; t) = 	�(r; t)	(r; t) for example. What about correlation
functions of the wave function 	(r; t) itself? They also are related to experiment,
more speci�cally to photoemission and tunneling experiments for example. We will
come back to this later. At this point, it su¢ ces to say that if we do experiments
where we actually inject or extract a single electron, then we need to know the
correlation function for a single 	. These correlation functions are called Green�s
functions, or propagators. They are absolutely necessary from a theoretical point
of view to get a full description of the system, including interference terms that are
absent in classical mechanics. They turn out to be easier to compute than correla-
tion functions for transport properties, such as charge-charge or current-current.
So we will �nally compute this type of correlation function, Green�s functions, in
this Part. Green�s functions share a lot of the general properties of correlation
functions: Kramers-Kronig relations, sum rules, high-frequency expansions... But
there are also important di¤erences as will become clearer in later chapters.
One can read on this subject in several books[12][71] [69][201]. Here I introduce

Green�s functions as a simple reformulation of the one-body Schrödinger equation.
This will help us, in particular, to develop an intuition for the meaning of Feynman
diagrams and of the self-energy in a familiar context. Impurity scattering will
be discussed in detail after I present de�nitions and general properties. Finally,
there is an alternate formulation of quantum mechanics, namely Feynman�s path
integral, that arises naturally when we think about the physical meaning of Green�s
functions.
From now on, I work in units where ~ = 1.
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15. DEFINITION OF THE PROPA-
GATOR, OR GREEN�S FUNCTION

15.1 Preliminaries: some notation

For a while we work with the continuum normalization for the position jri and
momentum jki eigenstates. The closure relation isZ

dr jri hrj = 1 (15.1)

with the normalization
hr jr0i = � (r� r0) : (15.2)

Momentum eigenstates are not normalized

hr jki = eik�r (15.3)

while the closure and normalization are:Z
dk

(2�)
3 jki hkj = 1 (15.4)

hk jk0i = (2�)3 �
�
k� k0

�
(15.5)

15.2 De�nition of the Green�s function and physical
meaning

Previously, we needed to know how an operator, such as charge for example, was
correlated with another one at another time. The generalization of this idea for a
one-body wave function is to know how it correlates with itself at di¤erent times.
That is also useful because the main idea of perturbation theory is to prepare a
state 	0(r0; t0) and to let it evolve adiabatically in the presence of the perturbation
into the new eigenstate 	(r; t).
In our harmonic oscillator example, we found that the displacement was related

to the driving force through x (!) = �R (!)F (!) ;so that �R (!) is the response
to a delta function in time, F (t) = � (t) i.e. F (!) = 1. Knowing the response
for F (!) = 1 allows us to �nd the response for an arbitrary function of time. In
the case of wave functions, the quantity loosely analogous to susceptibility in its
version as a function of time is the Green�s function or propagator

bGR (t) = �ie�i bHt� (t) : (15.6)
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Indeed, using Schrödinger�s equation, we have that

j	(t)i � (t) = e�i
bHt j	Hi � (t) (15.7)

= i bGR (t) j	Hi : (15.8)

Acting on this last equation with i @@t on both sides, one �nds that since j	Hi is
arbitrary, bGR (t) must obey the di¤erential equation�

i @@t � bH� bGR (t) = � (t) : (15.9)

Remark 141 Notations: Note that in reality, I should write bI� (t) and bI @@t withbI the identity operator in Hilbert space. This bI is omitted most of the time. Also,
the �i in the de�nition of bGR (t) was introduced so that the right-hand side of the
last equation is � (t) which is the usual way that Green�s functions are de�ned in
the context of di¤erential equations.

The Green�s function was proposed by Green in the nineteenth century to solve
partial di¤erential equations in electrodynamics. We know that Schrödinger�s
point of view is concerned with waves. And in classical physics, waves obey Huy-
gens principle, namely that the amplitude of a wave at one point is the sum of
all wavelets generated by scatters that act as point sources. The Green�s function
describes these wavelets, as I proceed to show. Inserting complete sets of states
in the operator relation between state and Green�s function, we �nd

hr j	(t)i � (t) = i
R
dr0 hrj bGR (t) jr0i hr0 j	Hi. (15.10)

If the initial wave function is an eigenstate of position, jr00i, since hr0 jr00i =
� (r� r00), this leads to

	(r; t)� (t) = hr j	(t)i � (t) = i hrj bGR (t) jr00i : (15.11)

In other words, an eigenstate of position spreads in time in a way described by
the propagator. For a general state j	Hi, each of the components on position
eigenstates must be superposed with

hrj bGR (t) jr0i � GR (r; r0; t) (15.12)

to �nd the value of 	(r; t), in a manner similar to that proposed by Huygens for
classical waves.
The di¤erential equation obeyed by GR (r; r0; t) is easy to �nd by taking matrix

elements of the operator di¤erential equation Eq. (15.9)R
dr0
�
i @@t� (r� r

0)� hrj bH jr0i� hr0j bGR (t) jr00i = � (t) � (r� r00). (15.13)

This is indeed the de�nition of the Green�s function for the Schrödinger equation
seen as a di¤erential equation.

Remark 142 Historical remark: Green was born over two centuries ago. At age
35, George Green, the miller of Nottingham, published his �rst and most important
work: �An Essay on the Applications of Mathematical Analysis to the Theory of
Electricity and Magnetism� dedicated to the Duke of Newcastle. It is in trying
to solve the di¤erential equations of electromagnetism that Green developed the
propagator idea. Ten years after his �rst paper, he had already moved from the
concept of the static three-dimensional Green�s function in electrostatics to the
dynamical concept. Green had no aristocratic background. His work was way
ahead of his time and it was noticed mainly because of the attention that Kelvin
gave it.
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Note that formally, we can invert the equation for the Green�s function as
follows: bGR (t) = hi @@t � bHi�1 � (t) (15.14)

In this form, it looks more like the response to a delta function perturbation. I will
come back to what this inverse means, but if you think in matrix language, you
can already guess. The above is meaningless unless we specify that the boundary
condition is that GR (�1) = 0; (which, by the way, is satis�ed by GR (t) =R
d!
2� e

�i(!+i�)tGR (!)). This should be compared with Eq. (16.8) below.
This may look like a useless exercise in de�nitions, but in fact there are many

reasons to work with the retarded Green�s function GR (r; r0; t).

� GR (r; r0; t) does not depend on the initial condition 	0(r0; t0).

� GR (r; r0; t) contains for most purposes all the information that we need.
In other words, from it one can extract wave-functions, eigenenergies etc...
Obviously, the way we will want to proceed in general is to express all observ-
ables in terms of the Green�s function so that we do not need to explicitly
return to wave functions. This function GR (r; r0; t) provides an alternate
formulation of quantum mechanics due to Feynman that we discuss in the
last chapter of this part.

� GR (r; r0; t) is the analog of the Green�s function used in the general context
of di¤erential equations (electromagnetism for example).

� Perturbation theory for GR (r; r0; t) can be developed in a natural manner.

� GR (r; r0; t) is generalizable to the many-body context where it keeps the
same physical interpretation (but not exactly the same mathematical de�n-
ition).

� Suppose we want to know the expectation value of two one-body operators
at di¤erent times. The calculation will involve GR (r; r0; t) :

De�nition 13 GR (r; r0; t) is called a propagator, (or Green�s function), since
it gives the wave function at any time, as long as the initial condition is given.
In other words, it propagates the initial wave function, like Huygens wavelets de-
scribe the propagation of a wave as a sum of individual contributions from point
scatterers.

15.3 *The initial condition can be at some arbitrary
time

Up to now, I have evolved the wave function from t = 0 where Heisenberg and
Schrödinger pictures coincide. Clearly, the initial time could be anywhere. If it
is at t0; then the Green�s function depends on t � t0 if the Hamiltonian is time
independent. That is that simple. Nevertheless, let me go through a proof in case
you are skeptic. We know that 	(r; t) = hrj e�iHt j	Hi : If instead of knowing the
state j	Hi in the Heisenberg picture, we known the initial value of the state in
the Schrödinger picture, namely

j	0(t0)i = e�iHt
0
j	Hi ; (15.15)
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we can write the wave function	(r; t) in terms of the initial state in the Schrödinger
picture

	(r; t) = hrj e�iH(t�t
0) j	0(t0)i : (15.16)

To rewrite the same thing in terms of the initial wave function,

	0(r
0; t0) = hr0j 	0 (t0)i (15.17)

it su¢ ces to use a complete set of states

	(r; t)� (t� t0) =
Z
dr0 hrj e�iH(t�t

0) jr0i hr0j 	0 (t0)i � (t� t0) (15.18)

where the � (t� t0) is added to make causality explicit. This last equation may be
rewritten as

	(r; t)� (t� t0) = i

Z
dr0GR (r;t; r0; t0)	0(r

0; t0) (15.19)

if I introduce the following de�nition of the retarded Green�s function in the po-
sition basis:

GR (r;t; r0; t0) = �i hrj e�iH(t�t
0) jr0i � (t� t0) : (15.20)
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16. VARIOUS WAYS OF REPRE-
SENTING THE ONE-BODY PROP-
AGATOR, THEIR PROPERTIES
AND THE INFORMATION THEY
CONTAIN

In this section, we show various representations of the one-body propagator, as
operator, or as solution to a di¤erential equation. We will encounter the analogs
of Kramers-Kronig relations, sum-rules, high-frequency expansion that we saw
previously and how the propagator allows us to compute transport and �uctuations
in the simplest case.

16.1 Representation in frequency space and Lehmann
representation

It is very useful to work with the Fourier transform in time of GR (r; r0; t) because
it contains information about the energy spectrum

GR (r; r0;!) = �i
Z 1

0

d (t� t0) ei(!+i�)(t�t
0) hrj e�iH(t�t

0) jr0i : (16.1)

In this expression, I have used the � (t� t0) and the corresponding ! + i� in
Fourier space to insure causality. Insert in this equation a complete set of energy
eigenstates

H jni = En jni (16.2)

hnj e�iH(t�t
0) jmi = e�iEn(t�t

0)�n;m (16.3)

to obtain for the Green�s function

GR (r; r0;!) = �i
X
n

hrj ni
Z 1

0

dtei(!+i��En)t hn jr0i (16.4)

or using 	n (r) = hrj ni

GR (r; r0;!) =
P
n

hrjnihn jr0i
!+i��En =

P
n

	n(r)	
�
n(r

0)
!+i��En (16.5)

=
P
n hrj ni hnj 1

!+i��En jni hn jr
0i � hrj 1

!+i�� bH jr0i : (16.6)

We thus see more clearly what is meant by the inverse operator.
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Let us evaluate explicitly the Green�s function for a simple case. Let us take a
free particle. The eigenstates are momentum eigenstates, H jki = "k jki :Then,

hkj bGR(!) jk0i = hkj 1

! + i� � bH jk0i = hkj k0i
! + i� � "k

(16.7)

From the form Eq. (16.6), one can clearly see that

� The poles of GR (r; r0;!) are at the eigenenergies.

� The residue at the pole is related to the corresponding energy eigenstate.

� This is the analog of a Lehmann representation, that we will encounter later.

Remark 143 Signi�cance of the poles: It would be more accurate to say that
the poles are located at the energy ~! for a transition from the vacuum to a state
containing a single-particle. This will come out more clearly in second quantization
and is in accord with Bohr�s correpondence principle.

16.2 *Operator representation in frequency space

As can be seen from the last equation of the previous section, in frequency space,
the expression for the Green operator is thus,

bGR(!) = 1

!+i�� bH =
�
! + i� � bH��1 : (16.8)

That operator is also called the resolvent operator. The following

GR (r; r0;!) = hrj bGR(!) jr0i : (16.9)

is a generalization of what we have already seen in real time, Eq. (15.12).
The advanced propagator is de�ned by

bGA (t) = ie�iHt� (�t) (16.10)

bGA(!) = 1

!�i�� bH (16.11)

Remark 144 Boundary condition in time vs pole location in frequency space:
From the equation for the propagator (15.13) it appears that one can add to
GR (r; r0;t) any solution of the homogeneous form of the di¤erential equation (right-
hand side equal to zero). The boundary condition that GR (r; r0;t) vanishes for all
t < 0 (the i�) and is equal to �i at t = 0 makes the solution unique. For a �rst-
order di¤erential equation, one boundary condition at t = 0+ su¢ ces to know the
function at t > 0. We will not know then the value before t = 0 but we specify
that it is equal to zero as long as t < 0: In frequency space, this latter assumption
moves the poles away from the real axis. To be more explicit, the general solution
of the di¤erential equation is bG (t) = �ie�i bHt� (t)�iCe�i bHt; where the constant C
multiplies the solution of the homogeneous equation. Taking into account the ini-
tial condition bG (0) = �i, which follows from the de�nition of bG (0), as well as the
vanishing of bGR (t) for negative times, implies that C = 0 for the retarded function.
Correspondingly, for GA (r; r0; t) we need to specify the vanishing of the function at
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t > 0 and we can �nd its value at all times prior to t = 0� by stating that it is equal
to +i at that time. Indeed, in that case C = �1 in bG (t) = �ie�i bHt� (t)� iCe�i bHt
so that bGA (t) = �ie�i bHt� (t) + ie�i bHt = ie�i

bHt� (�t), as in the earlier de�nition
Eq.(16.10).

16.3 Observables can be obtained from the Green�s
function

Knowing the Green�s function is equivalent to having the solution of Schrödinger�s
equation. In fact for an arbitrary state that has evolved from a given initial
condition, we can use the relation between Green�s function and wave function,
Eq. (15.10), to build any time-dependent expectation value using the usual rules of
quantum mechanics to �nd observables from Green�s functions. There are a few
observables that can be obtained in a simple manner directly from the Green�s
function.
This can be seen from the spectral representation Eq. (16.5)

� 1
�
ImGR (r; r0;!) =

X
n

	n (r)	
�
n (r

0) � (! � En) : (16.12)

The quantity,

�(r;!) = � 1
�
ImGR (r; r;!) (16.13)

is called the local density of states, a quantity relevant in particular when there is
no translational invariance. If we have a tip whose density of states is structure-
less, to a good approximation, the local density of states is what is measured by
scanning tunneling microscopes. The local density of states can be interpreted as
the probability that an electron in an eigenstate of energy ! = En is at position
r, namely 	n (r)	�n (r) summed over all eigenstates with the same energy
Integrating over all positions, we obtain the density of states

� 1
�

R
dr ImGR (r; r;!) =

P
n

R
dr hn jri hrj ni � (! � En) (16.14)

= �(!) =
P
n � (! � En) : (16.15)

This can be rewritten in a manner which does not refer to the explicit represen-
tation (such as jri above) by using Eq.(16.6) that de�nes the Green function

�(!) = � 1
�Tr

h
Im bGR (!)i : (16.16)

Clearly, this procedure can be used for any other observable. Suppose we
want to know the total kinetic energy in a given energy eigenstate. Then using
the expression for the imaginary part of the Green�s funtion Eq. (16.12) at the
beginning of this section, and assuming no degeneracy, we �nd, in the case where
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we have discrete energy levels separated by less than ";

Kn =

Z
dr

�
�r

2

2m
	n (r)

�
	�n (r) (16.17)

=

Z
dr

Z En+"

En�"
d!
X
n0

�
�r

2

2m
	n0 (r)

�
	�n0 (r) � (! � En0) (16.18)

= � 1
�

Z
dr

Z En+"

En�"
d! �r

2

2m
ImGR (r; r0;!)

����
r0=r

: (16.19)

If there is a potential term, V (r), the total potential energy can also be computed.

Vn = �
1

�
Im

Z
dr

Z En+"

En�"
V (r)GR (r; r;!) d!: (16.20)

The imaginary part can be taken before or after the integration.

Remark 145 Trace representation: Formally, the above observables can be rep-
resented as partial traces.

16.4 *Spectral representation, Kramers-Kronig, sum
rules and high frequency expansion

Green�s functions are response functions for the wave function, hence they have
many formal properties that are analogous to those of response functions that we
saw earlier. We discuss some of them here.

16.4.1 Spectral representation and Kramers-Kronig relations.

Returning to the explicit representation in energy eigenstates, (16.5), it can be
written in a manner which reminds us of the spectral representation

GR (r; r0;!) =
X
n

	n (r)	
�
n (r

0)

! + i� � En
=

Z
d!0

2�

P
n	n (r)	

�
n (r

0) 2�� (!0 � En)
! + i� � !0

(16.21)

=
R
d!0

2�

A(r;r0;!0)
!+i��!0 =

R
d!0

2�

�2 ImGR(r;r0;!0)
!+i��!0 =

R
d!0 �(r;r

0;!0)
!+i��!0 (16.22)

which de�nes the spectral weight

A (r; r0;!0) =
X
n

	n (r)	
�
n (r

0) 2�� (!0 � En) (16.23)

for the one-particle Green�s functions. �(r; r0;!0) is a generalization of the density
of states. The diagonal piece is usually what we call the local density of states.
Note that in momentum space we would have, for a translationally invariant sys-
tem,

GR (k;!) =
R
d!0

2�

A(k;!0)
!+i��!0 (16.24)
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with
A (k;!0) = �2 ImGR (k;!0) (16.25)

A (k;!0) =
X
n

	n (k)	
�
n (k) 2�� (!

0 � En) (16.26)

=
X
n

hkj ni hn jki 2�� (!0 � En) : (16.27)

In the case of free particles, there is only a single eigenstate jni = jki that
contributes to the sum and we have a single delta function for the spectral weight.
That occurs whenever we are in an eigenbasis.

Remark 146 Assumptions in relating A to ImGR : It is only in the presence of
a time-reversal invariant system that the Schrödinger wave functions 	n (r) can
always be chosen real. In such a case, it is clear that we are allowed to write
A (r; r0;!0) = �2 ImGR (r; r0;!0) as we did in Eq.(16.22).

Remark 147 Analogies with ordinary correlation functions. Contrary to the
spectral representation for correlation functions introduced earlier, there is d!0

2�

instead of d!0

� . That is why there is a factor of two in relating the imaginary
part of the Green�s function to the spectral weight. Furthermore, the denomina-
tor involves ! + i� � !0 instead of !0 � ! � i�, which explains the minus sign in
A (k;!0) = �2 ImGR (k;!0) ; Eq.(16.25). Apart from these di¤erences, it is clear
that A (k;!0) here is analogous to �00 (k;!0) for correlation functions.

Analyticity in the upper half-plane implies Kramers-Kronig relations as before.
In fact, the spectral representation itself leads immediately to

Re
�
GR (r; r0;!)

�
= P

Z
d!0

�

Im
�
GR (r; r0;!0)

�
!0 � ! : (16.28)

The other reciprocal Kramers-Kronig relation follows as before.

Im
�
GR (r; r0;!)

�
= �P

Z
d!0

�

Re
�
GR (r; r0;!0)

�
!0 � ! (16.29)

16.4.2 *Sum rules

As before, the imaginary part, here equal to the local density of states, obeys sum
rulesZ

d!0

2�

�
�2 ImGR (r; r0;!0)

�
=

Z
d!0

2�

X
n

	n (r)	
�
n (r

0) 2�� (!0 � En) (16.30)

=
X
n

	n (r)	
�
n (r

0) = � (r� r0) (16.31)

so that Z
d (r� r0)

Z
d!0

2�

�
�2 ImGR (r; r0;!0)

�
= 1: (16.32)

More sum rules are trivially derived. For example,R
dr
R
d!0

2� !
0 ��2 ImGR (r; r;!0)� = Z dr

Z
d!0!0�(r;!0) =

Z
dr
X
n

En	n (r)	
�
n (r)

(16.33)
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=
R
dr hrj bH jri : (16.34)

This relates the Green�s function to another observable, the energy.
In operator form, all of the above results are trivialR

d!
2�!

nTr
h
�2 Im

� bGR�i = Z d!

2�
!nTr

�
�2 Im

�
1

! + i� � bH
��

(16.35)

=
R
d!!nTr�

�
! � bH� =Tr� bHn

�
Evaluating the trace in the position representation, we recover previous results.
Special cases includeZ

dr

Z
d!0

2�
(!0)

n ��2 ImGR (r; r;!0)� = Z dr hrj bHn jri (16.36)Z
dk

(2�)
3

Z
d!0

2�
(!0)

n ��2 ImGR (k;k;!0)� = Z dk

(2�)
3 hkj bHn jki

You may be uneasy with the formal manipulations of operators we did in this
section. If so, you should to back to the derivations at the beginning of this
section which clearly explain what is meant by the formal manipulations.

Remark 148 Recall that in the case of sum rules for �00, there was also an im-
plicit trace since we were computing equilibrium expectation values.

16.4.3 *High frequency expansion.

Once we have established sum rules, we can use them for high frequency expan-
sions. Consider the spectral representation in the form

GR (k;k;!) =

Z
d!0

2�

�2 ImGR (k;k;!0)
! + i� � !0 : (16.37)

Then for ! su¢ ciently large that ImGR (k;k;!) = 0 (see remark below), the
Green�s function becomes purely real and one can expand the denominator so
that at asymptotically large frequencies,

GR (k;k;!) �
1X
n=0

1

!n+1

Z
d!0

2�
(!0)

n ��2 ImGR (k;k;!0)� (16.38)

Integrating on both sides and using sum rules, we obtain,Z
dk

(2�)
3G

R (k;k;!) �
1X
n=0

1

!n+1

Z
dk

(2�)
3 hkj bHn jki (16.39)

or in more general terms,

Tr
h bGR (!)i � 1X

n=0

1

!n+1
Tr
� bHn

�
(16.40)

which is an obvious consequence of the high-frequency expansion of (16.8)

bGR(!) = 1

! + i� � bH (16.41)
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Remark 149 ImGR (k;k;!) = 0 at high frequency: Indeed consider the relation
of this quantity to the spectral weight Eq.(16.25) and the explicit representation of
the spectral weight Eq.(16.27). Only high energy eigenstates can contribute to the
high-frequency part of ImGR (k;k;!) = 0: The contribution of these high-energy
eigenstates is weighted by matrix elements hn jki. It is a general theorem that the
higher the energy, the larger the number of nodes in hnj. Hence, for jki �xed, the
overlap hn jki must vanish in the limit of in�nite energy.

Remark 150 The leading high-frequency behavior is in 1=!, contrary to that of
correlation functions which was in 1=!2.

16.5 *Relation to transport and �uctuations

The true many-body case is much more complicated, but for the single-particle
Schrödinger equation, life is easy. I work schematically here to show that, in this
case, transport properties may be related to single-particle propagators in a simple
manner. This example is taken from Ref.[12].
Let S�� (k; !) be the charge structure factor for example.

S�� (k; !) =
1

V

Z
dtei!t



�k(t)��k

�
=
1

V

Z
dtei!t



eiHt�ke

�iHt��k
�
: (16.42)

The real-time retarded propagator wasbGR (t) = �ie�iHt� (t) (16.43)

while the advanced propagator wasbGA (t) = ie�iHt� (�t) :

The charge structure factor is then expressed in terms of the propagators

S�� (k; !) =
�1
V

Z
dtei!t

D� bGR (�t)� bGA (�t)� �k � bGR (t)� bGA (t)� ��kE :
(16.44)

Because of the � functions, bGR (�t) bGR (t) = 0.
Remark 151 Alternate proof: We can also see this in the Fourier transform
version using the convolution theorem

S�� (k; !) =
�1
V

Z
d!0

2�

D� bGR (!0)� bGA (!0)� �k � bGR (!0 + !)� bGA (!0 + !)� ��kE :
(16.45)

Integrals such as
R
d!0

2� G
R (!0)GR (!0 � !) vanish because poles are all in the same

half-plane.

The only terms left then are

S�� (k; !) =
1
V
R
d!0

2�

D bGR (!0) �k bGA (!0 + !) ��k + bGA (!0) �k bGR (!0 + !) ��kE
(16.46)

In a speci�c case, to compute matrix elements in the energy representation, one
recalls that

GR(n; n0;E) = hnj 1

E � bH + i�
jn0i = �nn0

1

E � En + i�
(16.47)
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GA(n; n0;E) = hnj 1

E � bH � i� jn0i (16.48)
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17. A FIRST PHENOMENOLOG-
ICAL ENCOUNTER WITH SELF-
ENERGY

In this short Chapter, we want to develop an intuition for the concept of self-energy.
The concept is simplest to understand if we start from a non-interacting system
and assume that we add interactions with a potential or whatever that changes the
situation a little. We will be guided by simple ideas about the harmonic oscillator.
Let us start then from the Green function for a non-interacting particle in

Eq.(16.7)

hkj bGR0 (!) jk0i = GR0 (k; !) = hkj
1

! + i� � bH jk0i = hkj k0i
! + i� � "k

: (17.1)

Since the momentum states are orthogonal, it is convenient to de�ne GR0 (k; !) by

GR0 (k; !) =
1

! + i� � "k
:

The corresponding spectral weight is particularly simple,

A0 (k;!) = �2 ImGR0 (k; !) = 2�� (! � "k) : (17.2)

We should think of the frequency as the energy. It is only for a non-interacting
particle that specifying the energy speci�es the wave vector, since it is only in that
case that ! = "k:
In general, if momentum is not conserved, the spectral representation Eq.(16.24)

GR (k;!) =

Z
d!0

2�

A (k;!0)

! + i� � !0 (17.3)

and the explicit expression for the spectral weight Eq.(16.27)

A (k;!0) =
X
n

hkj ni hn jki 2�� (!0 � En) (17.4)

tells us that a momentum eigenstate has non-zero projection on several true eigen-
states and hence A (k;!0) is not a delta function.
Intuitively, for weak perturbations, we simply expect that A (k;!0) will broaden

in frequency around ! = e"k where e"k is close to "k:We take this intuition from
the damped harmonic oscillator where the resonance is broadened and shifted by
damping. If we take a Lorentzian as a phenomenological form for the spectral
weight

A (k;!0) =
2�

(! � e"k)2 + �2 (17.5)

then the Green�s function can be computed from the spectral representation Eq.(17.3)
by using Cauchy�s residue theorem. The result is

GR (k; !) =
1

! � e"k + i� : (17.6)
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We have neglected i� in front of i�: It is easy to verify that �2 ImGR (k; !) gives
the spectral weight we started from.
With a jargon that we shall explain momentarily, we de�ne the one-particle

irreducible self-energy by

GR (k; !) =
1

! + i� � "k � �R (k; !)
=

1

GR0 (k; !)
�1 � �R (k; !)

: (17.7)

Its physical meaning is clear. The imaginary part Im�R (k; !) = �� corresponds
to the scattering rate, or inverse lifetime, whereas the real part, Re�R (k; !) =e"k � "k leads to the shift in the position of the resonance in the spectral weight.
In other words, �R (k; !) contains all the information about the interactions.
With the simple approximation that we did for the self-energy,

�R (k; !) = e"k � "k � i�; (17.8)

one notices that the second moment n = 2 in Eq.(16.36) diverges because the sec-
ond moment of a Lorentzian does. Hence, the high-frequency expansion becomes
incorrect already at order 1=!3:We need to improve the approximation to recover
higher frequency moments. Nevertheless, in the form

GR (k; !)
�1
= GR0 (k; !)

�1 � �R (k; !) (17.9)

equivalent to that given above, there is no loss in generality. The true self-energy
is de�ned as the di¤erence between the inverse of the non-interacting propagator
and the inverse of the true propagator. Lifetimes and shifts must in general be
momentum and frequency dependent.

Remark 152 The time dependence of the retarded Green�s function shows the
damping: Indeed, note that the Fourier transform of GR (k; !) is, for t > 0,

GR (k; t) =

Z 1

�1

d!

2�
e�i!t

1

! � e"k + i� = �i� (t) e�ie"kt��t (17.10)

which shows that when � tends to zero, then we have the expected oscillatory
behavior in time for the evolution of an eigenstate of renormalized energy e"k.
Taking the square gives a time-independent result (apart from the � (t)) for the
probability. On the other hand, a �nite � means that the amplitude to stay in
state k decays with time, as does the probability (twice as fast). That probability
can be constructed as follows. By construction, the operator bGR(t) allows us to
�nd the wave function at time t; given the initial condition jki at time zero, or as
an equation, hkj bGR(t) jki = hkj  (t)i : Using the Born rule, the probatility that
there is still a particle in state jki at time t is the absolute value of the projection
of the state at time t on the state jki, or in other words,

jhkj  (t)ij2 =
��GR (k; t)��2 = � (t) e�2�t: (17.11)
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18. *PERTURBATION THEORY
FOR ONE-BODY PROPAGATOR

Feynman diagrams in their most elementary form appear naturally in perturbation
theory for a one-body potential. We will also be able to introduce more precisely
the notion of self-energy and point out that the de�nition given above for the
self-energy, GR (k; !)�1 = GR0 (k; !)

�1 � �R (k; !) is nothing but the so-called
Dyson�s equation. As an example, we will treat in more details the propagation
of an electron in a random potential.

18.1 Perturbation theory in operator form

If we can diagonalize H, then we know the propagator

bGR (!) = 1

!� bH+i� (18.1)

from the identities we developed above,

GR(n; n0;E) = hnj 1

E � bH + i�
jn0i = �nn0

1

E � En + i�
(18.2)

GR (r; r0;!) =
X
n

	n (r)	
�
n (r

0)

! + i� � En
: (18.3)

This last equation shows that if we can diagonalize the Hamiltonian, we know the
Green�s function. It can happen that one part of the Hamiltonian, say H0 can be
diagonalized while the other part, say bV , cannot be diagonalized in the same basis.
For example, H0 could be a free particle Hamiltonian diagonal in momentum space
while bV could be a potential diagonal in real space. In this situation, we know
that we can still �nd wave functions and eigenenergies using perturbation theory.
But since it will be natural to formulate everything with Green�s functions, it is
desirable to develop perturbation methods directly for the propagator. The easiest
manner to proceed (when bV is independent of time) is using the operator methods
that follow.
First, write �

! + i� � bH0 � bV � bGR (!) = 1: (18.4)

bGR (!) is an operator that we will explicitly write later in terms of its matrix
elements, just as bH0 and bV are operators in the Hilbert space: It is customary
to omit the identity matrix that multiplies (! + i�) : I hope this does not confuse
you. Just recall that we are working with abstract operators for now. Putting the
perturbation bV on the right-hand side, and using

bGR0 (!) = 1

! + i� � bH0

(18.5)
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we have � bGR0 (!)��1 bGR (!) = 1 + bV bGR (!) : (18.6)

Multiplying by bGR0 (!) on both sides, we write the equation in the form
bGR (!) = bGR0 (!) + bGR0 (!) bV bGR (!) : (18.7)

Perturbation theory is obtained by iterating the above equation.bGR (!) = bGR0 (!) + bGR0 (!) bV bGR0 (!) + bGR0 (!) bV bGR0 (!) bV bGR0 (!) + : : : (18.8)

In scattering theory, this is the propagator version of the Lippmann-Schwinger
equation. It looks as if we have done much progress. We cannot invert the large
matrix H to compute bGR (!) but we have expressed it in terms of quantities we
know, namely bGR0 (!) and bV : We know bGR0 (!) because by hypothesis bH0 can be
diagonalized. At �rst sight, if we want to know the propagator to a given order,
we just stop the above expansion at some order. Stopping the iteration at an
arbitrary point may however lead to misleading results, as we shall discuss after
discussing a simple representation of the above series in terms of pictures, or, let
us call them, (baby) Feynmann diagrams.
But before this, we point out that perturbation theory here can be seen as

resulting from the following matrix identity,

1
X+Y =

1
X �

1
XY

1
X+Y (18.9)

To prove this identity, multiply by X + Y either from the left or from the right.
For example

1

X + Y
(X + Y ) =

1

X
X +

1

X
Y � 1

X
Y

1

X + Y
(X + Y ) = 1 (18.10)

18.2 Feynman diagrams for a one-body potential
and their physical interpretation.

The Lippmann-Schwinger equation Eq.(18.7) may be represented by diagrams.
The thick line stands for bGR (!) while the thin line stands for bGR0 (!) and the
dotted line with a cross represents the action of bV .
� Iterating the basic equation (18.7), one obtains the series -bGR (!) = bGR0 (!)+ bGR0 (!) bV bGR0 (!)+ bGR0 (!) bV bGR0 (!) bV bGR0 (!)+::: (18.11)
which we represent diagrammatically by Fig.(18-1). Physically, one sees that
the full propagator is obtained by free propagation between scatterings o¤
the potential.

18.2.1 A basis with plane wave states normalized to unity

We will want to express the Lippmann-Schwinger equation in position and mo-
mentum spaces. We change our de�nitions a bit. Until we mention a change, we
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Figure 18-1 Diagrammatic representation of the Lippmann-Schwinger equation for
scattering.

work with the following mixed representation where wave vectors are discrete and
space is continuous. We assume that plane waves are normalized to unity in a box
of volume V:

hr jkii =
1

V1=2 e
iki�r (18.12)

The discrete momenta are de�ned by imagining that we have discretized space
with Nx = Lx=a points in the x direction, a being the lattices spacing. Simi-
lar discretization is done in the other directions. We then have, with periodic
boundary conditions,

V = LxLyLz ; kx =
2�nx
Lx

::: ; (18.13)

nx = �Nx
2
+ 1; :::;�1; 0; 1; :::; Nx

2
(18.14)

or nx = 1; 2; :::; Nx (18.15)

The closure relation and normalization in position space areZ
dr jri hrj = 1 (18.16)

hr jr0i = � (r� r0) : (18.17)

One can check that
�R
dr jri hrj

�
jr0i = jr0i :

The normalization to unity of the plane waves follows from

hk jk0i = hkj
�Z

dr jri hrj
�
jk0i

=

Z
dr
1

V e
i(k0�k)�r = �k;k0 (18.18)

where �k;k0 is a Kronecker delta. Consistent with this normalization, the closure
relation is X

k

jki hkj = 1: (18.19)

As usual, one changes from a discrete sum to an integral using the formulaZ
dk

(2�)
3 =

1

V
X
k

(18.20)

A potential term in the Hamiltonian is diagonal in position space, which means

hrj bV jr0i = v (r) hr jr0i = V (r) � (r� r0) (18.21)

and in the momentum basis

hkj bV jk0i =

Z
dr

Z
dr0 hk jri hrj bV jr0i hr0 jk0i (18.22)

=

Z
dr hk jri hr jk0i v (r) =

Z
dr
1

V e
�i(k�k0)�rv (r) (18.23)

=
1

V V
�
k� k0

�
(18.24)
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Figure 18-2 Perturbation series for the progagator for free electrons scattering-o¤
impurities in the position-space basis.

18.2.2 Diagrams in position space

To do an actual computation, we have to express the operators in some basis. This
is simply done by inserting complete sets of states. Using the fact that the potential
is diagonal in the position representation, hr1j bV jr2i = � (r1 � r2) hr1j bV jr1i, we
have that

hrj bGR(!) jr0i = hrj bGR0 (!) jr0i+Z dr1

Z
dr2 hrj bGR0 (!) jr1i hr1j bV jr2i hr2j bGR0 (!) jr0i+:::

(18.25)

= hrj bGR0 (!) jr0i+ Z dr1 hrj bGR0 (!) jr1i hr1j bV jr1i hr1j bGR0 (!) jr0i+ ::: (18.26)

Remark 153 Physical interpretation and path integral: Given that hrj bGR(!) jr0i
is the amplitude to propagate from hrj to jr0i, the last result may be interpreted
as saying that the full propagator is obtained by adding up the amplitudes to go
with free propagation between hrj and jr0i, then with two free propagations and one
scattering at all possible intermediate points, then with three free propagations and
two scatterings at all possible intermediate points etc... The Physics is the same
as that seen in Feynman�s path integral formulation of quantum mechanics that we
discuss below. Multiple scatterings on the same impurity are possible.

One can read o¤ the terms of the perturbation series from the diagrams above
by using the following simple diagrammatic rules which go with the following �gure
(18-2).

� Let each thin line with an arrow stand for hrj bGR0 (!) jr0i : One end of the
arrow represents the original position r while the other represents the �nal
position r0 so that the line propagates from r to r0. Strictly speaking, from
the way we have de�ned the retarded propagator in terms of propagation of
wave functions, this should be the other way around. But the convention we
are using now is more common.

170 *PERTURBATION THEORY FOR ONE-BODY PROPAGATOR



� The X at the end of a dotted line stands for a potential hr1j bV jr2i =
� (r1 � r2)V (r1).

� Diagrams are built by attaching each potential, represented by an X, to the
end of a propagator line and the beginning of another propagator line by a
dotted line.

� The intersection of a dotted line with the two propagator lines is called a
vertex.

� There is one dummy integration variable
R
dr1 over coordinates for each

vertex inside the diagram.

� The beginning point of each continuous line is hrj and the last point is jr0i.
These coordinates are not integrated over.

� The propagator is obtained by summing all diagrams formed with free prop-
agators scattering o¤ one or more potentials. Clearly, I used some artistic
liberty in drawing these diagrams. You could bend the individual lines,
rotate the whole diagram if you wish, it does not change its algebraic mean-
ing, as long as you deform the lines in a continuous way, not cutting any
of them. In other words it is only the topology of the diagram that counts.
And all topologically distinct possibilities must be considered in the sum.
One scattering is distinct from two etc...

18.2.3 Diagrams in momentum space

Since the propagator for a free particle is diagonal in the momentum space rep-
resentation, this is often a convenient basis to write the perturbation expan-
sion in (18.11). Using complete sets of states again, as well as the de�nition
hkj bGR0 (!) jk0i = GR0 (k; !) hkj k0i = GR0 (k; !) �k;k0 we have that for a particle
with a quadratic dispersion law, or a Hamiltonian H0 = p2=2m,

GR0 (k; !) =
1

! + i� � k2

2m

: (18.27)

In this basis, the perturbation series becomes

hkj bGR (!) jk0i = GR0 (k; !) hkj k0i+
X
k1

GR0 (k; !) hkj bV jk1i hk1j bGR (!) jk0i :
(18.28)

Solving by iteration to second order, we obtain,

hkj bGR (!) jk0i = GR0 (k; !) hkj k0i+GR0 (k; !) hkj bV jk0iGR0 (k0; !) (18.29)

+
X
k1

GR0 (k; !) hkj bV jk1iGR0 (k1; !) hk1j bV jk0iGR0 (k0; !) + ::: (18.30)

The diagrams shown in the following �gure Fig.(18-3) are now labeled di¤erently.
The drawing is exactly the same as well as the rule of summing over all topologi-
cally distinct diagrams.
However,

� Each free propagator has a label k;!. One can think of momentum k �owing
along the arrow.
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Figure 18-3 Perturbation series for the progagator for free electrons scattering-o¤
impurities in the momentum-space basis. (before impurity averaging).

� Each dotted line now has two momentum indices associated with it. One
for the incoming propagator, say k, and one for the outgoing one, say k00.
The potential contributes a factor hkj bV jk00i. One can think of momentum
k� k00 �owing along the dotted line, and being lost into the X.

� One must sum
P

k1
over momenta not determined by momentum conser-

vation. If there are n potential scatterings, there are n � 1 momenta to be
integrated over.

18.3 Dyson�s equation, irreducible self-energy

Here I show that to make physical sense of the power series, we need to rearrange
it so that it becomes a power series not for the Green�s function, but for the self-
energy that we introduced earlier. In other words, we must rearrange the series
and resum in�nite subsets. This idea will come back over and over again. We
discuss it here in the simple context of scattering o¤ impurities. Even in this
simple context we would need in principle to introduce the impurity averaging
technique, but we can avoid this.
The Green�s function describes how a wave propagates through a medium. We

know from experience that even in a random potential, such as that which light
encounters when going through glass, the wave can be scattered forward, i.e. if it
comes in an eigenstate of momentum, a plane wave, it has a probability to come
out in the same eigenstate of momentum. So let us compute the amplitude for
propagating from hkj to jki using perturbation theory. Suppose we truncate the
perturbation expansion to some �nite order. For example, take only the k1= k
term in the integral

P
k1
appearing in the perturbation expansion Eq.(18.30) and

consider the truncated series for the diagonal element hkj bGR (!) jki
hkj bGR (!) jki = GR0 (k; !) hkj ki+GR0 (k; !) hkj bV jkiGR0 (k; !) hkj ki : (18.31)
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This step makes more sense in terms of discrete momenta but can be rational-
ized with integrals as well. The missing terms in the sum will be included later.
Stopping this last series to any �nite order does not make much sense for most
calculations of interest. For example, the above series will give for hkj bGR (!) jki
simple and double poles at frequencies strictly equal to the unperturbed energies,
while we know from the spectral representation that hkj bGR (!) jki should have
only simple poles at the true one-particle eigenenergies. Even more disturbing, we
know from Eqs.(16.25) and (16.27) that the imaginary part of the retarded Green�s
function should be negative while these double poles lead to positive contributions.
These positive contributions come from the fact that

Im
1�

! + i� � k2

2m

�2 = � @

@!
Im

1

! + i� � k2

2m

(18.32)

= �
@

@!
�

�
! � k2

2m

�
(18.33)

This derivative of a delta function can be positive or negative depending from
which side it is approached, a property that is more easy to see with a Lorentzian or
Gaussian representation of the delta function. Clearly, the perturbation expansion
truncated to any �nite order does not seem very physical. It looks as if we are
expanding in powers of

hkj bV jkiGR0 (k; !) = hkj bV jki
! + i� � k2

2m

(18.34)

a quantity which is not small for ! near the unperturbed energies k2

2m .
If instead we consider a subset of the terms appearing in the in�nite series,

namely

hkj bGR (!) jki = GR0 (k; !) hkj ki+GR0 (k; !) hkj bV jkiGR0 (k; !) hkj ki (18.35)

+GR0 (k; !) hkj bV jkiGR0 (k; !) hkj bV jkiGR0 (k; !) hkj ki+ ::: (18.36)

which may be generated by

hkj bGR (!) jki = GR0 (k; !) hkj ki+GR0 (k; !) hkj bV jki hkj bGR (!) jki (18.37)

then things start to make more sense since the solution

hkj bGR (!) jki = hkj ki�
GR0 (k; !)

��1 � hkj bV jki (18.38)

has simple poles corresponding to eigenenergies shifted from k2

2m to k2

2m + hkj bV jki
as given by ordinary �rst-order perturbation theory for the energy. To get the
�rst-order energy shift, we needed an in�nite-order expansion for the propagator.

Remark 154 *The simple procedure above gave hkj bGR (!) jki that even satis�es
the �rst sum rule

R
d!
2�Tr

h
�2 Im

� bGR (!)�i = 1 as well as the second R d!
2�!Tr

h
�2 Im

� bGR�i =
Tr [H].

Even though we summed an in�nite set of terms, we de�nitely did not take into
account all terms of the series. We need to rearrange it in such a way that it can
be resummed as above, with increasingly accurate predictions for the positions of
the shifted poles.
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Figure 18-4 Dyson�s equation and irreducible self-energy.

Figure 18-5 First-order irreducible self-energy.

We know how to do this from our previous phenomenological encounter with
the concept of self-energy in Sec.17. Here we de�ne the irreducible self-energyP
(k; !) by the equation

hkj bGR (!) jki = GR0 (k; !) hkj ki+GR0 (k; !) �R (k; !) hkj bGR (!) jki : (18.39)

This is the so-called Dyson equation whose diagrammatic representation is given
in Fig.(18-4) and whose solution can be found algebraically

hkj bGR (!) jki = hkj ki�
GR0 (k; !)

��1 � �R (k; !) : (18.40)

The de�nition of the self-energy is found in principle by comparing with the
exact result Eq.(18.28) obtained from the Lippmann-Schwinger equation. The
algebraic derivation is discussed in the following section, but diagrammatically
one can see what to do. The self-energy

P
(k; !) should contain all possible

diagrams that start with an interaction vertex with entering momentum k, and
end with an interaction vertex with outgoing momentum k and never have in the
intermediate states GR0 (k

0; !) with k0 equal to the value of k we are studying. The
entering vertex and outgoing vertex is the same to �rst order. One can convince
oneself that this is the correct de�nition by noting that iteration of the Dyson
equation (18.39) will give back all missing GR0 (k; !) in intermediate states.P

(k; !) is called irreducible because a diagram in the self-energy cannot be cut
in two separate pieces by cutting one GR0 (k; !) with the same k. In the context of
self-energy, one usually drops the term irreducible since the reducible self-energye�R (!), de�ned by bGR (!) = bGR0 (!)+ bGR0 (!) e�R (!) bGR0 (!) ; does not have much
interest from the point of view of calculations. The last factor in that last equation
is bGR0 (!) instead of the full bGR (!) : Hence e�R contains diagrams that can be cut
in two pieces by cutting one GR0 (k; !) :
To �rst order then,

P
(k; !) is given by the diagram in Fig.(18-5) whose alge-

braic expression can be read o¤

�R(1) (k; !) = hkj bV jki : (18.41)
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Figure 18-6 Second order irreducible self-energy (before impurity averaging). Note
that k1 6= k:That is why this diagram is irreducible.

This is the �rst-order shift to the energies we had found above. To second
order, the diagram is given in Fig.(18-6) and its algebraic expression is

�R(2) (k; !) =
X
k1 6=k

hkj bV jk1iGR0 (k1; !) hk1j bV jki : (18.42)

The result is now frequency dependent and less trivial than the previous one.
There will be a non-zero imaginary part, corresponding to the �nite lifetime we
described previously in our introduction to the self-energy in Chap.17

What have we achieved? We have rearranged the series in such a way that
simple expansion in powers of bV is possible, but for the irreducible self-energy.

Remark 155 Locator expansion: The choice of H0 is dictated by the problem.
One could take bV as the unperturbed Hamiltonian and the hopping as a perturba-
tion. One then has the �locator expansion�.

Remark 156 Strictly speaking the irreducible self-energy starting at order three
will contain double poles, but at locations di¤erent from "k and in addition these
will have negligible weight in integrals so they will not damage analyticity proper-
ties.
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19. *FORMAL PROPERTIES OF
THE SELF-ENERGY

We will come back in the next chapter on the properties of the self-energy and of
the Green function but we give a preview. Given the place where the self-energy
occurs in the denominator of the full Green function Eq.(18.40), we see that its
imaginary part has to be negative if we want the poles of bGR (!) to be in the lower
half-plane. Also, from the Dyson equation (18.39), the self-energy is analytic in
the upper half-plane since hkj bGR (!) jki itself is. Analyticity in the upper half-
plane means that �R (k; !) obeys Kramers-Kronig equations analogous to those
found before for response functions,

Re
�
�R (r; r0;!)� �R (r; r0;1)

�
= P

Z
d!0

�

Im
�
�R (r; r0;!0)

�
!0 � ! : (19.1)

Im
�
�R (r; r0;!)

�
= �P

Z
d!0

�

Re
�
�R (r; r0;!0)� �R (r; r0;1)

�
!0 � ! (19.2)

One motivation for the de�nition of the self-energy is that to compute the shift
in the energy associated with k, we have to treat exactly the free propagation with
GR0 (k; !).
The self-energy itself has a spectral representation, and obeys sum rules. To

�nd its formal expression, let us �rst de�ne projection operators:

P = jki hkj ; Q = 1� P =
Z

dk0

(2�)
3 jk

0i hk0j � jki hkj (19.3)

with the usual properties for projection operators

P2 = P ; Q2 = Q ; P +Q = 1 (19.4)

The following manipulations will illustrate methods widely used in projection op-
erator techniques.[?]
Since H0 is diagonal in this representation, we have that

PGR0 (k; !)Q = QGR0 (k; !)P = 0 (19.5)

We will use the above two equations freely in the following calculations.
We want to evaluate the full propagator in the subspace jki. Let us thus

project the Lippmann-Schwinger equation

P bGRP = P bGR0 P+P bGR0 bV bGRP = P bGR0 P+P bGR0 bV P bGRP+P bGR0 bVQ bGRP: (19.6)
To close the equation, we need Q bGRP, which can also be evaluated,

Q bGRP = Q bGR0 bV bGRP = Q bGR0 bV P bGRP +Q bGR0 bVQ bGRP (19.7)

Q bGRP = 1

1�Q bGR0 bVQQ bGR0 bV P bGRP: (19.8)

Substituting in the previous result, we �nd

P bGRP = P bGR0 P + P bGR0 bV
"
1 +

1

1�Q bGR0 bVQQ bGR0 bV
#
P bGRP (19.9)
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P bGRP = P bGR0 P + P bGR0 P bV
"
1 +

1

1�Q bGR0 bVQQ bGR0 bV P
#
P bGRP (19.10)

This means that the self-energy operator is de�ned algebraically by

b�R = P bV P + P bVQ 1

1�Q bGR
0 QbVQQ bGR0 QbV P : (19.11)

This is precisely the algebraic version of the diagrammatic de�nition which we gave
before. The state k corresponding to the projection P never occurs in intermediate
states, but the initial and �nal states are in P.

Remark 157 Self-energy as a response function: Spectral representation, sum
rules and high frequency expansions could be worked out from here. In particular,
the �rst-order expression for the self-energy su¢ ces to have a propagator which
satis�es the �rst two sum rules. Note that we could continue the process started
here and decide that for the self-energy we will take into account exactly the prop-
agation in a given state and project out everything else. This eventually generates
a continued fraction expansion.[?]

Remark 158 High-frequency behavior of self-energy and sum rules: Given the
1=! high-frequency behavior of bGR0 , one can see that the in�nite frequency limit
of the self-energy is a constant given by P bV P = jki hkj bV jki hkj and that the next
term in the high-frequency expansion is P bVQ 1

!QbV P as follows from the high-
frequency behavior of bGR0 . We will see in the interacting electrons case that the
Hartree-Fock result is the in�nite-frequency limit of the self-energy.

Remark 159 Projection vs frequency dependence: By projecting out in the sub-
space jki hkj, we have obtained instead of the time-independent potential bV , a
self-energy �R which plays the role of an e¤ective potential which is diagonal in
the appropriate subspace, but at the price of being frequency dependent. This is
a very general phenomenon. In the many-body context, we will want to remove
instantaneous two-body potentials to work only in the one-body subspace. When
this is done, a frequency dependent self-energy appears: it behaves like an e¤ec-
tive frequency dependent one-body potential. This kind of Physics is beyond band
structure calculations which always work with a frequency independent one-body
potential.
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20. *ELECTRONS IN A RANDOM
POTENTIAL: IMPURITY AVERAG-
ING TECHNIQUE.

We treat in detail the important special case of an electron being scattered by a
random distribution of impurities. This serves as a model of the residual resistivity
of metals. It is the Green�s function version of the Drude model for elastic impurity
scattering. One must however add the presence of the Fermi sea. When this is
done in the many-body context, very little changes compared with the derivation
that follows. The many-body calculation will also allow us to take into account
inelastic scattering. We start by discussing how to average over impurities, and
then we apply these results to the averaging of the perturbation series for the
Green�s function.
Note that we return to the continuum normalization of Sec.15.1

20.1 *Impurity averaging

Assume that electrons scatter from the potential produced by uniformly distrib-
uted impurities

VC (r) =

NiX
i=1

v (r�Ri) (20.1)

where each of the Ni impurities produces the same potential v but centered at a
di¤erent positionRi. We have added the index C to emphasize the fact that at this
point the potential depends on the actual con�guration of impurities. We want
to work in momentum space since after averaging over impurities translational
invariance will be recovered. This means that the momentum representation will
be the most convenient one for the Green�s functions.

VC (q) =

Z
dre�iq�r

NiX
i=1

v (r�Ri) =

NiX
i=1

e�iq�Ri

Z
dre�iq�(r�Ri)v (r�Ri)

(20.2)

= v (q)

NiX
i=1

e�iq�Ri (20.3)

We assume that the impurities are distributed in a uniform and statistically
independent manner (The joint probability distribution is a product of a factor 1=V
for each impurity). Denoting the average over impurity positions by an overbar,
we have for this distribution of impurities,

VC (q) = v (q)

NiX
i=1

�
e�iq�Ri

�
= v (q)

NiX
i=1

1

V

Z
dRie

�iq�Ri = v (q)
Ni
V (2�)

3
� (q)

(20.4)
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= niv (0) (2�)
3
� (q) (20.5)

where ni is the impurity concentration. We will also need to consider averages of
products of impurity potentials,

VC (q)VC (q0) = v (q) v (q0)

NiX
i=1

e�iq�Ri

NiX
j=1

e�iq
0�Rj : (20.6)

To compute the average, we need to know the joint probability distribution for
having an impurity at site i and an impurity at site j. The most simple-minded
model takes no correlations, in other words, the probability is the product of prob-
abilities for a single impurity, which in the present case were uniform probability
distributions. (This is not such a bad approximation in the dilute-impurity case).
So for i 6= j, we write

NiX
i=1

NiX
j 6=i

e�iq�Rie�iq
0�Rj =

NiX
i=1

NiX
j 6=i

�
e�iq�Ri e�iq

0�Rj

�
=

�
N2
i �Ni

�
V2 (2�)

3
� (q) (2�)

3
� (q0) :

(20.7)
When i = j however, we are considering only one impurity so that

NiX
i=1

e�iq�Rie�iq0�Ri =ni (2�)
3
� (q+ q0) : (20.8)

Gathering the results, and using the result that for a real potential jv (q)j2 =
v (q) v (�q) we �nd

VC (q)VC (q0) =

�
N2
i �Ni

�
V2

�
v (0) (2�)

3
� (q)

��
v (0) (2�)

3
� (q0)

�
+ni jv (q)j2 (2�)3 � (q+ q0) :

(20.9)

20.2 *Averaging of the perturbation expansion for
the propagator

Let us return to the perturbation expansion in momentum space to second order
Eq.(18.30).Using

hkjVC jk0i =
Z
dr hkjriVC (r) hrjk0i = VC

�
k� k0

�
(20.10)

and hkj k0i = (2�)3 �
�
k� k0

�
, we rewrite the perturbation expansion and average

it,

hkj bGR (!) jk0i = GR0 (k; !) (2�)
3
�
�
k� k0

�
+GR0 (k; !)VC

�
k� k0

�
GR0 (k

0; !)
(20.11)

+

Z
dk1

(2�)
3G

R
0 (k; !)VC (k� k1)GR0 (k1; !)VC

�
k1�k0

�
GR0 (k

0; !) + ::: (20.12)

Using what we have learned about impurity averaging, this is rewritten as,

hkj bGR (!) jk0i = �
GR0 (k; !) +G

R
0 (k; !) [niv (0)]G

R
0 (k; !)
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+GR0 (k; !) [niv (0)]G
R
0 (k; !) [niv (0)]G

R
0 (k; !)

�GR0 (k; !)
�
ni jv (0)j2

1

V

�
GR0 (k; !)G

R
0 (k; !)

+GR0 (k; !)

Z
dk1

(2�)
3G

R
0 (k1; !)

h
ni jv (k� k1)j2

i
GR0 (k; !) +:::g (2�)

3
�
�
k� k0

�
(20.13)

Recalling the relation between discrete sums and integrals,Z
dk1

(2�)
3 =

1

V
X
k1

(20.14)

we see that the term with a negative sign above removes the k = k1 term from
the integral. We are thus left with the series

hkj bGR (!) jk0i = �
GR0 (k; !) +G

R
0 (k; !) [niv (0)]G

R
0 (k;!)

+GR0 (k; !) [niv (0)]G
R
0 (k; !) [niv (0)]G

R
0 (k; !)

+GR0 (k; !)

 Z
k1 6=k

dk1

(2�)
3G

R
0 (k1; !)

h
ni jv (k� k1)j2

i!
GR0 (k; !) +:::g (2�)

3
�
�
k� k0

�
(20.15)

The diagrams corresponding to this expansion are illustrated in Fig.(20-1)

= +

+

k k

n v(0)

k k

k

k

kk

k kk =k

n

+
/

+ ...

i

n v(0)i n v(0)i

1

i |v(kk )| 2
1

Figure 20-1 Direct iterated solution to the Lippmann-Schwinger equation after
impurity averaging.

The diagrammatic rules have changed a little bit. Momentum is still conserved
at every vertex, but this time,

� No momentum can �ow through an isolated X (in other words, at the vertex
the momentum continues only along the line.)

� A factor [niv (0)] is associated with every isolated X.
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� Various X can be joined together, accounting for the fact that in di¤erent
X the impurity can be the same.

� When various X are joined together, some momentum can �ow along the
dotted lines. Each dotted line has a factor v (k� k1) associated with it,
with the momentum determined by the momentum conservation rule (which
comes from the fact that if in

R
drf1 (r) f2 (r) f3 (r) we replace each function

by its Fourier representation, the integral
R
dr will lead to a delta function

of the Fourier variables, i.e. k1 + k2 + k3 = 0.)

� The overall impurity concentration factor associated with a single X linking
many dotted lines, is ni, however many dotted lines are associated with it.

� There is an integral over all momentum variables that are not purely deter-
mined by the momentum conservation.

Once again, one cannot truncate the series to any �nite order since this leads
to double poles, triple poles and the other pathologies discussed above. One must
resum in�nite subsets of diagrams. Clearly, one possibility is to write a self-energy
so that

hkj bGR (!) jk0i = hkj k0i�
GR0 (k; !)

��1 � �R (k; !) : (20.16)

If we take the diagrams in Fig.(20-2) for the self-energy, expansion of the last
equation for the Green�s function, or iteration of Dyson�s equation in diagrammatic
Fig.(18-4), regive the terms discussed above in the straightforward expansion since
the algebraic expression for the self-energy we just de�ned is

�R (k; !) = [niv (0)] +
R
k1 6=k

dk1
(2�)3

h
ni jv (k� k1)j2

i
GR0 (k1; !) : (20.17)

+

n v(0)i ni |v(kk )|1
2

k =k/1

Figure 20-2 Second-order irreducible self-energy in the impurity averaging technique.

Remark 160 Energy shift: This self-energy gives us the displacements of the
poles to linear order in the impurity concentration and to second order in the
impurity potential. The displacement of the poles is found by solving the equation

E =
k2

2m
+Re

�
�R (k; E)

�
: (20.18)

Remark 161 Lifetime: Taking the Fourier transform to return to real time, it
is easy to see that a constant imaginary self-energy corresponds to a life-time,
in other words to the fact that the amplitude for being in state k �leaks out� as
other states become populated. Indeed, take �R (k; !) = a� i=� for example, as an
approximation for the self-energy. The corresponding spectral weight is a Lorenzian
and the corresponding propagator in time is GR (k; !) = �ie�i(k

2=2m�a)te�t=� :
We see that the probability of being in state k decreases exponentially. One can
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also check explicitly that the formula found for the lifetime by taking the imaginary
part of the self-energy corresponds to what would be obtained from Fermi�s Golden
rule. For example, the second order contribution from the self-energy expression
Eq.(20.17) is

Im�R (k; !) = ��
Z
k1 6=k

dk1

(2�)
3

h
ni jv (k� k1)j2

i
�

�
! � k21

2m

�
(20.19)

= ��
Z
d"N (")

d


4�

h
ni jv (k� k1)j2

i
� (! � ") (20.20)

where in the last expression, N (") is the density of states, and 
 the solid angle.
One recognizes the density of states at the frequency of interest ! that will come
in and the square of the matrix element. We have an overall factor of � instead
of 2� because � Im�R (k; !) is the scattering rate for the amplitude instead of the
probability. In the continuum, we do not need to worry about k1 6= k for this
calculation.

Remark 162 Self-energy and sum rules: One can check that this self-energy is
explicitly analytic in the upper half-plane and that the corresponding Green�s func-

tion satis�es the �rst sum rule
R
d!
2�Tr

h
�2 Im

� bGR (!)�i = Tr
�
H0
�
= 1 as well

as the second
R
d!
2�!Tr

h
�2 Im

� bGR�i = Tr [H]. However, at this level of approx-

imation, none of the other sum rules are satis�ed because the second and higher
moments of a Lorentzian are not de�ned.

Remark 163 Average self-energy and self-averaging: We could have obtained
precisely the same result by directly averaging the self-energies (18.41)(18.42) de-
�ned in the previous subsection (18.39). Indeed, since the rule there was that
GR0 (k; !) could not occur in the intermediate states, impurity averaging of the
second-order diagram (18.42) would have given only the correlated contributionR
k1 6=k

dk1
(2�)3

h
ni jv (k� k1)j2

i
GR0 (k1; !). A GR0 (k; !) in the intermediate state

would be necessary to obtain a contribution [niv (0)]
2. It is possible to average

directly the self-energy in the Dyson equation Eq.(18.39) only if hkj bGR (!) jki is
itself not a random variable. What the present demonstration shows is that indeed,
forward scattering, i.e. hkj bGR (!) jk0i with k = k0, is a self-averaging quantity, in
other words, its �uctuations from one realization of the disorder to another may
be neglected. Forward scattering remains coherent.

Remark 164 Correlations in the impurity distribution: If we had taken into ac-
count impurity-impurity correlations in the joint average (20.7),

NiX
i=1

NiX
j 6=i

e�iq�Rie�iq
0�Rj ; (20.21)

then we would have found that instead of two delta functions leading eventu-
ally to forward scattering only, (2�)3 �

�
k� k0

�
, o¤-diagonal matrix elements of

hkj bGR (!) jk0i would have been generated to order n2i by the Fourier transform of
the impurity-impurity correlation function. In other words, correlations in the im-
purity distribution lead to coherent scattering o¤ the forward direction. In optics,
this e¤ect is observed as laser speckle pattern.

Remark 165 Strong impurity potential: It is easy to take into account the scat-
tering by a single impurity more carefully in the self-energy. The set of diagrams
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in Fig.(20-3) are all �rst-order in impurity concentration. Their summation cor-
responds to summing the full Born series. In other words, the summation would
correspond to replacing the Born cross section entering the expression for the
imaginary part of the Green�s function by the full T-matrix expression. The cross
section for the impurity is then evaluated beyond the Born approximation. This is
important when the phase shifts associated with scattering from the impurity are
important.

+ + + ...

Figure 20-3 Taking into account multiple scattering from a single impurity.

Remark 166 Irreversibility and in�nite volume limit: We have proven that the
poles of the Green�s function are in�nitesimally close to the real axis. In particular,
suppose that jni labels the true eigenstates of our one-body Schrödinger equation
in the presence of the impurity potential. Then, our momentum space Green�s
function will be given by Eq.(16.5)

GR (k;k;!) =
X
n

hkj ni hn jki
! + i� � En

(20.22)

� 1
�
Im
�
GR (k;k;!)

�
=
X
n

hkj ni hn jki � (! � En) : (20.23)

In the case we are considering here, k is no longer a good quantum number. Hence,
instead of a single delta function, the spectral weight � 1

� Im
�
GR (k;k;!)

�
contains

a sum of delta functions whose weight is determined by the projection of the true
eigenstate on k states. However, if we go to the in�nite volume limit, or equiva-
lently assume that the level separation is smaller than �, the discrete sum over n
can be replaced by an integral, and we obtain a continuous function for the spectral
weight. As long as the Green�s function has discrete poles, the Fourier transform
in time of GR is an oscillatory function and we have reversibility (apart from the
damping �): Going to the in�nite volume limit, (level spacing goes to zero before
�), we obtained instead a continuous function of frequency instead of a sum over
discrete poles. The Fourier transform of this continuous function will in general
decay in time. In other words, we have obtained irreversibility by taking the in�nite
volume limit before the � ! 0 limit.

Remark 167 Origin of poles far from the real axis: We come back to the phenom-
enological considerations on the self-energy in Chap.17. In the case of a continuous
spectral weight, when we start to do approximations there may appear poles that
are not in�nitesimally close to the real axis. Indeed, return to our calculation of
the imaginary part of the self-energy above. If we write

� 1
�
Im
�
GR (k;k;!)

�
=
1

�

� Im
�
�R (k; !)

��
! � k2

2m � Re [�R (k; !)]
�2
+ (Im [�R (k; !)])

2

(20.24)
then there are many cases, such as the one of degenerate electrons scattering o¤
impurities, where for small ! we can approximate Im

�
�R (k; !)

�
by a constant and

Re
�
�R (k; !)

�
by a constant plus a linear function of frequency. Then GR (k;k;!)
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has a single pole, far from the real axis. In reality, we see from the spectral repre-
sentation Eq.(16.24) that this single pole is the result of the contribution of a series
of poles near the real axis, each of which gives a di¤erent residue contribution to
the spectral weight. (In the impurity problem, k is not a good quantum number
anymore so that several of the true eigenstates En entering the spectral weight
Eq.(16.27) have a non-zero projection hkj ni on momentum eigenstates hkj :) It is
because the spectral weight here is approximated by a Lorentzian that the resulting
retarded Green�s function looks as if it has a single pole. It is often the case that
the true Green�s function is approximated by functions with a few poles that are not
close to the real axis. This can be done not only for the Green�s function, but also
for general response functions. Poles far from the real axis will arise in general
when the spectral weight, or equivalently the self-energy, is taken as a continuous
function of frequency, in other words when the in�nite size limit is taken before
the limit � ! 0.
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21. *OTHER PERTURBATION
RESUMMATION TECHNIQUES: A
PREVIEW

The ground state energy may be obtained by the �rst sum rule. But in the more
general case, one can develop a perturbation expansion for it. The corresponding
diagrams are a sum of connected diagrams. The so-called �linked cluster theorem�
is a key theorem that will come back over and over again.
Given the expression we found above for the density-density correlation, the

reader will not be surprised to learn that the diagrams to be considered are, before
impurity averaging, of the type illustrated in Fig.(21-1). The density operators
act at the far left and far right of these diagrams.

+ ...

Figure 21-1 Some diagrams contributing to the density-density correlation function
before impurity averaging.

After impurity averaging, we obtain for example diagrams of the form illus-
trated in Fig.(21-2)
Subset of diagrams corresponding to dressing internal lines with the self-energy

can be easily resummed. The corresponding diagrams are so-called skeleton dia-
grams. The �rst two diagrams in Fig.(21-2) could be generated simply by using
lines that contain the full self-energy. The diagrams that do not correspond to
self-energy insertions, such as the last on in Fig.(21-2), are so-called vertex cor-
rections.
Subsets of vertex corrections that can be resummed correspond to ladders or

bubbles. Ladder diagrams, illustrated in Fig.(21-3) correspond to the so-called
Bethe-Salpeter equation, or T-matrix equation. They occur in the problem of
superconductivity and of localization.
The bubbles illustrated in Fig.(21-4) are useful especially for long-range forces.

They account for dielectric screening, and either renormalize particle-hole excita-
tions or give new collective modes: excitons, plasmons, spin wave, zero sound and
the like.
Finally, self-consistent Hartree-Fock theory can be formulated using skeleton

diagrams, as illustrated in Fig.(21-5). The self-consistency contained in Hartree-
Fock diagrams is crucial for any mean-�eld type of approximation, such as the
BCS theory for superconductivity and Stoner theory for magnetism.
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+

+ ...

Figure 21-2 Some of the density-density diagrams after impurity averaging.

...= + +

= +

Figure 21-3 Ladder diagrams for T-matrix or Bethe-Salpeter equation.

= +

=

+

+

+  ...

Figure 21-4 Bubble diagrams for particle-hole exitations.
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=

+ +

Figure 21-5 Diagrammatic representation of the Hartree-Fock approximation.

Parquet diagrams sum bubble and ladder simultaneously. They are essential if
one wants to formulate a theory at the two-particle level which satis�es fully the
antisymmetry of the many-body wave-function. In diagrammatic language, this
is known as crossing symmetry.
We come back on all these notions as in the context of the �real�many-body

problem that we now begin to discuss.
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22. *FEYNMAN PATH INTEGRAL
FOR THE PROPAGATOR, AND
ALTERNATE FORMULATION OF
QUANTUM MECHANICS

We have seen that all the information is in the one-particle propagator. It is
thus possible to postulate how the propagator is calculated in quantum mechanics
and obtain a new formulation that is di¤erent from Schrödinger�s, but that can be
proven equivalent. This formulation is Feynman�s path integral,[?] that came from
ideas of Dirac.[68] The �nal outcome will be that the amplitude to go from one
point to another is equal to the sum over all possible ways of going between the
points, each path being weighted by a term proportional to eiS( _x;x) where S is the
action. To understand that all intermediate paths are explored, it su¢ ces to think
of Young�s interference through two slits. If we add more and more slits, we see
that the wave must go everywhere. In quantum mechanics there is no trajectory,
one of the most surprising results of that theory. However, if the action is large, as
in the classical limit, the most likely path will be that which minimizes the action,
just as we know from the least action principle in classical mechanics. That is one
of the ways in which the classical limit comes out most clearly.

Remark 168 As emphasized by Dirac, if matter is made of elementary con-
stituents, there must be an absolute notion of smallness, otherwise there is no
end into the question �what is inside�. That absolute quantity is not a size, it is
an action, Planck�s constant h:That is why macroscopic objects can behave quan-
tum mechanically, as long as the physical processes involved have an action that is
comparable to Planck�s constant. And vice-versa, why classical mechanics comes
out if the action is large, as we proceed to see.

Instead of postulating Feynman�s path integral, here I derive the path integral
formulation from Schrödinger�s quantum mechanics. In practice, this method is
now used mostly for numerical calculations and for deriving semi-classical approx-
imations. It is conceptually very useful and has generalizations to the many-body
case that often used in contemporary work.

We take a single particle in one dimension to simplify the discussion. The rele-
vant object is the amplitude for a particle to go from position xi to position xf in a
time t: Feynman calls that the probability amplitude or the kernel K (xf ; t;xi; 0) :
I will use the notation G> (xf ; t;xi; 0) for reasons that will be come clear when we
discuss propagators in second quantized notation: Mathematically then,

G> (xf ; t;xi; 0) � hxf j e�iHt=~ jxii : (22.1)

It is the basic object of this section.
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22.1 *Physical interpretation

There are several ways to physically understand the quantity de�ned above. From
the basic postulates of quantum mechanics, squaring G> (xf ; t;xi; 0) gives the

probability
��hxf j e�iHt=~ jxii��2: that we are in eigenstate of position xf at time t

if the starting state is a position eigenstate xi: Also, if we know G> (xf ; t;xi; 0)
we know the amplitude to go from any state to any other one. Indeed, inserting
complete sets of position eigenstates we �nd that


 f
�� e�iHt=~ j ii = Z dxidxf 

�
f (xf ) i (xi) hxf j e�iHt jxii (22.2)

Another way to see how to use G> (xf ; t;xi; 0) is to relate it to the retarded
propagator,

GR (xf ; t;xi; 0) � �i hxf j e�iHt jxii � (t) = �iG> (xf ; t;xi; 0) � (t) (22.3)

where � (t) is the heaviside step function. Inserting a complete set of energy
eigenstates, we �nd

GR (xf ; t;xi; 0) � �i
X
n

hxf j ni e�iEnt hn jxii � (t)

= �i
X
n

 n (xf ) 
�
n (xi) e

�iEnt� (t) (22.4)

As we saw before, the Fourier transform of this quantity with � a positive real
number is Z 1

�1
dtei(z+i�)tGR (xf ; t;xi; 0) =

X
n

 n (xf ) 
�
n (xi)

z + i� � En
: (22.5)

The poles of this function, as we already know, give the eigenenergies and the
residues are related to the wave functions. In the many-body context, a general-
ization of the propagator occurs very naturally in perturbation theory.

Remark 169 In statistical physics, hxf j � jxii is a quantity of interest. Using the
known form of the density matrix, we have hxf j � jxii = hxf j e��H jxii =Z: Hence,
computing these matrix elements is like computing the propagator in imaginary
time � with the substitution t ! �i� : This analogy holds also in the many-body
context. The density matrix is much better behaved in numerical evaluations of the
path integral than the equivalent in real time because it does not have unpleasant
oscillations as a function of time.

22.2 *Computing the propagator with the path in-
tegral

In general, H contains non-commuting pieces. The potential energy V is diagonal
in position space, but the kinetic energyK is diagonal in momentum space. Hence,
computing the action of e�iHt on jxii is non-trivial since we need to diagonalize
the Hamiltonian to compute the value of the exponential of an operator and that
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Hamiltonian contains two non-commuting pieces that are diagonal in di¤erent
basis. The key observation is that if the time interval t is very small, say "; then
the error that we do in writing the exponential as a product of exponentials is of
order "2 since it depends on the commutator of K" with V "

e�iH" � e�iK"e�iV " +O
�
"2
�
: (22.6)

In fact the error of order "2 is in the argument of the exponential, as one can see
from the Baker-Campbell-Hausdor¤ formula eAeB = eM with

M = A+B +
1

2
[A;B] + a2 [A; [A;B]] + : : : (22.7)

where a2 is a numerical coe¢ cient. In numerical calculations it is important to
keep the exponential form since this garantees unitarity.
Other factorizations give errors of even higher order. For example,

e�iH" � e�iV "=2e�iK"e�iV "=2 (22.8)

gives an error of order "3: In practice, for numerical simulations it is quite useful
to use factorizations that lead to higher order errors. To continue analytically
however, the simplest factorization su¢ ces.
In the factorized form, we can take advantage of the fact that we can introduce

complete sets of states where the various pieces of the Hamiltonian are diagonal
to compute the propagator for an in�nitesimal time

hxf j e�iK"e�iV " jxii =

Z
dp

2�
hxf j e�iK" jpi hpj e�iV " jxii (22.9)

=

Z
dp

2�
e
i
h
�" p

2

2m+p(xf�xi)�"V (xi)
i

(22.10)

where, reverting to our earlier continuum normalization in Sec. 15.1, I used hxj pi =
eipx: The last formula can be rewrittenZ

dp

2�
ei(p _x�H)" (22.11)

where

_x � xf � xi
"

: (22.12)

The argument of the exponential is the Lagrangian times the time interval. It thus
has the units of action and is made dimensionless by dividing by the quantum of
action ~ that we have set to unity.
For a �nite time interval, we simply split the time evolution operator into

evolution pieces that evolve over an in�nitesimal time interval

e�iHt =
NY
i=1

e�iH" (22.13)

where " = t=N: There is no approximation here. Inserting N � 1 complete sets of
states, we have

hxf j e�iHt jxii =

Z N�1Y
j=1

dxj hxf j e�iH" jxN�1i hxN�1j e�iH" jxN�2i hx2j : : :

jx1i hx1j e�iH" jxii : (22.14)
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Each of the N matrix elements can be evaluated now using the previous trick so
that the propagator is given by the formally exact expression

hxf j e�iHt jxii = lim
N!1

Z N�1Y
j=1

dxj

Z NY
j=1

dpj
2�

exp

�
i

�
pN

xf � xN�1
"

� p2N
2m
� V

�
x
N�1

��
"

+i

�
pN�1

xN�1 � xN�2
"

�
p2N�1
2m

� V
�
x
N�2

��
"

+ : : :

+ i

�
p1
x1 � xi

"
� p21
2m
� V (x

i
)

�
"

�
(22.15)

To do the calculation, this is what one has to do. Formally however, the �nal
expression is quite nice. It can be written as a path integral in phase space

hxf j e�iHt jxii =

Z
[DxDp] exp

�
i

Z
dt [p _x�H (p; x)]

�
(22.16)

=

Z
[DxDp] exp iS (x; p) (22.17)

where the de�nition of the measure [DxDp] is clear by comparison and where S is
the action.
It is more natural to work in con�guration space where the Lagrangian is

normally de�ned. This comes out automatically by doing the integral over all
the intermediate momenta. They can be done exactly since they are all Gaussian
integrals that are easily obtained by completing the squareZ

dp

2�
exp i

�
pN�1

xN�1 � xN�2
"

�
p2N�1
2m

�
" =

r
m

2�i"
exp

"
im

2

�
xN�1 � xN�2

"

�2
"

#

=

r
m

2�i"
exp

�
im

2
_x2N�1"

�
: (22.18)

Remark 170 The above is the propagator for a free particle. In that case, the
time interval could be arbitrary and the result could also be obtained using our
earlier decomposition on energy eigenstates sinceX

n

�n (xf )�
�
n (xi) e

�iEnt =

Z
dp

2�
eip(xf�xi)�it

p2

2m : (22.19)

Once the integrals over momenta have been done, we are left with

hxf j e�iHt jxii = lim
N!1

Z N�1Y
j=1

dxj
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=

Z xf

xi

Dx exp
�
i

Z t

0

dt0
�
1

2
m _x2 � V (x)

��
=

Z xf

xi

DxeiS( _x;x) (22.21)

where the formal expression makes clear only that it is the integral of the La-
grangian, hence the action, that comes in the argument of the exponential. The
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integration measure here is di¤erent from the one we had before. This form is
particularly useful for statistical physics where all the integrals are clearly con-
vergent, as opposed to the present case where they oscillate rapidly and do not
always have a clear meaning.
The physical interpretation of this result is quite interesting. It says that the

amplitude for going from one point to another in a given time is given by the sum
amplitudes for all possible ways of going between these two points in the given
time, each path, or trajectory, being weighted by an exponential whose phase is
the classical action measured in units of the action quantum ~.

Remark 171 Classical limit: The classical limit is obtained when the action is
large compared with the quantum of action. Indeed, in that case the integral can
be evaluated in the stationary phase approximation. In that approximation, one
expands the action to quadratic order around the trajectory that minimizes the ac-
tion. That trajectory, given by the Euler-Lagrange equation, is the classical trajec-
tory according to the principle of least action. By including gaussian �uctuations
around the classical trajectory, one includes a �rst set of quantum corrections.

Remark 172 The exponentials in the path integral are time-ordered, i.e. the ones
corresponding to later times are always to the left of those with earlier times. This
time-ordering feature will be very relevant later for Green functions.
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23. EXERCICES FOR PART III

23.0.1 Fonctions de Green retardées, avancées et causales.

Soit la fonction de Green pour des particules libres:�
i
@

@t
+

1

2m
r2
�
G (r� r0; t) = �3 (r� r0) � (t)

a) Calculez G (k; !) en prenant la transformée de Fourier de cette équation
d�abord dans l�espace, puis dans le temps. Pour la transformée de Fourier spatiale,
on peut supposer queG (r� r0; t) = 0 à r� r0 = �1: Dans le cas de la transformée
de Fourier dans le temps, intégrez par parties et montrez que le choix �i� est
déterminé par l�endroit où G s�annulle, soit à t = 1 ou à t = �1.:Une de ces
fonctions de Green est la fonction dite avancée.
b) Rajoutez à la fonction retardée une solution de la version homogène de

l�équation di¤érentielle pour obtenir une fonction de Green qui ne s�annule ni à
t = 1 ni à t = �1 et qui est le plus symétrique possible sous le changement
(t! �t), plus spéci�quement G�c (k; t) = Gc (k;�t). C�est la fonction de Green
�Causale�(Time-ordered).
c) Calculez la fonction de Green retardée GR (r� r0; t) pour une particule libre

en trois dimensions en prenant la transformée de Fourier de GR (k; !).

23.0.2 Partie imaginaire de la self-énergie et règle d�or de Fermi

k

(kk ) (k k)

|V(kk )| 2

1

1

1

1

Figure 23-1 Second order irreducible self-energy (before impurity averaging). Note
that k1 6= k:That is why this diagram is irreducible.

Supposons un potentiel delta, hrjV jr0i = v (r) hr jr0i = v� (r) hr jr0i = v� (r) � (r� r0)
dans un milieu uniforme. De plus, on suppose que

GR0 (k1; !) =
1

! + i� � k2

2m

(23.1)

a) Montrez que

hkjV jk1i =

Z
d3r

Z
d3r0 hk jri hrjV jr0i hr0 jk1i (23.2)

= hk jr = 0i hr = 0 jk1i v (23.3)

=
v

V : (23.4)
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b) Montrez qu�au premier ordre en V; la self-énergie ne fait que déplacer le zéro
d�énergie. (Négligez ce changement de zéro d�énergie dans la suite).
c) Évaluez la partie imaginaire de la self-énergie au deuxième ordre

�R(2) (k; !) =
X
k1 6=k

hkjV jk1iGR0 (k1; !) hk1jV jki (23.5)

et montrez que l�on retrouve ce que la règle d�or de Fermi nous aurait donné
pour une collision élastique. (Passez de la somme discrète à une intégrale en
utilisant un facteur V�1 et utilisez la densité d�états pour réécrire le résultat
et remarquez que la restriction k1 6= k est de mesure négligeable). Pour faire
le lien entre le temps de vie trouvé avec la self et la règle d�or, vous pouvez
transformer l�amplitude hkjGR (t) jki en probabilité en prenant le module carré.
Vous pouvez prendre la partie imaginaire de la self-énergie comme une constante
pour calculer hkjGR (t) jki. Il y aura une décroissance exponentielle en temps de
cette probabilité. Ce taux de décroissance est relié à celui trouvé avec la règle d�or
de Fermi. Pouvez-vous expliquer le facteur 2?
d) Discutez de l�interprétation de la partie imaginaire de la self-énergie comme

d�un temps de vie (vous pouvez faire l�approximation que la densité d�états est
indépendante de la fréquence).
e) Discutez de la partie réelle de la self-énergie en lien avec la formule stan-

dard pour le déplacement des niveaux d�énergie en théorie des perturbations au
deuxième ordre.
f) Montrez que la relation ci-dessus pour la self-énergie est cohérente avec le fait

que parties réelles et imaginaires de la self-énergie soient reliées par une relation
de Kramers-Kronig.

23.0.3 Règles de somme dans les systèmes désordonnés.

La seconde quanti�cation est prérequise à cet exercice. Soit l�Hamiltonien de
liaisons fortes pour une chaîne unidimensionnelle:

H =
X
i

�ia
+
i ai + t

X
i

�
a+i ai+1 + a

+
i+1ai

�
où ai est un opérateur de destruction sur le site i. Les énergies �i des sites ont
une valeur �0 avec une probabilité x et une valeur �1 avec une probabilité 1 � x.
Il n�y a qu�une particule.
a) Utilisez les règles de somme pour calculer la valeur moyenne sur le désordre

du moment d�ordre 0 et du moment d�ordre 1 de la densité d�états totale � (!),
i.e. calculez la valeur moyenne sur le désordre de

R
d!!n� (!) pour n = 0; 1.

b) Calculez aussi � (!) lorsque la chaîne est ordonnée, i.e. x = 1.

23.0.4 Développement du locateur dans les systèmes désordonnés.

Soit une particule sur un réseau où l�énergie potentielle sur chaque site i est aléa-
toire (L�espace des positions est maintenant discret et les intégrales peuvent être
remplacées par des sommes).
a) Décrivez dans l�espace des positions les diagrammes pour la théorie des

perturbations permettant de calculer Gii lorsque le potentiel joue le rôle de H0
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� diagonal dans l�espace des positions i� et les éléments de matrice Hij de la
perturbation sont non-nuls seulement lorsque deux sites i et j sont premiers voisins.
Il n�est pas nécessaire de faire la moyenne sur le désordre.
b) Comment dé�nirait-on la self-énergie de Dyson pour Gii, toujours sans faire

la moyenne sur le désordre?

23.0.5 Une impureté dans un réseau: état lié, résonnance, matrice T .

Considérons des électrons qui n�interagissent pas l�un avec l�autre mais qui sautent
d�un site à l�autre sur un réseau. Les intégrales sur la position deviennent des
sommes discrètes. On suppose ce réseau invariant sous translation et on note
les éléments de matrice de l�Hamiltonien hijH jji = tij sauf pour une impureté,
située à l�origine, caractérisée par un potentiel V local. À partir de l�équation de
Lippmann-Schwinger, on voit que l�équation du mouvement pour la fonction de
Green retardée dans ce cas estX

`

(�i;` (! + i�)� ti`)GR (`; j;!) = �i;j + �i;0V G
R (0; j;!) (23.6)

On suppose qu�on connaît la solution du problème lorsque l�impureté est absente,
i.e. qu�on connaît X

`

(�i;` (! + i�)� ti`)GR0 (`; j;!) = �i;j (23.7)

a) Utilisant ce dernier résultat, montrez que

GR (i; j;!) = GR0 (i; j;!) +G
R
0 (i; 0;!)V G

R (0; j;!) (23.8)

b) Résolvez l�équation précédente pour GR (0; j;!) en posant i = 0 puis dé-
montrez que dans le cas général

GR (i; j;!) = GR0 (i; j;!) +G
R
0 (i; 0;!)T

R (0; 0;!)GR0 (0; j;!) (23.9)

où la matrice T est dé�nie par

TR (0; 0;!) =
V

1� V GR0 (0; 0;!)
(23.10)

La matrice T tient compte exactement de la di¤usion provoquée par l�impureté.
Dans le cas de l�approximation de Born, il n�y aurait eu que le numérateur pour
la matrice T .
Nous allons calculer maintenant la densité d�états locale sur l�impureté.
c) Démontrez d�abord que les pôles GR0 (0; 0;!) du problème sans impureté

n�apparaissent plus directement dans ceux du nouveau propagateur GR (0; 0;!) et
que les pôles de ce dernier sont plutôt situés là où

1� V GR0 (0; 0;!) = 0 (23.11)

d) Posons (~ = 1)

GR0 (0; 0;!) =
1

N

NX
k=1

1

! + i� � "k
(23.12)

où les "k sont les énergies propres du système sans impureté. En ne dessinant qu�un
petit nombre des valeurs de "k possibles et en notant que celles-ci sont très près
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l�une de l�autres (distantes de O (1=N)), montrez graphiquement que les nouveaux
pôles donnés par la solution de 1 � V ReGR0 (0; 0;!) = 0 ne sont que légèrement
déplacés par rapport à la position des anciens pôles, sauf pour un nouvel état lié
(ou anti-lié) qui peut se situer loin de l�un ou de l�autre des bords de l�ancienne
bande à condition que V � V0 ou V � V 00 : Pour ce dernier calcul, on utilise la
limite N =1;

1

N

NX
k=1

!
Z
N (") d" (23.13)

et les dé�nitions

1

V0
�
Z
N (") d"

!B � "
;

1

V 00
�
Z
N (") d"

!B0 � " (23.14)

!B et !B0 étant respectivement dé�nies comme les fréquences supérieures et in-
férieures des bords de la bande :
e) Montrez que la densité d�états locale sur l�impureté est donnée par

N (!)h
1� V P

R N(")d"
!�"

i2
+ V 2�2N (!)

2
(23.15)

Par rapport à la densité d�états N (!) de la bande originale, cette densité d�états
est donc augmentée ou réduite, selon que le dénominateur est plus petit ou plus
grand que l�unité. En particulier, même lorsqu�il n�y a pas d�état lié ou anti-lié, il
est quand même possible qu�il y ait une forte augmentation de la densité d�états
pour une énergie située à l�intérieur de la bande. La position de la résonnance !r
est donnée par

1� V P
Z
N (") d"

!r � "
= 0 (23.16)

et sa largeur est approximativement donnée par V �N (!r).
f) À partir du résultat précédent, montrez qu�en dehors de l�ancienne bande,

c�est-à-dire là où N (!) ! 0; une fonction delta apparaît dans la densité d�états
lorsqu�il y a un état lié ou anti-lié et calculez le poids de cette fonction delta.
Laissez les résultats sous forme d�intégrale sans les évaluer explicitement.

23.0.6 Di¤usion sur des impuretés. Résistance résiduelle des métaux.

Continuons le problème de la di¤usion d�une particule sur des impuretés abordé
précédemment. Supposez qu�on s�intéresse à des quantités de mouvement et des
énergies près de la surface de Fermi d�un métal. (d = 3) Mesurant l�énergie par
rapport à la surface de Fermi, on a alors comme propagateur non-perturbé

GR0 (k; !) =
1

! + i� � � (k)

où � (k) � (� (k)� �) avec � (k) = k2=2m et � le potentiel chimique.
Dans tous les calculs qui suivent vous pouvez faire l�approximation que les

contributions principales viennent des énergies près du niveau de Fermi. Cela
veut dire que vous pouvez partout faire la substitutionZ

dk

(2�)
3 � N (0)

Z 1

�1
d�
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où N (0) est la densité d�états au niveau de Fermi, que l�on prend constante. Dans
le cas où l�intégrale sur � ne converge pas, on régularise de la façon suivante

N (0)

Z E0

�E0
d�

où E0 est une coupure de l�ordre de l�énergie de Fermi.
a) Calculez explicitement la valeur de la règle de somme Tr [H] pour ce prob-

lème de di¤usion sur un potentiel aléatoire.
b) Calculez les parties réelle et imaginaire de

PR
(k; !) dans l�approximation

illustrée sur la �gure 23-2

+

n v(0)i ni |v(kk )|1
2

k =k/1

Figure 23-2 Second-order irreducible self-energy in the impurity averaging technique.

en prenant une fonction delta (v(r) =u� (r)) pour le potentiel di¤useur. Ex-
primez le résultat en fonction de la densité d�états.
c) En négligeant toute dépendance en k et ! de

P
(k; !), véri�ez que dans cette

approximation, les deux règles de somme sur GR (k,!) correspondant à Tr
�
H0
�
=

Tr [1] et à Tr [H] sont satisfaites, mais qu�aucune autre ne l�est.
d) En approximant encore la self-énergie par une constante indépendante de

k et !, prenez la transformée de Fourier du résultat que vous avez trouvé pour
GR (k,!) et calculez GR(k; t). (N.B. Il est utile de dé�nir un temps de relaxation
pour votre résultat en vous basant sur des considérations dimensionnelles.) Donnez
une interprétation physique de votre résultat pour GR(k; t) .
e) Supposons que dans le diagramme de ci-haut qui contient une fonction de

Green, on fait une approximation auto-cohérente, i.e. on utilise la fonction de
Green �habillée� plutôt que la fonction de Green des particules libres. Montrez
que, moyennant des hypothèse raisonnables, les résultats précédents ne sont pas
vraiment modi�és.
f) Dessinez quelques-uns des diagrammes de la série de perturbation originale

pour la self-énergie que l�approximation auto-cohérente décrite ci-dessus resomme
automatiquement.
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Part IV

The one-particle Green�s
function at �nite
temperature

203





In the many-body context we need to �nd a generalization of the Green�s
function that will reduce to that found for the one-body Schrödinger equation in
the appropriate limit. This object comes in naturally from two perspectives. From
the experimental point of view, a photoemission experiment probes the Green�s
function in the same way that our scattering experiment at the very beginning
probed the density-density correlation function. Just from an experimental point
of view then, it is important to de�ne that quantity. From the theoretical point of
view, any quantum mechanical calculation of a correlation function involves the
Green�s function as an intermediate step. That is one more reason to want to
know more about it.
I will begin with a brief recall of second quantization and then move on to

show that to predict the results of a photoemission experiment, we need a Green�s
function. We will establish the correspondance with the Green�s function we al-
ready know. When there are interactions, one needs perturbation theory to treat
the problem. Time-ordered products come in naturally in that context. Such
time-ordered products motivate the de�nition of the Matsubara Green�s function
at �nite temperature. The �nite temperature formalism is more general and not
more di¢ cult than the zero-temperature one. We will once more spend some time
on the interpretation of the spectral weight, develop some formulas for working
with the Fourier series representation of the imaginary time functions (Matsubara
frequencies). This should put us in a good position to start doing perturbation
theory, which is all based on Wick�s theorem. Hence, we will spend some time
proving this theorem as well as the very general linked-cluster theorem that is very
useful in practice.
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24. MAIN RESULTS FROM SEC-
OND QUANTIZATION

One of the most important results of quantum mechanics is that identical particles
are indistinguishible: we cannot tell that a speci�c electron is at a given coordi-
nate, we can just say that one electron is at that coordinate. Even in statistical
mechanics, this indistinguishibility is important. This means that the wave func-
tion, say  (r1; r2; r3) behaves in s speci�c way if coordinates are interchanged:
If r1 takes any particular value, say a, and r2 takes another value, say b, then
they are indistinguishible, i.e.  (a;b; r3) =  (b;a; r3) : But that is not the only
possibility since the only thing we know for sure is that if we exchange twice the
coordinates of two particles then we should return to the same wave function.
This means that under one permutation of two coordinates (exchange), the wave
function can not only stay invariant, or have an eigenvalue of +1 as in the example
we just gave, it can also have an eigenvalue of �1. These two cases are clearly
the only possibilities and they correspond respectively to bosons and fermions.
There are more possibilities in two dimensions, but that is beyond the scope of
this chapter.
When dealing with many identical particles, a basis of single-particle states is

most convenient. Given what we just said however, it is clear that a simple direct
product such as j�1i 
 j�2i cannot be used without further care because many-
particle states must be symmetrized or antisymmetrized depending on whether we
deal with bosons or fermions. For example, for two fermions an acceptable wave
function would have the form

p
2
�1 hr1j 
 hr2j [j�1i 
 j�2i � j�2i 
 j�1i] : Second

quantization allows us to take into account these symmetry or antisymmetry prop-
erties in a straightforward fashion. To take matrix elements directly between wave
functions would be very cumbersome.
The single-particle basis state is a complete basis that is used most often. Note

however that a simple wave-function such as

 (x; y) = (x� y)Ne�jx�yj=a (24.1)

for two electrons in one dimension, with N and a constants, is a perfectly ac-
ceptable antisymmetric wave function. To expand it in a single-particle basis
state however requires a sum over many (in general an in�nite number of) anti-
symmetrized one-particle states. There are cases, such as the quantum Hall e¤ect,
where working directly with wave functions is desirable, but for our purposes this
is not so.

Remark 173 Second quantization as we introduce it in this chapter looks like
just a convenient trick to work with many particles. Second and �rst quantization
are completely equivalent. In �rst quantization, we start with particles, set up
commutation relations between position and momentum, and end up with a wave
function. Second quantization can be seen as starting from a wave function, or
�eld , setting up commutation relations with the conjugate �eld and ending up with
particles, or excitations of that �eld. With the electromagnetic �eld, in a sense we
do not have the choice to do this. The next chapter will introduce the formal way
to set up second quantization from �rst principles.

Remark 174 In some ways, second quantization is the perfect formalism to see
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wave-particle duality. A state will be de�ned by having an integer number of cre-
ation operator acting on the vacuum. Each operator creates a particle, but that
particle is in a state that can be a plane wave for example. And even �worse�. The
many-body state can be a superposition of N particles in momentum eigenstates
plus N particles in position eigenstates, to take an extreme example.

24.1 Fock space, creation and annihilation opera-
tors

As is often the case in mathematics, working in a space that is larger than the
one we are interested in may simplify matters. Think of the use of functions of
a complex variable to do integrals on the real axis. Here we are interested most
of the time in Hamiltonians that conserve the number of particles. Nevertheless,
it is easier to work in a space that contains an arbitrary number of particles.
That is Fock space. Annihilation and creation operators allow us to change the
number of particles while preserving indistinguishability and antisymmetry. In
this representation, a three-electron state comes out as three excitations of the
same vacuum state j0i ; a rather satisfactory state of a¤airs since it looks very
much from what we know from the quantized harmonic oscillator. Particles in
that context correpond simply to transitions from the ground state to excited
states. To go to the third excited state, we need three particles.
It will be very helpful if you review creation-annihilation operators, also called

ladder operators, in the context of the harmonic oscillator.

24.1.1 Creation-annihilation operators for fermion wave functions

For the time being our fermions are spinless, it will be easy to add spin later on.
We assume that the one-particle states j�ii form an orthonormal basis for one
particle, namely h�ij �ji = �i;j : The notation is that � denotes the basis whose
components are labeled by the index. �1 is the �rst state, �2 the second state etc.
What concerns us here are many-body states. The state j�1�2i with two

fermions is antisymmetrized, namely

j�1�2i =
1p
2
(j�1i 
 j�2i � j�2i 
 j�1i) :

The �rst Hilbert space on the right of the above expression can be either in state
�1 or �2: Antisymmetry means that j�1�2i = � j�2�1i :
We de�ne a vaccum j0i that contains no particle. Then, we de�ne ay�1 that

creates a particle from the vacuum to put it in state j�1i and for fermions it
antisymmetrizes that state will all others. In other words, ay�1 j0i = j�1i : Up to
now, there is nothing to antisymmetrize with, but if we add another particle,

ay�1a
y
�2 j0i = j�1�2i

then that state has to be antisymmetric. In other words, we need to have j�2�1i =
� j�1�2i ; or

j�2�1i = ay�2a
y
�1 j0i = � j�1�2i = �a

y
�1a

y
�2 j0i :
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Clearly this will automatically be the case if we impose that the creation operators
anticommute, i.e. ay�ia

y
�j = �a

y
�ja

y
�i orn

ay�i ; a
y
�j

o
� ay�ia

y
�j + a

y
�ja

y
�i = 0: (24.2)

This property is a property of the operators, independently of the speci�c state
they act on. The anticommutation property garantees the Pauli exclusion principle
as we know it, since if i = j then the above leads to

ay�ia
y
�i = �a

y
�ia

y
�i : (24.3)

The only operator that is equal to minus itself is zero. Hence we cannot create
two particles in the same state.
If we want the whole formalism to make sense, we want to have a sign change

to occur whenever we interchange two fermions, wherever they are in the list.
In other words, we want j�i�j : : : �k : : : �l : : : �mi = � j�i�j : : : �l : : : �k : : : �mi :
To see that our formalism works, you can write the state to the left in terms of
creation operators on the vacuum

j�i�j : : : �k : : : �l : : : �mi = ay�ia
y
�j : : : a

y
�k
: : : ay�l : : : a

y
�m j0i : (24.4)

If there are n operators between ay�k and a
y
�l
; we pay a (�1)n to place ay�k to the

left of ay�l : Then there is a (�1) to interchange a
y
�k
and ay�l ; and �nally another

(�1)n to take ay�l where a
y
�k
was. Since (�1)2n = 1; there is only the minus sign

from the �local�interchange ay�k and a
y
�l
that is left.

Note that with fermions we need to determine an initial order of operators for
the states. That is totally arbitrary because of the phase arbitrariness of quantum
mechanics. But then, during the calculations we need to keep track of the minus
signs.
Now that we know how to create, let us move to destruction. The destruction

operators are the adjoints of ay�i . Their anticommutation property follows by

taking the adjoint of
n
ay�i ; a

y
�j

o
= 0 :�

a�i ; a�j
	
� a�ia�j + a�ja�i = 0: (24.5)

These adjoint operators are de�ned as follows

h�1j = h0j a�1 : (24.6)

They create and antisymmetrize in bras instead of kets. When they act on kets
instead of bras, they remove a particle instead of adding it. In particular,

a�1 j0i = 0: (24.7)

This is consistent with h�1j 0i = 0 = h0j a�1 j0i.
Since we also want states to be normalized, we need

h�ij �ji = h0j a�iay�j j0i = �i;j : (24.8)

Since we already know that a�1 j0i = 0; that will automatically be satis�ed if we
write the following anticommutation relation between creation and annihilation
operators n

a�i ; a
y
�j

o
� a�iay�j + a

y
�ja�i = �

i;j (24.9)

because then h0j a�iay�j j0i = �h0j a
y
�ja�i j0i + h0j �i;j j0i = 0 + �i;j : The above

three sets of anticommutation relations are called canonical.
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At this point one may ask why anticommutation instead of commutation. Well,
two reasons. The �rst one is that given the previous anticommutation rules, this
choice seems elegant. The second one is that with this rule, we can de�ne the very
useful operator, the number operator

bn�i = ay�ia�i : (24.10)

That operator just counts the number of particles in state �i. To see that this is
so and that anticommutation is needed for this to work, we look at a few simple
cases. First note that if bn�i acts on a state where �i is not occupied, then

bn�i j�ji = bn�iay�j j0i = ay�ia�ia
y
�j j0i = �a

y
�ia

y
�ja�i j0i = 0: (24.11)

In an arbitrary many-particle state j�j ; �k; : : :i ; if the state �i does not appear
in the list, then when I compute bn�i j�j ; �k; : : :i ; I will be able to anticommute
the destruction operator all the way to the vacuum and obtain zero. On the other
hand, if �i appears in the list then

bn�i �ay�jay�k : : : ay�i : : : ay�l j0i� = ay�ja
y
�k
: : : bn�iay�i : : : ay�l j0i : (24.12)

I have been able to move the operator all the way to the indicated position without
any additional minus sign because both the destruction and the annihilation oper-
ators anticommute with the creation operators that do not have the same labels.
The minus signs from the creation and from the annihilation operators in ay�ia�i
cancel each other. This would not have occured if a�i and a

y
�j had commuted

instead of anticommuted while a�i and a�j had anticommuted. Now, let us focus
on bn�iay�i in the last equation. Using our anticommutation properties, one can
check that bn�iay�i = ay�ia�ia

y
�i = ay�i

�
1� ay�ia�i

�
: (24.13)

Since there are never two fermions in the same state, now the destruction operator
in the above equation is free to move and annihilate the vacuum state, and

bn�i �ay�jay�k : : : ay�i : : : ay�l j0i� = �ay�jay�k : : : ay�i : : : ay�l j0i� : (24.14)

This means that bn�i does simply count the number of particles. It gives one or
zero depending on whether the state is occupied or not.

Remark 175 We de�ne the bra h�1�2j by

h�1�2j = (j�1�2i)y =
�
ay�1a

y
�2 j0i

�y
= h0j a�2a�1 : (24.15)

Notice the change in the order of labels between h�1�2j and h0j a�2a�1 :

24.1.2 Creation-annihilation operators for boson wave functions

In the case of bosons, the state must be symmetric. Following Negele and Orland[174]
we introduce the symmetrized many-body state

j�1�2:::�Ng : (24.16)

The state is not normalized at this point, which explains the unusual notation.
The state is symmetric means that j�1�2g = j�2�1g = ay�2a

y
�1 j0i : Hence in this
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case, the creation operators and their corresponding annihilation operators must
commute: h

ay�i ; a
y
�j

i
� ay�ia

y
�j � a

y
�ja

y
�i = 0 (24.17)�

a�i ; a�j
�
� a�ia�j � a�ja�i = 0: (24.18)

This time there is no Pauli exclusion principle. Several particles can occupy
the same state. So what happens when we exchange creation and annihilation
operators. By analogy with the fermions, it is natural to expect that they must
commute, namely h

a�i ; a
y
�j

i
� a�iay�j � a

y
�ja�i = �i;j (24.19)

The above set of commutation relations is called canonical. The same considera-
tions as before tell us that annihilation operators destroy the vacuum.
And again the number operator is de�ned by

bn�i = ay�ia�i : (24.20)

Why is that true? If the state �i is unoccupied or occupied only once, one can
check the e¤ect of the operator bn�i the same way we did it for fermions. And note
that when there are many other particles around, one must take commutation and
not anticommutation between creation and annihilation operators to make sure
that the many-particle state is an eigenstate of bn�i with eigenvalue unity when a
single state is occupied.
What happens if the same state is occupied multiple times? Then,

bn�iay�i = ay�ia�ia
y
�i = ay�i

�
1 + ay�ia�i

�
(24.21)

= ay�i + a
y
�ibn�i : (24.22)

The destruction operator in bn�i will not be able to complete its journey to the
vacuum to annihilate it. Every time it encounters an operator ay�i it leaves it
behind and adds a new term ay�ibn�i just like above. Once we have done that
repeatedly, the destruction operator accomplishes its task and we are left with n�i
times the original state, where n�i is the number of times the label �i appeared
in the list. So bn�i really has the meaning of a number operator, i.e. an operator
that counts the number of times a given label appears in a many-body state. All
that we are left to do is normalize the symmetrized state.

24.1.3 Number operator and normalization

To �x the normalization in the case of bosons, it su¢ ces to consider a single state
that can be multiply occupied and then to generalize. Let us drop then all indices
and ask how the state

�
ay
�n j0i can be normalized. First, notice that Eq.(24.22)

above can be written as �bn; ay� = ay (24.23)

By the way, using the fact that
�
ay
�2
= 0 on the right-hand side of Eq.(24.13) we

see that the latter equation is true for fermions as well. Taking the adjoint of the
above equation we �nd

[bn; a] = �a (24.24)

The above two equations are very important identities that we will use over and
over again.
We can now use a very useful theorem that is trivial to prove. We will call it

the theorem on commutators of ladder operators.
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Theorem 14 Let jni be an eigenstate of bn with eigenvalue n: If �bn; ay� = Bay

with B a real or complex number, then ay jni is an eigenstate of bn with eigenvalue
n+B:

Proof:
�bn; ay� jni = bn �ay jni��ayn jni = Bay jni, so that bn �ay jni� = (n+B) �ay jni�

Q.E.D.

Using this theorem with our result for the commutator of the number operator
with the creation operator Eq.(24.23) we have that bn �ay jni� = (n+ 1)

�
ay jni

�
hence ay jni = C jn+ 1i : Assuming that jni and jn+ 1i are normalized we can
�nd the normalization constant as follows

hnj aay jni = jCj2 hn+ 1 jn+ 1i = jCj2

= hnj 1 + aya jni = (n+ 1) hn jni = (n+ 1) : (24.25)

We are free to choose the phase real so that C =
p
n+ 1:We thus have recursively

ay j0i = j1i�
ay
�2 j0i =

p
2 j2i�

ay
�3 j0i =

p
3
p
2 j3i (24.26)

and
jni = 1p

n!

�
ay
�n j0i : (24.27)

From this we conclude that for a general many-body state,

j�i�j :::�mi = 1pQ
i n�i !

j�i�j :::�mg = 1pQ
i n�i !

ay�ia
y
�j : : : a

y
�m j0i (24.28)

where the product in the denominator is over the indices that label the occupied
one-particle states and n�i counts the number of times a given one-particle state
appears.

Remark 176 Since with fermions a state is occupied only once, we did not need
to worry about the n�i !.

Remark 177 By recalling the theorem proven in this section, it is also easy to
remember that

�bn; ay� = ay and [bn; a] = �a:

24.2 Change of basis

24.2.1 General case

Creation-annihilation operators change basis in a way that is completely deter-
mined by the way one changes basis in single-particle states. Suppose one wants
to change from the � basis to the � basis, namely

j�mi =
X
i

j�ii h�ij �mi (24.29)

which is found by inserting the completeness relation. Let creation operator ay�i
create single particle state j�ii and antisymmetrize while creation operator cy�m
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creates single particle state j�mi and antisymmetrize. Then the correspondance
between both sets of operators is clearly

cy�m =
X
i

ay�i h�ij �mi (24.30)

with the adjoint
c�m =

X
i

h�mj �ii a�i (24.31)

given as usual that h�ij �mi = h�mj �ii
�
: Physically then, creating a particle in a

state j�mi is like creating it in a linear combination of states j�ii : We can do the
change of basis in the other direction as well.
If we de�ne with h�ij �ni a matrix for the change of basis, this matrix is

unitary if h�mj �ni = ��m;�n . Indeed, inserting a complete set of states, we see
that

P
i h�mj �ii h�ij �ni = h�mj �ni = ��m;�n :

Since we have de�ned new creation- annihilation operators, it is quite natural
to ask what are their commutation or anticommutation relations. It is easy to
�nd using the change of basis formula and the completeness relation. Assuming
that the creation-annihilation operators are for fermions, we �ndn

c�m ; c
y
�n

o
=

X
i

X
j

h�mj �ii
n
a�i ; a

y
�j

o
h�j j �ni (24.32)

=
X
i

X
j

h�mj �ii �i;j h�j j �ni (24.33)

=
X
i

h�mj �ii h�ij �ni = h�mj �ni : (24.34)

Hence, if the transformation between basis is unitary, the new operators obey
canonical anticommutation relations, namelyn

c�m ; c
y
�n

o
= �m;n: (24.35)

When the change of basis is unitary, we say that we have made a canonical trans-
formation. The same steps show that a unitary basis change also preserves the
canonical commutation relations for bosons.

Remark 178 The notation c�m ; a�i is rather clumsy. In practice, one uses, for
example, fi to label destruction operators for an f electron in a state i, di for d
electrons, ci for conduction electrons etc. In other words, the basis is identi�ed by
the choice of label for creation-annihilation operators, and the component by the
index of that symbol.

24.2.2 The position and momentum space basis

We recall this strange, but commonly used, basis that we have encountered in
Sec.18.2.1. In this basis, we take continuum notation for space and discrete no-
tation for momentum. Starting from hr jr0i = � (r� r0) and hk jk0i = �k;k0 it is
easy to check by left or right multiplying that the following operators give the
completeness relation X

k

jki hkj = 1 =
Z
dr jri hrj
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To go from one basis to the other, we use plane-waves that are normalized to unity
in a volume V, namely

hr jki = 1p
V
eik�r (24.36)

hk jri = 1p
V
e�ik�r (24.37)

We can check that hr jr0i is normalized in the continuum while hk jk0i is normalized
as a discrete set of states

hr jr0i =
X
k

hr jki hk jr0i = 1

V
X
k

eik�(r�r
0) =

Z
dk

(2�)
3 e
ik�(r�r0) = � (r� r0)

(24.38)

hk jk0i =
Z
dr hk jri hr jk0i = 1

V

Z
dre�ir�(k�k

0) = �k;k0 : (24.39)

To take the continuum limit of the discrete sum over k, one uses eigenstates of
momentum in a box where the separation between states is given by�kx = 2�=Lx,
where Lx is the size of the box in the x direction, and similarly for the other
directions.
Creation operators in eigenstates of position are usually denoted,  y (r), while

creation operators in eigenstates of momentum are denoted cyk. The basis change
between them leads to

 y (r) =
X
k

cyk hk jri =
1p
V

X
k

cyke
�ik�r (24.40)

 (r) =
X
k

hr jki ck =
1p
V

X
k

eik�rck: (24.41)

Given our above convention, the momentum operators obey the algebra of a dis-
crete set of creation operators. Taking fermions as an example, we then haven

ck; c
y
k0

o
= �k;k0 ; fck; ck0g =

n
cyk; c

y
k0

o
= 0 (24.42)

while the position space creation-annihilation operators obeyn
 (r) ;  y (r0)

o
=
P

k

P
k0 hr jki

n
ck; c

y
k0

o
hk0 jr0i =

P
k hr jki hk jr0i = hr jr0i = � (r� r0)

(24.43)

f (r) ;  (r0)g =
n
 y (r) ;  y (r0)

o
= 0 (24.44a)

24.3 Wave functions

With N -particles, the wave function is obtained by projection on a position basis.
If we have a single many-body state, j�i = ay�1a

y
�2 : : : a

y
�i : : : a

y
�N j0i then the cor-

respondance between �rst and second quantized description is in a sense contained
in the following expression

hr1r2:::rN j �i = hr1r2:::rN j �1�2:::�N i = h0j (rN ) : : :  (r2) (r1) ay�1a
y
�2 : : : a

y
�i : : : a

y
�N j0i
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which is proportional to a so-called Slater determinant if we have fermions. Indeed,
using our change of basis formula,

 (r) =
X
i

hr j�ii a�i =
X
i

��i (r) a�i (24.45)

any of the positions r can be in a state �i; or vice versa the position r has am-
plitudes on all states, so you can check that the (unnormalized) wave function is
equal to

X
p

"p��p(1) (r1)��p(2) (r2) :::��p(N)
(rN ) = Det

2664
��1 (r1) ��1 (r2) ::: ��1 (rN )
��2 (r1) ��2 (r2) ::: ��2 (rN )
::: ::: :::

��N (r1) ��N (r2) ��N (rN )

3775
(24.46)

where the sum is over all permutations p (i) of the set i and "p is the signature
of the permutation, given by +1 if the number of transpositions (interchanges) of
pairs of creation operators to get back to the original order is even and �1 if the
number of transpositions is odd.

Remark 179 Closure relation and normalization:

1
N !

R
dr1dr2:::drN jr1r2:::rN i hr1r2:::rN j (24.47)

This closure relation implies that if we want to recover the usual expression for
normalized wave functions, h� j�i = 1; the determinant above should be multiplied
by 1=

p
N !. We recover our example with two particles where the normalization is

1=
p
2:

Remark 180 Many-Body wave function and basis states: It is very important
to note that the most general state must be written as a linear combination of
the states ay�1a

y
�2 : : : a

y
�i : : : a

y
�N j0i or of the above Slater determinants. In other

words, a general many body state j�i must be expanded as

j�i =
X

i;j;:::`;:::

Ci;j;:::`;:::
�
ay�ia

y
�j : : : a

y
�`
: : : j0i

�
(24.48)

where Ci;j;:::`;::: are expansion coe¢ cients. In a way, the Feynman diagrams that
we will encounter are a way to write the various components of a general state.

Remark 181 Wave functions live in Hilbert space: It is important to note that
the (unnormalized) wave function

 �1�2:::�N (r1r2:::rN ) = hr1r2:::rN j �1�2:::�N i

propagates, so to speak, in Hilbert space, not in ordinary space. The waves that
we are familiar with in the classical world are functions of only the three spatial
coordinates. Not so for the Schrödinger wave, unless there is a single particle to
describe.

Remark 182 One-particle wave function: The quantity  �1�2:::�N (r1r2:::rN ) is
often-called a one-particle wave function in the sense that it is just one member of
a complete set of states where all particles are independent. The most general state
j�i above contains correlations, in addition to those induced by symmetrization or
antisymmetrization.

Remark 183 Particles and waves: In  �1�2:::�N (r1r2:::rN ) we see the wave, but
we also see that there are N particles. And we need all this information to describe
the system. The continuous and discrete aspects are present all at once.
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Remark 184 For bosons, the expression is similar, but we compute the determi-
nant without the signs coming from the permutations. This is called a permanent.
The normalization will also have the 1=

p
N ! coming from the closure relation in

addition to the prefactor 1=
pQ

i n�i ! that we found in Eq. (24.28).

24.4 One-body operators

The matrix elements of an arbitrary one-body operator bU (in the N�particle
case) may be computed in the many-body basis made of one-body states wherebU is diagonal. As an example of one-body operator, the operator bU could be an
external potential so that the diagonal basis is position space. In the diagonal
basis, bU j�ii = U�i j�ii = h�ij bU j�ii j�ii (24.49)

where U�i is the eigenvalue. In this basis, one sees that the e¤ect of the one-body
operator is to produce the same eigenvalue, whatever the particular order of the
states on which the �rst-quantized operator acts. For example, suppose we have
three particles in an external potential, then the potential-energy operator is

V (R1) + V (R2) + V (R3) (24.50)

where Ri is an operator thatracts on the ith position of the many body state. If
this state is not symmetrized or antisymmetrized, then for example

(V (R1) + V (R2) + V (R3)) jr0i
jri
jr00i = (V (r0) + V (r) + V (r00)) jr0i
jri
jr00i
(24.51)

where r are labels, not operators. If that operator V (R1) + V (R2) + V (R3) had
acted on another ordering such as jri
 jr00i
 jr0i ; the eigenvalue would have been
identical, V (r) + V (r00) + V (r0) : This means that if we act on a symmetrized or
antisymmetrized version of that state, then

(V (R1) + V (R2) + V (R3)) jr0; r; r00i = (V (r0) + V (r) + V (r00)) jr0; r; r00i
(24.52)

In general then when we have N particles in a many-body state, the action of the
one-body operator is

NX
�=1

bU� j�i; �j ; �k : : :i = �U�i + U�j + U�k + : : :� j�i; �j ; �k : : :i (24.53)

Knowing the action of the number operator, we can write the same result di¤er-
ently

NX
�=1

bU� j�i; �j ; �k : : :i = 1X
m=1

U�mbn�m j�i; �j ; �k : : :i (24.54)

in other words, there will be a contribution as long as �i appears in the state. And
if �i occurs more than once, the corresponding eigenvalue U�i will appear more
than once. Note also that I have assumed that there there is an in�nite number
of basis states j�mi :
We hold a very elegant result. The one-body operator

P
m U�mbn�m in second

quantized notation makes no reference to the total number of particles nor to
whether we are dealing with bosons or fermions. Note that in �rst quantization
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the sum extends over all particle coordinates whereas in second quantization the
sum over m extends over all states.
Using the change of basis formula explained above, we have thatX
i

h�ij bU j�ii ay�ia�i =X
i

X
m

X
n

cy�m h�m j�ii h�ij bU j�ii h�i j�ni c�n : (24.55)
Since U is diagonal, we can add a sum over �j and use the closure relation to
arrive at the �nal resultP

i U�ibn�i =Pm

P
n c

y
�m
h�mj bU j�ni c�n : (24.56)

Let us give examples in the position and momentum representation. A one-
body scattering potential in the continuum would be represented in second quan-
tized version1 by bU = R drU (r) y (r) (r) (24.57)

which looks similar to the usual Schrödinger average. Similarly, the kinetic energy
operator in the momentum representation is diagonal and it can be rewritten in
the position basis using the change of variables of the previous section:

bT =X
k

hkj k
2

2m
jki cykck =

X
k

Z
dr

Z
dr0 y (r) hr jki hkj k

2

2m
jki hk jr0i (r0)

(24.58)

=
1

V
X
k

Z
dr

Z
dr0 y (r) eik�(r�r

0) k
2

2m
 (r0) (24.59)

=

Z
d3k

(2�)
3

Z
dr

Z
dr0 y (r)

�
� 1

2m
r2r0eik�(r�r

0)
�
 (r0) (24.60)

=

Z
dr

Z
dr0 y (r)

�
� 1

2m
r2r0� (r� r0)

�
 (r0) (24.61)

Using partial integration and assuming that everything vanishes at in�nity or is
periodic, we obtain,

bT = �� 1
2m

� R
dr y (r)

�
r2 (r)

�
= 1

2m

R
drr y (r) � r (r) : (24.62)

Again notice that second-quantized operators look like simple Schrödinger av-
erages over wave functions.

24.5 Number operator and the nature of states in
second quantization

This section is nothing new compared with what we already know, but it gives
a di¤erent perspective on the whole formalism. Once an operator (the �single-
particle" Hamiltonian for example) is in the diagonal form

P
iH�ibn�i , the theorem

on commutators of ladder operators (24.1.3) can be used to �nd its eigenstates.

1We have denoted by bU the operator in both �rst and second quantization. Strictly speaking
the operators are di¤erent. One needs to specify which representation one is working in.
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Indeed, this theorem tells that if jni is an eigenstate of bn�i , then ay�i jni is an
eigenstate with eigenvalue n + 1: If a ground state exists, this means that there
is a state (the vacuum) which is such that a�i j0i = 0, in other words we cannot
decrease the eigenvalue inde�nitely if U�i for example is the Hamiltonian. Hence,
the eigentates are of the form ay�1a

y
�2 : : : a

y
�i : : : a

y
�N j0i for N particles. This is

analogous to what we have discussed for the harmonic oscillator.
It is important to note that these states form a complete set of many-body

states. The most general eigenstate will be a linear combination of such states.

Remark 185 The need to diagonalize: Note that to �nd the eigenstates of
P
m

P
n c

y
�m
h�mj bH j�ni c�n ;

we need to diagonalize the matrix h�mj bH j�ni : The rules have not changed!

24.6 Going backwards from second to �rst quanti-
zation

To convince ourselves that the �eld operators become wave functions in the special
case of a single particle, consider the operator Û of the previous section that is
diagonal in the position basis. Then, the expectation value of that operator in
a general N particle many-body state is h�j

R
drU (r) y (r) (r) j�i. Inserting a

complete set of states between the two �eld operators, only the states with N � 1
particles survive so that

h�j
Z
drU (r) y (r) (r) j�i

=
1

(N � 1)!

Z
dr1 : : :

Z
drN�1 h�j

Z
drU (r) y (r) jr1r2:::rN�1i hr1r2:::rN�1j (r) j�i

=
1

(N � 1)!

Z
dr1 : : :

Z
drN�1

Z
drU (r) h�j r; r1r2:::rN�1i hr; r1r2:::rN�1 j�i :(24.63)

This last expression can be written in several suggestive ways. First, consider
the form

1

(N � 1)!

Z
drU (r)

�Z
dr1 : : :

Z
drN�1 hr; r1r2:::rN�1 j�i h�j r; r1r2:::rN�1i

�
;

(24.64)
which shows that the one-particle density matrix is obtained by tracing out the
degrees of freedom that are not observed in the full density matrix j�i h�j. In the
case where h�j contains only one particle, the above expression reduces to what
we expect from the one-particle Schrödinger equation, namelyZ

drU (r) hr j�i h�j ri =
Z
drU (r) j� (r)j2 ; (24.65)

which suggests why the transformation from single-particle wave functions into
�eld operators made sense. In the N -particle case, using the symmetry or anti-
symmetry of the wave function, we can also rewrite the above expression for the
average of a one-body operator Eq.(24.64) as a symmetric expression containing
the most general many-body wave-functionZ

dr1 : : :

Z
drN

NX
i=1

U (ri) j� (r1r2:::rN )j2 : (24.66)
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24.7 Two-body operators.

A two-body operator involves the coordinates of two particles. An example is the
Coulomb potential with position basis where bV1;2 = bV (R1;R2) which is diagonal
in position space, namely bV (R1;R2) jr0i 
 jri = V (r0; r) jr0i 
 jri :
Let us return to the general discussion. If we let the indices in bV1;2 refer to the

potential energy between the �rst and second particles in the direct product, and
if we are in the diagonal basis, we have in �rst quantization that

bV1;2 j�ii 
 j�ji = V�i�j j�ii 
 j�ji (24.67)bV1;3 j�ii 
 j�ji 
 j�ki = V�i�k j�ii 
 j�ji 
 j�ki (24.68)

The abreviation bV1;3 in the position basis means bV (R1;R3) where R1 acts on the
�rst one-particle Hilbert space and R3 acts on the third. In this basis, one sees
that again the eigenvalue does not depend on the order in which the states are
when the �rst-quantized operator acts. This means that

1

2

NX
�=1

NX
�=1
� 6=�

bV�;� j�i; �j ; �k : : :i = �V�i�j + V�i�k + V�j�k + : : :� j�i; �j ; �k : : :i
(24.69)

where now on the right-hand side every interaction is counted only once. As above,bV�;� refers to the potential energy between the � and � particles. If j�ii 6= j�ji,
then the number of times that V�i�j occurs in the double sum is equal to n�in�j .
However, when j�ii = j�ji, then the number of times that V�i�j occurs is equal
to n�i(n�i � 1) because we are not counting the interaction of the particle with
itself, as speci�ed by � 6= � in the sum. In general then,

1

2

NX
�=1

NX
�=1
� 6=�

bV�;� j�i; �j ; �k : : :i = 1

2

1X
m=1

1X
n=1

V�m�n (bn�mbn�n � �m;nbn�n) j�i; �j ; �k : : :i :
(24.70)

Again the expression for the operator to the right is independent of the state it
acts on. It is valid in general. I assumed that the basis � has an in�nite number
of states.
We can simplify the expression further. De�ning

� = �1 for fermions (24.71)

� = 1 for bosons (24.72)

we can rewrite bn�ibn�j � �i;jbn�i in terms of creation and annihilation operators in
such a way that the form is valid for both fermions and bosons

bn�ibn�j � �i;jbn�i = ay�ia�ia
y
�ja�j � �i;ja

y
�ia�i = ay�i�a

y
�ja�ia�j = ay�ia

y
�ja�ja�i :
(24.73)

Second quantized operators are thus written in the simple form

1
2

P
i

P
j V�i�j

�bn�ibn�j � �i;jbn�i� � 1
2

P
i

P
j (�i�j jV j�i�j) ay�ia

y
�ja�ja�i

(24.74)
where

j�i�j) � j�ii 
 j�ji : (24.75)
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Under unitary transformation to an arbitrary basis we have

bV = 1
2

P
m

P
n

P
p

P
q (�m�njV

���p�q� cy�mcy�nc�qc�p : (24.76)

De�nition 15 When a series of creation and annihilation operators are placed
in such an order where all destruction operators are to the right, one calls this
�normal order�.

Remark 186 Note the inversion in the order of �p and �q in the annihilation
operators compared with the order in the matrix elements (This could have been
for the creation operator instead).

Remark 187 Note that the �rst state (�i�j jV j�i�j) in both the bra and the ket
is associated with the �rst coordinate in V; and the second state with the second
label in V: This means that the notation (�m�njV

���p�q� for the two-body matrix
element stands for, in the coordinate representation for example,Z

dr1dr2�
�
�m
(r1)�

�
�n
(r2)V (r1 � r2)��p (r1)��q (r2) : (24.77)

Example 16 In the case of a potential, such as the Coulomb potential, which acts
on the densities, we have

bV = 1
2

R
dx
R
dyv (x� y) y (x) y (y) (y) (x) : (24.78)

24.8 Getting familiar with second quantized oper-
ators in the Heisenberg picture, commutator
identities

In the previous section, we showed how to translate one- and two-body operators in
the Schrödinger picture into the language of second quantization. The Heisenberg
picture is de�ned as usual. In this section, we derive a few useful identities and
study the case of quadratic Hamiltonians as an example.
In the Heisenberg picture

ck (t) = ei
bHtcke�i bHt ; cyk (t) = ei

bHtcyke�i bHt: (24.79)

It is easy to compute the time evolution in the case where the Hamiltonian is
quadratic in creation and annihilation operators. Take for examplebH =

X
k

�kc
y
kck (24.80)

The time evolution may be found from the Heisenberg equation of motion, which
follows from di¤erentiating the de�nition of the Heisenberg operators

i
@ck (t)

@t
=
h
ck (t) ; bHi : (24.81)

To evaluate the commutator, we note that since bH commutes with itself is is time
independent and X

k

�kc
y
kck =

X
k

�kc
y
k (t) ck (t) : (24.82)
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To compute the commutator, we only need the equal-time commutator of the
number operator cyk (t) ck (t) with ck (t), which is given by Eq.(24.24) and leads,
for both fermions and bosons, to

i
@ck (t)

@t
=
h
ck (t) ; bHi =X

k0

�k0
h
ck (t) ; c

y
k0 (t) ck0 (t)

i
= �kck (t) (24.83)

whose solution is
ck (t) = e�i�ktck (24.84)

Taking the adjoint,

cyk (t) = cyke
i�kt : (24.85)

If we had been working in a basis where bH was not diagonal, then repeating
the steps above,

i
@a� (t)

@t
=
h
a� (t) ; bHi =X

�;

h�j bH ji ha� (t) ; ay� (t) a (t)i =X


h�j bH ji a (t)
(24.86)

Commutator identities: The following are very useful identities to get equa-
tions of motions, and in general equal-time commutators.

[A;BC] = ABC �BCA = ABC �BAC +BAC �BCA (24.87)

[A;BC] = [A;B]C +B [A;C] (24.88)

[A;BC] = fA;BgC �B fA;Cg (24.89)

The �rst commutator identity is familiar from elementary quantum mechan-
ics. The last one can be memorized by noting that it behaves as if the B
had anticommuted with the A: It is always easier to remember the commu-
tator of the number operator with creation or annihilation operators, but if
you need to prove it again for yourself, the above identities can be used to
evaluate the needed commutator either for fermionsh

ck (t) ; c
y
k0 (t) ck0 (t)

i
=
n
ck (t) ; c

y
k0 (t)

o
ck0 (t) + 0 = �k;k0ck (t) (24.90)

or for bosonsh
ck (t) ; c

y
k0 (t) ck0 (t)

i
=
h
ck (t) ; c

y
k0 (t)

i
ck0 (t) + 0 = �k;k0ck (t) (24.91)

Remark 188 Commuting with a ck (t) looks like taking a derivative with respect
to cyk0 (t) : This is important to remember.

Remark 189 The theorem on commutators of ladder operators Eq. (24.1.3) is
useful to �nd the eigenstates of one-body Hamiltonians. Indeed, consider the
Hamiltonian at the beginning of this section Eq. (24.80). Then, given thath

H; cyk

i
= "kc

y
k; (24.92)

our theorem tells us that if H j0i = 0, then cyk j0i is an eigenstate with energy "k,
while cyk0c

y
k j0i is an eigenstate with energy "k + "k0 etc.
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25. *FORMAL DERIVATION OF
SECOND QUANTIZATION

Planck�s constant h is the same for all possible types of particles or waves. Fun-
damentally it is the size of the action of a physical process, measured in units of
h that will determine whether that process behaves quantum mechanically or if
the classical limit is appropriate. This was very clear in Feynman�s path-integral
formulation. In this section, I will write Planck�s constant explicitly since it plays
such a central role.
First quantization refers to the usual way one does quantum mechanics in intro-

ductory classes. One starts with particles whose position and momentum become
operators that obey commutation relations. However, we know that one can-
not entirely describe matter by particles. Particles behave sometimes like waves.
And vice-versa. To paraphrase Feynman, Quantum mechanics is strange, but it
is strange in the same way for all forms of matter. For example, the natural de-
scription of electromagnetism is based on waves, but these waves can show up as
particles, namely photons. And vice-versa. So we should be able to have a descrip-
tion of quantum mechanics that starts purely from wave equations. We should
be able to quantize waves. According to Coleman, [55] in 1927, Pascual Jordan
and Oskar Klein [109] suggested that creation and annihilation operators are a
convenient way to deal with many particles, as we did above. Jordan and Klein
in 1928 proposed that the particle �eld and its complex conjugate are conjugate
variables, as I will discuss here.
Whether we start from �rst or second quantization, the �nal description of

nature that we have must be the same since the wave and the particle descriptions
of matter are complementary, each by itself being insu¢ cient.
In the preceding chapter, I introduced second quantization in a more pedes-

trian way that illustrates straighforwardly that �rst and second quantization are
equivalent. In practice, when there are many particles, second quantization is
most of the time the best way to formulate and attack the problem.

25.1 *A quantization recipe

Dirac [68] proposed a general recipe to quantize a theory: Replace classical coor-
dinates and their conjugate momentum by operators and replace Poisson brackets
by commutators. This is, in a way, the correspondance principle between classical
and quantum mechanics. The classical and quantum versions of Lagrangians and
Hamiltonians are the same, except that in the classical case we have numbers while
we have operators in the quantum case.1 It is useful to review the procedure in a
way that does not require you to know what Poisson brackes are. This procedure

1There are rare instances (anomalies) where there are quantum corrections to the action
that cannot be guessed from the classical version of the theory. These corrections are usually
topological in nature.
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works in almost all cases 2 that I know of. If you want to quantize an electrical
circuit for example, that is the way to proceed.

� Find the classical Lagrangian L of the system, namely the Lagrangian whose
Euler-Lagrange equations give back the equations of motion.

� For each coordinate q, identify the corresponding conjugate momentum p =
@L=@ _q where _q means dq=dt:

� Elevate q and p to the level of operators acting in Hilbert space.

� Declare that [q; p] = i~ and that all other commutators vanish, including
the commutators between coordinates belonging to the same particle but in
di¤erent directions. In other words, [qi; pj ] = i~�ij , where i and j stand for
di¤erent coordinates of the same particle or for di¤erent particles.

� The equations of motion in the Hamiltonian formalism are given by the
Heisenberg equations of motion

dq

dt
=

i

~
[H; q] (25.1)

dp

dt
=

i

~
[H; p] (25.2)

A few comments are in order.

� The center of mass of a particle obeys the same commutation relations with
its conjugate momentum as the canonical ones. For example�

q1 + q2
2

; p1 + p2

�
=
1

2
[q1; p1] +

1

2
[q2; p21] = i~: (25.3)

This is an extremely nice property which leads to the fact that collective
coordinates behave just the same way as the constituents, or, if you want,
collective coordinates are as quantum mechanical, or strange, as their ele-
mentary constituents. Quantum mechanics in its standard form applies also
to large systems. We do not need to know what is most elementary. That
takes us back to the remark on the notion of smallness 168.

Remark 190 A remarkable proof of all this is that you can take at C60 molecule
and check that its center of mass and total momentum obey standard commutation
relations, which has as a consequence that one can observe Youg fringes for these
big molecules [171] in a true quantum mechanical way, one at a time!

� The classical Hamilton equations of motion are recovered as follows. Using
[A;BC] = [A;B]C + C [A;B] ;we have that

�
q; p2

�
= 2p [q; p] ;and by induc-

tion, [q; pn] = npn�1 [q; p] ; or for a general function of p, we can formally
write [q; f (p)] = @f

@p [q; p] :Conversely, we �nd [g (q) ; p] =
@g
@q [q; p] : Using

these results in the Heisenberg equations of motion with a time-independent
Hamiltonian, we recover Hamilton�s equations for the classical variable

dq

dt
=

i

~
[H; q] =

i

~
@H

@p
[p; q] =

@H

@p
(25.4)

dp

dt
=

i

~
[H; p] =

i

~
@H

@q
[q; p] = �@H

@q
: (25.5)

2There are rare instances (anomalies) where there are quantum corrections to the action
that cannot be guessed from the classical version of the theory. These corrections are usually
topological in nature.
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Figure 25-1 Interference pattern for C60 molecules passing one at a time through
a double slit. This is the analog of Young�s experiment with photons, but this time
with large molecules. Quantum mechanics is bizarre, but it is always bizarre in the
same way. For details, see Olaf Nairz, Markus Arndt, and Anton Zeilinger, American
Journal of Physics 71, 319 (2003); doi: 10.1119/1.1531580.

25.2 *Applying the quantization recipe to wave equa-
tions

The electromagnetic �eld is the prime example of a classical �eld that must be
quantized using the above principles. But since bosons can condense, their wave
function can have a non-zero expectation value and that quantity comes close to
being a classical variable. There are all sorts of caveats associated with that, but
assume it makes sense. Then the Lagrangian for that classical variable is

L (t) =

Z
d3r  � (r; t)

�
i~
d

dt
+
~2

2m
r2 � V (r)

�
 (r; t) ; (25.6)

where V (r), for simplicity, is taken as a one-body potential. It is important to
keep in mind that in this expression the position r is not a dynamical variable,
it is only a label for the �eld  : The �led  is an independent variable at each
position, just as for the electromagnetic �eld. The total time derivative does not
act on position, in other words, dr=dt would not make any sense here.
This Lagrangian is chosen because the corresponding Euler-Lagrange equations

reproduce Schrödinger�s equation, as I proceed to show. Note that since  is a
complex variable,  and  � can be taken as independent variables. Since we
work in the continuum, partial derivatives needed to obtain the Euler-Lagrange
equations are replaced by functional derivatives, namely

� (r; t)

� (r0; t)
= � (r� r0) :
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We will make heavy use of functional derivatives in later chapters. The Euler-
Lagrange equations for  � (r; t) are

d

dt

0@ �L (t)

�
�
d �(r;t)

dt

�
1A� �L (t)

� � (r; t)
(25.7)

=

�
i~
d

dt
+
~2

2m
r2 � V (r)

�
 (r; t) = 0: (25.8)

which is indeed Schrödinger equation. Integrating by parts with vanishing (or
periodic) boundary conditions at in�nity so as to have r2 act on  � (r; t), the
Euler-Lagrange equations for  (r; t) give Schrödinger�s equation for  � (r; t) :
Continuing to follow the rules for quantization, we need the variable conjugate

to the  (r; t) : It is given by

�L (t)

�
�
d (r;t)
dt

� = i~ � (r; t) : (25.9)

Hence, the theory can be quantized by declaring that i~ � (r; t) and  (r; t) are
conjugate operators i~ y (r; t) and  (r; t) that obey canonical equal-time commu-
tation relations h

 (r; t) ; i~ y (r; t)
i
= i~� (r� r0) (25.10)h

 (r; t) ;  y (r; t)
i
= � (r� r0) : (25.11)

It turns out that taking anticommutation relations instead of commutation rela-
tions does not lead to any inconsistency. But then it becomes perfectly legitimate
to doubt the starting point since fermions do not have a classical limit. Neverthe-
less, the derivation of the preceeding chapter is foolproof.
With the above commutation or anticommutation relations, in other words for

either bosons or fermions, you can verify that�Z
d3r0  y (r0; t)  (r0; t) ;  y (r; t)

�
=  y (r; t) (25.12)�Z

d3r0  y (r0; t)  (r0; t) ;  (r; t)

�
= � (r; t) (25.13)

Using our theorem on commutators of ladder operators (24.1.3) and proceeding as
in the section on number operators and states,24.5 we have that for N particles,
we can build a complete set of states with the basis states

 y (r1; t) 
y (r2; t) : : :  

y (rN ; t) j0i : (25.14)

There is a vacuum state and the operatorZ
d3r0  y (r0; t)  (r0; t) (25.15)

has integer eigenvalues that count the number of particles.

Remark 191 Particles as excitations of the vacuum: As in the harmonic oscil-
lator where phonons are elementary excitations added to the vacuum of the oscil-
lator, here particles are excitations of the vacuum of the Schrödinger �eld. They
are added in discrete countable amounts.
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A tentalizing, although not rigorous, connection to �rst quantization, can be
obtained as follows. Let us de�ne the position X and conjugate momentum Px
operators by declaring that the variables  (r; t) and  � (r; t) entering the following
usual expressions Z

d3r  � (r; t) rx  (r; t) = X (t) (25.16)Z
d3r  � (r; t)

i

~
rx  (r; t) = Px (t) (25.17)

are operators instead of classical �elds. Then, the above commutation relations
Eq.(25.10) (or anticommutation relations) yield the following result

[X (t) ; Px (t)] = i~
Z
d3r  y (r; t)  (r; t) : (25.18)

The right-hand side is the total number of particles. We thus recover the com-
mutation relation we developed in the preceeding section for the center of mass
coordinate in �rst quantization.
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26. MOTIVATION FOR THE DEFI-
NITION OF THE SECOND QUAN-
TIZED GREEN�S FUNCTION GR

Just as we showed that scattering and transport experiments measure correlation
functions such as the density-density or current-current correlation function, we
begin this chapter by showing that photoemission directly probes a one-particle
correlation function. The last section will introduce and motivate further the
de�nition of the second quantized Green�s function.

26.1 Measuring a two-point correlation function (ARPES)

In a photoemission experiment, a photon ejects an electron from a solid. This is
nothing but the old familiar photoelectric e¤ect. In the angle-resolved version of
this experiment (ARPES), the energy and the direction of the outgoing electron
are measured. This is illustrated in Fig.(26-1). The outgoing electron energy can
be measured. Because it is a free electron, this measurement gives the value of the
wave vector through k2=2m: Using energy conservation, the energy of the outgoing
electron is equal to the energy of the incident photon Eph; minus the work function
W plus the energy of the electron in the system, !; measured relative to the Fermi
level.

e
Photon

= E + ω + µ  Wk
2m

2

k

ph

Figure 26-1 Schematic representation of an angle-resolved photoemission experi-
ment. W is the work function.

The energy of the electron in the system ! will be mostly negative. The value
of kjj may be extracted by simple geometric considerations from the value of k:
Since in this experiment there is translational invariance only in the direction
parallel to the plane, this means that in fact it is only the value of kjj that is
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conserved. Hence, it is only for layered systems that we really have access to both
energy ! and total momentum kjj of the electron when it was in the system.
We can give a sketchy derivation of the calculation of the cross-section as fol-

lows. The cross-section we will �nd below neglects, amongst other things, processes
where energy is transferred from the outgoing electron to phonons or other excita-
tions before it is detected (multiple scattering of outgoing electron). Such processes
are referred to as �inelastic background�. We start from Fermi�s Golden rule. The
initial state is a direct product jmi 
 j0i 
 j1qiem of the state of the system jmi ;
with the state j0i with no electron far away from the detector and with the state
of the electromagnetic �eld that has one incoming photon j1qiem : The �nal state
jni 
 jki 
 j0iem has the system in state jni with one less electron, the detector
with one electron in state jki and the electromagnetic �eld in state j0iem with no
photon. Strictly speaking, the electrons in the system should be antisymmetrized
with the electrons in the detector, but when they are far enough apart and one
electron is detected, we can assume that it is distinguishible from electrons in the
piece of material. The coupling of matter with electromagnetic �eld that produces
this transition from initial to �nal state is �j �A as we saw previously. Hence, the
transition rate will be proportional to the square of the following matrix element

�
X
k0

hnj 
 hkj 
 h0jem jk0 �A�k0 jmi 
 j0i 
 j1qiem : (26.1)

= �
X
k0

hnj 
 hkj jk0 jmi 
 j0i � h0jemA�k0 j1qiem (26.2)

The vector potential is the analog of the position operator for harmonic vibration
of the electromagnetic �eld. Hence, it is proportionnal to ay�k0 + ak0 ; like for the
harmonic oscillator excep that this time the particles involved are photons. The
term with k0 = q with the destruction operator will lead to a non-zero value of
h0jemA�k0 j1qi : For the range of energies of interest, the wave vector of the photon
k0 = q can be considered in the center of the Brillouin zone, k0 � 0. The current
operator is a one-body operator. In the continuum, it is then given by

jk0=0 = e
X
p

p

m
cypcp: (26.3)

The value p = kjj will lead to a non-zero matrix element. Overall then, the matrix
element is

� hnj ckjj jmi
�
hkj cykjj j0i e

kjj

m
� h0jemAk0=q�0 j1qiem

�
: (26.4)

The term in large parenthesis is a matrix element that does not depend on the
state of the system. Without going into more details of the assumptions going
into the derivation then, Fermi�s golden rule suggests, (see �rst section of Chapter
2) that the cross section for ejecting an electron of momentum kjj and energy !
(measured with respect to �) is proportional to

@2�

@
@!
/

X
mn

e��Km
��hnj ckjj jmi��2 � (! + �� (Em � En)) (26.5)

/
X
mn

e��Km
��hnj ckjj jmi��2 � (! � (Km �Kn)) (26.6)

/
Z
dtei!t

X
mn

e��Km hmj cykjj jni hnj e
iKntckjje

�iKmt jmi (26.7)

/
Z
dtei!t

D
cykjjckjj (t)

E
: (26.8)
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In the above equations, note that there is one more particle in state jmi than in
state jni : This means that the minimum change in energy that we can have is
Em � En = �. With some extra energy, we can eject an electron that is farther
away below the Fermi surface. Measuring energies with respect to the chemical
potential, we de�ne Km = Em�Nm�: For the last line, we have followed van Hove
and used the same steps as in the corresponding derivation for the cross section
for electron scattering in Sec. 7. We have achieved our goal of expressing the cross
section in terms of a correlation function.
In the case of electron scattering that we related to density �uctuations, there

was a relation between the correlation function and the spectral weight that could
be established with the �uctuation-dissipation theorem. We will be able to achieve
the same thing below in Sec. 31.2. More speci�cally, we will be able to rewrite
this result in terms of the spectral weight A

�
kjj; !

�
as follows,

@2�

@
@!
/ f (!)A

�
kjj; !

�
(26.9)

where f (!) is the Fermi function.

Remark 192 Time-evolution operator: It is very important to note that in the
above expression for the cross section, Eq.(26.8), it is K = H � �N that is the
time evolution operator. This is what we will generally use, as soon as we go to
the Matsubara formalism. The �N represents the e¤ect of a particle reservoir.
It comes in naturally above and represents the time evolution operator when we
control the chemical potential instead of the number of particles. It makes the time-
evolution operator in imaginary time more similar to the density matrix e��Km=Z:
More simply, this just corresponds to a choice of the zero of energy, namely ! is
equal to zero for energies at the chemical potential. This can be seen from the above
equations. Since we have by de�nition of Kn the equalities eiKntckjje

�iKmt =

ei(En��Nn)tckjje
�i(Em��Nm)t and Nm �Nn = 1; the phase factor ei�t can just be

added to ! in the Fourier transform over time, illustrating why this choice of time
evolution operator is related to the choice of zero of energy for !:

26.2 De�nition of the many-body GR and link with
the previous one

When the Hamiltonian is quadratic in creation-annihilation operators, in other
words when we have a one-body problem, the retarded single-particle Green�s
function we are about to de�ne does reduce to the Green�s function we studied in
the one-body Schrödinger equation. Its actual de�nition is however better suited
for many-body problems as we shall see in the present section. It is also important
to note that while in the one-body Schrödinger equation, all the information is
in GR, in the Many-body case, it only gives information about propagation of a
single particle, hence it does not contain all the information.
Consider the de�nition we had before

GR (r;t; r0; t0) = �i hrj e�iH(t�t
0) jr0i � (t� t0) : (26.10)

We will reintroduce ��N later by replacing H by K = H � �N: Since in second-
quantization the operator  y (r) creates a particle at point r, the following de�n-
ition seems natural

GR (r;t; r0; t0) = �i hGSj (r) e�iH(t�t
0) y (r0) jGSi � (t� t0) (26.11)
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In this expression, jGSi is a many-body vacuum (ground-state). Choosing appro-
priately the zero of energy, H jGSi = 0 jGSi = 0 the above result could be written
in an elegant way when we recall the de�nition of the operators in the Heisenberg
representation

GR (r;t; r0; t0) = �i hGSj (r;t) y (r0; t0) jGSi � (t� t0) : (26.12)

This is not quite what we want except in the case where there is a single particle
propagating. When there is a single particle propagating, anticommutation and
the fact that  (r;t) annihilates the vacuum means that we are left at time t =
t0 + 0+ with

GR
�
r;t+ 0+; r0; t

�
= �i� (r� r0) (26.13)

re�ecting the fact that the wave-function does not have the time to evolve in an
in�nitesimal time.
However, in the present case, the many-body vacuum jGSi is a linear com-

bination of Slater determinants with many particles in each. This means that
hGSj (r;t) y (r0; t) jGSi is not in general a delta function because  (r;t) does
not annihilate the ground state. This is a manifestation of the fact that we have
a many-body problem and that particles are indistinguishable.
Nevertheless, we can recover the desired simple initial condition Eq.(26.13)

even in the Many-Body case by adopting the following de�nition, which in a
way takes into account the fact that not only electrons, but also holes can now
propagate:

GR (r;t; r0; t0) = �i hGSj
n
 (r;t) ;  y (r0; t0)

o
jGSi � (t� t0) ; for fermions

(26.14)

GR (r;t; r0; t0) = �i hGSj
h
 (r;t) ;  y (r0; t0)

i
jGSi � (t� t0) ; for bosons

(26.15)
This is the zero-temperature de�nition. It is more general than in the one-body
case, but it reduces to it when there is a single particle.
At �nite temperature, the ground-state expectation value is replaced by a

thermodynamic average. Hence we shall in general work with

De�nition 17

GR (r;t; r0; t0) = �i
Dn
 (r;t) ;  y (r0; t0)

oE
� (t� t0) ; for fermions (26.16)

GR (r;t; r0; t0) = �i
Dh
 (r;t) ;  y (r0; t0)

iE
� (t� t0) ; for bosons (26.17)

These de�nitions have the desired property that at t = t0 + 0+, we have that
GR (r;t+ 0+; r0; t) = �i� (r� r0) as follows from commutation or anti-commutation
relations.
The expectation value

D
cykjjckjj (t)

E
that we needed in the expression for the

photoemission cross section is directly related to one of the terms in the anticom-
mutator.

Remark 193 Analogies: This de�nition is now analogous to �R (t� t0) = 2i�" (t� t0) � (t� t0)
which we had in linear response and in the harmonic oscillator example Eq. (3.14).
The imaginary part of the Green�s function will again be a commutator or an an-
ticommutator and hence will obey sum-rules.

Remark 194 Green�s function as a response function: Physically, this de�nition
makes obvious that the Green�s function is the response to an external probe that
couples linearly to creation-annihilation operators. In the case of fermions, the
external probe has to be an anticommuting number (a Grassmann variable, as we
shall discuss later).
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26.3 Examples with quadratic Hamiltonians:

When the Hamiltonian is quadratic in creation-annihilation operators, the equa-
tion of motion obeyed by this Green�s function is the same as in the one-body case.
An example of quadratic Hamiltonian is that for free particles, in �rst quantized
notation

hrj bH jr1i = �r2
2m
hr jr1i = �

r2

2m
� (r� r1) : (26.18)

In the general second quantized case, we write

bH =

Z
dr1

Z
dr2 

y (r2;t) hr2jH jr1i (r1;t) (26.19)

We give three calculations of the Green�s function, two directly from the de�ni-
tion and one from the equations of motion (Schrödinger�s equation). We do the
calculation for fermions. The calculation for bosons is essentially the same.

*Calculation from the de�nition in the position basis: For a quadratic Hamil-
tonian, one can also compute directly the Green�s function from its de�nition
since, if jni is an eigenbasis, �n (r) = hr jni, hn0jH jni = En�n;n0

 (r;t) =
X
n

hr jni an (t) =
X
n

e�iEnt hr jni an =
X
n

e�iEnt�n (r) an

(26.20)n
 (r;t) ;  y (r0; 0)

o
=
X
n

X
m

e�iEnt�n (r)
�
an; a

y
m

	
��m (r

0) =
X
n

e�iEnt�n (r)�
�
n (r

0)

(26.21)

GR (r;t; r0; 0) = �i
Dn
 (r;t) ;  y (r0; 0)

oE
� (t) = �i

X
n

e�iEnt�n (r)�
�
n (r

0) � (t)

(26.22)

GR (r; r0;!) =

Z
dtei(!+i�)t (�i)

X
n

e�iEnt�n (r)�
�
n (r

0) � (t) =
X
n

�n (r)�
�
n (r

0)

! + i� � En
(26.23)

Calculation from the de�nition in the diagonal basis: This is the simplest
calculation. We already know from Sec.24.8 the evolution of the creation-
annihilation operators in the Heisenberg representation. In the momentum
basis, where H is diagonal, as in Eq.(24.80),

bH =
X
k

�kc
y
kck (26.24)

we have that

GR (k; t) = �i
Dn
ck (t) ; c

y
k

oE
� (t� t0)

= �ie�i�kt
Dn
ck; c

y
k

oE
� (t� t0) : (26.25)

Using the fact that the equal-time anticommutator here will be simply unity,
we �nd

GR (k; t) = �ie�i�kt� (t� t0) (26.26)

and Fourier transforming

GR (k;!) =
1

! + i� � "k
(26.27)
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Calculation from the equations of motion: In general, the equation of mo-
tion can be obtained as follows

i
@

@t
GR (r;t; r0; t0) = i

@

@t

h
�i
Dn
 (r;t) ;  y (r0; t0)

oE
� (t� t0)

i
(26.28)

=
Dn
 (r;t) ;  y (r0; t0)

oE
� (t� t0) + i

Dnh bH; (r;t)i ;  y (r0; t0)oE � (t� t0)
(26.29)

Following the steps analogous to those in Eq.(24.90) above, using the an-
ticommutation relations Eqs.(81.19)(81.18a), or more directly recalling the
commutator of the number operator with a creation or an annihilation op-
erator, it is clear thath bH; (r;t)i = �Z dr1 hrj bH jr1i (r1;t) (26.30)

so that

i
@

@t
GR (r;t; r0; t0) (26.31)

= � (r� r0) � (t� t0)� i
Z
dr1 hrj bH jr1iDn (r1;t) ;  y (r0; t0)oE � (t� t0)

= � (r� r0) � (t� t0) +
Z
dr1 hrj bH jr1iGR (r1;t; r0; t0) (26.32)

In the case under consideration, where there is no interaction, we recover the
one-particle case we had before. Indeed, the last expression may be rewritten
as Z

dr1 hrj i
@

@t
� bH jr1iGR (r1;t; r0; t0) = � (r� r0) � (t� t0) (26.33)

= hr jr0i � (t� t0) (26.34)

where we recognize the equation (15.13) found in a previous Chapter. For-
mally then

hrj
�
i
@

@t
� bH�GR (t�t0) jr0i = hr jr0i � (t� t0) (26.35)

so that the operator form of the Green�s function is the same as that found
before, namely bGR (t�t0) = �i @

@t
� bH��1 � (t� t0) (26.36)

It is convenient to rewrite the result for the equation of motion Eq.(26.33)
in the following form that is more symmetrical in space and time.Z

dr1

Z
dt1 hrj i

@

@t
� bH jr1i � (t� t1)GR (r1;t1; r0; t0) = � (r� r0) � (t� t0)

(26.37)
We may as well let time play a more important role since in the many-body
case it will be essential, as we have already argued in the context of the
frequency dependence of the self-energy. The inverse of the Green�s function
in this notation is just like above,

GR (r;t; r1; t1)
�1
= hrj i @

@t
� bH jr1i � (t� t1) : (26.38)

Seen from this point of view, the integrals over time and space are the
continuum generalization of matrix multiplication. The delta function is
like the identity matrix. The above is not general. It applies only to this
non-interacting case.
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Remark 195 Evidently, the last result can also be obtained simply by trans-
forming from frequency to time and doing a change of basis from k to r in
our diagonal-basis result GR (k;!)�1 = ! + i� � "k:

De�nition 18 The following short-hand notation is often used

GR (1; 10) � GR (r;t; r0; t0) (26.39)

GR
�
1; 1
��1

GR
�
1; 10

�
= � (1� 10) (26.40)

where the index with the overbar stands for an integral.

26.4 Spectral representation ofGR and analogy with
susceptibility

By analogy with what we have done previously for response functions �; it is
useful to introduce the spectral representation for the retarded Green�s function.
We obtain explicitly G (r; r0; ikn) by integration in the complex plane and �nd that
it is trivially related to GR (r; r0;!) :
As before, we have

GR (r; r0; t) = �i
Dn
 (r;t) ;  y (r0; 0)

oE
� (t) (26.41)

but this time, the evolution operator is de�ned to take into account the fact that
we will work in the grand-canonical ensemble. By analogy with the de�nition of
the Matsubara operators, we now have

K = H � �N

 (r;t) � eitK S (r) e�itK (26.42)

 y (r;t) � eitK +S (r) e�itK (26.43)

We now proceed by analogy with the response functions. On the left we show
the de�nitions for response functions, and on the right the analogous de�nitions
for response functions. Let

GR (r; r0; t) = �iA (r; r0; t) � (t) ; �Rij (t) = 2i�
00
ij (t) � (t) (26.44)

where the spectral weight is de�ned by

A (r; r0; t) �

�
 (r;t) ;  + (r0; 0)

	�
; �00ij (t) =

1

2
h[Ai (r;t) ; Aj (r0; 0)]i

(26.45)
Then taking the Fourier transform, one obtains the spectral representation

GR (r; r0;!) =
R1
�1

d!0

2�

A(r;r0;!0)
!+i��!0 ; �Rij (!) =

Z 1

�1

d!0

�

�00ij (!
0)

!0 � (! + i�) :

(26.46)
The spectral weight will obey sum-rules, like �00 did. For exampleR1

�1
d!0

2� A (r; r
0;!0) =


�
 (r;0) ;  + (r0; 0)

	�
= � (r� r0) (26.47)

From such sum rules, a high-frequency expansion can easily be found as usual.
But that is not our subject for now.
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27. INTERACTION REPRESENTA-
TION, WHEN TIME ORDER MAT-
TERS

Perturbation theory in the many-body case is less trivial than in the one-body
case. Whereas the Lippmann-Schwinger equation was written down for a single
frequency, in the many-body case time and frequency dependence are unavoidable.
To construct perturbation theory we will follow the same steps as those used in
the derivation of linear response theory in Chapter 9. The only di¤erence is that
we will write a formally exact solution for the evolution operator in the interaction
representation instead of using only the �rst order result. The important concept
of time-ordered product comes out naturally from this exercise.
There is an important change of notation here. There will be no hat in general

for operators, only for operators in the interaction picture, or interaction repre-
sentation.
The plan is to recall the Heisenberg and Schrödinger pictures, and then to

introduce the interaction representation in the case where the Hamiltonian can be
written in the form

H = H0 + V (27.1)

where
[H0; V ] 6= 0 (27.2)

Let us begin. We assume that H is time independent. Typical matrix elements
we want to compute at �nite temperature are of the form

hij e��H H (t) 
y
H (t

0) jii (27.3)

We do not write explicitly indices other than time to keep the notation simple.
Recall the Heisenberg and Schrödinger picture

 H (t) = eiHt Se
�iHt (27.4)

We de�ne the time evolution operator

U (t; 0) = e�iHt (27.5)

so that

 H (t) = U (0; t) SU (t; 0) (27.6)

When we assume time-reversal symmetry, we can always make the replacement

Uy (t; 0) = U (0; t) : (27.7)

The di¤erential equation for the time-evolution operator is

i
@U (t; 0)

@t
= HU (t; 0) (27.8)

With the initial condition U (0; 0) = 1 it has U (t; 0) = e�iHt as its solution. It
obeys the property

U (t; t0) = U (t; 0)U (0; t0) = e�iH(t�t
0) (27.9)
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U�1 (t; 0) = U (0; t) (27.10)

U (t0; t0) = 1 (27.11)

for arbitrary t0
We are now ready to introduce the interaction representation. In this repre-

sentation, the �elds evolve with the unperturbed Hamiltonian

b (t) = eiH0t Se
�iH0t (27.12)

Note that we now use the caret (hat) to mean �interaction picture�. We hope this
change of notation causes no confusion. To introduce these interaction represen-
tation �elds in a general matrix element,

hij e��H H (t) 
y
H (t

0) jii = hij e��HU (0; t) SU (t; 0)U (0; t0) 
y
SU (t

0; 0) jii
(27.13)

it su¢ ces to notice that it is easy to remove the extra eiH0t coming from the
replacement of  S by e

�iH0tb (t) eiH0t simply by including them in the de�nition
of the evolution operator in the interaction representation

UI (t; 0) = eiH0tU (t; 0) (27.14)

UI (0; t) = U (0; t) e�iH0t (27.15)

UI (t; 0)UI (0; t) = UI (0; t)UI (t; 0) = 1 (27.16)

With these de�nitions, we have that our general matrix element takes the form

hij e��H H (t) 
y
H (t

0) jii = hij e��HUI (0; t) I (t)UI (t; 0)UI (0; t0) 
y
I (t

0)UI (t
0; 0) jii

(27.17)
The purpose of the exercise is evidently to �nd a perturbation expansion for the
evolution operator in the interaction representation. It will be built starting from
its equation of motion

i
@UI (t; 0)

@t
= eiH0t (�H0 +H)U (t; 0) = eiH0tV

�
e�iH0teiH0t

�
U (t; 0)

(27.18)
Since a general operator is a product of  �elds, it will also evolve with time in
the same way so it is natural to de�ne the interaction representation for V as well.
Our �nal result for the equation of motion for UI (t; 0) is then

i
@UI (t; 0)

@t
= VI (t)UI (t; 0)

Multiplying on the right by UI (0; t0) we have a more general equation

i@UI(t;t0)@t = VI (t)UI (t; t0) (27.19)

Remark 196 VI (t) depends on time since by hypothesis it does not commute with
H0:

Remark 197 Di¢ culties associated with the fact that we have non-commuting
operators: The solution of this equation is not e�i

R
VI(t)dt: We will see momen-

tarily how the real solution looks formally like an exponential while at the same
time being very di¤erent from it. To write the solution as a simple exponential is
wrong because it assumes that we can manipulate UI (t; t0) as if it was a number.
In reality it is an operator so that @UI(t;t0)

@t UI (t; t0)
�1 6= @

@t lnUI (t; t0) : Indeed,
note the ambiguity in writing the de�nition of this derivative: Should we write

@

@t
lnUI (t; t0) = lim

�t!0
UI (t; t0)

�1
[UI (t+�t; t0)� UI (t; t0)] =�t
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or
lim
�t!0

[UI (t+�t; t0)� UI (t; t0)]UI (t; t0)�1 =�t ? (27.20)

The two limits cannot be identical since in general

lim
�t!0

h
UI (t+�t; t0) ; UI (t; t0)

�1
i
6= 0: (27.21)

because UI (t; t0) is made up of operators such as V and e�iH0t that do not com-
mute with each other.

To solve the equation for the evolution operator Eq.(27.19), it is more con-
venient to write the equivalent integral equation that is then solved by iteration.
Integration on both sides of the equation and use of the initial condition Eq.(27.11)
gives immediately Z t

t0

@UI (t
0; t0)

@t0
dt0 = �i

Z t

t0

dt0VI (t
0)UI (t

0; t0) (27.22)

UI (t; t0) = 1� i
Z t

t0

dt0VI (t
0)UI (t

0; t0) (27.23)

Solving by iteration, we �nd

UI (t; t0) = 1� i
Z t

t0

dt0VI (t
0)UI (t

0; t0) = (27.24)

= 1� i
Z t

t0

dt0VI (t
0) + (�i)2

Z t

t0

dt0VI (t
0)

Z t0

t0

dt00VI (t
00) (27.25)

+(�i)3
Z t

t0

dt0VI (t
0)

Z t0

t0

dt00VI (t
00)

Z t"

t0

dt000VI (t
000) + ::: (27.26)

Suppose t > t0 and consider a typical term in this series. By suitably de�ning a
contour C and time-ordering operator along this contour Tc, it can be rearranged
as follows

(�i)3
Z t

t0

dt0VI (t
0)

Z t0

t0

dt00VI (t
00)

Z t"

t0

dt000VI (t
000) (27.27)

= (�i)3 1
3!
Tc

�Z
C

dt1VI (t1)

Z
C

dt2VI (t2)

Z
C

dt3VI (t3)

�
(27.28)

where

� C is a contour that is here just a real line segment going from t0 to t.

� Tc is the �time-ordering operator� that acts on �time-ordered products�.
Assuming t > t0; Tc places the operator which appear later on the contour
C to the left. For the time being, Tc orders operators that are bosonic in
nature. A generalization will appear soon with fermionic Green�s functions.

� The integral on the lef-hand side of the last equation covers all possible times
such that the operators with the time that is largest (latest) are to the left.
The 1

3! comes from the fact that for a general VI (t1)VI (t2)VI (t3) there are
3! ways of ordering the operators. All these possible orders appear in the
integrals on the right-hand side of the last equation. The operator Tc always
orders them in the order corresponding to the left-hand side, but this means
that the integral on the left-hand side appears 3! times on the right-hand
side, hence the overall factor of 1

3! .
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� A product of operators on which Tc acts is called a time-ordered product.

One also needs UI (0; t). In this case, with t > 0; the operators at the earliest
time are on the left. This means that the contour on which the Tc is de�ned is
ordered along the opposite direction.
A general term of the series may thus be written as

UI (t; t0) =
1X
k=0

(�i)k 1
k!
Tc

"�Z
C

dt1VI (t1)

�k#
(27.29)

which we can in turn write in the convenient notation

UI (t; t0) = Tc
�
exp

�
�i
R
C
dt1VI (t1)

��
(27.30)

where the contour is as de�ned above. In other words, operators are ordered right
to left from t0 to t whether t, as a real number, is larger or smaller than t0.

Remark 198 Derivatives of time-ordered products: A very important property
of time-ordered products in general and time-ordered exponentials in general, is
that they behave as ordinary exponentials when we take derivatives, as can be seen
from Eq. (27.19). This remains valid as long as every operator is acted upon by
the time-ordering operator.

We can check the limiting case [H0; V ] = 0: Then VI is independent of time and
we recover the expected exponential expression for the time evolution operator.
The de�nition of the time-ordering operator is extremely useful in practice not

only as a formal device that allows the time evolution to still look like an expo-
nential operator (which is explicitly unitary) but also because in many instances it
will allow us to treat operators on which it acts as if they were ordinary numbers.
In the zero-temperature formalism, the analog of UI (t; t0) is the so-called S

matrix. The time-ordering concept is due to Feynman and Dyson.

Remark 199 Non-quadratic unperturbed Hamiltonians: It is important to notice
that in everything above, H0 does not need to be quadratic in creation-annihilation
operators. With very few exceptions however,[36] it is quadratic since we want
the �unperturbed�Hamiltonian to be easily solvable. Note that the case where H0

is time dependent can also be treated but in this case we would have an evolution
operator U0 (t; 0) instead of e�iH0t. The only property of the exponential that we
really use in the above derivation is the composition law obeyed by time-evolution
operators in general, namely U0 (t; t0)U0 (t0; t00) = U0 (t; t

00) :

Remark 200 The general case of time-dependent Hamiltonians: The problem
we just solved for the time evolution in the interaction picture Eq.(27.19) is a
much more general problem that poses itself whenever the Hamiltonian is time-
dependent.
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28. *KADANOFF-BAYMANDKELDYSH-
SCHWINGER CONTOURS

While we have discussed only the time evolution of the operators in the interaction
representation, it is clear that we should also take into account the fact that the
density matrix e��H should also be calculated with perturbative methods. The
results of the previous section can trivially be extended to the density matrix by
a simple analytic continuation t! �i� : In doing so in the present section, we will
discover the many advantages of imaginary time for statistical mechanics.
Let us de�ne evolution operators and the interaction representation for the

density matrix in basically the same way as before

e��H = U (�i�; 0) = e�iH0(�i�)UI (�i�; 0) = e��H0UI (�i�; 0) (28.1)

The solution of the imaginary time evolution equation

i
@UI (it

00; 0)

@ (it00)
= VI (it

00)UI (it
00; 0)

is then

UI (�i�; 0) = Tc

�
exp

�
�i
Z
C

d (it00)VI (it
00)

��
(28.2)

where
t00 � Im (t) (28.3)

VI (it
00) = e�t

00H0V et
00H0 (28.4)

and the contour C now proceeds from t00 = 0 to t00 = ��.
Overall now, the matrix elements that we need to evaluate can be expressed in

such a way that the trace will be performed over the unperturbed density matrix.
Indeed, using our above results, we �nd

hij e��H H (t) +H (t0) jii = hij e��H0UI (�i�; 0)UI (0; t) I (t)UI (t; 0)UI (0; t0) +I (t0)UI (t0; 0) jii
(28.5)

We want to take initial states at a time t0 so that in practical calculations where
the system is out of equilibrium we can choose t0 = �1 where we can assume that
the system is in equilibrium at this initial time. Hence, we are here considering
a more general case than we really need but that is not more di¢ cult so let us
continue. Since we are evaluating a trace, we are free to take

jii = UI (0; t0) ji (t0)i (28.6)

then we have

hij e��H = hi (t0)jUI (t0; 0) e��H = hi (t0)j
�
e��H0e�H0

� �
eiH0t0e�iHt0

�
e��H

(28.7)
= hi (t0)j e��H0eiH0(t0�i�)e�iH(t0�i�) = hi (t0)j e��H0UI (t0 � i�; 0) (28.8)

This allows us to write an arbitrary matrix element entering the thermodynamic
trace as the evolution along a contour in complex time

hij e��H H (t) 
y
H (t

0) jii = hi (t0)j e��H0UI (t0 � i�; 0)UI (0; t) I (t)UI (t; 0)UI (0; t0) 
y
I (t

0)UI (t
0; 0) jii

*KADANOFF-BAYM AND KELDYSH-SCHWINGER CONTOURS 241



= hi (t0)j e��H0UI (t0 � i�; t0)UI (t0; t) I (t)UI (t; t0) 
y
I (t

0)UI (t
0; t0) ji (t0)i

(28.9)
How would we evaluate the retarded Green�s function in practice using this

approach? Take the case of fermions. It is convenient to de�ne G> (t� t0) and
G< (t� t0) by

G> (t� t0) = �i
D
 H (t) 

y
H (t

0)
E

(28.10)

G< (t� t0) = i
D
 yH (t

0) H (t)
E

(28.11)

in such a way that

GR (t� t0) = �i
Dn
 H (t) ;  

y
H (t

0)
oE

� (t� t0) �
�
G> (t� t0)�G< (t� t0)

�
� (t� t0)
(28.12)

To evaluate G> (t� t0) for example, we would expand the evolution operators such
as UI (t0; t0) as a power series in VI , each power of VI being associated with an
integral of a time ordered product that would start from t0 to go to the creation
operator  yI (t

0) ; then go to the destruction operator  I (t) until it returns to
t0� i�: This contour is illustrated in Fig.(28-1). It is this contour that determines
the order of the operators, so that even if t0 is a larger number than t; as illustrated
on the right panel of this �gure, the operator  I (t) always occur after  

y
I (t

0) on the
contour, i.e.  I (t) is on the left of  

y
I (t

0) in the algebraic expression. The parts
of the contour that follow the real axis are displaced slightly along the imaginary
direction for clarity.

Im(t)

Re(t)
t (t’)

(t)

ψ

ψ

+
0

t 0 −  βi

Im(t)

Re(t)
t

(t’)(t) ψψ
+

0

t 0 −  βi

^

^ ^ ^

Figure 28-1 Kadano¤-Baym contour to compute G> (t� t0) :

We will see momentarily that it is possible to avoid this complicated con-
tour to make calculations of equilibrium quantities. However, in non-equilibrium
situations, such contours are unavoidable. In practice however, what is used
by most authors is the Keldysh-Schwinger contour that is obtained by inserting
UI (t

0;1)UI (1; t0) = 1 to the left of  yI (t0) in the algebraic expression Eq.(28.9).
In practice this greatly simpli�es the calculations since the contour, illustrated in
Fig.(28-2), is such that integrals always go from �1 to 1: To specify if a given
creation or annihilation operator is on the upper or the lower contour, a simple
2� 2 matrix su¢ ces since there are only four possibilities..
In equilibrium, the analog of the �uctuation dissipation theorem in the form

of Eq.(10.87) for correlation functions, allows us to relate G> and G<; which
means that we can simplify matters greatly and work with a single Green function.
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Im(t)

Re(t)
t (t’)

(t)

ψ

ψ

+
0

t 0 −  βi

^

^

Figure 28-2 Keldysh-Schwinger contour.

Fundamentally, this is what allows us to introduce in the next section a simpler
contour that is extremely more convenient for systems in equilibrium, and hence
for linear response.
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29. MATSUBARAGREEN�S FUNC-
TION AND ITS RELATION TO
USUALGREEN�S FUNCTIONS. (THE
CASE OF FERMIONS)

In thermodynamic equilibrium the time evolution operator as well as the density
matrix are exponentials ofH times a complex number. To evaluate these operators
perturbatively, one needs to calculate time-ordered products along a contour in
the complex time domain that is relatively complicated, as we saw in the previous
section. In the present section, we introduce a Green�s function that is itself a time-
ordered product but along the imaginary time axis only, as illustrated in Fig.(29-1)
below. This slight generalization of the Green�s function is a mathematical device
that is simple, elegant and extremely convenient since the integration contour is
now simple. In a sense, we take advantage of the fact that we are free to de�ne
Green�s functions as we wish, as long as we connect them to observable quantities
in at the end of the calculation. This is similar to what we did for correlation
function. All the information about the system was in �00 (k; !) ; now it is all in
the spectral weight A (k; !), so that as long as we can extract the single-particle
spectral weight we do not lose information.

What makes this Green function extremely useful for calculations is the fact
that a) Perturbation theory tells us that time-ordered products are important.
b) When evaluating time-ordered products that occur in the perturbation series,
a theorem (Wick�s theorem) tells us that all correlation functions are related to
products of time-ordered Green�s functions. So we might as well focus on this
quantity from the start. c) For thermodynamic quantities, since only equal-time
correlation functions are needed, it is clear that evaluation in imaginary time or
in real time should be equivalent since only t = 0 is relevant. d) More generally,
for time-dependent correlation functions we will see that in frequency space the
analytic continuation to the physically relevant object, namely the retarded func-
tion, is trivial (only when the calculation is done analytically). We have already
seen this with the Matsubara representation for correlation functions in Eq.(30.1)
The same tricks apply not only to Green�s functions but also to these correlation
function.

After introducing the so-called Matsubara Green�s function itself, we will study
its properties. First, using essentially the same trick as for the �uctuation-dissipation
theorem for correlation functions, we prove that for fermions these functions are
antiperiodic in imaginary time. This allows us to expand them in a Fourier series.
The spectral representation and the Lehmann representation, that we already dis-
cussed in the case of the harmonic oscillator, then allow us to make a clear connec-
tion between the Matsubara Green�s function and the retarded function through
analytic continuation. As usual, the spectral representation also allows us to do
high-frequency expansions. We give speci�c examples of Matsubara Green�s func-
tions for non-interacting particles and show in general how to treat their Fourier
series expansions, i.e. how to do sums over Matsubara frequencies.
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29.1 De�nition for fermions

As I just mentioned, it is natural to de�ne the Green�s function as we will do below
for two reasons. First, perturbation theory shows clearly that imaginary-time or-
dered quantities come in naturally. Second, to compute physical orbservables such

as the density-density correlation function
D
T� 

y (r; �) (r;�) y (r0; � 0) (r0;� 0)
E
;we

need to take into account that the electron destroyed at r0; � 0 by  (r0;� 0) for ex-
ample, can be then be created either by  y (r; �) or by  y (r0; � 0) since we must
allow for all possible paths taken by the electron. This is the content of Wick�s
theorem. In other words, interference phenomena need to be taken into account.
Since we need to know about all these possible electron propagations, the following
quantity will be useful.

De�nition 19 The Matsubara Green�s function is de�ned by

G (r; r0; � � � 0) = �
D
T� (r;�) 

y (r0; � 0)
E

(29.1)

= �
D
 (r;�) y (r0; � 0)

E
� (� � � 0) +

D
 y (r0; � 0) (r;�)

E
� (� 0 � �) (29.2)

The de�nition of Ref.([141]) has an overall minus sign di¤erence with the de�ni-
tion given here.

Remark 201 The last equation then above de�nes the time ordering operator
for fermions. It is very important to notice the minus sign associated with in-
terchanging two fermion operators. This time-ordering operator is thus a slight
generalization of the time-ordering operator we encountered before with the sus-
ceptibilities. There was no minus sign in this case associated with the interchange
of operators. The time-ordering operator for bosonic quantities, such as V that
appeared in the perturbation expansion, will never have a minus sign associated
with the exchange of bosonic operators.

We still need to specify a few things. First, the thermodynamic average is in
the grand-canonical ensemble

hOi �
Tr
�
e��(H��N)O

�
Tr
�
e��(H��N)

� (29.3)

with � the chemical potential and N is the total number of particle operator, while
the time evolution of the operators is de�ned by

 (r;�) � e�(H��N) S (r) e��(H��N) (29.4)

 y (r;�) � e�(H��N) +S (r) e��(H��N) (29.5)

For convenience, it is useful to de�ne

K � H � �N (29.6)

Several points should attract our attention:

� The correspondence with the real-time evolution operators e�iHt is done by
noting that

� = � Im (t) (29.7)

or, in general for complex time

� = it (29.8)
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� In particular, evolution of the density matrix, or in general of an operator
in imaginary time is easily deduced by doing the above replacement in our
previous results. For example,

e��K = U (�i�; 0) = e�iK0(�i�)UI (�i�; 0) = e��K0UI (�i�; 0) (29.9)

� Strictly speaking, we should use  (r;�i�) if we want the symbol  (r;t) for
t complex to mean the same thing as before. That is why several authors
write  I (r;�) for the Matsubara �eld operator. We will stick with  (r;�)
since this lack of rigor does not usually lead to confusion. We have already
given enough di¤erent meanings tob in previous sections! Furthermore, this
type of change of �confusion� in the notation is very common in Physics.
For example, we should never write f (k) to denote the Fourier transform of
f (r) :

�  y (r;�) is not the adjoint of  (r;�). However, its analytic continuation
� ! it is the adjoint of  (r;t).

� Using as usual the cyclic property of the trace, it is clear that G depends
only on � � � 0 and not on � or � 0 separately.

� It su¢ ces to de�ne the Matsubara Green�s function G (r; r0; �) in the interval
�� � � � �. We do not need it outside of this interval. The perturbation
expansion of UI (�i�; 0) = Tc

�
exp

�
�
R
C
d�VI (�)

��
evidently necessitates

that we study at least the interval 0 � � � � but the other part of the
interval, namely �� � � � 0 is also necessary if we want the time ordering
operator to lead to both of the possible orders of  and  y: namely  y to
the left of  and  y to the right of  : Both possibilities appear in GR: If
we had only � > 0; only one possibility would appear in the Matsubara
Green�s function. We will see however in the next section that, in practice,
antiperiodicity allows us to trivially take into account what happens in the
interval �� � � � 0 if we know what happens in the interval 0 � � � �.

� To evaluate UI (�i�; 0) = Tc
�
exp

�
�
R
C
d�VI (�)

��
the time-ordering oper-

ator T� orders along the contour (Im (t) = ��) > (Im (t0) = �) which cor-
responds to (� = �) > (� 0 = ��). The present contour is illustrated in
Fig.(29-1). UI (�i�; 0) was also encountered in the previous section.

Remark 202 Role of extra chemical potential in time evolution: The extra chem-
ical potential in the evolution operator e�(H��N) is convenient to make all oper-
ators, including the density matrix, evolve in the same way. We saw that the
chemical potential came in naturally in the evaluation of the ARPES cross sec-
tion. It was because we measured energy with respect to the chemical potential. The
extra e���N disappears for equal-time quantities (thermodynamics) and in the cal-
culation of expectation values hO+(t)O (t0)i for operators O which are bilinear in
fermions of the form ( + ) at equal time. Indeed  + commutes with the number
operator so that in that case O+(t) = eiHtO+e�iHt = ei(H��N)tO+e�i(H��N)t.
When Wick�s theorem is used to compute expectation values, the creation and an-
nihilation operators evolve then as above. In any case, as we just said, the addition
of the chemical potential in the evolution operator just amounts to measuring the
energy of single-particle excitations with respect to the chemical potential. To show
this, �rst note that we work with Hamiltonians that conserve the number of par-
ticles, i.e. [H;N ] = 0, which allows us to write eit(H��N) = eitHe�it�N : Then
we have that eit(H��N) S (r) e

�it(H��N) = eit�
�
eitH S (r) e

�itH� because there
is always one less particle in the new state once  S (r) has acted (You can also
count the necessary commutators explicitly). Going to Fourier space,

R
dtei(!+i�)t
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Im(t)

Re(t)
(0)

(τ)

ψ

ψ

+̂

^

τ = −β

τ = β
Figure 29-1 Contour for time ordering in imaginary time. Only the time di¤erence
is important. The contour is translated slightly along the real-time axis for clarity.

becomes
R
dtei(!+i�+�)t so that indeed the di¤erence between the Fourier transform

of the Green�s function where the evolution operator is K instead of H is equiva-
lent to a change from ! to ! + � . With the latter de�nition, ! = 0 corresponds
to single-particle excitations that are at the Fermi level. All of this will also be
clari�ed by the Lehmann representation introduced later.

29.2 Time ordered product in practice

Suppose I want to compute the following quantity for fermions:D
T� (�1) 

y (�3) (�2) 
y (�4)

E
: (29.10)

We drop space indices to unclutter the equations. The time ordered product for
fermions keeps tract of permutations, so if I exchange the �rst two operators for
example, I �ndD

T� (�1) 
y (�3) (�2) 

y (�4)
E
= �

D
T� 

y (�3) (�1) (�2) 
y (�4)

E
(29.11)

I need not worry about delta functions at equal time or anything but the number
of fermion exchanges. Indeed, whichever of the above two expressions I start with,
if �1 < �2 < �3 < �4; I will �nd at the end thatD

T� (�1) 
y (�3) (�2) 

y (�4)
E
= �

D
 y (�4) 

y (�3) (�2) (�1)
E
: (29.12)

We cannot, however, have two of the times equal for a  and a  y. We have to
specify that one is in�nitesimally larger or smaller than the other to know in which
order to place the operators since they do not commute or anticommute.
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Another interesting property of the time-ordered product is that we can dif-
ferentiate exponentials with respect to parameters appearing in the argument as
if it was an ordinary exponential. For example note how the derivative below is
done

@

@�

D
T�e

�( (�5) y(�6)) (�1) 
y (�3) (�2) 

y (�4)
E

=
D
T�e

�( (�5) y(�6)) (�5) 
y (�6) (�1) 

y (�3) (�2) 
y (�4)

E
:(29.13)

This can be understood as follows. The exponential is de�ned by its power series.
One can thus do the expansion, di¤erentiate term by term and re-exponentiate
without worrying about the imaginary times appearing in the argument since the
time-ordering operator will take care of that when the correlation function needs
to be evaluated for a particular set of imaginary times.

29.3 Antiperiodicity and Fourier expansion (Mat-
subara frequencies)

Suppose � < 0. Then the de�nition Eq.(29.1) tells us that

G (r; r0; �) =


 + (r0; 0) (r;�)

�
(29.14)

Using the cyclic property of the trace twice, as in the demonstration of the
�uctuation-dissipation theorem it is easy to show that

G (r; r0; �) = �G (r; r0; � + �) ; �� < � < 0 (29.15)

This boundary condition is sometimes known as the Kubo-Martin-Schwinger (KMS)
boundary condition. [152]

Proof: Let
e��
 � Tr

�
e��K

�
(29.16)

then because � < 0, it follows from the de�nition that

G (r; r0; �) = e�
 Tr
�
e��K + (r0) (r;�)

�
(29.17)

The cyclic property of the trace then tells us that

G (r; r0; �) = e�
 Tr
�
 (r;�) e��K + (r0)

�
(29.18)

= e�
 Tr
��
e��Ke�K

� �
eK� (r) e�K�

�
e��K + (r0)

�
=



 (r;� + �) + (r0; 0)

�
= �G (r; r0; � + �) (29.19)

The last line follows because given that �� < �; we necessarily have �+� > 0
so that the other � function must be used in the de�nition Eq.(29.1) of the
Matsubara Green�s function and an extra sign appears.

If � > 0; the above arguments can be repeated to yield

G (r; r0; � � �) = �G (r; r0; �) ; � > � > 0 (29.20)
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Remark 203 However, for � > 0 note that

G (r; r0; �) 6= �G (r; r0; � + �) ; � > 0 (29.21)

While G (r; r0; � + �) for � > 0 is well de�ned, we never need this function. So we
restrict ourselves to the interval �� � � � � described in the previous section.

One can take advantage of the antiperiodicity property of the Green�s function
in the interval �� � � � � to expand it in a Fourier series that will automatically
guaranty that the crucial antiperiodicity property is satis�ed. More speci�cally,
we write

G (r; r0; �) = 1
�

P1
n=�1 e�ikn�G (r; r0; ikn) (29.22)

where the so-called Matsubara frequencies for fermions are odd, namely

kn = (2n+ 1)�T =
(2n+1)�

� ; n integer (29.23)

The antiperiodicity property will be automatically ful�lled because e�ikn� =
e�i(2n+1)� = �1.

Choice of units Here and from now on, we have taken Boltzmann�s constant kB
to be equal to unity.

The expansion coe¢ cients are obtained as usual for Fourier series of antiperi-
odic functions from

G (r; r0; ikn) =
R �
0
d�eikn�G (r; r0; �) (29.24)

Note that only the � > 0 region of the domain of de�nition is needed, as promised.
The case of bosons is left as an exercise.

Remark 204 Domain of de�nition of the Matsubara Green�s function: The value
of G (r; r0; �) given by the Fourier series (29.22) for � outside the interval �� <
� < �, is in general di¤erent from the actual value of Eq.(29.1) G (r; r0; � � � 0) =
�


T� (r;�) 

+ (r0; � 0)
�
. Indeed, to de�ne a Fourier series one extends the func-

tion de�ned in the interval �� < � < � so that it is periodic in � outside this inter-
val with a period 2�: The true function G (r; r0; � � � 0) = �



T� (r;�) 

+ (r0; � 0)
�

has an envelope that is, instead, exponential outside the original interval. We
will see an explicit example in the case of the free particles. In perturbation ex-
pansions, we never need G (r; r0; �) outside the interval where the series and the
true de�nition give di¤erent answers. To avoid mathematical inconsistencies, it is
nevertheless preferable in calculations to do Matsubara frequency sums before any
other integral! It is possible to invert the order of integration and of summation
in most of the cases, but we must beware.

29.4 * GR and G can be related using contour in-
tegration

To establish the relation between the Matsubara Green�s function and the retarded
one, and by the same token establish the spectral representation for G, one usu-
ally proceeds with the Lehmann representation, as we did in section 30.1 for the
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susceptibility. Even though this is a method that is never used in practice, it is
instructive to use the method described below that shows explicitly the analytic
continuation in the complex real plane. Begin with the de�nitions

G (r; r0; �) = �


 (r;�) + (r0; 0)

�
� (�) +



 + (r0; 0) (r;�)

�
� (��) (29.25)

G (r; r0; ikn) =
Z �

0

d�eikn�G (r; r0; �) (29.26)

=

Z �

0

d�eikn�
�
�


 (r;�) + (r0; 0)

��
: (29.27)

Assume that kn > 0. Then, as illustrated in Fig.(29-2), we can deform the contour
of integration within the domain of analyticity along Re (t) = Im (�) > 0. (The
analyticity of



 (r;�) + (r0; 0)

�
in that domain comes from e��H in the trace.

You will be able to prove this later by calculating G (r; r0; �) with the help of the
spectral representation Eq.(29.34) and tricks for evaluating sums on Matsubara
frequencies. For Im (�) =1 there will be no contribution from the small segment
since eikn� becomes a decaying exponential. The integral becomes

Im(t) =  Re(τ)

Re(t) = Im(τ)

Re(τ) = −β

∞

Re(τ) = β

τ = it

Figure 29-2 Deformed contour used to relate the Matsubara and the retarded
Green�s functions.

G (r; r0; ikn) = (29.28)Z t=1

t=0

d (it)
�
�


 (r;t) + (r0)

��
eikn(it)

+

Z t=0

t=1
d (it)

�
�


 (r;t� i�) + (r0)

��
e(ikn)i(t�i�)

In the last integral, we then use the results

e(ikn)i(�i�) = e(ikn)� = �1 (29.29)Z 0

1
= �

Z 1

0

(29.30)

�


 (r;t� i�) + (r0)

�
= (29.31)h

�
D
eiK(t�i�) S (r) e

�iK(t�i�) yS (r
0)
Ei

=
h
�
D
e�KeiKt S (r) e

�iKte��K yS (r
0)
Ei
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It then su¢ ces to cancel the left most e�K with the density matrix and to use the
cyclic property of the trace to obtain for the integrand of the last integral,

=
h
�
D
 y (r0; 0) (r;t)

Ei
: (29.32)

Overall then, the integral in Eq.(29.28) is equal to

G (r; r0; ikn) = �i
Z 1

0

dt
Dn
 (r;t) ;  y (r0; 0)

oE
ei(ikn)t (29.33)

G (r; r0; ikn) =
R1
�1

d!0

2�

A(r;r0;!0)
ikn�!0 : (29.34)

All that we assumed to deform the contour was that kn > 0. Thus, ikn !
! + i� with � > 0 is consistent with the hypothesis and allows us to deform
the contour as advertized. Comparing the formula for G (r; r0; ikn) for kn > 0
with the expression for the retarded Green�s function(26.46), we see that analytic
continuation is possible.

GR (r; r0;!) = limikn!!+i� G (r; r0; ikn) (29.35)

If we had started with kn < 0, analytic continuation ikn ! !� i� to the advanced
Green�s function would have been possible.

Remark 205 Connectedness: For a general bosonic correlation function, similar
spectral representations can also be de�ned for connected functions (see below).
As an example of connected function, hA (�)Bi � hA (�)i hBi is connected. The
subtracted term allows the combination of correlation functions to behave as a
response function and appears naturally in the functional derivative approach. If
hA (�)i has a piece that is independent of � ; the subtraction allows the integral
on the contour at in�nity on the above �gure to vanish even at zero Matsubara
frequency. Otherwise, that would not be the case.

29.5 The Lehmann representation tells us the phys-
ical meaning of the spectral weight and the
relation between GR and G

For a general correlation function, not necessarily a Green�s function, one es-
tablishes the connection between Matsubara functions and retarded functions by
using the Lehmann representation. This representation is also extremely useful
to extract the physical signi�cance of the poles of correlation functions so this is
why we introduce it at this point. We have already seen examples of Lehmann
representation in the one-body case when we wrote in Eq.(26.23),

GR (r; r0;!) =
X
n

�n (r)�
�
n (r

0)

! + i� � En

and also in Sec. 10.9 on correlation functions.
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Let us consider the more general many-body case, starting from the Matsubara
Green�s function. It su¢ ces to insert a complete set of energy eigenstates between
each �eld operator in the expression for the spectral weight

A (r; r0; t) �

�
 (r;t) ;  + (r0; 0)

	�
(29.36)

= e�

X
m;n

h
hnj e��KeiKt S (r) e�iKt jmi hmj 

y
S (r

0) jni

+ hnj e��K yS (r
0) jmi hmj eiKt S (r) e�iKt jni

i
We now use e�iKt jni = e�iKnt jni with Kn = En � �Nn if there are Nn par-
ticles in the initial state jni : In the �rst term above, hnj has one less parti-
cle than jmi while the reverse is true in the second term so that Km � Kn =
(Em � � (Nn + 1)� En + �Nn) in the �rst term andKn�Km = (En � �Nn � Em + � (Nn � 1))
in the second. Taking the Fourier transform

R
dtei!

0t we have

A (r; r0;!0) = e�
 � (29.37)X
mn

h
e��Kn hnj S (r) jmi hmj 

y
S (r

0) jni 2�� (!0 � (Em � �� En))

+ e��Kn hnj yS (r
0) jmi hmj S (r) jni 2�� (!0 � (En � �� Em))

i
One can interpret physically the spectral weight as follows. It has two pieces,

the �rst one for excited states with one more particle, and the second one for
excited states with one more hole. Photoemission experiments (See Einstein�s
Nobel prize) access this last piece of the spectral weight, while Bremsstrahlung
inverse spectroscopy (BIS) experiments measure the �rst piece.1 Excited particle
states contribute to positive frequencies !0 if their excitation energy is larger than
the chemical potential, Em �En > � and to negative frequencies otherwise. Zero
frequency means that the excitation energy is equal to the chemical potential.
In other words, every excited single-particle or single-hole state corresponds to a
delta function in the spectral weight whose weight depends on the overlap between
initial states with one more particle at r0 or one more hole at r, and the true excited
states.

Remark 206 At zero temperature, we have

A (r; r0;!0) =
X
m

h
h0j S (r) jmi hmj 

y
S (r

0) j0i 2�� (!0 + �� (Em � E0))

+ h0j yS (r
0) jmi hmj S (r) j0i 2�� (!0 + �� (E0 � Em))

i
In the �rst term, Em is the energy of an eigenstate with one more particle than
the ground state. The minimal energy to add a particle is �, hence, Em �E0 � �
and the delta function contributes to positive frequencies. In the second term
however, Em is the energy with one less particle so 0 � E0 � Em � � since we
can remove a particle, or create a hole, below the Fermi surface. Hence the second
term contributes to negative frequencies.

Remark 207 By using K = H��N instead of H as time evolution operator, we
have adopted, as mentioned above, a convention where the frequency ! represents
the energy of single-particle excitations above or below the chemical potential. If
we had used H as evolution operator, only ! instead of the combination ! + �
would have appeared in the delta functions above.

1To be more speci�c, these experiments add or remove particles in momentum, not position
eigenstates. The only change that this implies in the discussion above is that  (y)S (r) should be

replaced by c(y)p :
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The spectral representation Eq.(29.34) immediately tells us that the poles of
the single-particle Green�s functions are at the same position as delta functions
in the spectral weight, in other words they are at the excited single-particle or
single-hole states. Doing changes of dummy summation indices we can arrange so
that it is always hnj that has one less particle. Then,

A (r; r0;!0) = e�

P
mn

�
e��Kn + e��Km

�
hnj S (r) jmi hmj 

y
S (r

0) jni 2�� (!0 � (Km �Kn))

(29.38)
Now I show that the spectral representation in Eq.(29.34) is valid for the

Matsubara Green�s function. By de�nition

G (r; r0; ikn) =

Z �

0

d�eikn�G (r; r0; �) (29.39)

= �
Z �

0

d�eikn�


 (r;�) + (r0; 0)

�
: (29.40)

Writing explicitly the trace, the density matrix and using complete sets of energy
eigenstates, this can be rewritten as

G (r; r0; ikn) = �
Z �

0

d�eikn�e�

X
mn

hnj e��KeK� S (r) e�K� jmi hmj 
y
S (r

0) jni

= �
Z �

0

d�e(ikn+Kn�Km)�e��Kne�

X
mn

hnj S (r) jmi hmj 
y
S (r

0) jni :

The integral of the exponential is easy to do. Using the equality eikn� = ei(2n+1)� =
�1, which is valid given the de�nition of the Matsubara frequencies, we are left
with

G (r; r0; ikn) = e�

P
mn

�
e��Kn + e��Km

� hnj S(r)jmihmj yS(r0)jni
ikn�(Em�En��) : (29.41)

This is the Lehmann representation. It tells us how to interpret the poles of the
analytically continued G (r; r0; ikn) ; and importantly, it tells us that

G (r; r0; ikn) =
Z 1

�1

d!0

2�

A (r; r0;!0)

ikn � !0
(29.42)

is a valid representation, with A (r; r0;!0) exactly the same spectral weight Eq.
(29.38) as the retarded Green�s function.

Remark 208 Standard way of proving analytical continuation formula: The stan-
dard way of proving that GR (!) = limikn!!+i� G (ikn) is to �rst �nd the Lehmann
representation for both quantities, as we just did. The previous section does it in
an unusual but instructive manner.

29.6 Spectral weight and rules for analytical contin-
uation

In this section, we summarize what we have learned for the analytic properties of
the Matsubara Green�s function and we clarify the rules for analytic continuation.[?]
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The key result for understanding the analytical properties of G is the spectral
representation Eq.(29.34). The spectral weight A (r; r0;!0) was discussed just in
the previous subsection (See also Eq.(29.38) for the Lehmann representation).
The Matsubara Green�s function and the retarded functions are special cases

of a more general function de�ned in the complex frequency plane by

G (r; r0; z) =
R1
�1

d!0

2�

A(r;r0;!0)
z�!0 (29.43)

This function is analytic everywhere except on the real axis. Physically interesting
special cases are

G (r; r0; ikn) = G (r; r0; ikn)

GR (r; r0;!) = lim
�!0

G (r; r0;! + i�) (29.44)

GA (r; r0;!) = lim
�!0

G (r; r0;! � i�) (29.45)

The function G (r; r0; z) has a jump on the real axis given by

A (r; r0;!) = i lim�!0 [G (r; r
0;! + i�)�G (r; r0;! � i�)] (29.46)

A (r; r0;!) = i
�
GR (r; r0;!)�GA (r; r0;!)

�
In the special case where A (r; r0;!) is real (which is almost always the case in

practice since we consider r = r0 or k = k0), we have

A (!) = �2 ImGR (!) (29.47)

like we have often used in the one-body case.

Remark 209 A (r; r0;!) can be complex in the presence of a spontaneously bro-
ken time-reversal symmetry or of a magnetic �eld since in those cases the wave
functions can be complex. In this general case, since GR (r; r0;!)� = GA (r0; r;!),
it follows from the above formulae that the spectral weight can be extracted from
the anti-hermitian part of the Green function matrix, namely

A (r; r0;!) = i
�
GR (r; r0;!)�GR (r0; r;!)�

�
as is further discussed in Eq.(32.20) below.

The previous results are summarized in Fig.(29-3) which displays the analytic
structure of G (r; r0; z) : This function is analytical everywhere except on the real
axis where it has a branch cut leading to a jump Eq.(29.46) in the value of the
function as we approach the real axis from either the upper or lower complex half-
plane. The limit as we come from the upper half-plane is equal to GR (r; r0;!)
whereas from the lower half-plane it is equal to GA (r; r0;!) : The Matsubara
Green�s function is de�ned only on a discrete but in�nite set of points along the
imaginary frequency axis.
The problem of �nding GR (r; r0;!) along the real-time axis from the knowl-

edge of the Matsubara Green�s function is a problem of analytical continuation.
Unfortunately, G (z = ikn) does not have a unique analytical continuation be-
cause there is an in�nite number of analytical functions that have the same value
along this discrete set of points. For example, suppose we know G (z = ikn) ; then
G (z)

�
1 +

�
e�z + 1

��
has the same value as G (z) for all points z = ikn because

eikn� + 1 = 0: Baym and Mermin[26], using results from the theory of complex
functions, have obtained the following result.
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Im(z)

Re(z)

G(z) = G (ω)R

G(z) = G (ω)A

G(z) = G(iω )n

Figure 29-3 Analytical structure of G(z) in the complex frequency plane. G(z)
reduces to either GR (!) ; GA (!) or G (i!n) depending on the value of the complex
frequency z: There is a branch cut along the real axis.

Theorem 20 If

1. G (z) is analytic in the upper half-plane

2. G (z) = G (ikn) for all Matsubara frequencies

3. limz!1 zG (z) = cst

then the analytical continuation is unique and

GR (r; r0;!) = lim
ikn!!+i�

G (r; r0; ikn) (29.48)

The key point is the third one on the asymptotic behavior at high frequency.
That this is the correct asymptotic behavior at high frequency follows trivially from
the spectral representation Eq.(29.43) as long as we remember that the spectral
weight is bounded in frequency. The non-trivial statement is that this asymptotic
behavior su¢ ces to make the analytical continuation unique. In practice this rarely
poses a problem. The simple replacement ikn ! !+ i� su¢ ces. Nevertheless, the
asymptotic behavior re�ects a very fundamental property of the physical system,
namely the anticommutation relations! It is thus crucial to check that it is satis�ed.
More on the meaning of the asymptotic behavior in subsection (32.1).

Remark 210 Numerical calculations are often done in Matsubara frequency, or
in imaginary time. This is much easir to handle than oscillating functions. The
analytic continuation however is much more problematic. One can use Padé ap-
proximants if the data has very high precision, or Maximum Entropy analytic
continuation[108] if it is less accurate. Software is available on the internet for
these tasks. ([28])

29.7 Matsubara Green�s function for translationally
invariant systems

We �rst present the de�nition of the Matsubara Green�s function in momentum
space since this is where, in translationally invariant systems, it will be diagonal.
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Let us �rst show explicitly what we mean by Green�s function in momentum space.

We expect G (k; � � � 0) = �
D
T� ck (�) c

y
k (�

0)
E
but let us see this in detail.

With our de�nition of momentum and real space second quantized operators,
and our normalization for momentum eigenstates Eq.(24.36) we have

G (r; r0; � � � 0) = �
D
T� (r;�) 

y (r0; � 0)
E
= �

*
T�
X
k

hr jki ck (�)
X
k0

cyk0 (�
0) hk0 jr0i

+
(29.49)

hr jki hk0 jr0i = 1

V e
ik�r�ik0�r0 =

1

V e
i(k�k0)�

�
r0+r
2

�
+i
�
k+k0
2

�
�(r�r0): (29.50)

Assuming space translation invariance, we can integrate over the center of mass

coordinate and divide by volume since 1
V
R
d
�
r0+r
2

�
= 1. Using

1

V

Z
d

�
r0 + r

2

�
e
i(k�k0)�

�
r0+r
2

�
=
1

V (2�)
3
�
�
k� k0

�
= �k;k0 (29.51)

we are left with

G (r; r0; � � � 0) = �
*
T�
1

V
X
k0

ck0 (�) c
y
k0 (�

0) eik
0�(r�r0)

+
(29.52)

G (k; � � � 0) =

Z
d (r� r0) e�ik�(r�r

0)G (r; r0; � � � 0) (29.53)

=

Z
d (r� r0) e�ik�(r�r

0)

"
�
*
T�
1

V
X
k0

ck0 (�) c
y
k0 (�

0) eik
0�(r�r0)

+#

G (k; � � � 0) = �
D
T� ck (�) c

y
k (�

0)
E

(29.54)

which could have been guessed from the start! Our de�nitions of Fourier trans-
forms just make this work.

Remark 211 Momentum indices and translational invariance: Note that the con-
servation of total momentum corresponding to translational invariance corresponds
to the sum of the momentum indices of the creation-annihilation operators being
equal to zero. The sign of momentum is counted as negative when it appears on a
creation operator.

Remark 212 Note that in the special case of non-interacting systems the easiest
way to get the �nal result is to remember that we can use energy eigenstates to
do the thermodynamic and quantum mechanical trace. Since eigenstates are of
the form cyk1c

y
k2
� � � j0i and the time evolution can just be represented by ck0 (�) =

exp (��k0) ck0 ; as I show below. Then all the terms that do not have the same
value of k for the creation and annihilation operators of the Green�s function will
vanish because they will create states that are orthogonal. Indeed, the set of states
will then be di¤erent in the bra and the ket.

29.8 Matsubara Green�s function in the non-interacting
case

In this section, we want to make the Matsubara Green�s function our friend by
looking at it in the non-interacting case from many di¤erent points of view. We
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will see how it looks both in imaginary time and in Matsubara frequency, deriving
the results in at least two very di¤erent ways: from the de�nition and from the
equations of motion.

29.8.1 G0 (k; ikn) from the spectral representation

The above is a general result for a translationally invariant system. Let us spe-
cialize to non-interacting particles, namely to quadratic diagonal Hamiltonian

K0 =
X
k

(�k � �) c+k ck �
X
k

�kc
+
k ck (29.55)

The result for the Green�s function may be obtained either directly by calculating
the spectral weight and integrating, or from the de�nition or by integrating the
equations of motion. The three ways of obtaining the simple result

G0 (k; ikn) = 1
ikn��k

(29.56)

are instructive, so we will do all of them below. The simplest way to obtain the
above result is to remember that

GR (k;!) = 1
!+i���k

(29.57)

which implies that A (k;!) = 2�� (! � �k). Since the spectral weight is the same
for G0 (k; ikn), the result follows. The only di¤erence with the one-body case is in
the presence of the chemical potential in �k.

29.8.2 *G0 (k; �) and G0 (k; ikn) from the de�nition

To evaluate the Green�s function from its de�nition, we need ck (�) : That quantity
may be obtained by solving the Heisenberg equations of motion,

@ck
@�

= [K0; ck] = ��kck (29.58)

The commutator was easy to evaluate by recalling the theorem on number op-
erators seen in Sec.24.1.3 [nk0 ; ck] = �ck�k;k0 or by using our standard trick
Eq.(24.89). The resulting di¤erential equation is easy to integrate given the initial
condition on Heisenberg operators. We obtain,

ck (�) = e��k� ck (29.59)

so that substituting in the de�nition,

G0 (k; �) = �
D
T� ck (�) c

y
k

E
= �e��k�

hD
ckc

y
k

E
� (�)�

D
cykck

E
� (��)

i
(29.60)

using the standard result from elementary statistical mechanics,D
cykck

E
= f (�k) =

1

e��k + 1
(29.61)

and
D
ckc

y
k

E
= 1�

D
cykck

E
we obtain

G0 (k; �) = �e��k� [(1� f (�k)) � (�)� f (�k) � (��)] : (29.62)
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Exercise 29.8.1 Fermi-Dirac statistics: Show by explicit calculation in the grand-
canonical ensemble that

D
cykck

E
= f (�k) =

1
e��k+1

:Hint: The grand partition

function for non-interacting systems is equal to the product of the partition func-
tions for each basis state k separately. And for each k, the trace will be over states
j0i and cyk j0i.

Remark 213 Inadequacy of Matsubara representation outside the domain of de-
�nition: We see here clearly that if � < 0 the equality

G0 (k; � + �) = �G0 (k; �) (29.63)

is satis�ed because e��k� (1� f (�k)) = f (�k) : On the other hand,

G0 (k; � + 3�) 6= G0 (k; � + �) (29.64)

as we might have believed if we had trusted the expansion

G0 (k; �) =
1

�

1X
n=�1

e�ikn�G0 (k; ikn)

outside its domain of validity! The conclusion is that as long as the Matsubara
frequency representation is used to compute functions inside the domain �� < � <
�, it is correct. The perturbation expansion of the interaction picture does not force
us to use Green�s functions outside this domain, so the Matsubara representation
is safe!

Remark 214 Alternate evaluation of time evolution: We could have obtained the
time evolution also by using the identity

eACeA = C + [A;C] +
1

2!
[A; [A;C]] +

1

3!
[A; [A; [A;C]]] + : : : (29.65)

that follows from expanding the exponential operators. This is less direct.

Remark 215 Appearance of G0 (k; �) : It is instructive to plot G0 (k; �) as a func-
tion of imaginary time. In some energy units, let us take � = 5; and then consider
three possible values of �k: First �k = 0:2; i.e. for a value of momentum above the
Fermi surface, then a value right at the Fermi surface, �k = 0 and �nally a value
�k = �0:2 corresponding to a momentum right below the Fermi surface. These
cases are illustrated respectively in Figs.(29-4) to (29-6). Note that the jump at
� = 0 is always unity, re�ecting the anticommutation relations. What is meant
by antiperiodicity also becomes clear. The extremal values near �� and �0 are
simply related to the occupation number, independently of interactions.

Let us continue with the derivation of the Matsubara frequency result G0 (k; ikn).

G0 (k; ikn) =
Z �

0

d�eikn�G0 (k; �) = � (1� f (�k))
Z �

0

d�eikn�e��k� (29.66)

= � (1� f (�k))
eikn�e��k� � 1

ikn � �k
(29.67)

= � (1� f (�k))
�e��k� � 1
ikn � �k

=
1

ikn � �k
(29.68)

The last equality follows because

(1� f (�k)) =
e�k�

e�k� + 1
=

1

e��k� + 1
(29.69)

We thus have our �nal result Eq.(29.56) for non-interacting particles.
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Remark 216

4 2 0 2 40,8
0,6
0,4
0,2
0,0
0,2
0,4
0,6
0,8

G
(τ)

τ
Figure 29-4 G0 (p; � ) for a value of momentum above the Fermi surface.
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Figure 29-5 G0 (p; � ) for a value of momentum at the Fermi surface.
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Figure 29-6 G0 (p; � ) for a value of momentum below the Fermi surface.
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29.8.3 *G0 (k; �) and G0 (k; ikn) from the equations of motion

In complete analogy with the derivation in subsection (26.3) we can obtain the
equations of motion in the quadratic case.

@

@�
G0 (k; �) = �

@

@�

D
T� ck (�) c

y
k

E
(29.70)

= �� (�)
Dn
ck (�) ; c

y
k

oE
�
�
T�

�
@

@�
ck (�)

�
cyk

�
(29.71)

Using the equal-time anticommutation relations as well as the Heisenberg equa-
tions of motion for free particles Eq.(29.58) the above equation becomes,

@

@�
G0 (k; �) = �� (�) + �k

D
T� ck (�) c

y
k

E
(29.72)

so that the equation of motion for the Matsubara propagator is�
@
@� + �k

�
G0 (k; �) = �� (�) (29.73)

To obtain the Matsubara-frequency result, we only need to integrate on both sides
using the general expression to obtain Fourier coe¢ cients Eq.(29.24)Z ��

0�

��
@

@�
+ �k

�
G0 (k; �)

�
eikn�d� = �1 (29.74)

so that integrating by parts and including 0 in the domain of integration,

eikn� G0 (k; �)j�
�

0� � iknG0 (k; ikn) + �kG0 (k; ikn) = �1: (29.75)

The integrated term disappears because of the KMS boundary conditions (an-
tiperiodicity) Eq.(29.15)

eikn� G0 (k; �)j�
�

0� = �G0
�
k;��

�
� G0

�
k; 0�

�
= 0: (29.76)

Eq.(29.75) for the Matsubara Green�s function then immediately gives us the de-
sired result Eq.(29.56).

Exercise 29.8.2 Non-interacting bosons: Recalling that for bosons we use even
Matsubara frequencies, show from the equations of motion that the same result,
Eq.(29.56), is valid also for conserved bosons.

Alternatively, we can avoid � = 0 in the domain of integration. Then,

eikn� G0 (k; �)j�0+ � iknG0 (k; ikn) + �kG0 (k; ikn) = 0 (29.77)

and

eikn� G0 (k; �)j�0+ = �G0 (k;�)� G0
�
k; 0+

�
=
Dn
ck; c

y
k

oE
= 1 (29.78)

since

� G0
�
k; 0+

�
=

D
ckc

y
k

E
(29.79)

�G0 (k;�) =
1

Z
Tr
h
cke

��K̂cyk

i
=
D
cykck

E
: (29.80)

This gives the same result, Eq.(29.56).
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29.9 Sums over Matsubara frequencies

In the derivation above, we went from imaginary-time to Matsubara frequencies.
We can also do the reverse, from Matsubara frequencies to imaginary time. So you
need to learn about sums over Matsubara frequencies. This will be necessary in
doing practical calculations even when we are not trying to go back to imaginary
time. When we have products of Green�s functions, we will use contour integration
tricks that are the same as those in this section. Also, we may use partial fractions
in such a way that the only sums to evaluate will basically look like

T
X
n

1

ikn � �k
: (29.81)

where T = ��1: We have however to be careful since the result of this sum is
ambiguous. Indeed, returning back to the motivation for these sums, recall that

G (k;�) = T
X
n

e�ikn�

ikn � �k
(29.82)

We already know that the Green�s function has a jump at � = 0. In other words,�
lim
�!0+

G (k;�) = �


ckc

+
k

��
6=
�
lim
�!0�

G (k;�) =


c+k ck

��
(29.83)

This inequality in turn means that

T
X
n

e�ikn0
�

ikn � �k
6= T

X
n

e�ikn0
+

ikn � �k
6= T

X
n

1

ikn � �k
(29.84)

The sum does not converge uniformly in the interval including � = 0 because the
1=n decrease for n ! 1 is too slow. Even if we can obtain a �nite limit for the
last sum by combining positive and negative Matsubara frequencies, what makes
physical sense is only one or the other of the two limits � ! 0�:

Remark 217 The jump, lim�!0� G (k;�) � lim�!0+ G (k;�) is always equal to
unity because of the anticommutation relations. The slow convergence in 1=ikn is
thus a re�ection of the anticommutation relations and will remain true even in the
interacting case. If the (ikn)

�1 has a coe¢ cient di¤erent from unity, the spectral
weight is not normalized and the jump is not unity. This will be discussed shortly.

Let us evaluate the Matsubara frequency sums. Considering again the case of
fermions I will show as special cases that

T
P
n
e�ikn0

�

ikn��k
= 1

e��k+1
= f (�k) = G0 (k;0�) (29.85)

T
P
n
e�ikn0

+

ikn��k
= �1

e���k+1
= �1 + f (�k) = G0 (k;0+) (29.86)

Obviously, the non-interacting Green�s function has the correct jump G0 (k;0�)�
G0 (k;0+) = 1:In addition, since G0 (k;0�) =

D
cykck

E
and G0 (k;0+) = �

D
ckc

y
k

E
the above results just tell us that

D
cykck

E
= f (�k) that we know from ele-

mentary statistical mechanics. The anticommutation relations immediately give

�
D
ckc

y
k

E
= �1+f (�k) : So these sums over Matsubara frequencies better behave

as advertized.
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Proof: [1] 2 To perform the sum over Matsubara frequencies, the standard trick
is to go to the complex plane. The following function

� � 1

e�z + 1
(29.87)

has poles for z equal to any fermionic Matsubara frequency: z = ikn. Its
residue at these poles is unity since for

z = ikn + �z (29.88)

we have

� � 1

e�z + 1
= �� 1

eikn�+��z + 1
= �� 1

�1e��z + 1 (29.89)

lim
z�ikn!0

�z

�
�� 1

e�z + 1

�
= 1 (29.90)

Similarly the following function has the same poles and residues:

lim
z�ikn!0

�z

�
�

1

e��z + 1

�
= 1 (29.91)

To evaluate the � < 0 case by contour integration, we use the residue theorem
on the contour C1, which is a sum of circles going counterclockwise around
the points where z is equal to the Matsubara frequencies. Using Eq.(29.90),
this allows us to establish the equality

� 1

2�i

Z
C1

dz

e�z + 1

e�z�

z � �k
=
1

�

X
n

e�ikn�

ikn � �k
: (29.92)

This contour can then be deformed, as illustrated in Fig. (29-7), into C 01 and
then into C2+C3. There is no contribution from C3 at Re (z) =1 because
the denominator of e�z�

e�z+1
makes the integrand converge exponentially since

in e�z(�+�) , � + � is always positive (� > ��). Similarly, there is no
contribution from C2 at Re (z) = �1 because in that case e�z�

e�z+1
! e�z�

and �z� < 0. So �nally, we have

1
�

P
n
e�ikn�

ikn��k
= e��k�

e��k+1
= e��k�f (�k) (29.93)

which agrees with the value of G0 (k; �) in Eq.(29.62) when � < 0: In partic-
ular, when � = 0� we have proven the identity (29.86) .

To evaluate the � > 0 case we use the same contour but with the other form of
auxiliary function Eq.(29.91). We can again check that the integral over the
circle at in�nity vanishes because this time e�z� insures convergence when
Re (z) = 1, � > 0 and 1

e��z+1
ensures convergence when Re (z) = �1

despite e�z� in the numerator. We then obtain,

1

�

X
n

e�ikn�

ikn � �k
=

1

2�i

Z
C1

dz

e��z + 1

e�z�

z � �k
: (29.94)

Again, from C2 + C3, only the contribution from the pole in the clockwise
directions survives so that we have,

1
�

P
n
e�ikn�

ikn��k
= � e��k�

e���k+1
= � e��k�e��k

e��k+1
= �e��k� (1� f (�k)) : (29.95)

This agrees with the value of G0 (k; �) in Eq.(29.62) when � > 0: In partic-
ular, when � = 0+ we have proven the identity (29.85).

2 I thank Yan Wang, 2018, for this version of the proof.
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Figure 29-7 Evaluation of fermionic Matsubara frequency sums in the complex
plane.

Remark 218 Branch cut: When there is a branch cut all the way to in�nity,
the above proof is easy to generalize. For example, for a branch cut from �k
to 1, there are three integrals to do. Two of them extend from 1 in two
directions above and below the real axis and another one is an open circle
around the end of the branch cut.

Remark 219 When there is a sum over Matsubara frequencies for a product
of Green�s function, the same trick as above applies. There are just more
poles to go around when the contour is deformed.
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30. SUSCEPTIBILITY AND LIN-
EAR RESPONSE IN MATSUBARA
SPACE

Susceptibilities are also de�ned in Matsubara space. As in the fermionic case,
analytic continuation su¢ ces to obtain the retarded response. Knowing this, linear
response takes a simple form in imaginary time that I will explain.

30.1 Matsubara frequencies for the susceptibility, as
bosonic correlation function

Recall that all the information that we need for the susceptibility is in the spectral
function �00: To do actual calculations of correlation functions at �nite tempera-
ture, whether by numerical or analytical means, it turns out that it is much easier
to compute a function that is di¤erent from the retarded response function. By
analogy with the fermionic case, that function is de�ned as follows

�AiAj
(�) =

1

~
hAi (�)Aji � (�) +

1

~
hAjAi (�)i � (��) (30.1)

where � is the step function, an d where I have restored ~ to make the connection
with previouys sections easier. By de�nition,

Ai (�) = e�K=~Aie
��K=~: (30.2)

In other words, if in this last equation we replace � , a real number, by the purely
imaginary number it, we recover that the operator evolves with the Heisenberg
equations of motion. As above, this de�nition is motivated by the fact that the
operator e��K in the density matrix really looks like evolution e�iKt=~ in imagi-
nary time. It is also customary to de�ne the time ordering operator T� for bosonic
correlation functions in such a way that operators are ordered from right to left
by increasing order of time:

�AiAj
(�) =

1

~
hT�Ai (�)Aji : (30.3)

That will be very useful in cunjunction with perturbation theory. As long as we
can extract the spectral function �00 from �AiAj

(�) above, we are in good shape
to obtain all we need.
I put back the ~ in this section so that we have at least one example with

physical units.
To see how to do this, we �rst note that we can de�ne �AiAj

(�) on the interval
��~ � � � �~, and that if we do that, this function on this interval only has
some periodicity properties that can be put to use. More speci�cally, assume that
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��~ < � < 0;then from the de�nition of the function, we have that

�AiAj
(�) =

1

~
hAjAi (�)i =

1

~
Tr
�
e��KAjAi (�)

�
=Z

=
1

~
Tr
�
Ai (�) e

��KAj
�
=Z

=
1

~
Tr
�
e��Ke�KAi (�) e

��KAj
�
=Z

= �AiAj
(� + �~) (30.4)

since now � + �~ > 0:We have a periodic function on a �nite interval. Hence we
can represent it by a Fourier series

�AiAj
(�) = 1

�~
P1
n=�1 e�iqn��AiAj

(iqn) (30.5)

where the so-called bosonic Matsubara frequencies are de�ned by

qn =
2n�kBT

~ = 2n�
�~ ; n integer (30.6)

The periodicity property will be automatically ful�lled because e�i~qn� = e�i2n� =
1. The expansion coe¢ cients are obtained as usual for Fourier series of periodic
functions from

�AiAj
(iqn) =

R �~
0

d�eiqn��AiAj
(�) (30.7)

By using the Lehmann representation, we can �nd a spectral representation
for the latter function

�AiAj
(iqn) =

1

~

Z �~

0

d�eiqn� hAi (�)Aji

=
1

~

Z �~

0

d�eiqn�
1

Z

X
m;n

e��Kn hnj eKn�=~Aie
�Km�=~ jmi hmjAj jni

=
1

Z

X
m;n

e��Kn hnjAi jmi hmjAj jni
�
eiqn�~+�Kn��Km � 1

�
i~qn � (Em � En)

(30.8)

=
1

Z

X
m;n

e��Kn � e��Km

(Em � En)� i~qn
hnjAi jmi hmjAj jni (30.9)

where we used eiqn�~ = 1: Note that Km � Kn = Em � En since the number
operator commutes with Ai and Aj that are quadratic in fermions. Using the
Lehmann representation for �00AiAj

(!0) Eq.(10.96) that we recopy here,

�00AiAj
(!) =

X
n;m

e��Kn � e��Km
Z

hnjAi jmi hmjAj jni � � (~! � (Km �Kn))

=
�
1� e��~!

�X
n;m

e��En

Z
� (30.10)

hnjAi jmi hmjAj jni � � (~! � (Em � En)) : (30.11)

we can write

�AiAj
(iqn) =

Z
d!0

�

�00AiAj
(!0)

!0 � iqn
(30.12)

which is clearly a special case of our general spectral representation Eq.(10.64).
This is the response function in Matsubara frequency may be obtained from
�AiAj

(iqn) = �AiAj
(z ! iqn) whereas for the retarded function �RAiAj

(!) =

�AiAj
(z ! ! + i�) :
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Remark 220 The Lehmann representation Eq. (30.10) gives another proof of the
�uctuation-dissipation theorem.

Remark 221 Once we write the expansion in Matsubara frequencies, the function
�AiAj

(�) in Eq.(30.5) is de�ned by its periodic extension outside the interval of
de�nition ��~ � � � �~: That follows the standard procedure for Fourier series.
Outside the interval of de�nition however, it does not coincide with the original
�AiAj

(�) Eq.(30.1). Indeed, take

�AiAj
(� + 2�~) = Tr

�
e��He2�HAi (�) e

�2�HAj
�
= (Z~) :

There is no way this can become equal to �AiAj
(�) :

30.2 Linear response in imaginary time

Knowing that retarded responses can be obtained from analytical continuation it
is clear that there is a formulation of linear response in imaginary time. I will do
it with an example. Take as an external perturbation a scalar potential. We go to
the interaction representation where the unperturbed Hamiltonian is that of the
full system and the perturbation is a scalar potential � (r0; �) in analogy with Eq.
(11.37). Then, the perturbation isZ

dr0� (r0; �) � (r0) (30.13)

so that in the interaction representation, we have for the non-equilibrium current

hjx (r;�)in:e: =
*
T� exp

"
�
Z �

0

d� 0
Z
dr0� (r0; � 0) � (r0; � 0)

#
jx (r;�)

+
: (30.14)

The integral over � 0 comes from perturbation theory. Given that in equilibrium
the current vanishes, we are left, to linear order in the perturbation, with

hjx (r;�)in:e: = �
Z �

0

d� 0
Z
dr0 hT� jx (r;�) � (r0; � 0)i� (r0; � 0) : (30.15)

Fourier transforming in space and Matsubara frequency, we take advantage of the
fact that the correlation function is a function of � � � 0 and r� r0 so that we can
use the convolution theorem and obtain,

hjx (q;iqn)in:e: = ��jx� (q; iqn)� (q; iqn) ; (30.16)

in complete analogy with what we found in the real-frequency formalism in Eq.
(11.38). The susceptibility in Matsubara frequency is de�ned by

�jx� (q; iqn) =

Z �

0

d�

Z
dr eiqn(���

0)e�ik�(r�r
0) hT� jx (r;�) � (r0; � 0)i ; (30.17)

and the retarded response is obtained by simple analytic continuation.
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31. PHYSICAL MEANING OF THE
SPECTRAL WEIGHT: QUASIPAR-
TICLES, EFFECTIVE MASS, WAVE
FUNCTION RENORMALIZATION,
MOMENTUM DISTRIBUTION.

To discuss the physical meaning of the spectral weight in the translationally in-
variant case, we �rst recall it in the non-interacting case, then write the Lehmann
representation. That allows us to see its more general meaning. After our discus-
sion of a photoemission experiment, we will be in a good position to understand
the concepts of quasiparticles, wave-function renormalization, e¤ective mass and
momentum distribution. We will even have a �rst look at Fermi liquid theory, and
see how it helps us to understand photoemission experiments.

31.1 Probabilistic interpretation of the spectral weight

The general result for the spectral weight in terms of the Green�s function Eq.(29.46)
gives us for non-interacting particles

A0 (k; !) = i

�
1

! + i� � �k
� 1

! � i� � �k

�
(31.1)

= 2�� (! � �k) (31.2)

In physical terms, this tells us that for non-interacting particles in a translationally
invariant system, a single excited particle or hole of momentum k added to an
eigenstate is a true excited eigenstate located at anw energy ! = �k above or
below the Fermi level. In the interacting case, the Lehmann representation will
show us clearly that what we just said is the correct interpretation.
For a di¤erent representation, for example for momentum, we can use [2] the

de�nition in the translationally invariant case Eq. (29.54). The same change of
basis on the spectral weight Eq.(29.38) gives us

A (k; !0) = e�

P
mn

�
e��Kn + e��Km

�
jhnj ck jmij2 2�� (!0 � (Km �Kn)) :

(31.3)
The overlap matrix element jhnj ck jmij2 that gives the magnitude of the delta
function contribution to the spectral weight represents the overlap between the
initial state with one more particle or hole in a momentum eigenstate and the
true excited one-particle or one-hole state. The last equation clearly shows that
A (k;!0) = (2�) is positive and we already know that it is normalized to unity,Z

d!0

2�
A (k;!0) =

Dn
ck; c

y
k

oE
= 1: (31.4)
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Hence it can be interpreted as the probability that a state formed from a true eigen-
state jni either by adding a particle in a single-particle state k; namely cyk jni (or
adding a hole ck jni in a single-particle state k) is a true eigenstate whose energy
is ! above or below the chemical potential. Clearly, adding a particle or a hole
in a momentum eigenstate will lead to a true many-body eigenstate only if the
momentum of each particle is individually conserved. This occurs only in the non-
interacting case, so this is why the spectral weight is then a single delta function.
In the more general case, many energy eigenstates will have a non-zero overlap
with the state formed by simply adding a particle or a hole in a momentum eigen-
state. While particle-like excitations will overlap mostly with eigenstates that are
reached by adding positive !, they can also overlap eigenstates that are reached
by adding negative !. In an analogous manner, hole-like eigenstates will be mostly
at negative !: Let us see how this manifests itself in a speci�c experiment.

Remark 222 The high-frequency expansion of the Masubara Green�s function
leads to

R
d!0

2� A (k;!
0) as the coe¢ cient of the �rst term 1=ikn. Hence, this one in

the numerator is intimaterly related to anticommutation relations.

Remark 223 Energy vs momentum in an interacting system: It is clear that in an
interacting system one must distinguish the momentum and the energy variables.
The energy variable is ! the variable conjugate to time: Knowing the momentum
of a single added electron or hole is not enough to know the added energy. This
added energy would be k2=2m only in the case of non-interacting electrons.

Remark 224 Physical reason for high-frequency fall-o¤: The explicit expression
for the spectral weight Eq.(31.3) suggests why the spectral weight falls o¤ fast at
large frequencies for a given k; as we have discussed in Subsection (32.1). A
state formed by adding one particle (or one hole) of momentum k should have
exponentially small overlap with the true eigenstates of the system that have one
more particle (or hole) but an arbitrarily large energy di¤erence ! with the initial
state.

Remark 225 Bohr�s correpondence principle: In accord with Bohr�s correpon-
dence principle, absorption occurs at frequencies !0 that correspond to transitions
between many-body states, Km � Kn. These many-body states have a particle-
number that di¤ers by one. We have already mentioned this in Sec.(16.1) in the
one-body context.

31.2 Analog of the �uctuation dissipation theorem

We have seen in Eq.(G.13) the �uctuation dissipation theorem for correlation
functions, (with ~ = 1)

SAiAj
(!) = 2(1 + nB (!))�

00
AiAj

(!) (31.5)

where nB (!) is the Bose function. That can also be written in the formZ
dtei!t hAi (t)Aji = (1 + nB (!))

Z
dtei!t h[Ai (t) ; Aj ]i : (31.6)

It would be nice to �nd the analog for the Green�s function because we saw,
when we discussed ARPES in Sec. 26.1, that the cross section for angle-resolved
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photoemission measures
R
dtei!t

D
cykjjckjj (t)

E
;which looks like one piece of the

anticommutator.
The key is the real time version of the antiperiodicity that we discussed for

Matsubara Green�s functions in Sec. 26.4. I will demonstrate that

@2�

@
@!
/
Z
dtei!t

D
cykjjckjj (t)

E
= f (!)A

�
kjj; !

�
: (31.7)

Proof: The most direct and simple proof is from the Lehmann representation for
the spectral weight of basis states k, Eq.(31.3). Note that we could do the
same for the r, r0 states Eq.(29.38) or any other single-particle basis. The
trick is to use � (!0 � (Km �Kn)) to rewrite A (k; !) in terms of only the
�rst or the second of the two terms entering the de�nition of A (k; !) in
terms of an anticomutator. More speci�cally, we can rewrite Km in terms of
Kn and !0so that A (k; !0) is given only in terms of the �rst term entering
the anticommutator

A (k; !0) =
�
1 + e��!

0
�
e�


X
mn

e��Kn hnj ck jmi hmj cyk jni 2�� (!
0 � (Km �Kn))

= (1� f (!0))�1
Z
dtei!

0t
D
ck (t) c

y
k

E
= (1� f (!0))�1 iG> (k; !) : (31.8)

Or we can also write Kn in terms of !0 and Km so that only the second term
of the anticommutator appears, namely

A (k; !0) =
�
e�!

0
+ 1
�
e�


X
mn

e��Km hmj cyk jni hnj ck jmi 2�� (!
0 � (Km �Kn))

= f (!0)
�1
Z
dtei!

0t
D
cykck (t)

E
= f (!0)

�1 ��iG< (k; !)� : (31.9)

In general, one de�nes

G<
�
kjj; !

�
= i
R
dt ei!t

D
cykjjckjj (t)

E
; G>

�
kjj; !

�
= �i

R
dt ei!t

D
ckjj (t) c

y
kjj

E
(31.10)

*Alternate proof: To get a few more general results about G<
�
kjj; !

�
and

G>
�
kjj; !

�
we present the following alternate proof. The cross section is

proportional to the Fourier transform of G<
�
kjj; !

�
as de�ned in Eq.(28.11).

@2�

@
@!
/
Z
dtei!t

D
cykjjckjj (t)

E
� �iG<

�
kjj; !

�
(31.11)

One can relate G< and G> to the spectral weight in a very general way
through the Fermi function. This is done using the usual cyclic property of
the trace (�uctuation-dissipation theorem). FromD

ckjj (t) c
y
kjj

E
= Z�1Tr

h
e��K

�
eiKtckjje

�iKt� cykjji
= Z�1Tr

h�
e�Ke��K

�
cykjje

��K �eiKtckjje�iKt�i
=

D
cykjjckjj (t+ i�)

E
(31.12)
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one �nds by simple use of de�nitions and change of integration variables,

A
�
kjj; !

�
=

Z
dtei!t

D
cykjjckjj (t) + ckjj (t) c

y
kjj

E
(31.13)

=

Z
dtei!t

D
cykjjckjj (t)

E
+

Z
dtei!(t+i��i�)

D
cykjjckjj (t+ i�)

E
=

�
1 + e�!

� Z
dtei!t

D
cykjjckjj (t)

E
(31.14)

= f (!)
�1 ��iG< �kjj; !�� (31.15)

Substituting in Eq.(31.11) proves Eq.(31.7). Note that since from the de�n-
itions in Eqs.(28.10) and (28.11) the spectral weight is obtained from

A
�
kjj; !

�
= �i

�
G<

�
kjj; !

�
�G>

�
kjj; !

��
(31.16)

we also have the result

iG>
�
kjj; !

�
= (1� f (!))A

�
kjj; !

�
(31.17)

31.3 Some experimental results from ARPES

The state of technology and historical coincidences have conspired so that the
�rst class of layered (quasi-two-dimensional) compounds that became available
for ARPES study around 1990 were high temperature superconductors. These
materials have properties that make them non-conventional materials that are not
yet understood using standard approaches of solid-state Physics. Hence, people
started to look for two-dimensional materials that would behave as expected from
standard models. Such a material, semimetallic TiTe2 was �nally found around
1992. For our purposes, quasi-two-dimensional just means here that the Fermi
velocity perpendicular to the planes is much smaller than the Fermi velocity in
the planes. The results of this experiment[6] appear in Fig.(31-1).
We have to remember that the incident photon energy is 21:2eV while the

variation of ! is on a scale of 200meV so that, for all practical purposes, the
momentum vector in Fig.(26-1) is a �xed length vector. Hence, the angle with
respect to the incident photon su¢ ces to de�ne the value of kjj: Each curve in
Fig.(31-1) is for a given kjj; in other words for a given angle measured from the
direction of incidence of the photon. The intensity is plotted as a function of the
energy of the outgoing electron. Hence these plots are often called EDC (energy
distribution curves). The zero corresponds to an electron extracted from the
Fermi level. Electrons with a smaller kinetic energy come from states with larger
binding energy. In other words, each of the curves above is basically a plot of the
hole-like part of A

�
kjj; !

�
; or if you want f (!)A

�
kjj; !

�
. From band structure

calculations, one knows that the angle � = 14:750 corresponds to the Fermi level
(marked kF on the plot) of a Ti � 3d derived band. It is for this scattering
angle that the agreement between experiment and Fermi liquid theory is best (see
Sec.(31.5) below). The plots for angles � < 14:750 correspond to wave vectors
above the Fermi level. There, the intensity is much smaller than for the other
peaks. For � = 130; the experimental results are scaled up by a factor 16: The
intensity observed for wave-vectors above ! = 0 comes from the Fermi function
and also from the non-zero projection of the state with a given k on several values
of ! in the spectral weight.
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Figure 31-1 ARPES spectrum of 1� T � TiTe2; after R. Claessen, R.O. Anderson,
J.W. Allen, C.G. Olson, C. Janowitz, W.P. Ellis, S. Harm, M. Kalning, R. Manzke,
and M. Skibowski, Phys. Rev. Lett 69, 808 (1992).
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Figure 31-2 Momentum distribution curves. a) at the Fermi level, and b) at various
energies below the Fermi surface. From Phys. Rev. X, 2, 021048 (2019).

The energy resolution is 35meV: Nevertheless, it is clear that the line shapes
are larger than the energy resolution: Clearly the spectral weight is not a delta
function and the electrons in the system are not free particles. Nevertheless,
there is a de�nite maximum in the spectra whose position changes with kjj: It
is tempting to associate the width of the line to a lifetime. In other words, a
natural explanation of these spectra is that the electrons inside the system are
�quasiparticles�whose energy disperses with wave vector and that have a lifetime.
We try to make these concepts more precise below.
One can also make plots of the probability of having a certain momentum at

the Fermi level ! = 0: This is usually represented by a color plot called MDC,
momentum distribution curve. A spectacular case, shown in Fig. (31.3) is that
of strontium ruthenate Sr2RuO4 [57], also interesting because it was proposed to
be a topological superconductor, a proposal that is still subject of research at the
time of writing:
Fig. (31-2) shows some beautiful experimental and theoretical recent work on

this compound. [229] On the left is the Fermi surface and on the right various
MDC�s at energies below the Fermi surface. This should be contrasted with high-
temperature superconductors in Fig. 31.3. The Fermi surface seems to vanish
in thin air ([158]).Getting back to strontium ruthenate [229], Fig. (31-3) shows
some detailed comparisons between experiment and theory. The theory is based
on density-functional theory, augmented by dynamical mean-�eld calculations,
topics we will address in subsequent chapters. The calculation shows that the
e¤ect of spin-orbit interactions is crucial. The red dots are the measurements and

274 PHYSICAL MEANING OF THE SPECTRAL WEIGHT: QUASIPARTICLES, EFFEC-
TIVE MASS, WAVE FUNCTION RENORMALIZATION, MOMENTUM DISTRIBUTION.



Figure 31-3 Comparison between theory and experiment for strontium ruthenate.
The theory is from electronic structure including spin-orbit interactions and supple-
mented with the e¤ect of interactions using Dynamical Mean-Field theory. From
Phys. Rev. X, 2, 021048 (2019).

the color curves the calculations.
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31.4 Quasiparticles

The intuitive notions we may have about lifetime and e¤ective mass of an electron
caused by interactions in a solid can all be extracted from the self-energy, as I
will show. As we discussed in Chapter 17, for a general interacting system, the
one-particle Green�s function takes the form,

GR (k;!) =
1

! + i� � �k �
PR

(k; !)
(31.18)

We can drop i� since Im
PR

(k; !) is negative to preserve causality and always
larger than i� that should anyway be taken to zero at the end.1 The spectral
weight corresponding to GR (k; !) then is,

A (k;!) = �2 ImGR (k;!) (31.19)

=
�2 Im

PR
(k; !)�

! � �k � Re
PR

(k; !)
�2
+
�
Im
PR

(k; !)
�2 : (31.20)

If the imaginary part of the self-energy, the scattering rate, is not too large and
varies smoothly with frequency, conditions I will re�ne when I discuss Fermi liquids
soon, the spectral weight will have a maximum whenever, at �xed k, there is a
value of ! that satis�es

! � �k � Re�R (k; !) = 0: (31.21)

We assume the solution of this equation exists. Let Ek � � be the value of ! for
which this equation is satis�ed. Ek is the so-called quasiparticle energy [4]. This
energy is clearly in general di¤erent from the results of band structure calculations
that are usually obtained by neglecting the frequency dependence of the self-
energy. Expanding ! � �k � Re�R (k; !) around ! = Ek � � = 0 where A (k;!)
is a maximum, we �nd

! � �k � Re�R (k; !) � 0 +
@

@!

�
! � �k � Re�R (k; !)

�
!=Ek��

(! � Ek + �) + : : :

�
 
1� @ Re�R (k; !)

@!

����
Ek��

!
(! � Ek + �) + : : : (31.22)

If we de�ne the �quasiparticle weight�or square of the wave function renormal-
ization by

Zk =
1

1� @
@! Re�

R(k;!)j
!=Ek��

(31.23)

then in the vicinity of the maximum, the spectral weight takes the following simple
form in the vicinity of the Fermi level, where the peak is sharpest

A (k;!) � 2�Zk
1

�

�Zk Im
PR

(k; !)

(! � Ek + �)2 +
�
Zk Im

PR
(k; !)

�2 + inc (31.24)
= 2�Zk

"
1

�

�k (!)

(! � Ek + �)2 + (�k (!))2

#
+ inc: (31.25)

1 In exact diagonalizations where the self-energy is still represented by a set of delta functions,
the i� should be kept everywhere.
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The last equation needs some explanation. First, it is clear that I have de�ned
the scattering rate

�k (!) = �Zk Im�R (k; !) (31.26)

Second, the quantity in square brackets looks, as a function of frequency. At least
if we can neglect the frequency dependence of the scattering rate. The integral
over frequency of the square bracket is unity. Since A (k;!) =2� is normalized to
unity, this means both that

Zk � 1 (31.27)

and that there are additional contributions to the spectral weight that we have
denoted inc in accord with the usual terminology of �incoherent background�.
The equality in the last equation holds only if the real part of the self-energy is
frequency independent.
It is also natural to ask how the quasiparticle disperses, in other words, what is

its e¤ective Fermi velocity compared with that of the bare particle. Let us de�ne
the bare velocity by

vk = rk�k (31.28)

and the renormalized velocity by

v�k = rkEk (31.29)

Then the relation between both quantities is obtained by taking the gradient of
the quasiparticle equation Eq.(31.21).

rk
�
Ek � �� �k � Re�R (k; Ek � �)

�
= 0 (31.30)

v�k � vk �rkRe�R (k; Ek � �)�
@ Re�R (k; !)

@!

����
Ek��

v�k = 0 (31.31)

where rk in the last equation acts only on the �rst argument of Re�R (k; Ek � �).
The last equation is easily solved if we can write that k dependence of �R as
a function of �k instead, something that is always possible for spherical Fermi
surfaces. In such a case, rk ! (rk�k) @=@�k as we can see for example when
�k = k

2=2m and we have

v�k = vk
1+ @

@�k
Re�R(k;Ek��)

1� @
@! Re�

R(k;!)j
!=Ek��=0

: (31.32)

In cases where the electronic (band) structure has correctly treated the k de-
pendence of the self-energy, or when the latter is negligible, then the renormalized
Fermi velocity di¤ers from the bare one only through the famous quasiparticle
renormalization factor. In other words, v�k = Zkvk: The equation for the renor-
malized velocity is also often written in terms of a mass renormalization instead.
Indeed, we will discuss later the fact that the Fermi wave vector kF is unmodi�ed
by interactions for spherical Fermi surfaces (Luttinger�s theorem). De�ning then
m�v�kF = kF = mvkF means that our equation for the renormalized velocity gives
us

m
m� = limk!kF

1+ @
@�k

Re�R(k;Ek��)
1� @

@! Re�
R(k;!)j

!=Ek��
(31.33)

Remark 226 In the jargon, the quasiparticle piece of the spectral weight Eq.
(31.20) is called the �coherent� piece of the spectral weight, by contrast with the
incoherent contribution that I mentionned above.
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31.5 Fermi liquid interpretation of ARPES

Let us see how to interpret the experiments of the previous subsection in light
of the quasiparticle model just described. First of all, the wave vectors studied
are all close to the Fermi surface as measured on the scale of kF : Hence, every
quantity appearing in the quasiparticle spectral weight Eq.(31.25) that depends
on the self-energy is evaluated at the Fermi wave vector, which can however be
angle dependent. The frequency dependence of the self-energy then is most im-
portant. The experiments were carried out at T = 20K where the resistivity has
a T 2 temperature dependence. This is the regime dominated by electron-electron
interactions, where so-called Fermi liquid theory applies. What is Fermi liquid
theory?2

It would require more than the few lines that we have to explain it, but roughly
speaking, for our purposes, let us say that it uses the fact that phase space for
electron-electron scattering vanishes at zero temperature and at the Fermi surface,
to argue that the quasiparticle model applies to interacting electrons. Originally
the model was developed by Landau for liquid 3He which has fermionic properties;
hence the name Fermi Liquid theory. It is a very deep theory that in a sense jus-
ti�es all the successes of the almost-free electron picture of electrons in solids. I
cannot do it justice here. A simple way to make its main ingredients plausible, [5]
is to assume that near the Fermi surface in the limit of zero temperature, the self-
energy is i) analytic and ii) has an imaginary part that vanishes at zero frequency.
The latter result follows from general considerations on the Pauli exclusion prin-
ciple and available phase space that are brie�y summarized in Fig. (31-4). I will
give an alternate derivation in the section on the electron-gas.
Let us de�ne real and imaginary parts of the retarded self-energy by

�R = �0 + i�00 (31.34)

Our two hypothesis imply that �00 has the Taylor expansion

�00 (kF ;!) = �! � !2 + : : : (31.35)

The imaginary part of the retarded self-energy must be negative to insure that the
retarded Green�s function has poles in the lower half-plane, as is clear from the
general relation between Green function and self-energy Eq. (31.18). This means
that we must have � = 0 and  > 0: Fermi liquid theory keeps only the leading
term

�00 = �!2

We will verify for simple models that this quadratic frequency dependence is es-
sentially correct in d � 3:
We know that the imaginary part of the self-energy must vanish at in�nite

frequency where free-particle behavior is expected, (Sec. 32.1) as in the harmonic
oscillator case. Following Refs. [163] and [?], we take the following smooth cuto¤
model, neglecting impurity scattering and temperature

�00 (!) =

�
�s !2!�2 for ! < !�

�sF
�
!
!�

�
for ! > !�

; (31.36)

where !� is the frequency at which !2 behavior stops, 2s is the electron-electron
scattering rate (in units ~ = 1) without many-body e¤ects, and the cuto¤ function

2A short summary on internet by Ross McKenzie
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxjb25kZW5zZWRjb25jZXB0czN8Z3g6MzhhZWZhNjUxNmZiMjVjNQ
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Figure 31-4 Taken from H. Bruus and K. Flensberg, "Introduction to Many-body
theory in condensed matter physics".

F (y) takes the value unity at y = 1 and then decreases monotonically to zero
afterwards3 . A more realistic model, as we will see, crosses over from !2 behavior
while continuing to increase in absolute value before decreasing. But that does
not modify the result that we are looking for, namely that the real-part of the self-
energy obtained by Kramers-Kronig gives a value of Z consistent with quasiparticle
behavior. So let us forge ahead.

The real part is then obtained from the Kramers-Kronig relation Eq.(19.1)
that must be obeyed by the self-energy. We make the additional assumption that
�00 (!) is even in frequency. Another way to state that is that we assume particle-
hole symmetry. Following the same arguments as those used for damping of the
harmonic oscillator, in Sec.2.3 (Sec. also Sec.32.2), the Kramers-Kronig relation
give us for small !

[�0 (kF ;!)� �0 (kF ;1)] = P
Z
d!0

�

�00 (kF ;!
0)

!0 � ! (31.37)

= � s

(!�)
2P
Z !�

�!�

d!0

�

�
!02 � !2 + !2

�
!0 � ! (31.38)

�2sP
Z 1

!�

d!0

�

F
�
!
!�

�
!0 � !

3�
00
in this model has a discontinuous �rst derivative at ! = !�; which is why it is not a

quite realistic model, even though it is better than a sharp cuto¤ model.
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Let us focus on the �rst integral. It can be evaluated as follows

� s

(!�)
2P
Z !�

�!�

d!0

�

(!0 � !)(!0 + !)
!0 � ! � s

(!�)
2!

2P
Z !�

�!�

d!0

�

1

!0 � !(31.39)

= � s
�
� 2s
�

� !
!�

�
� s

�

� !
!�

�2
ln

����!� � !!� + !

���� : (31.40)

The constant term is added to �0 (kF ;1) to give the total contribution to the
zero-frequency limit of the real-part of the self-energy, which leads to the renor-
malization of the chemical potential. Since ln [(1� x) =(1 + x)] � �2x; in the limit
! � !� there is no linear in ! contribution from the logarithm. The remaining
term involving F can be expanded in a power series in !=!�: So there is term
linear in ! coming from that. We are �nally left with

@

@!
�0 (kF ; !)

����
!=0

= � 2s�
�!�

(31.41)

where � is a number of less than 2 when estimated with the above model for the
cuto¤ (as discussed in a remark below). Hence

@

@!
�0 (k; !)

����
!=0

< 0 (31.42)

This in turn means that the corresponding value of ZkF is less than unity, as we
had concluded in Eqs.(31.23) and (31.27) above. In summary, the analyticity hy-
pothesis along with the vanishing of �00 (0) implies the existence of quasiparticles.

Remark 227 Warning: there are subtleties. The above results assume that there
is a cuto¤ to �00 (kF ;!0) : The argument just mentioned in Eq.(31.41) fails when
the integral diverges. Then, the low frequency expansion for the self-energy in
Eq.(31.38) cannot be done. Expanding under the integral sign is no longer valid.
One must do the principal part integral �rst. In fact, even for a Fermi liquid at
�nite temperature, �00 (kF ;!) � !2 + (�T )

2 so that the (�T )2 appears to lead
to a divergent integral in Eq.(31.41). Returning to the original Kramers-Krönig
expression for �0 however, the principal part integral shows that the constant term
(�T )

2 for �00 (kF ;!) does not contribute at all to �0 if the cuto¤ in �00 is symmetric
at positive and negative frequencies. In practice one can encounter situations
where @�=@! > 0: In that case, we do not have a Fermi liquid since Z > 1 is
inconsistent with the normalization of the spectral weight. One can work out an
explicit example in the renormalized classical regime of spin �uctuations in two
dimensions. (Appendix D of [256]).

Remark 228 To estimate the contribution from the cuto¤, note that the denom-
inator can be expanded in powers of !=!0 because by construction, ! < !� and we
assume that F

�
!
!�

�
decreases at least as a power law starting from unity, making

the integral convergent. So, recalling that this all started with F an even function
of its argument,

� 2s
Z 1

!�

d!0

�

F
�
!
!�

�
!0

1X
n=0

� !
!0

�2n+1
(31.43)

the linear in ! contribution from this term is

� 2s
Z 1

!�

d!0

�

F
�
!
!�

�
!0

� !
!0

�
� �2s

�

!

!�

Z 1

1

dy
1

y2
= �2s

�

!

!�
(31.44)

which must be added to the linear in ! contribution, leading to the above estimate
for the value of �:
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The solid lines in Fig.(31-1) are two-parameter �ts that also take into account
the wave vector and energy resolution of the experiment [6]. One parameter is
Ek � � while the other one is 0; a quantity de�ned by substituting the Fermi
liquid approximation in the equation for damping Eq.(31.26)

�kF (!) = ZkF !
2 = 0!2: (31.45)

Contrary to Ek, the damping parameter 0 is the same for all curves. The solid-line
�ts are obtained with 0 = 40eV �1 (�0 on the �gure): The �ts become increasingly
worse as one moves away from the Fermi surface, as expected. It is important to
notice, however, that even the small left-over weight for wave-vectors above the
Fermi surface

�
� < 14:750

�
can be �tted with the same value of . This weight is

the tail of a quasiparticle that could be observed at positive frequencies in inverse
photoemission experiments (so-called BIS). The authors compared the results of
their �ts to the theoretical estimate, [7]  = 0:067!p="

2
F : Using !p = 18:2eV;

"F = 0:3eV and the extrapolated value of ZkF obtained by putting
4 rs = 10 in

electron gas results, [8] they �nd 0 < 5 (eV )
�1 while their experimental results

are consistent with 0 = 40 � 5 (eV )�1 : The theoretical estimate is almost one
order of magnitude smaller than the experimental result. This is not so bad given
the crudeness of the theoretical model (electron gas with no lattice e¤ect). In
particular, this system is a semimetal so that there are other decay channels than
just the one estimated from a single circular Fermi surface. Furthermore, electron
gas calculations are formally correct only for small rs while there we have rs = 10:
More recent experiments have been performed by Grioni�s group [14]. Results

are shown in Fig. (31-5). In this work, authors allow for a constant damping
�0 = 17 meV coming from the temperature and from disorder and then they
�t the rest with a Fermi velocity ~vF = 0:73 � 0:1eV _A close to band structure
calculations, ~vF = 0:68 eV _A and 0 that varies between 0:5 eV �1 (160) and
0:9 eV �1 (14:50). The Fermi liquid �t is just as good, but the interpretation of
the origin of the broadening terms is di¤erent. This shows that it is not always
easy to interpret ARPES data, even for Fermi liquids. But we saw in Fig. (31-3)
that modern electronic structure calculations that include the e¤ect of correlations
can be quite successful.
Theoretical estimates for high-temperature superconductors are two orders of

magnitude smaller than the observed result [6].

Remark 229 What allows the existence of the Fermi liquid is the vanishing of
the imaginary part of the self-energy at ! = 0: Electrons at the Fermi energy
have an in�nite lifetime at zero temperature. In addition, their lifetime vanishes
faster than their energy ! so that �quasiparticles� survive in the vicinity of the
Fermi surface. I will show that at �nite temperature and ! = 0; their lifetime
is proportional to T 2. As a consequence, their width is su¢ ciently small that it
makes sense to populate the quasiparticle states following the Fermi function.

Remark 230 Asymmetry of the lineshape: The line shapes are asymmetrical,
with a tail at energies far from the Fermi surface (large binding energies). This
is consistent with the fact that the �inverse lifetime� �kF (!) = ZkF !

2 is not a
constant, but is instead larger at larger binding energies.

Remark 231 Failure of Fermi liquid at high-frequency: Clearly the Fermi liquid
expression for the self-energy fails at large frequencies since we know from its
spectral representation that the real-part of the self-energy goes to a frequency-
independent constant at large frequency, the �rst correction being proportional to
1=! as discussed below in subsection (32.1). Conversely, there is always a cuto¤

4 rs is the average electron spacing expressed in terms of the Bohr radius.
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Figure 31-5 Figure 1 from Ref.[14] for the ARPES spectrum of 1T-TiTe2 measured
near the Fermi surface crossing along the high-symmetry �M direction (� = 0 is
normal emission). The lines are results of Fermi liquid �ts and the inset shows a
portion of the Brillouin zone with the relevant ellipsoidal electron pocket.

in the imaginary part of the self-energy. This is not apparent in the Fermi liquid
form above but we had to assume its existence for convergence. The cuto¤ on
the imaginary part is analogous to the cuto¤ in �00: Absorption cannot occur at
arbitrary high frequency.

Remark 232 Destruction of quasiparticles by critical �uctuations in two dimen-
sions: Note that it is only if �00 vanishes fast enough at low frequency that it is
correct to expand the Kramers-Kronig expression in powers of the frequency to
obtain Eq.(31.41). When �00 (!) vanishes slower than !2, then Eq.(31.41) for the
slope of the real part is not valid. The integral does not converge uniformly and it
is not possible to interchange the order of di¤erentiation and integration. In such
a case it is possible to have the opposite inequality for the slope of the real part
@
@!�

0 (k; !)
��
!=0

> 0: This does not lead to any contradiction, such as ZkF > 1;
because there is no quasiparticle solution at ! = 0 in this case. This situation
occurs for example in two dimensions when classical thermal �uctuations create a
pseudogap in the normal state before a zero-temperature phase transition is reached
[9].
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31.6 Momentum distribution in an interacting sys-
tem

In an interacting system, momentum is not a good quantum number so
D
cykck

E
is

not equal to the Fermi distribution. On the other hand, nk =
D
cykck

E
can be com-

puted from the spectral weight. By taking the Fourier transform of Eq.(31.7)
R
dtei!t

D
cykjjckjj (t)

E
=

f (!)A
�
kjj; !

�
one �ndsD

cykck

E
= lim�!0� G (k;�) =

R1
�1

d!0

2� f (!
0)A (k;!0) : (31.46)

Alternate derivation D
cykck

E
= lim

�!0�

h
�
D
T� ck (�) c

y
k

Ei
= lim

�!0�
G (k;�) (31.47)

To compute the latter quantity from the spectral weight, it su¢ ces to use
the spectral representation Eq.(29.34)

lim
�!0�

G (k;�) = T lim
�!0�

1X
n=�1

e�ikn�G (r; r0; ikn)

= T lim
�!0�

1X
n=�1

e�ikn�
Z 1

�1

d!0

2�

A (k;!0)

ikn � !0
(31.48)

Using the result Eq.(29.85) found above for the sum over Matsubara fre-
quencies, we are left with the desired result.

Our result means that the momentum distribution is a Fermi-Dirac distribution
only if the spectral weight is a delta function. This occurs for free particles or,
more generally if the real-part of the self-energy is frequency independent since,
in this case, the Kramers-Kronig relations imply that the imaginary part of the
self-energy vanishes so that Eq.(31.20) for the spectral weight gives us a delta
function.

Remark 233 Jump of the momentum distribution at the Fermi level: Even ifD
cykck

E
is no-longer a Fermi-Dirac distribution in an interacting system, never-

theless at zero-temperature in a system subject only to electron-electron interaction,

there is a jump in
D
cykck

E
at the Fermi level. The existence of this jump can be

seen as follows. At zero temperature, our last result gives usD
cykck

E
=

Z 0

�1

d!0

2�
A (k;!0) (31.49)

Let us take the quasiparticle form Eq.(31.25) of the spectral weight with the Fermi
liquid expression Eq.(31.45) for the scattering rate. The incoherent background
varies smoothly with k and hence cannot lead to any jump in occupation number.
The quasiparticle piece on the other hand behaves when k ! kF ; or in other words
when Ek��! 0; as ZkF � (!). At least crudely speaking. When Ek��! 0�; this
delta function is inside the integration domain hence it contributes to the integral,
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while when Ek � � ! 0+ the delta function is outside and does not contribute to
the integral. This means that there is a big di¤erence between these two nearby
wave vectors, namely

lim
k!k�f

D
cykck

E
� lim
k!k+f

D
cykck

E
= Zk

F
(31.50)

In the above argument, we have done as if �k (!) was frequency independent and
in�nitesimally small in Eq.(31.25). This is not the case so our argument is rather
crude. Nevertheless, if one uses the actual frequency-dependent forms and does
the frequency integral explicitly, one can check that the above conclusion about the
jump is true (although less trivial).

Remark 234 Fermi surface and interactions: The conclusion of the previous re-
mark is that even in an interacting system, at zero temperature there is a sharp
Fermi surface as in the free electron model, except that the jump is less than
unity. For simplicity we have discussed the spinless case. A qualitative sketch of
the zero-temperature momentum distribution in an interacting system appears in
Fig.(31-6). Since momentum of a single particle is not a good quantum number
anymore, some states above the Fermi momentum are now occupied while others
below are empty. Nevertheless, the notion of a Fermi surface is well de�ned by the
sharp jump that I just discussed.

Zp
F

1

0 pp
F

Figure 31-6 Qualitative sketch of the zero-temperature momentum distribution in
an interacting system.

Remark 235 It is possible to compute nk from the Green�s function directly by
doing the sum over Matsubara frequencies. To avoid having to deal with sums that
need convergence factor, it su¢ ces to use the folloing trick [142]:

nk =
D
cykck

E
(31.51)

nk = 1�
D
ckc

y
k

E
(31.52)

2nk � 1 = T

1X
n=�1

�
e�ikn0

�
+ e�ikn0

+
�
G (r; r0; ikn) (31.53)

= T
1X

n=�1
e�ikn0

�
[G (r; r0; ikn) + G (r; r0;�ikn)] (31.54)

= T
1X

n=�1
2ReG (r; r0; ikn) : (31.55)
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In the last equation I removed the convergence factor because ReG (r; r0; ikn) is pro-
portional to 1= (ikn)

2 at in�nity so the sum converges withou the need for e�ikn0
�
.

Remark 236 The �Marginal Fermi liquid�hypothesis was formulated for cuprates
[242]. In this approach, �00 � � j!j and Z vanishes logarithmically with !.

Remark 237 Luttinger�s theorem: More generally, in a Fermi liquid the volume
of reciprocal space contained within the Fermi surface de�ned by the jump, is inde-
pendent of interactions. This is Luttinger�s theorem. In the case where the Fermi
surface is spherical, this means that kF is una¤ected.
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32. *MORE FORMAL MATTERS :
ASYMPTOTICBEHAVIOR, CAUSAL-
ITY, GAUGE TRANSFORMATION

In designing approximations, we have to try to preserve as many as possible of the
exact properties. Sum rules are such properties. They determine the structure
of the high-frequency expansion and hence one can also check whether a given
approximation preserves the sum rules by looking at its high-frequency expansion.
This is the �rst topic we will discuss. The second topic concerns restrictions
imposed by causality. This has become a very important topic in the context of
Dynamical Mean-�eld theory or other approaches that describe the physics that
occurs at strong coupling, such as the Mott transition. We will come back on this
in later chapters.

32.1 *Asymptotic behavior of G (k;ikn) and� (k;ikn)

As usual, the high-frequency asymptotic properties of the Green�s function are
determined by sum rules. From the spectral representation(29.34), we obtain, for
the general interacting case

lim
ikn!1

G (k; ikn) = lim
ikn!1

Z 1

�1

d!0

2�

A (k;!0)

ikn � !0
(32.1)

= lim
ikn!1

1

ikn

Z 1

�1

d!0

2�
A (k;!0) = lim

ikn!1

1

ikn


�
ck; c

+
k

	�
= lim
ikn!1

1

ikn
(32.2)

De�ning the self-energy as usual

G (k; ikn) =
1

ikn � �k � � (k; ikn)
(32.3)

the correct asymptotic behavior for the Green�s function implies that the self-
energy at high frequency cannot diverge: It must go to a constant independent of
frequency

lim
ikn!1

� (k; ikn) = cst: (32.4)

We will see later that the value of this constant is in fact given correctly by the
Hartree-Fock approximation.
The converse of the above result [5] for the Green�s function, is that if

lim
ikn!1

G (k; ikn) = lim
ikn!1

1

ikn

then that is all that is needed to obtain an approximation for the Green�s function
which obeys the anticommutation relation:

G
�
k;0�

�
� G

�
k;0+

�
=


c+k ck

�
+


ckc

+
k

�
= 1 (32.5)
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Proof :It su¢ ces to notice that

G
�
k;0�

�
� G

�
k;0+

�
=
1

�

X
n

h
e�ikn0

�
� e�ikn0

+
i
G (k;ikn) (32.6)

We can add and subtract the asymptotic behavior to obtain,

1

�

X
n

��
e�ikn0

�
� e�ikn0

+
��
G (k;ikn)�

1

ikn

��
+
1

�

X
n

�
e�ikn0

�
� e�ikn

� 1

ikn

(32.7)
In the �rst sum, G (k;ikn)� 1

ikn
decays faster than 1

ikn
so that the convergence

factors are not needed for the sum to converge. This means that this �rst
sum vanishes. The last sum gives unity, as we easily see from the previous
section. This proves our assertion.

Remark 238 High-frequency expansion for the Green�s function and sum-rules:
The coe¢ cients of the high-frequency expansion of G (k; ikn) in powers of 1=ikn are
obtained from sum rules on the spectral weight, in complete analogy with what we
have found in previous chapters. The fact that A (k;!) falls fast enough to allow us
to expand under the integral sign follows from the fact that all frequency moments
of A (k;!) ; namely

R
d!!nA (k;!) ; exist and are given by equal-time commutators.

Explicit expressions for A (k;!) in terms of matrix elements, as given in Subsec-
tion(31.1) above, show physically why A (k;!) falls so fast at large frequencies. As
an example, to show that the coe¢ cient of the 1=ikn term in the high frequency
expansion is equal to

R1
�1

d!0

2� A (k;!
0) it is su¢ cient that

R1
�1

d!0

2� j!
0A (k;!0)j

exists.[3] This can be seen as follows,

iknG (k; ikn)�
Z 1

�1

d!0

2�
A (k;!0) =

Z 1

�1

d!0

2�
A (k;!0)

�
ikn

ikn � !0
� 1
�
(32.8)

=

Z 1

�1

d!0

2�
A (k;!0)

!0

ikn � !0
(32.9)

�
Z 1

�1

d!0

2�

����A (k;!0) !0

ikn � !0

���� (32.10)

�
���� 1ikn

���� Z 1

�1

d!0

2�
jA (k;!0)!0j (32.11)

If the integral exists then, it is a rigorous result that

lim
ikn!1

iknG (k; ikn) =
Z 1

�1

d!0

2�
A (k;!0) (32.12)

This is an important result. It suggests that approximate theories that give 1 as the
coe¢ cient of (ikn)

�1 in the high frequency expansion have a normalized spectral
weight. However[3] the above proof assumes that there is indeed a spectral repre-
sentation for G (k; ikn) : A Green�s function for a theory that is not causal fails to
have a spectral representation. If a spectral representation is possible, the analyti-
cally continued approximate GR (k;!) is necessarily causal. Approximate theories
may not be causal. This failure of causality may re�ect a phase transition, as we
will see later, or may simply be a sign that the approximation is bad. As an exam-
ple, suppose that we obtain G (k; ikn) = (ikn � ia)�1 : This has the correct high-
frequency behavior but its analytical continuation does not satisfy causality. It has
no spectral representation. On the other hand, G (k; ikn) = (ikn + (kn= jknj) ia)�1
has a Lorentzian as a spectral weight and is causal. It may also occur that the
approximate theory may have

R1
�1

d!0

2� A (k;!
0) = 1 but A (k;!0) < 0 for some

range of !0. This unphysical result may again signal that the approximate theory
fails because of a phase transition or because it is a bad approximation.

288 *MORE FOR-
MAL MATTERS : ASYMPTOTIC BEHAVIOR, CAUSALITY, GAUGE TRANSFORMATION



32.2 *Implications of causality for GR and �R

Consider the retarded Green function as a matrix in r; r0. We will show that
the real and imaginary parts of GR and of �R are each Hermitian matrices. in
addition, ImGR and Im�R are both negative de�nite (except in the special case of
non-interacting particles where Im�R = 0). From our general considerations with
the harmonic oscillator at the beginning, we know that the self-energy, that acts
as a damping, has to be retarded as well. Nevertheless, we will see this explicitly
in this section.
In analogy with the Matsubara Green function Eq.(29.41) GR has the Lehmann

representation

GR (r; r0;!) = e�

X
mn

�
e��Km + e��Kn

� hnj S (r) jmi hmj yS (r0) jni
! + i� � (Em � En � �)

: (32.13)

In a basis where the matrix ImGR (r; r0;!) is diagonal, say for quantum number
�; then

ImGR (�;!) = ��
X
mn

�
e��Km + e��Kn

�
hnj c� jmi hmj cy� jni � (! � (Em � En � �))

= ��
X
mn

�
e��Km + e��Kn

�
jhnj c� jmij2 � (! � (Em � En � �)) (32.14)

which proves that the matrix for the imaginary part is negative de�nite. The neg-
ative sign comes from the +i� in the original formula and is clearly a consequence
of causality. In that same diagonal basis,

ReGR (�;!) = e�

X
mn

�
e��Km + e��Kn

� jhnj c� jmij2

! � (Em � En � �)
: (32.15)

When we change to an arbitrary basis (say r; r0 for de�niteness) with the
unitary transformation U , we �nd, using also ImGR (�;!) = ImGR (�;!)� and
ReGR (�;!) = ReGR (�;!)

� that

GR (r; r0;!) = U (r;�)GR (�;!)Uy (�; r0) (32.16)

= U (r;�)ReGR (�;!)Uy (�; r0) + iU (r;�) ImGR (�;!)Uy (�; r0)

� X (r; r0;!) + iY (r; r0;!) (32.17)

GR (r; r0;!)
�
= X (r; r0;!)

� � iY (r; r0;!)� (32.18)

= U� (r;�)ReGR (�;!)U (r0;�)� iU� (r;�) ImGR (�;!)U (r0;�)
= U (r0;�)ReGR (�;!)Uy (�; r)� iU (r0;�) ImGR (�;!)Uy (�; r)
= X (r0; r;!)� iY (r0; r;!) (32.19)

where there is an implicit sum over �. Comparing Eqs.(32.18) and (32.19), we see
that in an arbitrary canonical basis, we can write GR = X� iY and GA = X+ iY
where both X and Y are hermitian matrices.

Remark 239 Spectral weight as the anti-hermitian part of GR : In the diagonal
basis, the spectral weight is �2 ImGR (�;!) ; which becomes simply �2Y with Y
hermitian in a general basis. In an arbitrary basis, it is better then to say that the
spectral weight can be extracted from the anti-hermitian part of GR; namely from�

GR (r; r0;!)�GR (r0; r;!)�
�
= 2iY (r; r0;!) : (32.20)

The de�nition as the value of the cut along the real axis of G (z) is also always
valid.
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Following Pottho¤ [196] we show that the retarded self-energy as a matrix has
the same properties as GR. First, we need to prove that

1

A� iB = X � iY (32.21)

with X and Y both Hermitian and Y positive de�nite if A and B are both Her-
mitian with B positive de�nite. A positive de�nite matrix can always be written
in the form B = DyD where D is Hermitian, i.e. Dy = D = B1=2. Using this
property, we have

1

A� iB = D�1 1

Dy�1AD�1 � iI D
y�1; (32.22)

where we assumed that B is invertible (in particular, it cannot vanish). Since
Dy�1AD�1 is Hermitian as well, we can diagonalize it by a unitary transformation
Dy�1AD�1 = UcUy where c is a diagonal matrix. Thus,

1

A� iB = D�1U
1

c� iI U
yDy�1 = D�1U

c� iI
c2 + 1

UyDy�1 = X � iY (32.23)

with X and Y Hermitians since
�
UyDy�1�y = D�1U . In addition, Y is positive

de�nite since in the diagonal basis Y !
�
c2 + 1

��1
. Now, de�ne

�
GR
��1

=

(A� iB)�1 = X + iY and
�
GR0
��1

= (A0 � iB0)�1 = X0 + iY0 so that�
GR
��1

= X + iY =
�
GR0
��1 � �R = X0 + iY0 � �

0R � i�
00R: (32.24)

Then, given that X;Y and X0; Y0 are Hermitians, we have that �
0R and �

00R are
Hermitian matrices. In addition, �

00R is negative de�nite since Y0 is in�nitesimal
which implies that Y � Y0 can only be positive (or vanish in the non-interacting
case). In the special case where the matrices are real symmetric instead of Her-
mitian, �

00R and �
0R are respectively the imaginary and real parts of the self-

energy.

32.3 Gauge transformation for the Green�s function

We have seen that under a gauge transformation (11.1), the single particle wave
function transforms as

hrj  0 (t)
�
= eie�(r;t) hrj  (t)i (32.25)

If we de�ne a gauge transformation for the �eld operators (not the wave function)
as follows

 y (r;�)! e�ie�(r;�) y (r;�) ; (32.26)

then �
 y (r;�) j0i = eK� jri

�
! e�ie�(r;�)eK� jri (32.27)

and any one-body state will transform correctly.
The Green�s function is de�ned by a trace and the Boltzmann factor is gauge

invariant, so that under a gauge transformation

G (1; 2) = �
D
T�

�
 (1) y (2)

�E
! eie�(1)G (1; 2) e�ie�(2): (32.28)

To satisfy the boundary condition, we need that

� (r; �) = � (r; � + �) (32.29)
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33. THREEGENERALTHEOREMS

Risking to wear your patience out, we still have to go through three general the-
orems used repeatedly in Many-Body theory. Wick�s theorem forms the basis ot
the diagram technique in many-body theory. The linked-cluster theorems, or cu-
mulant expansions, are much more general theorems that are also necessary to set
up the machinery of diagrams. Finally, we prove a variational principle for the free
energy that allows us to give a physical meaning to Hartree-Fock theory as the
best one-body Hamiltonian for any given problem. This variational principle is
useful for ordinary system, but also becomes indispensable when there is a broken
symmetry.

33.1 Wick�s theorem

Wick�s theorem allows us to compute arbitrary correlation functions of any Hamil-
tonian that is quadratic in Fermion or Boson operators. That is clearly what we
need to do perturbation theory, but let us look in a bit more details at how this
comes about. We will need to compute in the interaction picture

G (�) = �
Tr
h
e��H0T�

�
UI (�; �) I (�)UI (� ; 0) 

y
I (0)

�i
Tr [e��H0T�UI (�; 0)]

(33.1)

Because UI (� ; 0) always contains an even number of fermions, it can be commuted
with creation-annihilation operators without paying the price of minus signs so
that

G (�) = �Tr[e
��H0T�(UI(�;0) I(�) 

y
I(0))]

Tr[e��H0T�UI(�;0)]
(33.2)

More speci�cally the evolution operator is,

UI (�; 0) = T�

h
exp

�
�
R �
0
d�1VI (�1)

�i
(33.3)

Expanding this evolution operator to �rst order in the numerator of the Green�s
function one obtains

� Tr
h
e��H0T�

�
 I (�) 

y
I (0)

�i
+

Z �

0

d�1Tr
h
e��H0T�

�
VI (�1) I (�) 

y
I (0)

�i
(33.4)

where in the case of a two-body interaction (Coulomb for example), VI (�1) con-
tains four �eld operators.
Wick�s theorem allows us to evaluate expectation values such as those above.

More generally, it allows us to compute expectation values of creation-annihilation
operators such as, D

ai (� i) aj (� j) a
y
k (�k) a

y
l (� l)

E
0

(33.5)

as long as the density matrix e��H0 is that of a quadratic Hamiltonian.
Note that since quadratic Hamiltonians conserve the number of particles, ex-

pectation values vanish when the number of creation operators does not match
the number of destruction operators.
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Lemma 21 If H0 = "1a
y
1a1 + "2a

y
2a2 then

D
a1a

y
1a2a

y
2

E
=
D
a1a

y
1

ED
a2a

y
2

E
:

Proof: To understand what is going on, it is instructive to study �rst the problem
where a single fermion state can be occupied. Then

D
a1a

y
1

E
=
Tr
h
e��H0a1a

y
1

i
Tr [e��H0 ]

(33.6)

=
h0j a1ay1 j0i+ e���1 (h0j a1) a1a

y
1

�
ay1 j0i

�
h0j j0i+ e���1 (h0j a1)

�
ay1 j0i

� =
1

1 + e���1
(33.7)

For two fermion states 1; 2, then the complete set used to evaluate the trace
is

j0i j0i ; ay1 j0i j0i ; j0i ay2 j0i ; ay1 j0i a
y
2 j0i (33.8)

so that D
a1a

y
1

E
=

1

1 + e���1
1 + e���2

1 + e���2
=

1

1 + e���1
: (33.9)

The easiest way to understand the last result is to recall that
�
1 + ay1

��
1 + ay2

�
j0i

will generate the trace so that we can factor each subspace. The last result
will remain true for an arbitrary number of fermion states, in other words

D
a1a

y
1

E
=

1

1 + e���1

Q
m6=1 1 + e

���mQ
m6=1 1 + e

���m
=

1

1 + e���1
: (33.10)

Furthermore,

D
a1a

y
1a2a

y
2

E
=

1

1 + e���1
1

1 + e���2

Q
m6=1;2 1 + e

���mQ
m6=1;2 1 + e

���m
(33.11)

=
1

1 + e���1
1

1 + e���2
(33.12)

=
D
a1a

y
1

ED
a2a

y
2

E
(33.13)

Theorem 22 Any expectation value such as
D
ai (� i) aj (� j) a

y
k (�k) a

y
l (� l)

E
0
cal-

culated with a density matrix e��K0 that is quadratic in �eld operators can be com-

puted as the sum of all possible products of the type
D
aj (� j) a

y
k (�k)

E
0

D
ai (� i) a

y
l (� l)

E
0

that can be formed by pairing creation and annihilation operators. For a given term
on the right-hand side, there is a minus sign if the order of the operators is an odd
permutation of the order of operators on the left-hand side.

A simple case: We �rst prove a simple special case where we can see everything
that happens. The trick to prove the theorem ([10]) is to transform the
operators to the basis where H0 is diagonal, to evaluate the expectation
values, then to transform back to the original basis. Let Greek letters stand
for the basis where H0 is diagonal. Using the formula for basis changes, we
have, (with an implicit sum over Greek indices)D

ai (� i) aj (� j) a
y
k (�k) a

y
l (� l)

E
0
= (33.14)

hij �i hjj �i
D
a� (� i) a� (� j) a

y
 (�k) a

y
� (� l)

E
0
hj ki h�j li (33.15)
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We already know from Eq.(29.59) that

a� (� i) = e���� ia� ; ay� (� i) = ay�e
��� i (33.16)

so that D
ai (� i) aj (� j) a

y
k (�k) a

y
l (� l)

E
0

(33.17)

= hij �i e���� i hjj �i e����j
D
a�a�a

y
a
y
�

E
0
e��k hj ki e��� l h�j li (33.18)

What we need to evaluate then are expectation values of the typeD
a�a�a

y
a
y
�

E
0
: (33.19)

Evaluating the trace in the diagonal basis, we see that we will obtain a non-
zero value only if indices of creation and annihilation operators match two
by two or are all equal. Suppose � = , � = � and � 6= �. Then, as in the
lemma D

a�a�a
y
�a

y
�

E
0
=


a�a

y
�

�
0

D
a�a

y
�

E
0

(33.20)

If instead, � = �, � =  and � 6= �, thenD
a�a�a

y
�a

y
�

E
0
= �

D
a�a�a

y
�a

y
�

E
0
= �



a�a

y
�

�
0

D
a�a

y
�

E
0
: (33.21)

The last case to consider is � = �, � = �, � = 

a�a�a

y
�a

y
�

�
0
= 0. (33.22)

All these results, Eqs.(33.20)(33.21) and the last equation can be combined
into one formulaD

a�a�a
y
a
y
�

E
0
=



a�a

y
�

�
0

D
a�a

y
�

E
0
(��;���; � ��;��;�) (33.23)

=
D
a�a

y
�

E
0



a�a

y


�
0
�


a�a

y


�
0

D
a�a

y
�

E
0

(33.24)

which is easiest to remember as follows,

D
a�a�a

y
a
y
�

E
=

*
#
a�a�

"
ay
"

#
ay�

+
+

*
#
a�a�

"

#
aya

y
�
"

+
(33.25)

in other words, all possible pairs of creation and annihilation operators must
be paired (�contracted�) in all possible ways. There is a minus sign if an
odd number of operator exchanges (transpositions) is necessary to bring the
contracted operators next to each other on the right-hand side (In practice,
just count one minus sign every time two operators are permuted). Substi-
tuting Eq.(33.24) back into the expression for the original average expressed
in the diagonal basis Eq.(33.18) we haveD

ai (� i) aj (� j) a
y
k (�k) a

y
l (� l)

E
0

(33.26)

=
D
ai (� i) a

y
l (� l)

E
0

D
aj (� j) a

y
k (�k)

E
0
�
D
ai (� i) a

y
k (�k)

E
0

D
aj (� j) a

y
l (� l)

E
0

By induction (not done here) one can show that this result generalizes to the
expectation value of an arbitrary number of creation-annihilation operators.

De�nition 23 Contraction: In the context of Wick�s theorem, we call each factorD
ai (� i) a

y
k (�k)

E
0
on the right-hand side, a �contraction�.
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Since Wick�s theorem is valid for an arbitrary time ordering, it is also valid for
time-ordered products so that, for exampleD

T�

h
ai (� i) aj (� j) a

y
k (�k) a

y
l (� l)

iE
0
= (33.27)

D
T�

h
ai (� i) a

y
l (� l)

iE
0

D
T�

h
aj (� j) a

y
k (�k)

iE
0
�
D
T�

h
ai (� i) a

y
k (�k)

iE
0

D
T�

h
aj (� j) a

y
l (� l)

iE
0
:

(33.28)
The only simpli�cation that occurs with time-ordered products is the following.
Note that, given the de�nition of time-ordered product, we haveD

T�

h
ai (� i) a

y
k (�k)

iE
0
= �

D
T�

h
ayk (�k) ai (� i)

iE
0

(33.29)

Indeed, the left-hand side and right-hand side of the above equation are, respec-
tively D

T�

h
ai (� i) a

y
k (�k)

iE
0
=

D
ai (� i) a

y
k (�k)

E
0
� (� i � �k) (33.30)

�
D
ayk (�k) ai (� i)

E
0
� (�k � � i) (33.31)

�
D
T�

h
ayk (�k) ai (� i)

iE
0
= �

D
ayk (�k) ai (� i)

E
0
� (�k � � i) (33.32)

+
D
ai (� i) a

y
k (�k)

E
0
� (� i � �k) (33.33)

In other words, operators can be permuted at will inside a time-ordered product, in
particular inside a contraction, as long as we take care of the minus-signs associated
with permutations. This is true for time-ordered products of an arbitrary number
of operators and for an arbitrary density matrix. The overall minus sign that
comes in the permutations on the left hand side of Eq.(33.28) is the same as that
which comes from the corresponding permutations on the right-hand side.
On the other hand, if we apply Wick�s theorem to a product that is not time

ordered, then we have to remember thatD
ai (� i) a

y
k (�k)

E
0
6= �

D
ayk (�k) ai (� i)

E
0

(33.34)

as we can easily verify by looking at the special case �k = � i or by going to a
diagonal basis: We can anticommute operators at will to do the �contractions�

but they cannot be permuted inside a contraction
D
ai (� i) a

y
k (�k)

E
0
:

In practice, we will apply Wick�s theorem to time-ordered products. In nu-
merical calculations it is sometimes necessary to apply it to objects that are not
time-ordered.

Example 24 To make the example of Wick�s theorem Eq.(33.28) more plausible,
we give a few examples, Suppose �rst that the time order to the left of Eq.(33.28)
is such that the destruction operators are inverted. Then,D

T�

h
ai (� i) aj (� j) a

y
k (�k) a

y
l (� l)

iE
0
= �

D
aj (� j) ai (� i) a

y
k (�k) a

y
l (� l)

E
0
(33.35)

which means that since i and j have exchanged roles, in doing the contractions
as above there is one more permutation to do, which gets rid of the extra minus
sign and reproduces the right-hand side of Eq.(33.28). More explicitly, to do the
contractions as above, we have to change i for j on both the right- and the left-hand
side of Eq.(33.26). Doing this and substituting above, we obtainD
aj (� j) ai (� i) a

y
k (�k) a

y
l (� l)

E
0
=
D
aj (� j) a

y
l (� l)

E
0

D
ai (� i) a

y
k (�k)

E
0
�
D
aj (� j) a

y
k (�k)

E
0

D
ai (� i) a

y
l (� l)

E
0

(33.36)
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which we substitute in the previous equation to obtain exactly what the right-hand
side of Eq.(33.28) would have predicted. To take another example, suppose that
the time orders are such thatD

T�

h
ai (� i) aj (� j) a

y
k (�k) a

y
l (� l)

iE
0
= �

D
ai (� i) a

y
k (�k) aj (� j) a

y
l (� l)

E
0
:

(33.37)
Then, to do the contractions we proceed as above, being careful not to permute
creation and annihilation operators within an expectation value

�
D
ai (� i) a

y
k (�k) aj (� j) a

y
l (� l)

E
0

= �
D
ai (� i) a

y
l (� l)

E
0

D
ayk (�k) aj (� j)

E
0
�
D
ai (� i) a

y
k (�k)

E
0

D
aj (� j) a

y
l (� l)

E
0
:(33.38)

The right-hand side of Eq.(33.28) gives usD
T�

h
ai (� i) a

y
l (� l)

iE
0

D
T�

h
aj (� j) a

y
k (�k)

iE
0
�
D
T�

h
ai (� i) a

y
k (�k)

iE
0

D
T�

h
aj (� j) a

y
l (� l)

iE
0

(33.39)

= �
D
ai (� i) a

y
l (� l)

E
0

D
ayk (�k) aj (� j)

E
0
�
D
ai (� i) a

y
k (�k)

E
0

D
aj (� j) a

y
l (� l)

E
0

(33.40)

with the minus sign in the �rst term because we had to exchange the order in one
of the time-ordered products.

General proof: For the general proof, we follow Fetter and Walecka [73]. As
in Eq.(33.28) above, it su¢ ces to prove the theorem for a given time order.
And as in Eq.(33.18), it su¢ ces to go to the diagonal basis. In the diagonal
basis then, we need to evaluate

Tr [�GA�A�A � � �A� ] (33.41)

where �G = e��H0=Z is the density matrix and where, for now, A� can be
either creation or annihilation operators. The proof for fermions is easily
generalized to bosons. Anticommuting the �rst operator all the way to the
right-hand sied, you �nd

Tr [�GA�A�A � � �A� ] = Tr [�G fA�; A�gA � � �A� ]� Tr [�GA� fA�; Ag � � �A� ]
+ � � �+ Tr [�GA�A � � � fA�; A�g]� Tr [�GA�A � � �A�A�] :(33.42)

The sign in the last two terms follows from the fact that the number of A
operators has to be even, otherwise the expectation value vanishes. Following
the steps in Eq.(29.59) we have that

e�H0A�e
��H0 = A�e

�a�� (33.43)

where �� = �1 if A� is a destruction operator, and �� = +1 if it is a
creation operator. The above equation is then equivalent to

A��G = �GA�e
�a��� : (33.44)

Using the cyclic property of the trace,

Tr [�GA�A � � �A�A�] = Tr [A��GA�A � � �A� ]
= e�����Tr [�GA�A�A � � �A� ] (33.45)

so that the last trace on the right-hand side of Eq.(33.42) can be combined
with the left-hand side to yield

Tr [�GA�A�A � � �A� ] =
fA�; A�g
1 + e�����

Tr [�GA � � �A� ]�
fA�; Ag
1 + e�����

Tr [�GA� � � �A� ]

+ � � �+ fA�; A�g
1 + e�����

Tr [�GA�A � � � ] : (33.46)
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Then it becomes convenient to de�ne a contraction by

A��A
�
� =

fA�; A�g
1 + e�����

: (33.47)

The only non-vanishing contributions are of the form

ay��a
�
� =

�
ay�; a�

	
1 + e���

=
1

e��� + 1
=


ay�a�

�
(33.48)

a��a
y�
� =

�
a�; a

y
�;
	

1 + e����
=

�
1� 1

e��� + 1

�
=


a�a

y
�

�
(33.49)

so that quite generally
A��A

�
� = hA�A�i (33.50)

and

Tr [�GA�A�A � � �A� ] = hA�A�iTr [�GA � � �A� ]� hA�AiTr [�GA� � � �A� ]
+ � � �+ hA�A�iTr [�GA�A � � � ] : (33.51)

Continuing this process, the expectation value is equal to the set of all com-
plete contractions of operators with signs determined from the signature of
the permutations. For a time ordered product, as in Eq.(33.28), it su¢ ces
to include the time-ordering operator on the left-hand side and in everyone
of the contractions. The overall number of plus and minus signs will be the
same on the left and on the right of the equation. The return to the original
basis is easily performed as in Eqs.(33.18) and (33.26).

Recalling the de�nition of the Green function and of the determinant, Wick�s
theorem can also be written in the following formD

T� (�1) (�2) � � � (�n) y (� 0n) � � � y (� 02) y (� 01)
E

= (�1)n det

2664
G (�1; � 01) G (�1; � 02) � � � G (�1; � 0n)
G (�2; � 01) G (�2; � 02) � � � G (�2; � 0n)
� � � � � � � � � � � �
G (�n; � 01) G (�n; � 02) � � � G (�n; � 0n)

3775 : (33.52)

Spatial indices and spin labels can easily be added. The antisymmetry of the
time-ordered product under interchange of creation operators translates into the
antisymmetry of the determinant under the interchange of columns. And simi-
larly, the antisymmetry under interchange of destruction operators translates into
antisymmetry under interchange of lines.

Remark 240 Wick�s theorem can also be proven [132] using the functional meth-
ods that we develop in the next part of these notes.

33.2 Linked cluster theorems

Suppose we want to evaluate the Green�s function by expanding the time-ordered
product in the evolution operator Eq.(33.3). The expansion has to be done both
in the numerator and in the denominator of the general expression for the average
Eq.(33.1). This is a very general problem that forces us to introduce the notion
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of connected graphs. A generalization of this problem also occurs if we want to
compute the free-energy from

lnZ = ln
�
Tr
�
e��H0UI (�; 0)

��
= ln (Z0 hUI (�; 0)i0) (33.53)

= ln

 *
T�

"
exp

 
�
Z �

0

d�1VI (�1)

!#+
0

!
+ lnZ0 (33.54)

In probability theory this is like computing the cumulant expansion of the char-
acteristic function. Welcome to linked cluster theorems.
These problems are special cases of much more general problems in the the-

ory of random variables which do not even refer to speci�c Feynman diagrams or
to quantum mechanics. The theorems, and their corollary that we prove below,
are amongst the most important theorems used in many-body Physics or Statis-
tical Mechanics in general. Linked cluster theorems lead to observables that are
expressed in terms of connected diagrams.

Remark 241 The value of connected diagrams scales like the volume of the sys-
tem. If observables were to contain contributions from disconnected diagrams, we
would obtain non-extensive quantities, that is results that scale like higher powers
of the volume, which clearly does not make sense.

33.2.1 Linked cluster theorem for normalized averages

Consider the calculation of 

e�f(x)A (x)

�

e�f(x)

� (33.55)

where the expectation hi is computed over a multivariate probability distribution
function for the variables collectively represented by x. The function f (x) is
arbitrary, as is the function A (x). Expanding the exponential, we may write


e�f(x)A (x)
�


e�f(x)
� =

P1
n=0

1
n! h(�f (x))

n
A (x)iP1

n=0
1
n! h(�f (x))

ni
(33.56)

When computing a term of a given order n, such as 1
n! h(�f (x))

n
A (x)i, we may

always write

1

n!
h(�f (x))nA (x)i =

1X
`=0

1X
m=0

�n;m+`
1

n!

n!

`!m!

D
(�f (x))`A (x)

E
c
h(�f (x))mi

(33.57)

where the subscript c on the average means that none of the terms in
D
(�f (x))`A (x)

E
c

can be factored into lower order correlation functions, such as for example
D
(�f (x))`

E
hA (x)i

or
D
(�f (x))`�1

E
h(�f (x))A (x)i etc... The combinatorial factor corresponds to

the number of ways the (�f (x))n can be grouped into a group of ` terms and a
group of n � ` terms, the �n;m+` Kronecker delta function ensuring that indeed
m = n � `. Using the last equation in the previous one, the sum over n is now
trivially performed with the help of �n;m+` and one is left with


e�f(x)A (x)
�


e�f(x)
� =

P1
`=0

P1
m=0

1
m!`!

D
(�f (x))`A (x)

E
c
h(�f (x))miP1

n=0
1
n! h(�f (x))

ni
(33.58)
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The numerator can now be factored so as to cancel the denominator which proves
the theorem

Theorem 25 Linked cluster theorem for normalized averages:

he�f(x)A(x)i
he�f(x)i =

P1
`=0

1
`!

D
(�f (x))`A (x)

E
c
=


e�f(x)A (x)

�
c

(33.59)

This result can be applied to our calculation of the Green�s function since
within the time-ordered product, the exponential may be expanded just as an ordi-

nary exponential, and the quantity which plays the role of (�f (x)), namely
�
�
R �
0
d�VI (�)

�
can be moved within the T� product without costing any additional minus sign.

33.2.2 Linked cluster theorem for characteristic functions or free energy

We now wish to show the following general theorem for a multivariate probability
distribution.

Theorem 26 Linked cluster theorem (cumulant expansion).

ln


e�f(x)

�
=
P1
n=1

1
n! h(�f (x))

nic =


e�f(x)

�
c
� 1 (33.60)

The proof is inspired by Enz[11]. When f (x) = ik � x, the quantity


e�ik�x

�
is called the characteristic function of the probability distribution. It is the gener-
ating function for the moments. The quantities on the right-hand side, which as
above are connected averages, are usually called cumulants in ordinary probability
theory and ln



e�ik�x

�
is the generating function for the cumulant averages.

Proof: To prove the theorem, we introduce �rst an auxiliary variable �

@

@�

D
e��f(x)

E
=
D
e��f(x) [�f (x)]

E
(33.61)

We can apply to the right-hand side the theorem we just provedD
e��f(x) [�f (x)]

E
=
D
e��f(x) [�f (x)]

E
c

D
e��f(x)

E
(33.62)

so that
1


e��f(x)
� @
@�

D
e��f(x)

E
=

�
@

@�
e��f(x)

�
c

: (33.63)

Integrating both sides from 0 to 1, we obtain

ln
D
e��f(x)

E
j10 =

D
e�f(x)

E
c
� 1 (33.64)

QED

Remark 242 The above results tell us that derivatives of the logarithm of the
partition function will in general yield cumulants. This is indeed what we found
from �2 lnZ [�] = (�� (2; 1) �� (4; 3)) = ��G (1; 2) =�� (4; 3) since it corresponds to
the average of a four-point function with the disconnected piece (product of Green
functions) subtracted out.
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Example 27 It is instructive to check the meaning of the above result explicitly
to second order

ln
D
e��f(x)

E
� ln

�
1� �f (x) + 1

2
(�f (x))

2

�
�
�
�h�f (x)i+ 1

2

D
(�f (x))

2
E�
�1
2
h�f (x)i2

(33.65)D
e��f(x)

E
c
� 1 � �h�f (x)ic +

1

2

D
(�f (x))

2
E
c

(33.66)

so that equating powers of �; we �nd as expected,D
(f (x))

2
E
c
=
D
(f (x))

2
E
� hf (x)i2 : (33.67)

The above results will help us in the calculation of the free energy since we
�nd, as in the �rst equations of the section on linked cluster theorems,

F = �T ln
h
Z0

D
T�

h
e�

R �
0
d�VI(�)

iE
0

i
= �T

1X
n=1

1

n!

*
T�

"
�
Z �

0

d�VI (�)

#n+
0c

�T lnZ0

(33.68)

F = �T lnZ = �T
hD
T�

h
e�

R �
0
d�VI(�)

iE
0c
� 1
i
� T lnZ0. (33.69)

the subscript 0 stands for averages with the non-interacting density matrix. The
above proof applies to our case because the time-ordered product of an exponential
behaves exactly like an ordinary exponential when di¤erentiated, as we know from
the di¤erential equation that leads to its de�nition.

33.3 Variational principle and application to Hartree-
Fock theory

It is legitimate to ask if there is a one-body Hamiltonian, in other words an
e¤ective Hamiltonian with a time-independent potential, whose solution is as close
as possible to the true solution. To address this question, we also need to de�ne
what we mean by �as close as possible�. The answer to both of these queries
is provided by the variational principle for thermodynamic systems. We discuss
below how Hartree-Fock theory comes out naturally from the variational principle.
Also, it is an unavoidable starting point when there is a broken symmetry, as we
will discuss more fully in a later chapter.

33.3.1 Thermodynamic variational principle

A proof of the variational principle for both classical and quantum systems can
be obtained by starting from the following inequality for the entropy[16]

S = �Tr [% ln %] � �Tr [% ln %0] : (33.70)
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Proof Let jmi and jm0i be the basis that diagonalize respectively % and %0. Then
by inserting the closure relation, and de�ning pm = hmj % jmi with the anal-
ogous de�nition for p0m, we �nd

Tr [�% ln %+ % ln %0] = �
X
m

pm ln pm +
X
m;m0

pm hm jm0i ln p0m0 hm0 jmi

=
X
m;m0

hm jm0i hm0 jmi pm ln
p0m0

pm
: (33.71)

In this sum, hm jm0i hm0 jmi pm is positive or zero. We can now use ln y �
y � 1. (This inequality follows from the fact that the �rst derivative of
ln y � y vanishes at y = 1 and that the second derivative, �1=y2 is negative
everywhere. Hence, ln y � y has a maximum at y = 1 and the value there is
�1:) Using this inequality above, we �nd

Tr [�% ln %+ % ln %0] �
X
m;m0

hm jm0i hm0 jmi (p0m � pm) = Tr [%0]� Tr [%] = 0:

(33.72)
The last equality follows from the fact that the trace of a density matrix
is unity. The equality occurs only if hm jm0i = 0 or if p0m0=pm = 1 for all
possible choices of jmi and jm0i :

To prove Feynman�s variational principle Eq.(33.73) it su¢ ces to take %0 =
e��(H��N)=Z and % = %0; a trial density matrix. Then, the inequality for the
entropy, Eq.(33.70) becomes

�T lnZ � Tr [%0 (H � �N)] + TTr [%0 ln %0] (33.73)

which looks as if we had the function (E � �N)� TS to minimize, quite a satis-
factory state of a¤airs.
Another useful form is obtained by replacing %0 by %0 = e��(

eH0��N)=Z0 witheH0 the trial Hamiltonian. Then the above equation reduces to

�T lnZ � �T lnZe0 +
D
H � eH0

E
e0 (33.74)

where hOie0 refers to an average of the operator O with the density matrix %0 =

e��(
eH0��N)=Z0::

33.3.2 Thermodynamic variational principle for classical systems based on the linked-
cluster theorem

One can base the thermodynamic variational principle for classical systems on the
inequality

ex � 1 + x (33.75)

which is valid for all x, whether x > 0, or x < 0. This inequality is a convexity
inequality which appears obvious when the two functions are plotted. We give two
proofs.

Proof 1: ex is a convex function, i.e. d2ex=d2x � 0 for all values of x: At x = 0
the functions ex and 1+x as well as their �rst derivatives are equal. Since a
straight line tangent to a convex curve at a point cannot intersect it anywhere
else, the theorem is proven.QED
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Algebraically, the proof goes as follows.

Proof 2: The function ex�1�x has an absolute minimum at ex = 1 since its �rst
derivative vanishes there while its second derivative is everywhere positive.
At its minimum ex � 1� x = 0: This proves the inequality. QED

Moving back to our initial purpose, let eH0 be a trial Hamiltonian. Then take
e��(

eH0��N)=Z0 as the trial density matrix corresponding to averages hie0. We will
use the above inequality Eq.(33.75) to prove the variational principle Eq.(33.74)

�T lnZ � �T lnZe0 +
D
H � eH0

E
e0 : (33.76)

This inequality is a variational principle because eH0 is arbitrary, meaning that
we are free to parametrize it and then to minimize with respect to the set of
all parameters to �nd the best one-particle Hamiltonian in our Physically chosen
space of Hamiltonians.

Proof Our general result for the free energy in terms of connected terms, Eq.(33.69),
is obviously applicable to classical systems. The simpli�cation that occurs
there is that since all operators commute, we do not need to worry about
the time-ordered product, thus with

eV = H � eH0 (33.77)

we have

F = �T lnZ = �T
�D
e��

eV Ee0;c � 1
�
� T lnZe0: (33.78)

Using our basic inequality Eq.(33.75) for e��eV we immediately obtain the
desired result

F � �T
D
�� eV Ee0;c + Fe0 (33.79)

which is just another way of rewriting Eq.(33.74).

It is useful to note that in the language of density matrices, %0 = e��(
eH0��N)=Z0

the variational principle Eq.(33.74) reads,

�T lnZ � Tr [%0 (H � �N)] + TTr [%0 ln %0] (33.80)

which looks as if we had the function (E � �N)� TS to minimize, quite a satis-
factory state of a¤airs.

33.3.3 Application of the variational principle to Hartree-Fock theory

Writing down the most general one-body Hamiltonian with orthonormal eigen-
functions left as variational parameters, the above variational principle leads to
the usual Hartree-Fock eigenvalue equation. Such a general one-body Hamiltonian
would look like

eH0 =
X
�

Z
dx��� (x)

�
�r

2

2m

�
�� (x) c

+
� c� (33.81)
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with �� (x) as variational wave-functions. In the minimization problem, one must
add Lagrange multipliers to enforce the constraint that the wave-functions are not
only orthogonal but also normalized.
In a translationally invariant system, the one-body wave functions will be plane

waves usually, so only the eigenenergies need to be found. This will be done in
the following chapter.
It does happen however that symmetry is spontaneously broken. For example,

in an anti-ferromagnet the periodicity is halved so that the Hartree-Fock equa-
tions will correspond to solving a 2� 2 matrix, even when Fourier transforms are
used. The matrix becomes larger and larger as we allow more and more general
non-translationally invariant states. In the extreme case, the wave functions are
di¤erent on every site! This is certainly the case in ordinary Chemistry with small
molecules or atoms!
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34. EXERCICES FOR PART IV

34.0.4 Bosonic Matsubara frequencies.

The Green�s function for bosons is de�ned with a commutator instead of an anti-
commutator. Correspondingly, there is no sign change associated with the time-
ordering operator. This is like for the susceptibilities we de�ned in part II. Show
that for bosons, the Green�s function is periodic instead of antiperiodic. Conse-
quently we have qn = 2n�T = 2n�

� in that case.

34.0.5 First quantization from the second

The results are identical whether we assume that �eld operators obey bosonic or
fermionic statistics. We will suppose that they obey bosonic statistics.
a) Using h

 (r; t) ;  y (r; t)
i
= � (r� r0)

show that �Z
d3r0  y (r0; t)  (r0; t) ;  y (r; t)

�
=  y (r; t) (34.1)�Z

d3r0  y (r0; t)  (r0; t) ;  (r; t)

�
= � (r; t) (34.2)

b) then de�ning the position operator X and its conjugate momentum Px byZ
d3r  � (r; t) rx  (r; t) = X (t) (34.3)Z

d3r  � (r; t)
~
i
rx  (r; t) = Px (t) (34.4)

show that

[X (t) ; Px (t)] = i~
Z
d3r  y (r; t)  (r; t) : (34.5)

c) How can the theorem on commutators of ladder operators be used to show
that

R
d3r  y (r; t)  (r; t) can take only integers as eigenvalues?

d) How does this recover �rst quantization?

34.0.6 Retrouver la première quanti�cation à partir de la seconde

Le résultat est identique, peu importe qu�on suppose que les opérateurs de champ
obéissent à des statistiques bosoniques ou des fermioniques. Nous allons supposer
que les opérateurs de seconde quanti�cation sont bosoniques.
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a) Utilisant h
 (r; t) ;  y (r; t)

i
= � (r� r0)

montrez que �Z
d3r0  y (r0; t)  (r0; t) ;  y (r; t)

�
=  y (r; t) (34.6)�Z

d3r0  y (r0; t)  (r0; t) ;  (r; t)

�
= � (r; t) (34.7)

b) puis dé�nissant l�opérateur position X et son moment conjugué Px parZ
d3r  � (r; t) rx  (r; t) = X (t) (34.8)Z

d3r  � (r; t)
~
i
rx  (r; t) = Px (t) (34.9)

montrez qu�on retrouve le résultat suivant.

[X (t) ; Px (t)] = i~
Z
d3r  y (r; t)  (r; t) : (34.10)

b) Comment le théorème sur les commutateurs d�opérateurs d�échelle peut-il être
utilisé pour arguer que

R
d3r  y (r; t)  (r; t) ne peut prendre que des valeurs en-

tières comme valeur propre.
c) Comment ce qui précède permet-il de retrouver le résultat de la première quan-
ti�cation.

34.0.7 Non interacting Green�s function from the spectral weight and analytical con-
tinuation

Find G0 (k; ikn) starting from the spectral weight for non-interacting particles and
analytical continuation.

34.0.8 Sum over bosonic Matsubara frequencies

Derive the analog of the above results for the bosonic case.

34.0.9 Représentation de Lehman et prolongement analytique

Soit la dé�nition habituelle à l�aide d�un commutateur pour la susceptibilité de
charge retardée

�R�� (q;t� t0) = i� (t� t0) h[� (q; t) ; � (�q; t0)]i (34.11)

Soit aussi la susceptibilité de charge correspondante de Matsubara

��� (q;� � � 0) = hT�� (q; �) � (�q; 0)i (34.12)

= � (�) h� (q; �) � (�q; 0)i+ � (��) h� (�q; 0) � (q; �)i(34.13)
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Les moyennes sont prises dans l�ensemble grand-canonique.
a) Trouvez les conditions de périodicité en temps imaginaire pour la fonction

de Matsubara et déduisez-en un développement en fréquences discrètes.
b) Trouvez la représentation de Lehman pour chacune de ces deux fonctions

de réponse et déduisez-en la règle permettant de faire le prolongement analytique
d�une fonction à l�autre.
c) Véri�ez à partir de la représentation de Lehman que le poids spectral satisfait

à la condition !�00�� (q;!) > 0:
d) Pourquoi n�a-t-on pas besoin d�un facteur de convergence pour calculerP1
n=�1 ��� (q;iqn).

34.0.10 Représentation de Lehman et prolongement analytique pour les fermions

Obtenez la représentation de Lehman pour la fonction de Green de Matsubara
G (r; r0; ikn) puis celle pour la fonction de Green retardée GR (r; r0;!) et utilisez
ces résultats pour montrer que GR (r; r0;!) s�obtient de G (r; r0; ikn) simplement
en remplaçant ikn par ! + i� dans la fonction de Green de Matsubara.

34.0.11 Fonction de Green pour les phonons

Soient a�k et a
+
�k les opérateurs de destruction et de création pour des phonons

(statistiques de Bose) de polarisation � et de nombre d�onde k. L�amplitude
quanti�ée correspondante est

Q�;k =
1p
2!�k

�
a�;k + a

+
�;�k

�
(~ = 1). De�nissons le propagateur de phonon de Matsubara par:

D��0(k; k
0; � � � 0) = �2p!�k!�0k0 < T�

�
Q�;k (�)Q�0;�k0 (�

0)
�
> :

Notez que pour les quantités bosoniques il n�y a pas de changement de signe
lorsqu�on réordonne les opérateurs avec le produit chronologique.
a)
-Prouvez que D��0(k; k

0; � � � 0) ne dépend que de � � � 0:
- Dérivez la condition de périodicité en temps imaginaire.
- Donnez le développement de D��0(k; k

0; � � � 0) en fréquences discrètes.
b) Soit

H =
X
k;�

!�k[a
+
�;ka�;k +

1

2
]

- Calculez le D�(k; iqn) � D�� (k; k; iqn) correspondant.
- Trouvez le poids spectral.
- Montrez que le poids spectral s�annule à fréquence nulle. (Ceci est le cas

général pour les bosons. Ceci permet de faire le prolongement analytique de la
représentation spectrale sans rencontrer de problèmes avec la fréquence de Mat-
subara nulle.)
- Faites le prolongement analytique pour obtenir la fonction de Green retardée

correspondante.
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- Utilisez un contour dans le plan complexe et la formule de Cauchy pour
évaluer

T
1X

n=�1
D�� (k; k; iqn) e

�iqn0� (34.14)

Pourquoi le résultat ne dépend-t-il pas du facteur de convergence choisi, eiqn0
+

ou
eiqn0

�
?

34.0.12 Oscillateur harmonique en contact avec un réservoir

Un oscillateur harmonique de fréquence 
 interagissant avec un réservoir d�oscillateurs
de fréquences !i est décrit par l�hamiltonien

H = 
a+a+
X
i

!ib
+
i bi +

X
i

gi
�
a+bi + ab

+
i

�
Dé�nissons les propagateurs de Matsubara suivants:

D (�) = � < T� [a (�) a
+(0)] >

Fi (�) = � < T� [bi (�) a
+(0)] >

a) Ecrivez les equations du mouvement pour ces propagateurs.
b) Prenez la transformée de Fourier pour obtenir les équations du mouvement

pour D (iqn) et Fi (iqn) et résolvez ces équations.
c) Faites le prolongement analytique pour obtenir les propagateurs retardés.
d) Décrivez la structure analytique de DR (!) dans le plan complexe, en mon-

trant où sont les pôles et autres singularités. Vous pouvez aussi supposer que i
peut prendre les valeurs de 1 à N et montrer que DR (!) s�écrit comme le rap-
port de deux polynômes, un de degré N au numérateur et un de degré N + 1 au
dénominateur.
e) Tracez un shéma permettant d�obtenir graphiquement la position des nou-

veaux pôles de DR (!) en présence du réservoir (concentrez-vous sur le dénomi-
nateur de DR (!)). Pour simpli�er la discussion, supposez qu�il n�y a que deux
oscillateurs dans le réservoir et trouvez ce qui arrive si 
 est plus petit, plus grand,
ou entre les deux fréquences des oscillateurs du réservoir.

34.0.13 Limite du continuum pour le réservoir, et irréversibilité

Continuons le problème précédent. Supposons que le nombre d�oscillateurs du
réservoir augmente sans limite de telle sorte que la fonction

� (!) �
X
i

g2i � (! � !i)

devienne continue
a) Montrez que si � et ses dérivées sont petites, la partie imaginaire du pôle

de DR (!) est à �i�� (
). Donnez une expression intégrale pour le déplacement
de la fréquence (encore une fois à l�ordre dominant en �).
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b) Montrez que DR (t) décroît exponentiellement dans le temps. La fréquence
d�oscillation est-elle déplacée? Dans cette limite nous avons un oscillateur quan-
tique amorti! Pourquoi ce résultat est-il si di¤érent de celui du problème précé-
dent? Que se passe-t-il si le nombre d�oscillateurs est grand mais pas in�ni?
Discutez la façon dont l�irréversibilité est apparue dans le problème, en particulier
notez que la limite du volume in�ni (nombre d�oscillateurs in�ni) est prise avant
� ! 0.
c) Si � (!) est donné par

� (!) =
�

1 + !2�2

trouvez, à l�ordre dominant en �, la fréquence renormalisée et l�amortissement.
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The electron gas with long-range forces and a neutralizing background, also
known as the jellium model, is probably the �rst challenge that was met by quan-
tum many-body theory in the context of Solid State physics. It is extremely
important conceptually since it is crucial to understand how, in a solid, the long-
range Coulomb force becomes e¤ectively short-range, or screened, at low energy.
Other models, such as the Hubbard model that we will discussed later on, have
their foundation rooted in the physics of screening. In fact, one of the most useful
methods in modern electronic structure calculations uses perturbation theory to
compute single-particle excitations, and the method they rely on, called the GW
approach, is just an adaptation of what was developed for the Coulomb gas.
In this part, we assume that the uniform neutralizing background has in�nite

inertia. In a subsequent part of this book we will allow it to move, in other words to
support sound waves, or phonons. We will consider electron-phonon interactions
and see how these eventually lead to superconductivity.
The main physical phenomena to account for here in the immobile background,

are screening and plasma oscillations, at least as far as collective modes are con-
cerned. The surprises come in when one tries to understand single-particle prop-
erties. Hartree-Fock theory is a disaster since it predicts that the e¤ective mass of
the electron at the Fermi level vanishes. The way out of this paradox will indicate
to us how important it is to take screening into account.
We will start by describing the source formalism due to the Schwinger-Martin

school[1, 2] and then start to do calculations. The advantage of this approach is
that it allows more easily to devise non-perturbative approximations and to derive
general theorems. It gives a systematic algebraic way to formulate perturbation
theory when necessary, without explicit use of Wick�s theorem. With this formal-
ism, so-called conserving approximations can also be formulated naturally. The
source, or functional derivative formalism, is however less appealing than Feynman
rules for the Feynmann diagram approach to perturbation theory. When these two
competing approaches were invented, it was forbidden to the practitioners of the
source approach to draw Feynamnn diagrams, but nothing really forbids it. The
students, anyway, drew the forbidden pictures hiding in the basement. The two
formalisms are strictly equivalent.
After we introduce the formalism, we discuss �rst the density oscillations,

where we will encounter screening and plasma oscillations. This will allow us
to discuss the famous Random Phase Approximation (RPA). Then we move on
to single particle properties and end with a general discussion of what would be
needed to go beyond RPA. The electron gas is discussed in detail in a very large
number of textbooks. The discussion here is brief and incomplete, its main purpose
being to illustrate the physics involved.
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35. THE FUNCTIONAL DERIVA-
TIVE APPROACH

We basically want to compute correlation functions. In the �rst section below, we
show, in the very simple context of classical statistical mechanics, how introducing
arti�cial external �elds (source �elds) allows one to compute correlation functions
of arbitrary order for the problem without external �elds. This is one more exam-
ple where enlarging the space of parameters of interest actually simpli�es matters
in the end. In the other section, we show how to obtain Green�s functions with
source �elds and then give an impressionist�s view of how we plan to use this idea
for our problem.

35.1 External �elds to compute correlation func-
tions

In elementary statistical mechanics, we can obtain the magnetization by di¤eren-
tiating the free energy with respect to the magnetic �eld. To be more speci�c,
let

Zh = Tr
h
e��(K�hM)

i
(35.1)

then
@ lnZh
�@h

=
1

Zh
Tr
h
e��(K�hM)M

i
= hMih : (35.2)

The indice h on hMih and Zh reminds us that the magnetic �eld is non zero. We
can obtain correlation fucntions of higher order by continuing the process

@2 lnZh

�2@h2
= hMMih � Tr

h
e��(K�hM)M

i 1
Z2h

@Tr
�
e��(K�hM)

�
�@h

(35.3)

= hMMih � hMih hMih : (35.4)

The second term clearly comes from the fact that Zh in the denominator of the
equation for hMih depends on h: One can clearly continue this process to �nd
higher and higher order correlation functions. At the end, we can set h = 0.
Clearly then, if one can compute hMih or Zh, one can obtain higher order corre-
lation functions just by di¤erentiating.
Suppose now that we want for example hM (x1)M (x2)i�hM (x1)i hM (x2)i :That

can still be achieved if we impose a position dependent-external �eld:

Z [h] = Tr
h
e��(K�

R
d3xh(x)M(x))

i
: (35.5)

It is as if at each position x; there were an independent variable h (x) : The position
is now just a label. The notation Z [h] means that Z is a functional of h (x).

De�nition 28 A functional takes a function and maps it into a scalar.
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To obtain the magnetization at a single point, we introduce the notion of
functional derivative, which is just a simple generalization to the continuum of the
idea of partial derivative. To be more speci�c,

�

�h (x1)

Z
d3xh (x)M (x) =

Z
d3x

�h (x)

�h (x1)
M (x) (35.6)

=

Z
d3x� (x1 � x)M (x) =M (x1) : (35.7)

In other words, the partial derivative for two independent variables y1 and y2

@y1
@y2

= �1;2 (35.8)

where �1;2 is the Kroenecker delta, is replaced by

�h (x)

�h (x1)
= � (x1 � x) : (35.9)

Very simple.
Armed with this notion of functional derivative, one �nds that

� lnZ [h]

��h (x1)
= hM (x1)ih (35.10)

and the quantity we want is obtained from one more functional derivative

�2 lnZ [h]

�2�h (x1) �h (x2)
= hM (x1)M (x2)ih � hM (x1)ih hM (x2)ih : (35.11)

The [h] near Z reminds us that Z is a functional of the function h (x) ; i.e. it maps
this function to a scalar, namely Z:

De�nition 29 Connected response functions: Correlation functions such as the
one above are called connected. This means that the �trivial�part, which would be
the result if there were no correlations, is subtracted. In probability theory, these
are cumulants.

Remark 243 The approach outlined above is in a sense an application of the
�uctuation-dissipation theorem since the �uctuations are obtained from the re-
sponse to a source �eld, here h.

35.2 Green�s functions and higher order correlations
from functional derivatives

In our case, we are interested in correlation functions that depend not only on
space but also on real or imaginary time. In addition, we know that time-ordered
products are relevant. Hence, you will not be surprized to learn that we use as
our partition function with source �elds � (1; 2):

Z [�] = Tr
h
e��KT� exp

�
� y

�
1
�
�
�
1; 2
�
 
�
2
��i

(35.12)
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where we used the short-hand

(1) = (x1; �1;�1) (35.13)

with the overbar indicating integrals over space-time coordinates and spin sums.
More speci�cally,

 y
�
1
�
�
�
1; 2
�
 
�
2
�
=

X
�1;�2

Z
d3x1

Z �

0

d�1

Z
d3x2

Z �

0

d�2 
y
�1 (x1; �1)��1;�2 (x1; �1;x2; �2) �2 (x2; �2) :

We can think of  y
�
1
�
�
�
1; 2
�
 
�
2
�
as vector-matrix-vector multiplication. Some

of the matrix or vector indices are continuous, but that should not confuse you I
think. All the operators above evolve in imaginary time with the same K̂ = Ĥ��N̂
that enters the Boltzmann weight e��K̂ :
With the de�nition,

S [�] = exp
�
� y

�
1
�
�
�
1; 2
�
 
�
2
��

(35.14)

we can write the Matsubara Green�s function as a functional derivative of the
generating function lnZ [�] ;

� � lnZ [�]

�� (2; 1)
= �

D
T�S [�] (1) y (2)

E
hT�S [�]i

� �
D
T� (1) 

y (2)
E
�
= G (1; 2)� : (35.15)

To obtain this result, we used the fact that the functional derivative with respect to
� does not in�uence at all the time order, so one can di¤erentiate the exponential
inside the time-ordered product. (See Sec. 29.2) The thermal average on the �rst

line is with respect to e��K̂ : In the average with a subscript,
D
T� (1) 

y (2)
E
�
;

one does not write S [�] explicitly. Note the reversal in the order of indices in
G and in �. We have also used the fact that in a time ordered product we can
displace operators as we wish, as long as we keep track of fermionic minus signs.
Finally, the functional derivative with respect to � is de�ned by

��
�
1; 2
�

�� (1; 2)
= �

�
1� 1

�
�
�
2� 2

�
(35.16)

where the delta function is a mixture of Dirac and Kronecker delta functions

�
�
1� 1

�
= �3 (x1 � x1) � (�1 � �1) ��1;�1 : (35.17)

Remark 244 You should keep your mathematician friend as far as possible from
you when looking at this notation, because in this notation, the equality 1 = 2 is
allowed. What it means is that two di¤erent sets of coordinates are equal, so that
it is rather innocuous. It is nevertheless a bit disturbing if you are not aware of
the context.

Higher order correlation functions can be obtained by taking further functional
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derivatives

�G (1; 2)�
�� (3; 4)

= � �

�� (3; 4)

D
T�S [�] (1) y (2)

E
hT�S [�]i

=

D
T�S [�] (1) y (2) y (3) (4)

E
hT�S [�]i

�

D
T�S [�] (1) y (2)

ED
T�S [�] y (3) (4)

E
hT�S [�]i2

(35.18)

=
D
T� (1) 

y (2) y (3) (4)
E
�
+ G (1; 2)� G (4; 3)� : (35.19)

The �rst term is called a four-point correlation function. The last term comes
from di¤erentiating hT�S [�]i in the denominator. To �gure out the minus signs in
that last term note that there is one from �1=Z2, one from the derivative of the
argument of the exponential and one from ordering the �eld operators in the order
corresponding to the de�nition of G�: The latter is absorbed in the de�nition of
G�:

Remark 245 The results of this section are independent of the explicit form of
K̂ = Ĥ � �N̂:

Remark 246 Translational invariance: It is very important to understand that
even when the system is translationally invariant, you should not assume that it
is when using this formalism in the presence of the source term � (1; 2). This is
because � (1; 2) has to break translational invariance to generate the correlation
functions that are needed. Translational invariance is recovered at the end, when
you have all the equations that you need. Only then can you set � = 0 and recover
all the symmetries of the Hamiltonian.

35.3 Source �elds for Green�s functions, an impres-
sionist view

Before we enter into even more indices and lenghty expressions, it is useful to have
an impressionist view, a sort of road map that we will follow. We will need to put
all indices back for this to make any sense, but anyway, I hope you stick with me
for a while.
We are addressing here the question of how can that formalism possibly be

helpful. It is helpful because the self-energy will be expressed in terms of a four
point correlation function which in turn can be found from a functional derivative
of G� (; )�. It will be possible to �nd this functional derivative if we know G� (; )� :
We do have an expression for that quantity so that, in a sense, it closes the loop.
We will see things are not so simple in practice, but at least that is a start.
How do we �nd G� (; )�? It su¢ ces to write the equations of motion. This is

the �rst time in this Chapter that the explicit form of the Hamiltonian comes
in. What is di¤erent from the non-interacting case is the presence of � and of
interactions. When we compute @ (1)

@�1
= [K; (1)] ; there will be a term coming

from the commutator of the interaction term with  (1) : That will be a term
proportional to V  y  with V the potential energy. Using this result in the
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de�nition of G, which has an extra  y tagged on the right, the equation of motion
for G will read something like�

G�10 � �
�
G = 1� V

D
T� 

y   y
E
: (35.20)

Using our notion of irreducible self-energy, we de�ne

�G = �V
D
T� 

y   y
E

� = �V
D
T� 

y   y
E
G�1: (35.21)

so that when you use this de�nition and put everything on the left-hand side,
except for unity, you recognize

G�1 = G�10 � �� �: (35.22)

which is equivalent to Dyson�s equation

G = G0� + G0��G (35.23)

with G0� =
�
G�10 � �

��1
: The four-point correlation function entering the de�ni-

tion of � is then obtained from a functional derivative of G sinceD
T� 

y   y
E
=
�G
��
� GG (35.24)

as we saw in the previous section.
To �nd that functional derivative we start from the equation of motion Eq.(35.20)

which gave us Dyson�s equation Eq.(35.22) which is easy to di¤erentiate with re-
spect to �: Then, we can take advantage of this and G�1G = 1 to �nd the functional
derivative of G: Indeed,

�
�
G�1G

�
��

=
�G�1
��
G + G�1 �G

��
= 0 (35.25)

or, left multiplying by G
�G
��

= �G �G
�1

��
G (35.26)

which can be evaluated with the help of Dyson�s equation Eq.(35.22)

�G
��

= G ��
��
G + G ��

��
G: (35.27)

Remark 247 �G
�� = �G

�G�1
�� G is a useful way to di¤erentiate matrices. Note that

in the special case G =(ikn � �k)
�1
; the previous formula gives the expected result

when we use @G
@�k

= �G @G�1@�k
G:

The last equation suggests that the functional dependence of � on � comes
only from the dependence of G on �: The self-energy has no explicit dependence
on �: Hence, using the chain rule

��

��
=
��

�G
�G
��

(35.28)

we have an integral equation for �G��

�G
�� = G

��
��G + G

�
��
�G

�G
��

�
G: (35.29)
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If we can solve this, we can �nd G Eq.(35.20)�
G�10 � �

�
G = 1 + �G (35.30)

with the self-energy Eq.(35.21) written in terms of the four-point function Eq.(35.24)

� = �V
�
�G
�� � GG

�
G�1: (35.31)

Since the integral equation for �G
�� requires that we know both G and ��

�G there
will be some iteration process involved. The last three equations can be solved for
� = 0; since � has played its role and is no longer necessary at that point.
One physical point that will become clearer when I put all indices back, is that

the self-energy contains information about the fact that the medium is polarizable,
i.e. it depends on the four-point correlation function �G

�� and hence on the density-
density correlation function, or equivalently the longitudinal dielectric constant,
as we shall verify.
I can also write an equation that looks as a closed functional equation for �

by using the expression Eq.(35.27) relating �G
�� and

��
�� :

� = �V
�
G ��
��
G + G ��

��
G � GG

�
G�1:

= �V
�
G ��
��
+G ��

��
� G

�
(35.32)

An alternate useful form that uses the fact that all the functional dependence of
� on � is implicit through its dependence on G is

� = �V
�
G ���� � G + G

��
�G

�G
��

�
(35.33)

Since � is already linear in V; it is tempting to use � = �V
�
G ���� � G

�
as a

�rst approximation. This is the Hartree-Fock approximation.

Remark 248 ��
�G in the equation for the functional derivative Eq.(35.29) is called

the irreducible vertex in the particle-hole channel. The reason for this will be-
come clear later. The term that contains this irreducible vertex is called a vertex
correction.

Remark 249 Note that G
�
��
�G
�
G plays the role of a self-energy for the four-point

function �G
�� : For the same reason that it was pro�table to resum in�nite series for

G by using the concept of a self-energy, it will be preferable to do the same here
and use G

�
��
�G
�
G as a self-energy instead of iterating the equation for �G

�� at some
�nite order.

Remark 250 If I had written an equation of motion for the four-point function,
we would have seen that it depends on a six point function, and so on, so that
is not the way to go. This would have been the analog of the so-called BBGKY
hierarchy [115] in classical transport theory. In the quantum context, it is called
the Martin-Schwinger hierarchy [132].
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36. EQUATIONS OF MOTION TO
FIND G IN THE PRESENCE OF
SOURCE FIELDS

Here we try to do everything more rigorously with all the bells and whistles. It is
clear that the �rst step is to derive the equations of motion for the Green�s function
in the jellium model. That was one of the ways to �nd the Green�s function in
the non-interacting case, without source �elds. That begins with the Hamiltonian
and equations for motion for  � (1) which will enter the equation of motion for G:

36.1 Hamiltonian and equations of motion for  (1)

The Hamiltonian we consider contains the kinetic energy and the electron-electron
interaction. Note that we now introduce spin indices denoted by Greek indices:

K̂ = Ĥ � �N̂ = Ĥ0 + V̂ + V̂n � �N̂ (36.1)

Ĥ0 =
�1
2m

X
�1

Z
dx1 

y
�1 (x1)r

2 �1 (x1) (36.2)

V̂ =
1

2

X
�1;�2

Z
dx1

Z
dx2v (x1�x2) y�1 (x1) 

y
�2 (x2) �2 (x2) �1 (x1)

V̂n = �
X
�1

Z
dx1

Z
dx2v (x1�x2) y�1 (x2) �1 (x2)n (36.3)

The last piece, Vn represents the interaction between a �neutralizing background�
of the same uniform density n as the electrons. The potential is the Coulomb
potential

v (x1�x2) =
e2

4�"0 jx1�x2j
(36.4)

To derive the equations of motion for the Green�s function, we �rst need those
for the �eld operators.

@ � (x;�)

@�
=
h
K̂;  � (x;�)

i
(36.5)

Using [AB;C] = A fB;Cg �B fA;Cg and Eq.(36.1) for K̂ we have

@ � (x;�)

@�
=
r2

2m
 � (x; �) + � � (x; �) (36.6)

�
X
�2

Z
dx2v (x� x2) y�2 (x2; �) �2 (x2; �) � (x; �)

The last term does not have the 1=2 factor that appeared in the Hamiltonian
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becauseh
 y�1 (x1) 

y
�2 (x2) �2 (x2) �1 (x1) ;  � (x)

i
=

h
 y�1 (x1) 

y
�2 (x2) ;  � (x)

i
 �2 (x2) �1 (x1)

= ���1;�� (x� x1) y�2 (x2) �2 (x2) �1 (x1)
+��2;�� (x� x2) y�1 (x1) �2 (x2) �1 (x1) :

Anticommuting the destruction operators in the last term, substituting and chang-
ing dummy indices, the two contributions are identical.
The equation of motion can be rewritten in the more matrix-like form

@ (1)
@�1

=
r2
1

2m (1) + � (1)�  
y �2� �2�V �2� 1� (1) (36.7)

if we de�ne a time- and spin-dependent potential

V (1; 2) = V�1;�2 (x1; �1;x2; �2) � e2

4�"0jx1�x2j� (�1 � �2) : (36.8)

In reality the potential is independent of spin and is instantaneous but introducing
these dependencies simpli�es the notation.

Remark 251 We assume that the potential has no q = 0 component because of the
compensating e¤ect of the positive background. The argument for the neutralizing
background is as follows. If we had kept it, the above equation would have had an
extra term

+ n

�Z
dx2v (x� x2)

�
 � (x; �) : (36.9)

We will see that there is a contribution to the self-energy, the Hartree contribution
that cancels this term. To an excellent degree of approximation we may say that
the only e¤ect of the neutralizing background is to remove the q = 0 component of
the Coulomb potential. The result that we are about to derive would be di¤erent
in other models, such as the Hubbard model, where the q = 0 component of the
interaction potential is far from negligible.

36.2 Equations of motion for G� and de�nition of
��

We expect that the equation for motion for G (1; 2)�

G (1; 2)� = �

D
T�S [�] (1) y (2)

E
hT�S [�]i

will have the following structure G�1 (1; 2)� = G
�1
0 (1; 2) � � (1; 2) � � (1; 2)� :

In detail, it is obtained by taking an imaginary-time derivative. There will be
three contributions. One from @ (1)

@�1
; that we found above, one from the time

derivative of the two Heaviside functions � (�1 � �2) and � (�2 � �1) entering the
de�nition of the time-ordered product (that gives the usual delta function), and
one from the fact that terms in S [�] have to be ordered with respect to �1: The
only unfamiliar contribution is the latter one. To understand how to compute it,
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we write explicitely the time integral associated with the creation operator in the
exponential and order it properly:

D
T�S [�] (1) y (2)

E
=

*
T� exp

 
�
Z �

�1

d�10

Z
d3x10 

y (10)�
�
10; 2

�
 
�
2
�!

 (1) exp

�
�
Z �1

0

d�10

Z
d3x10 

y (10)�
�
10; 2

�
 
�
2
��

 y (2)

�
Since we moved an even number of fermion operators, we do not need to worry
about sign. We do not need to worry about the destruction operator in the ex-
ponential either since it anticommutes with  (1) : The time-ordered product will
eventually take care of the proper order (see also the �rst remark below). We
thus have a contribution to the time derivative with respect to �1 that comes from
acting on the exponentials and reads*

T� exp

 
�
Z �

�1

d�10

Z
d3x10 

y (10)�
�
10; 2

�
 
�
2
�!

Z
d3x10

h
 y (x10 ; �1)�

�
x10 ; �1; 2

�
 
�
2
�
;  (x1; �1)

i
exp

�
�
Z �1

0

d�10

Z
d3x10 

y (10)�
�
10; 2

�
 
�
2
��

 y (2)

�
= ��

�
1; 2
� D
T�S [�] 

�
2
�
 y (2)

E
:

We had to take the derivative of the arguments of the exponentials and to be
careful about order of operators at equal time. Collecting all the contributions,
we can write�

@

@�1
� r

2
1

2m
� �

�
G (1; 2)� = �� (1� 2) +

D
T�

h
 y
�
2+
�
V
�
1� 2

�
 
�
2
�
 (1) y (2)

iE
�

��
�
1; 2
�
G
�
2; 2
�
�
: (36.10)

Note that we had to specify  y
�
2+
�
in the term with the potential energy. The

superscript + speci�es that the time in that �eld operator is later than the time
in  

�
2
�
: In other words

2+ �
�
x2; �2 + 0

+;�2
�

Equal time does not mean anything in a time ordered product, we have to specify

the order. The choice to take  y
�
2+
�
keeps the �eld in the order it was in to

begin with.
The equations of motion can be written in a compact form if we de�ne

G�10
�
1; 2
�
� �

�
@
@�1
� r2

1

2m � �
�
�
�
1� 2

�
: (36.11)

With this de�nition, the equation of motion Eq.(36.10) takes the form�
G�10

�
1; 2
�
� �

�
1; 2
��
G
�
2; 2
�
�
= � (1� 2)�V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y (2)

iE
�

(36.12)
Comparing with Dyson�s equation, we have an explicit form for the self-energy,

�
�
1; 2
�
�
G
�
2; 2
�
�
= �V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y (2)

iE
�
. (36.13)
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The equation of motion can then also be written as�
G�10

�
1; 2
�
� �

�
1; 2
�
� �

�
1; 2
�
�

�
G
�
2; 2
�
�
= � (1� 2)

which also reads

G�1 (1; 2)� = G
�1
0 (1; 2)� � (1; 2)� � (1; 2)� : (36.14)

Remark 252 T�
�
eA+B

�
= T�

�
eAeB

�
even when A and B are operators that do

not commute, as long as A and B have bosonic commutation relations: Let us
consider the �rst few terms of the power series:

T�
�
eAeB

�
= T�

��
1 +A+

1

2
A2 + : : :

��
1 +B +

1

2
B2 + : : :

��
(36.15)

= T�

��
1 + (A+B) +

1

2
A2 +AB +

1

2
B2 : : :

��
(36.16)

while

T�
�
eA+B

�
= T�

�
1 + (A+B) +

1

2
(A+B)2 + : : :

�
(36.17)

= T�

�
1 + (A+B) +

1

2
(A2 +AB +BA+B2) + : : :

�
:(36.18)

Now, let the time order operator do his job. If A is at a later time than B; then
AB + BA in the last equation will become 2AB and we recover the result also
obtained from T�

�
eAeB

�
: You can convince yourself that equality will also follow

if B is at a time later than A:

Remark 253 The self-energy is related to a four-point function and we note in
passing that the trace of the de�ning equation (36.13) is related to the potential
energy. That can be seen as follows. In the limit 2 ! 1+ the right-hand side
becomes D

T�

h
 y
�
1+
�
 y
�
10+
�
V
�
10 � 1

�
 
�
10
�
 (1)

iE
:

Recalling the de�nition of the average potential energy

2 hV i =
X
�1

Z
d3x1

D
T�

h
 y
�
1+
�
 y
�
10+
�
V
�
10 � 1

�
 
�
10
�
 (1)

iE
(36.19)

this special case of our general formula givesX
�1

Z
d3x1

Z
10
� (1; 10)G

�
10; 1+

�
= 2 hV i : (36.20)

We have the freedom to drop the time-ordered product when we recall that the oper-
ators are all at the same time and in the indicated order. Using time-translational
invariance the last result may also be written

�
�
1; 10

�
G
�
10; 1+

�
= 2 hV i� =

D
T�

h
 y
�
1+
�
 y
�
10+
�
V
�
10 � 1

�
 
�
10
�
 
�
1
�iE

(36.21)

Remark 254 The 1+ on the left-hand side is absolutely necessary for this expres-
sion to make sense. Indeed, taken from the point of view of Matsubara frequencies,
one knows that the self-energy goes to a constant at in�nite frequency while the
Green�s function does not decay fast enough to converge without ambiguity. On
the right-hand side of the above equation, all operators are at the same time, in
the order explicitly given.
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Figure 36-1 Diagrammatic representation of the integral equation for the four point
function represented on the left of the equation. The two lines on the right of the
equal sign and on top of the last block are Green�s function. The �lled box is the
functional derivative of the self-energy. It is called the particle-hole irreducible vertex.
It plays, for the four-point function the role of the self-energy for the Green�s function.

36.3 Four-point function from functional derivatives

Since we need a four-point function to compute the self-energy and we know G�
if we know the self-energy, let us �nd an equation for the four-point function in
terms of functional derivatives as we saw at length in Eq.(35.19)

�G(1;2)�
��(3;4) =

D
T� (1) 

y (2) y (3) (4)
E
�
+ G (1; 2)� G (4; 3)�. (36.22)

The equation for the functional derivative is then easy to �nd using GG�1 = 1 and
our matrix notation,

�
�
GG�1

�
��

= 0 (36.23)

�G
��
G�1 + G �G

�1

��
= 0 (36.24)

�G
��

= �G �G
�1

��
G: (36.25)

With Dyson�s equation Eq. (36.14) for G�1 we �nd the right-hand side of that
equation

�G
��

= G ��
��
G + G ��

��
G: (36.26)

Just to make sure what we mean, let us restore indices. This then takes the form

�G (1; 2)�
�� (3; 4)

= G
�
1; 1
�
�

��
�
1; 2
�

�� (3; 4)
G
�
2; 2
�
�
+ G

�
1; 5
�
�

��
�
5; 6
�
�

�� (3; 4)
G
�
6; 2
�
�

= G (1; 3)� G (4; 2)� + G
�
1; 5
�
�

��
�
5; 6
�
�

�� (3; 4)
G
�
6; 2
�
�
: (36.27)

If you take the convention that G (1; 2) is represented by an arrow going from 1

to 2 from left to right, then we can represent
�G(1;2)�
��(3;4) as G (1; 2) being pinched by

� (3; 4), i.e. having an arrow starting at 1 and ending at 2 with 3; 4 at the bottom.
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This last equation shows that � has no explicit dependence on �: It depends on
� only through its dependence on G:We will see this is a self-consistent assumption.
Taking that into account, and using the chain rule, this last equation can also be
written in the form

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)�

+G
�
1; 5
�
�

 
��
�
5; 6
�
�

�G
�
7; 8
�
�

�G
�
7; 8
�
�

�� (3; 4)

!
G
�
6; 2
�
�
: (36.28)

This general equation can also be written in short-hand notation

�G
��

= G^G+ G
��
�G
�G
��

G ; (36.29)

where the caret ^ reminds us that the indices adjacent to it are the same as those
of � and where the two terms on top of one another are matrix multiplied top
down as well. In the top down multiplication, it is pairs of indices of G that
are considered as a single matrix index. Fig. 36-1 illustrates the equation with
the indices. The diagrams go from top to bottom to remind ourselves of where
the indices are in the algebraic equation, but we may rotate the diagrams in any
direction we want.

De�nition 30 In the jargon, ���G is the vertex function which is irreducible in a
particle-hole channel. (There are two particle-hole channels). This means that
if we iterate the equation for �G

�� , we generate all the diagrams that have Green�s

function lines going in opposite direction. Those diagrams for �G
�� can thus be cut

in two by cutting these two lines. They are reducible. ��
�G contains the diagrams

that cannot be cut in two in this way. It sort of plays the role of a self-energy for
response functions.

Remark 255 Connection between labels (that we also call indices) in the Green�s
function and the direction of the arrow in the diagram: We take the convention
that for G (1; 2)� the arrow begins at the annihilation operator 1 and ends at the
creation operator 2: It might have been natural to begin at the creation operator
instead. In fact it does not matter, as long as one is consistent. Both conventions
can be found in the literature.

Remark 256
�G(1;1+)

�

��(2+;2) in Eq. (36.22) is related to minus the density-density
correlation function:

�
�D
 y
�
1+
�
 (1) y

�
2+
�
 (2)

E
�
�
D
 y
�
1+
�
 (1)

E
�

D
 y
�
2+
�
 (2)

E
�

�
:

(36.30)
Using the exact result for this quantity, namely Eq. (36.28), we see that even
when there are no interactions, this quantity is G (1; 2)� G (2; 1)� : We thus see
the necessity to know Green�s functions to compute observables, even in the non-
interacting case. Physically, this term is a so-called exchange term. It makes sure
that two electrons with the same spin are not on top of exach other. This comes
from the Pauli exclusion principle.
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36.4 Self-energy from functional derivatives

To compute the self-energy, according to Eq.(36.13), what we need is

� (1; 3)� = �V
�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y

�
4
�iE

�
G�1�

�
4; 3
�
. (36.31)

We write the four-point function with the help of the functional derivative Eq.(36.22)
by replacing in the latter equation 3! 2+; 4! 2; 1! 1; 2! 4 so that

� (1; 3)� = �V
�
1� 2

�24 �G �1; 4��
��
�
2+; 2

� � G �2; 2+�
�
G
�
1; 4
�
�

35G�1 �4; 3�
�
(36.32)

Remark 257 Mnemotechnic: The �rst label of the V
�
1� 2

�
is the same as

the �rst label of G
�
1; 4
�
�
on the numerator and the same as the �rst label on

the left-hand side of the equation. The second label is summed over and is the

same as the label on the denominator of
�G(1;4)

�

��(2+;2)
. The two Green�s function in

G
�
2; 2+

�
�
G
�
1; 4
�
�
can be arranged on top of one another so that this rule is

preserved.

The �nal expression is easy to obtain if we change the labels of the exact four-
point function Eq.(36.28) so that they correspond to those above. Namely, we
write

�G
�
1; 4
�
�

��
�
2+; 2

� = G
�
1; 2+

�
�
G
�
2; 4
�
�

+G
�
1; 7
�
�

0@�� �7; 8��
�G
�
5; 6
�
�

�G
�
5; 6
�
�

��
�
2+; 2

�
1AG �8; 4�

�
: (36.33)

Substituting in the expression for the self-energy Eq.(36.32) using G
�
1; 4
�
�
G�1

�
4; 3
�
�
=

� (1� 3) (and changing the dummy label 7! 4) this yields,

� (1; 3)� = �V (1� 3)G
�
1; 3+

�
�
�V

�
1� 2

�
G
�
1; 4
�
�

��
�
4; 3
�
�

�G
�
5; 6
�
�

�G
�
5; 6
�
�

��
�
2+; 2

�
+V

�
1� 2

�
G
�
2; 2+

�
�
� (1� 3) : (36.34)

The second term is the only one that will give a frequency dependence, and hence
an imaginary part, to the self-energy. The other two terms in the above equation
are the Hartree-Fock contribution that we will discuss at length later on. Note
that V

�
1� 2

�
is instantaneous, i.e. there is a delta function � (�1 � �2), and

whether we have V (1� 3) or V (1� 3+) is irrelevant. In the Green�s functions
however, it is important to keep track of the +. Indeed, that re�ects the fact that
in the Hamiltonian, the creation operators are always to the left of the annihilation
operators. That is the way to preserve that property in a time-ordered product.
The equation for the self-energy is represented schematically in Fig. 36-2. Note

that the diagrams are one-particle irreducible, i.e. they cannot be cut in two
seperate pieces by cutting a single propagator.
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Figure 36-2 Diagrams for the self-energy. The dashed line represent the interaction.
The �rst two terms are, respectively, the Hatree and the Fock contributions. The
textured square appearing in the previous �gure for the four-point function has been
squeezed to a triangle to illustrate the fact that two of the indices (coordinates) are
identical.

Remark 258 Historically, the expressions �self-energy� is inspired by the fact
that it is the electromagnetic �eld of the electron itself that leads to modi�cations
of the properties of the electron even when it is moving in a vacuum. In the latter
case, the electromagnetic �eld of the electron contains virtual photons that can in
turn create virtual electron-positron pairs, the analog of electron-hole excitations.

36.5 The self-energy, one-particle irreducibility and
Green�s function

It is clear from the diagrammatic illustration of the self-energy in Fig. 36-2 that
all internal indices are integrated over, as the Feynman rules would specify. In
addition, the diagrams are connected and none of them can be cut into two distinct
pieces by cutting one Green�s function line. We say that the self-energy contains all
the diagrams that are one-particle irreducible. The Feynman rules tell us that the
self-energy contains all the topologically distinct connected diagrams that end and
begin with an interaction and a Green�s function at the same point. There are rules
for their sign as well: One minus sign for each order in perturbation theory and
one minus sign for every closed loop. The Feynman rules are generally formulated
in terms of bare Green�s functions. Here, the dressed Green�s functions appear
but, as you will check in an exercise, it is also possible to recover the perturbation
theory in terms of bare Green�s functions.
Finally notice that if we iterate the Dyson equation,

G = G0 + G0�G (36.35)

= G0 + G0�G0+G0�G0�G0 + G0�G0�G0�G0 + : : : (36.36)

it becomes clear that the Green�s function is given by the sum of all diagrams that
end at the destruction operator and begin at the annihilation operator and contains
all possible topologically distinct diagrams. The Green�s function diagrams are,
however, one-particle reducible.
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37. FIRST STEPS WITH FUNC-
TIONALDERIVATIVES: HARTREE-
FOCK AND RPA

These are the two most famous approximations: Hartree-Fock for the self-energy
and RPA for the density-density correlation function. We will see later on why
these come out naturally from simple considerations, including the variational
principle.

37.1 Functional derivatives can be used to generate
perturbation theory

The Schwinger formalism generates very naturally an expansion in powers of the
dressed Green�s function. The diagrams that are found for the self-energy then
do not include self-energy insertions. This is called the skeleton expansion. This
is formally very nice and this expansion can be used to derive a number of exact
results, such as the Luttinger theorem Sec. ( 74.2). However, it has some drawbacks
that will be discussed for example in the section on the Luttinger theorem and in
section (75) on the limitations of conserving approximations . The expansion in
terms of the bare Green�s function is often much better behaved, but it is a bit
more ackward to generate with the Schwinger formalism. This is discussed in the
following two subsections.

37.1.1 Skeleton expansion

The general equations (36.34) for the self-energy and (36.33) for the susceptibility
can be used iteratively to generate perturbation theory for the self-energy in powers
of the external potential. Since the leading term in � is already linear in external
potential, the last term the general expression for the self-energy Eq.(36.34) is of
second order at least since it have a product of V and �. To leading order then,

� (1; 3)� = V
�
1� 2

�
G
�
2; 2+

�
�
� (1� 3)�V (1� 3)G

�
1; 3+

�
�
: (37.1)

This is the Hartree-Fock approximation, on which I will comment much more later
on.
To obtain the second order, it su¢ ces to compute ��

�
4; 3
�
�
=�G

�
5; 6
�
�
to �rst

order, i.e. using the above equation and �G
�
5; 6
�
�
=��

�
2+; 2

�
to zero�th order in
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Figure 37-1 Second-order skeleton self-energy diagrams.

V : This means that we substitute on the right-hand side of Eq. (36.34)

��
�
4; 3
�
�

�G
�
5; 6
�
�

=
�

�G
�
5; 6
�
�

�
V
�
4� 2

�
G
�
2; 2+

�
�
�
�
4� 3

�
�V

�
4� 3

�
G
�
4; 3+

�
�

�
(37.2)

= V
�
4� 2

�
�
�
5� 2

�
�
�
6� 2+

�
�
�
4� 3

�
�V

�
4� 3

�
�
�
5� 4

�
�
�
6� 3+

�
while

�G
�
5; 6
�
�

��
�
2+; 2

� = G �5; 2+�
�
G
�
2; 6
�
�
: (37.3)

The second order contribution to the self-energy thus becomes

�V
�
1� 2

�
G
�
1; 4
�
�

��
�
4; 3
�
�

�G
�
5; 6
�
�

�G
�
5; 6
�
�

��
�
2+; 2

� (37.4)

= �V
�
1� 2

�
G
�
1; 4
�
�
V
�
4� 5

�
G
�
5; 2+

�
G
�
2; 5
�
�
�
�
4� 3

�
(37.5)

+V
�
1� 2

�
G
�
1; 4
�
�
V
�
4� 3

�
G
�
4; 2+

�
�
G
�
2; 3+

�
�

(37.6)

The second order diagrams thus looks as illustrated on Fig. (37-1).
The iterative process becomes more and more complicated as the order of

perturbation increases, but it is clear that it can be done.

Remark 259 With this approach, the algebraic expression is obtained directly.
The sign of the diagram appears explicitly. With the Feynman rules, that can be
found in Chapter (38), the sign is given by a rule: There is a minus sign for each
order in perturbation theory, and a minus sign for each closed fermion loop. This
corresponds to the sign of the diagrams in Fig. (37-1).

Remark 260 The perturbation theory that we have just found is in powers of
the interaction with dressed propagators. This is the so-called skeleton expansion
where self-energies never appear on a Green�s function. The jargon is that there
are non self-energy insertions. For example, a term such as the one illustrated
in Fig. (37-2) does not appear. The following section shows that such diagrams
appear when we expand in powers of the bare Green�s function.
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Figure 37-2 Example of a self-energy diagram that is not a skeleton self-energy
diagram. One of the Green�s functions is dressed with a self-energy.

37.1.2 Expansion in terms of the bare Green�s function

The Feynman rules in Chapter (38) give a way to generate all self-energy diagrams,
but it is easy to miss some terms. With the Schwinger formalism, one way is to
start from the skeleton expansion, that can be found analytically, as I have show
above.
The �rst-order diagrams for the self-energy in powers of the potential using G0

is obtained simply by replacing G by G0 in the skeleton expansion.
For the second-order diagram, we again replace G by G0 in the second-order

skeleton expansion. But there are other diagrams that are obtained by replacing
successively one of the G by G0 and the other G by G0�G0 with � that was obtained
previously to �rst order in V using G0.
Say we want the third order diagrams for the self-energy. The idea is to keep

using the skeleton expansion and then recursively use Dyson�s equation (35.23)

G = G0 + G0�G (37.7)

that can be iterated to give

G = G0 + G0�G0 + G0�G0�G0 + G0�G0�G0�G0 + � � � : (37.8)

Assume that, as above, we have found the self-energy expansion to second order
in the external potential with G0 propagators. To third order, we must add all the
contributions below:

� Replace all G by G0 in the third order skeleton diagram.

� In the second-order skeleton diagram, replace in turn successively all but one
of the G by G0 and the left-over G by G0�G0 with � calculated to �rst order
with G0 propagators.

� In the �rst-order skeleton diagram,

1. replace successively all G except one by G0 and the left-over G by G0�G0
with � calculated to second order in the external potential with G0
propagators:

2. replace successively all G except one by G0 and the left-over G by
G0�G0�G0 with � calculated to �rst order in the external potential
with G0 propagators:
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Figure 37-3 Expression for the irreducible vertex in the Hartree-Fock approximation.
The labels on either side of the bare interaction represented by a dashed line are at
the same point, in other words there is a delta function.

3. replace simultaneously the two G of the �rst-order skeleton expan-
sion by G0�G0 with � to �rst order in the external potential with G0
propagators:

The procedure is clear but tedious. It su¢ ces to keep track of perturbation
order recursively, going back in the order of the skeleton expansion and using
Dyson�s equation to replace G.

37.2 Hartree-fock and RPA in space-time

The expression for the self-energy and an iterative procedure can be used to com-
pute ��

�G that appears both in the exact expression for the self-energy Eq.(36.34)
and in the exact expression for the four-point function Eq.(36.28), four-point func-
tion that also appears in the self-energy. A look at the last two �gures that we
drew is helpful.

Refering to the exact expression for the four-point function Eq.(36.28), what

we need to obtain the so-called Random Phase Approximation (RPA) is
��(5;6)�
�G(7;8)�

evaluated from the the Hartree-Fock approximation Eq.(37.1), namely the �rst
two terms in Fig. (36-2).

�� (5; 6)�
�G (7; 8)�

= V
�
5� 9

�
�
�
9� 7

�
�
�
9� 8

�
� (5� 6)�V (5� 6) � (7� 5) � (8� 6)

= V (5� 7) � (7� 8) � (5� 6)�V (5� 6) � (7� 5) � (8� 6) :

It is easier to imagine the result by looking back at the illustration of the Hartree-
Fock term in Fig. 36-1. The result of the functional derivative is illustrated in
Fig. 37-3. When two coordinates are written on one end of the interaction line,
it is because there is a delta function. For example, there is a � (5� 6) for the
vertical line.

Substituting back in the equation for the exact found-point function �G�� Eq.(36.28);
we �nd
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Figure 37-4 Integral equation for �G=�� in the Hartree-Fock approximation.

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)�

+G
�
1; 5
�
�

 
V
�
5� 7

� �G �7; 7��
�� (3; 4)

!
G
�
5; 2
�
�

(37.9)

�G
�
1; 5
�
�

 
V
�
5� 6

� �G �5; 6��
�� (3; 4)

!
G
�
6; 2
�
�
: (37.10)

This expression is easy to deduce from the general diagrammatic representation of
the general integral equation Fig. 36-1 by replacing the irreducible vertex by that
in Fig. 37-3 that follows from the Hartree-Fock approximation. This is illustrated
in Fig. 37-4.
To compute a better approximation for the self-energy we will need �� (2+; 2)

instead of �� (3; 4) ; as can be seen from our exact result Eq.(36.34). Although
one might guess it from symmetry, we will also see that all that we will need is,
�G (1; 1+), although it is not obvious at this point. It is quite natural however that
the density-density correlation function plays an important role since it is related
to the dielectric constant (Sec.13). From the previous equation, that special case
can be written

�G (1; 1+)�
�� (2+; 2)

= G (1; 2)� G (2; 1)� (37.11)

+G
�
1; 5
�
�

 
V
�
5� 7

� �G �7; 7��
�� (2+; 2)

!
G
�
5; 1
�
�

(37.12)

�G
�
1; 5
�
�

 
V
�
5� 6

� �G �5; 6��
�� (2+; 2)

!
G
�
6; 1
�
�
: (37.13)

This equation is refered to as the generalized RPA. When the last term is neg-
elected, this is the RPA. We will discuss this in more details later.

Remark 261 Clearly, external points, such as 1; 2; 3; 4 are �xed, but the coordi-
nates that appear inside diagrams must be integrated over. This is a simple rule for
interpreting diagrams. There are analogous rules in momentum-Matsubara space
when there is translational invariance, as we proceed to show.
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37.3 Hartree-Fock and RPA in Matsubara and mo-
mentum space with � = 0

We are ready to set � = 0. As we have discussed, it is important not to do
that too soon. Once this is done, we can use translational invariance so that
� (1; 2) = � (1� 2) and G (1; 2) = G (1� 2) : In addition, spin rotational invariance
implies that these objects are diagonal in spin space. We then Fourier transform to
take advantage of the translational invariance. In that case, restoring spin indices
we can de�ne

G� (k) =
Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�ik�(x1�x2)eikn(�1��2)G� (1� 2) (37.14)

In this expression, kn is a fermionic Matsubara frequency and the Green�s function
is diagonal in spin indices �1 and �2. For clarity then, we have explicitly written
a single spin label. We thus make the following rule:

� When in position space there is an arrow representing G (1� 2) in the trans-
lationally invariant case, in momentum space, you can think of this arrow
as carrying a momentum k:

For the potential we de�ne

V�;�0 (q) =

Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�iq�(x1�x2)eiqn(�1��2)V�;�0 (1� 2)
(37.15)

where qn is, this time, a bosonic Matsubara frequency, in other words

qn = 2n�T (37.16)

with n an integer. Again we have explicitly written the spin indices even if
V�;�0 (1� 2) is independent of spin.

� An interaction in a diagram is represented by a dotted line. Note that
because V (1� 2) = V (2� 1) ; in momentum space we are free to choose
the direction of q on the dotted line at will. Once a convention is chosen,
we stick with it.

Remark 262 General spin-dependent interaction: In more general theories, there
are four spin labels attached to interaction vertices. These labels correspond to
those of the four fermion �elds. Here the situation is simpler because the interac-
tion not only conserves spin at each vertex but is also spin independent.

Whether we compute G (1� 2) or a susceptibility � (1� 2) ; when we go to
momentum space, it is as if we were injecting a momentum (frequency) in the
diagram. It is convenient to work completely in momentum space by starting from
the above position space expressions, and their diagrammatic equivalent, and now
write every G (1� 2) and V (1� 2) entering the internal lines of a diagram also in
terms of their Fourier-Matsubara transforms, namely

G� (1� 2) =
Z

d3k

(2�)
3T

1X
n=�1

eik�(x1�x2)e�ikn(�1��2)G� (k) (37.17)

V�;�0 (1� 2) =
Z

d3q

(2�)
3T

1X
n=�1

eiq�(x1�x2)e�iqn(�1��2)V�;�0 (q) (37.18)
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or in the discrete version of momentum

G� (1� 2) =
1

V

X
k

T
1X

n=�1
eik�(x1�x2)e�ikn(�1��2)G� (k) (37.19)

V�;�0 (1� 2) =
1

V

X
q

T
1X

n=�1
eiq�(x1�x2)e�iqn(�1��2)V�;�0 (q) (37.20)

I hope the change of notation does not confuse you. I have taken out the spin
index explicitly, so that now, 1 = (x1; �1):
Then, consider an internal vertex, as illustrated in Fig.(37-5), where one has

q

k

k

1

2

Figure 37-5 A typical interaction vertex and momentum conservation at the vertex.

to do the integral over the space-time position of the vertex, say 2 (in addition to
the spin sum). Leaving aside the spin coordinates, that behave just as in position
space, the integral to perform isZ

dx2

Z �

0

d�2e
�i(k1�k2+q)�x2ei(k1;n�k2;n+qn)�2 (37.21)

= (2�)
3
� (k1 � k2 + q)��(k2;n�k1;n);qn (37.22)

= V�k1�k2;q��(k2;n�k1;n);qn (37.23)

�k1�k2;q�(k2;n�k1;n);qn are Kronecker delta functions. The last line is for the dis-
crete version of momentum. Note that the sum of two fermionic Matsubara fre-
quencies is a bosonic Matsubara frequency since the sum of two odd numbers is
necessarily even. This means that the integral over � 01 is equal to � if k1;n�k2;n+
qn = 0 while it is equal to zero otherwise because exp (i (k1;n � k2;n + qn) � 01)is
periodic in the interval 0 to �: The conclusion of this is that momentum and Mat-
subara frequencies are conserved at each interaction vertex. In other words, we
obtain the following rule:

� The sum of all wave vectors entering an interaction vertex vanishes. And
similarly for Matsubara frequencies.

This means that a lot of the momentum integrals and Matsubara frequency
sums that occur in the replacements Eqs.(38.31) and (38.32) can be done by simply
using conservation of momentum and of Matsubara frequencies at each vertex. We
are left with the following rules:

� One must integrate over the momenta and sum over Matsubara frequencies
that are not determined by momentum conservation. In general, there are
as many integrals to perform as there are closed loops in a diagram.

� We must also sum over spins that appear in internal indices, conserving
spin at each interaction vertex when the interaction has this property. The
propagator G�will then be diagonal in spin index.
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= 
k’

q=0
q

k+q

Figure 37-6 Diagram for the self-energy in momentum space in the Hartree-Fock
approximation. There is an integral over all momenta and spins not determined by
spin and momentum conservation.

Suppose we have G� (1� 2) in terms of products of various G� and interactions.
We want to write the corresponding expression in momentum space. This means
that we take the Fourier-Matsubara transform of G� (1� 2) to obtain G� (k) : As
mentioned above, a momentum k must �ow in and out.

Example 31 Writing
k = (k; ikn) ; (37.24)

the Hartree-Fock approximation for the self-energy Eq.(37.1) is

� (k) = � 1
V

X
q

T
1X

n=�1
V (q)G (k + q) e�ikn0

�
+V (q = 0)

1

V

X
k

T
1X

n=�1
e�ikn0

�
G (k) :

(37.25)
The sign of the wave vector q; or direction of the arrow in the diagram, must
be decided once for each diagram but this choice is arbitrary since the potential
is invariant under the interchange of coordinates, as mentioned above. This is
illustrated in Fig. 37-6Note that here the q = 0 contribution in the Hartree (so-

called tadpole diagram) is cancelled by the positive ion background since G
�
2; 2+

�
is just the electron density, which is the same as the ion density. You can convince

yourself that G
�
2; 2+

�
= 1

V

P
k T

P1
n=�1 eikn0

+G (k) :

Example 32 For the four-point function, there are four outside coordinates so we
would need three independent outside momenta. However, all that we will need, as
we shall see, are the density-density �uctuations. In other words, as we can see
from the general expression for the self-energy in Fig. 36-2, we can identify two
of the space-time points at the bottom of the graph. We have already written the
expression in coordinates in Eq.(37.11). Writing the diagrams for that expression
and using our rules for momentum conservation with a four-momentum q �owing
top down, the four-point function in Fig. 37-4 becomes as illustrated in Fig. 37-7.
You can skip the next chapter if you are satis�ed with the functional derivative
(source, or Schwinger) approach.
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Figure 37-7 Diagrams for �G=��, which is minus the density-density correlation
function. We imagine a momentum q �owing from the top of the diagram and
conserve momentum at every vertex.
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38. *FEYNMANRULES FORTWO-
BODY INTERACTIONS

We have already encountered Feynman diagrams in the discussion of the impurity
problem in the one-particle context. As we will see, perturbation theory is obtained
simply by using Wick�s theorem. This generates an in�nite set of terms. Diagrams
are a simple way to represent and remember the various terms that are generated.
Furthermore, associating speci�c algebraic quantities and integration rules with
the various pieces of the diagrams, allows one to write the explicit expression for a
given term without returning to Wick�s theorem. In case of doubt though, Wick�s
theorem is what should be used. The speci�c rules will depend on the type of
interaction considered. This is described in a number of books [141],[73].

38.1 Hamiltonian and notation

The Hamiltonian we consider is the following. Note that we now introduce spin
indices denoted by Greek indices:

K = H � �N = H0 + V + Vn � �N

H0 =
1

2m

X
�1

Z
dx1r y�1 (x1) �r �1 (x1) (38.1)

V =
1

2

X
�1;�2

Z
dx1

Z
dx2v (x1�x2) y�1 (x1) 

y
�2 (x2) �2 (x2) �1 (x1)

Vn = �
X
�1

Z
dx1

Z
dx2v (x1�x2) y�1 (x2) �1 (x2)n (38.2)

The last piece, Vn represents the interaction between a �neutralizing background�
of the same uniform density n as the electrons. The potential is the Coulomb
potential

v (x1�x2) =
e2

4�"0 jx1�x2j
: (38.3)

Let us say we want to compute the one-body Green�s function in the interaction
representation

G�1�2 (x1; �1;x2; �2) = �
Tr
h
e��K0T�

�
UI (�; �1) I�1 (x1; �1)UI (�1; �2) 

y
I�2

(x2; �2)UI (�2; 0)
�i

Tr [e��K0UI (�; 0)]

= �
Tr
h
e��K0T�

�
UI (�; 0) I�1 (x1; �1) 

y
I�2

(x2; �2)
�i

Tr [e��K0UI (�; 0)]
(38.4)

We do not write explicitly the interaction with the neutralizing background since
it will be obvious later when it comes in. Then, the evolution operator is

UI (�; 0) = T�

"
exp

 
�
Z �

0

d�1VI (�1)

!#
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Note that by de�nition of the interaction representation,

VI (�1) = eK0�1

"
1

2

X
�1;�2

Z
dx1

Z
dx2v (x1�x2) y�1 (x1) 

y
�2 (x2) �2 (x2) �1 (x1)

#
e�K0�1

(38.5)
Inserting everywhere the identity operator e�K0�1eK0�1 this can be made to have
a more symmetrical form

UI (�; 0) = T�

"
exp

 
�1
2

X
�1;�2

Z �

0

d�1

Z
dx1

Z
dx2 �

v (x1�x2) yI�1 (x1;�1) 
y
I�2

(x2;�1) I�2 (x2;�1) I�1 (x1;�1)
�i
(38.6)

This can be made even more symmetrical by de�ning the potential,

V�1;�2 (x1; �1;x2; �2) =
e2

jx1�x2j� (�1 � �2) (38.7)

The right-hand side is independent of spin. In addition to being more symmetrical,
this de�nition has the advantage that we can introduce the short-hand notation

V (1; 2) (38.8)

where
(1) = (x1; �1;�1) (38.9)

The evolution operator now systematically involves integrals over time space and
a sum over spin indices, so it is possible to further simplify the notation by intro-
ducing Z

1

=

Z �

0

d�1

Z
dx1

X
�1=�1

(38.10)

and
 (1) =  I�1 (x1; �1) (38.11)

Note that we have taken this opportunity to remove subscript I on �eld operators.
It should be clear that we are talking about the interaction representation all the
time when we derive Feynman�s rules.
With all these simpli�cations in notation, the above expressions for the Green�s

function Eq.(38.4) and the time evolution operator Eq.(38.6) take the simpler
looking form

G (1; 2) = �Tr[e
��K0T�(U(�;0) (1) y(2))]
Tr[e��K0U(�;0)]

(38.12)

U (�; 0) = T�

h
exp

�
� 12
R
1

R
2
V (1; 2) y (1) y (2) (2) (1)

�i
(38.13)

38.2 *In position space

We now proceed to derive Feynman�s rules in position space. Multiplying nu-
merator and denominator of the starting expression for the Green�s function by
1=Tr

�
e��K0

�
we can use the linked cluster theorem in Subsection (33.2.1) to argue

that we can forget about the power series expansion of the evolution operator in
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the denominator, as long as in the numerator of the starting expression Eq.(38.12)
only connected terms are kept. The perturbation expansion for the Green�s func-
tion thus takes the form

G (1; 2) = �
D
T�

�
U (�; 0) (1) y (2)

�E
0;c

(38.14)

The average is over the unperturbed density matrix and only connected terms are
kept. A typical term of the power series expansion thus has the form

� 1

n!

�
T�

��
�1
2

Z
10

Z
20
V (10; 20) y (10) y (20) (20) (10)

�n
 (1) y (2)

��
0;c

(38.15)
To evaluate averages of this sort, it su¢ ces to apply Wick�s theorem. Since this
process becomes tedious and repetitive, it is advisable to do it once in such a way
that simple systematic rules can be extracted that will allow us to write from the
outset the simplest expression for a term of any given order. The trick is to write
down diagrams and rules both to build them and to associate with them algebraic
expressions. These are the Feynman rules.
Wick�s theorem tells us that a typical average such as Eq.(38.15) is decom-

posed into a sum of products of single particle Green�s function. Let us represent
a Green�s function by a straight line, as in Fig.(38-1). Following the convention
of Ref. [6] the arrow goes from the left most to the right most label of the corre-
sponding Green�s function. Going from the creation to the annihilation operator
might have been more natural and would have lead us to the opposite direction
of the arrow, as for example in Ref. [7]. Nevertheless it is clear that it su¢ ces to
stick to one convention. In any case, contrary to older diagrammatic perturbation
techniques, with Feynman diagrams the arrow represents the propagation of either
and electron or a hole and the direction is irrelevant. The other building block
for diagrams is the interaction potential which is represented by a dotted line. To
either end of the dotted line, we have a Green�s function that leaves and one that
comes in, corresponding to the fact that there is one  and one  y attached to
any given end of a dotted line. The arrow heads in Fig.(38-1) just reminds us of
this. They are not really part of the dotted line. Also, it does not matter whether
the arrows come in from the top or from the bottom, or from left or right. It is
only important that each end of the dotted line is attached to one incoming and
one outgoing line.

1 2

G (1,2) V (1’,2’)

1’ 2’

Figure 38-1 Basic building blocks of Feynman diagrams for the electron gas.

Let us give an example of how we can associate contractions and diagrams.
For a term with n = 1; a typical term would be

�
�
T�

�
�1
2

Z
10

Z
20
V (10; 20) 

1

y (10) 
2

y (20) 
3
(20) 

2
(10) 

1
(1) 

3

y (2)

��
0;c

(38.16)

We have marked by a the same number every operator that belongs to the same
contraction. The corresponding algebraic expression is

� 1
2

Z
10

Z
20
V (10; 20)G (1; 10)G (10; 20)G (20; 2) (38.17)
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and we can represent it by a diagram, as in Fig.(38-2) Clearly, exactly the same

1 2

G (1,1’) V (1’,2’)

1’ 2’

G (2’,2)

Figure 38-2 A typical contraction for the �rst-order expansion of the Green�s
function. THe Fock term.

contribution is obtained if the roles of the �elds at the points 10 and 20 above are
interchanged. More speci�cally, the set of contractions

�
�
T�

�
�1
2

Z
10

Z
20
V (10; 20) 

2

y (10) 
1

y (20) 
2
(20) 

3
(10) 

1
(1) 

3

y (2)

��
0;c

(38.18)

gives the algebraic expression

� 1
2

Z
10

Z
20
V (10; 20)G (20; 10)G (1; 20)G (10; 2) (38.19)

which, by a change of dummy integration variable, 10 $ 20 gives precisely the
same contribution as the previous term.
We need to start to be more systematic and do some serious bookkeeping.

Let us draw a diagram for each and every one of the possible contractions of this
�rst order term. This is illustrated in Fig.(38-3). A creation operator is attached
to point 2 while a destruction operator is attached to point 1: At either end of
the interaction line, say at point 10; is attached one creation and one annihilation
operators. We must link every destruction operator with a creation operator in
all possible ways, as illustrated in the �gure. The diagrams marked A and B are
disconnected diagrams, so they do not contribute. On the other hand, by changing
dummy integration variables, it is clear that diagrams C and D are equal to each
other, as diagrams E and F are. The algebraic expressions for diagrams E and
F are those given above, in Eqs.(38.17)(38.19). In other words, if we had given
the rule that only connected and topologically distinct diagrams contribute and
that there is no factor of 1=2; we would have written down only diagram C and
diagram E and obtained correctly all the �rst order contributions. Two diagrams
are topologically distinct if they cannot be transformed one into the other by
�elastic�changes that do not cut Green�s functions lines.
For a general diagram of order n in the interaction, there are n interaction

lines and 2n + 1 Green�s functions. To prove the last statement, it su¢ ces to
notice that the four fermion �elds attached to each interaction line correspond to
four �half lines�and that the creation and annihilation operators corresponding
to the �external�points 1 and 2 that are not integrated over yield one additional
line. Consider two connected diagram of order three say, as in Fig.(38-4). The
two diagrams there are clearly topologically equivalent, and they also correspond
precisely to the same algebraic expression as we can see by doing the change of
dummy integration variables 30 $ 50 and 40 $ 60: In fact, for any given topology,
we can �nd 3! � 23 contractions that lead to diagrams with the same topology.
The 3! corresponds to the number of ways of choosing the interaction lines to
which four fermion lines attach, and the 23 corresponds to the fact that for every
line there are two ends that one can interchange. For a diagram of order n; there
are thus 2nn! contractions that all have the same topology and that cancel the
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1

2

1’ 2’
A

B

C D

E F

Figure 38-3 All possible contractions for the �rst-order contribution to the Green�s
function. A line must start at point 1 illustrated in the box on the left, and one line
must end at 2: Lines must also come in and go out on either side of the dotted line.

1’ 2’

3’

5’

4’

6’

1’ 2’

3’

5’

4’

6’

Figure 38-4 Two topologically equaivalent diagrams of order 3:
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1= (2nn!) coming from the expansion of the exponential and the 1=2 in front of
each interaction V (10; 20) .
From what precedes then, it is clear that we can �nd all contributions for

G (1; 2) to order n by the following procedure that gives rules for drawing diagrams
and for associating an algebraic expression to them.

1. Draw two �external� points, labeled 1 and 2 and n dotted lines with two
ends (vertices). Join all external points and vertices with lines, so that each
internal vertex has a line that comes in and a line that comes out while
one line comes in external point 2 and one line comes out of point 1: The
resulting diagrams must be i) Connected, ii) Topologically distinct (cannot
be deformed one into the other).

2. Label all the vertices of interaction lines with dummy variables representing
space, imaginary time and spin.

3. Associate a factor G (1; 2) to every line going from a vertex or external point
labeled 1 to a vertex or external point labeled 2:

4. Associate a factor V (10; 20) to every dotted line between a vertex labeled 10

and a vertex labeled 20:

5. Integrate on all internal space, imaginary time and spin indices associated
with interaction vertices. Notice that spin is conserved at each interaction
vertex, as we can explicitly see from the original form of the interaction
potential appearing in, say, Eq.(38.6). (And now the last two rules that we
have not proven yet)

6. Associate a factor (�1)n (�1)F to every diagram. The parameter n is the
order of the diagram while F is the number of closed fermion loops.

7. Associate to every fermion line joining two of the vertices of the same inter-
action line (Fig.(38-5)) the factor

G
�
1; 2+

�
� lim
�!0
G�1;�2 (x1; �1;x2; �1 + �) (38.20)

This last rule must be added because otherwise the rules given before are
ambiguous since the Coulomb potential is instantaneous (at equal time) and
Green�s functions have two possible values at equal time. So it is necessary to
specify which of these values it takes. The chosen order is discussed further
in the following subsection.

Figure 38-5 Pieces of diagrams for which lead to equal-time Green�s functions and
for which it is necessary to specify how the � ! 0 limit is taken.

38.2.1 *Proof of the overall sign of a Feynman diagram

To prove the rule concerning the overall sign of a Feynman diagram, consider the
expression for a n0th order contribution before the contractions. We leave out the
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factors of V and other factors to concentrate on �eld operators, their permutations
and the overall sign.

� (�1)n
�
T�

�Z
10

Z
20
: : :

Z
2n�1

Z
2n

 y (10) y (20) (20) (10) : : :(38.21)

: : :  y (2n� 1) y (2n) (2n) (2n� 1) (1) y (2)
iE

0;c
(38.22)

This expression can be rearranged as follows without change of sign by permuting
one destruction operator across two fermions in each group of four fermion �elds
appearing in interactions

� (�1)n
�
T�

�Z
10

Z
20
: : :

Z
2n�1

Z
2n

�
 y
�
10+
�
 (10)

��
 y
�
20+
�
 (20)

�
: : :

: : :
�
 y
�
(2n� 1)+

�
 (2n� 1)

��
 y
�
(2n)

+
�
 (2n)

�
 (1) y (2)

iE
0;c
(38.23)

We have grouped operators with parenthesis to illustrate the appearance of density
operators, and we have added plus signs as superscripts to remind ourselves of the
original order when we have two �elds at equal time. By the way, this already
justi�es the equal-time rule Eq.(38.20) mentioned above. To clear up the sign
question, let us now do contractions, that we will identify as usual by numbers
under each creation-annihilation operator pair. We just make contractions in series
so that there is a continuous fermion line running from point 1 to point 2 without
fermion loops. More speci�cally, consider the following contractions

� (�1)n
�
T�

�Z
10

Z
20
: : :

Z
2n�1

Z
2n

 
2n

y �10+� 
1
(10) 

1

y �20+� 
2
(20) : : :

2
(38.24)

: : :
2n�2

 
2n�2

y
�
(2n� 1)+

�
 

2n�1
(2n� 1)  

2n�1

y
�
(2n)

+
�

 
2n+1

(2n)  
2n
(1)  

2n+1

y (2)

��
0;c

Not taking into account the � (�1)n already in front of the average, the contrac-
tions labeled 1 to 2n� 1 give a contribution

(�1)2n�1 G (10; 20)G (2030) : : :G (2n� 1; 2n) (38.25)

where the overall sign comes from the fact that the de�nition of G has the cre-
ation and annihilation operators in the same order as they appear in the above
contractions, but an overall minus sign in the de�nition. For the contraction la-
beled 2n one must do an even number of permutations to bring the operators in
the order  (1) y (10+) so one obtains a factor �G (1; 10+) : Similarly, accounting
for the new position of  y (10+) ; an even number of permutations is necessary to
bring to operators in the order  (2n) y (2) so that an overall factor �G (2n; 2) is
generated. The overall sign is thus

� (�1)n (�1)2n�1 (�1)2 = (�1)n (38.26)

In the contractions we have just done there is no closed fermion loop, as illustrated
in Fig.(38-6) for the special case where 2n = 4.
Now all we need to show is that whenever we interchange two fermion operators

we both introduce a minus sign and either form or destroy a closed fermion loop.
The �rst part of the statement is easy to see. Consider,D

T�

h
 y (10)

�
 y  : : :  

�
 y (2)

iE
0;c

(38.27)

Suppose we want to compare two sets of contractions that di¤er only by the fact
that two creation operators (or two annihilation operators) interchange their re-
spective role. In the time-ordered product above, bringing  y (10) to the left of
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1 1’ 2’ 3’ 4’ 2

Figure 38-6 Example of a contraction without closed fermion loop.

 y (2) produces a sign (�1)p where p is the number of necessary permutations.
Then, when we take  y (2) where  y (10) was, we create an additional factor of
(�1)p+1 because  y (2) has to be permuted not only with the operators that were
originally there but also with  y (10) that has been brought to its left. The overall
sign is thus (�1)2p+1 = �1; which is independent of the number of operators orig-
inally separating the �elds. That result was clear from the beginning given that
what determines the sign of a permuation is the parity of the number of trans-
positions (interchange of two objects) necessary to obtain the given permutation.
Hence, interchanging any pair of fermions gives an extra minus sign. Clearly there
would have been something wrong with the formalism if we had not obtained this
result.

Diagrammatically, if we start from the situation in Fig.(38-6) and interchange
the role of two creation operators, as in Fig.(38-7), then we go from a situation
with no fermion loops to one with one fermion loop. Fig.(38-8) illustrates the
case where we interchange another pair of creation operators and clearly there
also a fermion loop is introduced. In other words, by interchanging two creation
operators (or two annihilation operators) we break the single fermion line, and
the only way to do this is by creating a loop since internal lines cannot end at
an interaction vertex. This completes the proof concerning the overall sign of a
diagram.

1 1’ 2’ 3’ 4’ 2

1 1’ 2’ 3’ 4’ 2

1 1’ 3’ 4’ 2

2’

Figure 38-7 Creation of loops in diagrams by interchange of operators: The role of
the two creation operators indicated by ligth arrows is interchanged, leading from a
diagram with no loop, as on top, to a diagram with one loop. The diagram on the
bottom is the same as the one in the middle. It is simply redrawn for clarity.
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1 1’ 2’ 3’ 4’ 2

1 1’

2’ 3’

4’ 2

Figure 38-8 Interchange of two fermion operators creating a fermion loop.

Spin sums

A remark is in order concerning spin. In a diagram without loops, as in Fig.(38-
6), there is a single spin label running from one end of the diagram to the other.
Every time we introduce a loop, there is now a sum over the spin of the fermion
in the loop. In the special case where V (1; 2) is independent of the spins at the
vertices 1 and 2, as is the case for Coulomb interactions, then it is possible to
simply disregard spin and add the rule that there is a factor of 2 associated with
every fermion loop.

38.3 In momentum space

Starting from our results for Feynman�s rule in position space, we can derive
the rules in momentum space.[10] First introduce, for a translationally and spin
rotationally invariant system, the de�nition

G� (k) =
Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�ik�(x1�x2)eikn(�1��2)G� (1� 2) (38.28)

In this expression, kn is a fermionic Matsubara frequency and the Green�s function
is diagonal in spin indices �1 and �2. For clarity then, we have explicitly written
a single spin label. For the potential we de�ne

V�;�0 (q) =

Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�iq�(x1�x2)eiqn(�1��2)V�;�0 (1� 2)
(38.29)

where qn is, this time, a bosonic Matsubara frequency, in other words

qn = 2n�T (38.30)

with n and integer. Again we have explicitly written the spin indices even if
V�;�0 (1� 2) is independent of spin. The spin � is the same as the spin of the two
propagators attaching to the vertex 1 while �0 is the same as the spin of the two
propagators attaching to the vertex 2:

Remark 263 General spin-dependent interaction: In more general theories, there
are four spin labels attached to interaction vertices. These labels correspond to
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those of the four fermion �elds. Here the situation is simpler because the interac-
tion not only conserves spin at each vertex but is also spin independent.

To �nd the Feynman rules in momentum space, we start from the above po-
sition space diagrams and we now write G (1� 2) and V (1� 2) in terms of their
Fourier-Matsubara transforms, namely

G� (1� 2) =
Z

d3k

(2�)
3T

1X
n=�1

eik�(x1�x2)e�ikn(�1��2)G� (k) (38.31)

V�;�0 (1� 2) =
Z

d3q

(2�)
3T

1X
n=�1

eiq�(x1�x2)e�iqn(�1��2)V�;�0 (q) (38.32)

Then we consider an internal vertex, as illustrated in Fig.(38-9), where one has to

q

k

k

1

2

Figure 38-9 A typical interaction vertex and momentum conservation at the vertex.

do the integral over the space-time position of the vertex, 10: Note that because
V (1� 2) = V (2� 1) ; we are free to choose the direction of q on the dotted line
at will. Leaving aside the spin coordinates, that behave just as in position space,
the integral to perform isZ

dx01

Z �

0

d� 01e
�i(k1�k2+q)�x01ei(k1;n�k2;n+qn)�

0
1 (38.33)

= (2�)
3
� (k1 � k2 + q)��(k1;n�k2;n);qn (38.34)

The last delta is a Kronecker delta. Indeed, the sum of two fermionic Matsubara
frequencies is a bosonic Matsubara frequency since the sum of two odd numbers is
necessarily even. This means that the integral over � 01 is equal to � if k1;n�k2;n+
qn = 0 while it is equal to zero otherwise because exp (i (k1;n � k2;n + qn) � 01)is
periodic in the interval 0 to �: The conclusion of this is that momentum and
Matsubara frequencies are conserved at each interaction vertex. In other words,
the sum of all wave vectors entering an interaction vertex vanishes. And similarly
for Matsubara frequencies. This means that a lot of the momentum integrals
and Matsubara frequency sums that occur in the replacements Eqs.(38.31) and
(38.32) can be done by simply using conservation of momentum and of Matsubara
frequencies at each vertex.
The Feynman rules for the perturbation expansion of the Green�s function in

momentum space thus read as follows.

1. For a term of order n; draw all connected, topologically distinct diagrams
with n interaction lines and 2n + 1 oriented propagator lines, taking into
account that at every interaction vertex one line comes in and one line comes
out.

2. Assign a direction to the interaction lines. Assign also a wave number and
a discrete frequency to each propagator and interaction line, conserving mo-
mentum and Matsubara frequency at each vertex.
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3. To each propagator line, assign

G0� (k) = 1
ikn�("k��) (38.35)

(We have to remember that the propagator is independent of spin but still
carries a spin label that is summed over.)

4. To each interaction line, associate a factor V�;�0 (q) ; with iqn a bosonic
Matsubara frequency. Note that each of the spin labels is associated with
one of the vertices and that it is the same as the spin of the fermion lines
attached to it.

5. Perform an integral over wave vector and a sum over Matsubara frequency,
namely

R
d3k
(2�)3

T
P1
n=�1 for each momentum and frequency that is not �xed

by conservation at the vertex.

6. Sum over all spin indices that are not �xed by conservation of spin.

7. Associate a factor (�1)n (�1)F where F is the number of closed Fermion
loops to every diagram of order n:

8. For Green�s functions whose two ends are on the same interaction line, as
in Fig.(38-5), associate a convergence factor eikn� before doing the sum over
Matsubara frequency kn: (This corresponds to the choice G (1; 2+) in the
position-space rules above).

The remark done at the end of the previous section concerning spin sums also
applies here.

38.4 *Feynman rules for the irreducible self-energy

As in the one-body case that we studied in a preceding chapter, straight pertur-
bation theory for the Green�s function is meaningless because

� It involves powers of G0� (k) and hence the analytically continued function has
high order poles at the same location as the unperturbed system whereas
the Lehmann representation tells us that the interacting Green�s function
has simple poles.

� High order poles can lead to negative spectral weight.[9] For example, the
�rst order contribution to the spectral weight A (k) = �2 ImGR would be
given by a term proportional to

� 2 Im
 

1

(! + i� � ("k � �))2

!
= 2 Im

@

@!

�
1

! + i� � ("k � �)

�
= �2� @

@!
� (! � ("k � �)) (38.36)

The derivative of the delta function can be in�nitely positive or negative.

As before, the way out of this di¢ culty is to resum in�nite subsets of diagrams
and to rewrite the power series as

G� (k) = G0� (k) + G0� (k)�� (k)G� (k) (38.37)
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or

G� (k) =
1

(G0� (k))
�1 � �� (k)

(38.38)

This is the so-called Dyson equation. The iterative solution of this equation

G� (k) = G0� (k) + G0� (k) �� (k)G0� (k) + G0� (k)�� (k)G0� (k) �� (k)G0� (k) + : : :

clearly shows that all diagrams that can be cut in two pieces by cutting one fermion
line G0� (k) will automatically be generated by Dyson�s equation. In other words,
we de�ne the one-particle irreducible self-energy by the set of diagrams that are
generated by Feynman�s rules for the propagator but that, after truncating the
two external fermion lines, cannot be cut in two disjoint pieces by cutting a G0� (k)
line. As an example, the diagram on the left of Fig.(38-10) is one-particle reducible
and hence does not belong to the one-particle irreducible self-energy, but the two
diagrams on the right of this �gure do.

k kq

k’+q

q q

k’

q q’

kq

kqq’

kq’σ

σ’σ’

σ

σ
σ

Figure 38-10 Diagram on the left is one-particle reducible, and hence is not an
acceptable contribution to the self-energy. The two diagrams on the right however are
acceptable contributions to the one-particle irreducible self-energy. In these diagrams,
k is the external momentum and Matsubara frequency label while � is the external
spin label. There is a sum over the variables k0; q and q0 and over the spin �0.

Remark 264 Terminology: To be shorter, one sometimes refers to the one-particle
irreducible self-energy using the term �proper self-energy�. In almost everything
that follows, we will be even more concise and refer simply to the self-energy. We
will mean one-particle irreducible self-energy. The other de�nitions that one can
give for the self-energy do not have much interest in practice.

38.5 *Feynman diagrams and the Pauli exclusion
principle

Since operators can be anticommuted at will in a time-ordered product at the
price of a simple sign change, it is clear that whenever there are two destruction
operators or two creation operators for the same state, the contraction should
vanish. This is just the Pauli exclusion principle. On the other hand, if we look
at a self-energy diagram like the middle one in Fig.(38-10) there are contributions
that violate the Pauli exclusion principle. Indeed, suppose we return to imaginary
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time but stay in momentum space. When we perform the sum over wave vectors
and over spins in the closed loop, the right-going line with label k0 + q in the
loop will eventually have a value of k0 and of spin such that it represents the
same state as the bottom fermion line. Indeed, when k0+q = k� q and spins are
also identical, we have two fermion lines in the same state attached to the same
interaction line (and hence hitting it at the same time) with two identical creation
operators. Similarly we have two identical destruction operators at the same time
attached to the other interaction line. This means that this contribution should
be absent if the Pauli exclusion principle is satis�ed. What happens in diagrams is
that this contribution is exactly canceled by the diagram where we have exchanged
the two right-going lines, in other words the last diagram on this �gure. Indeed,
this diagram has opposite sign, since it has one less fermion loop, and the special
case q = q0 precisely cancels the unwanted contribution from the middle graph
in Fig.(38-10). That this should happen like this is no surprise if we return to
our derivation of Wick�s theorem. We considered separately the case where two
fermions were in the same state and we noticed that if we applied Wick�s theorem
blindly, the Pauli violating terms would indeed add up to zero when we add up
all terms.
The important lesson of this is that unless we include all the exchange graphs,

there is no guarantee in diagrammatic techniques that the Pauli exclusion principle
will be satis�ed. We are tempted to say that this does not matter so much because
it is a set of measure zero but in fact we will see practical cases in short-range
models where certain approximate methods do unacceptable harm to the Pauli
exclusion principle.
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39. PARTICLE-HOLE EXCITA-
TIONS INTHENON-INTERACTING
LIMITANDTHELINDHARDFUNC-
TION

We will come back later to the calculation of the self-energy for the electron gas.
It is preferable to look �rst at collective modes. Since single-particle excitations
scatter o¤ these collective modes, it is important to know those �rst. It is true that
collective modes are also in�uenced by the actual properties of single-particles, but
conservation laws, long-range forces and/or the presence of broken symmetries
strongly in�uence the behavior of collective modes, while the details of single-
particle excitations that lead to them are less relevant.
The main physical quantity we want to compute and understand for collec-

tive modes of the electron gas is the longitudinal dielectric constant. Indeed, we
have seen in the chapter on correlation functions that inelastic electron scattering
Eq.(13.16) measures

S��(q; !) =
2

1� e��! Im
�
�R��(q; !)

�
= � 2

1� e��!
q2

4�
Im

�
"0

�L(q; !)

�
: (39.1)

The longitudinal dielectric constant itself obtained in Sec.(13.2) is

"0
�L(q;!)

= 1� 1
"0q2

�R��(q; !) : (39.2)

The physical phenomenon of screening will manifest itself in the zero-frequency
limit of the longitudinal dielectric constant, "L (q;0) : Interactions between elec-
trons will be screened, hence it is important to know the dielectric constant.
Plasma oscillations should come out from the �nite frequency zeros of this same
function "L (q;!) = 0; as we expect from our general discussion of collective modes.
We will start this section by a discussion of the Lindhard function, namely

�Rnn(q; !) = �R��(q; !)=e
2 for the free electron gas. We will interpret the poles of

this function. Then we introduce interactions with a simple physical discussion
of screening and plasma oscillations. A diagrammatic calculation in the so-called
Random phase approximation (RPA) will then allow us to recover in the appro-
priate limiting cases the phenomena of screening and of plasma oscillations.
It is noteworthy that even for the non-interacting electron gas, the density-

density correlation function is not simply the product of two independent densi-
ties. Fundamentally, this is because even in the absence of interactions, the Pauli
exclusion principle prohibits two electrons of being in the same state. That leads
to correlations, whose origin is due to quantum statistics. This is illustrated by
Fig.(39-1) that shows that density excitation corresponds to the excitation of a
particle-hole pair that is created and then destroyed in the same measurement
process.

Remark 265 The result �Rnn(q; !) = �R��(q; !)=e
2 holds only when electrons are

the sole degrees of freedom. For example, assume that neutrons are scattering from
neutral atoms through the nuclear force. They will see phonons that can be neutral
and contribute to �Rnn(q; !) but not to �

R
��(q; !):
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39.1 De�nitions and analytic continuation

We want the Fourier transform of the density-density response function. First
note that

nq �
Z
d3re�iq�rn (r) =

X
�=�1

Z
d3re�iq�r y� (r) � (r) (39.3)

=
1�p
V
�2 X

�

Z
d3re�iq�r

X
k

X
k0

eik
0�re�ik�rcyk;�ck0;� (39.4)

=
X
�

X
k

cyk;�ck+q;�: (39.5)

As before, V is the quantization volume of the system. We can obtain the retarded
density-density response function from

�Rnn(q; !) = limiqn!!+i� �nn(q; iqn) (39.6)

with iqn a bosonic Matsubara frequency, as required by the periodic boundary
condition obeyed by the Matsubara density response in imaginary time. The
above two functions are de�ned by

�nn(q; iqn) =

Z
d3re�iq�(r�r

0)
Z �

0

d�eiqn� hT� [�n (r;�) �n (r0; 0)]i (39.7)

=
1

V

Z �

0

eiqn� hT� [�nq (�) �n�q (0)]i d� (39.8)

�Rnn(q; !) =
1

V

Z 1

�1
ei!t i h[�nq (t) ; �n�q (0)]i � (t) dt (39.9)

Analytic continuation for density response If you did not read Sec.(30.1)
that addresses this problem, consider the following. To prove the analytic
continuation formula for the density response Eq.(39.6), one can simply
use the Lehmann representation or deform the integration contour in the
Matsubara representation, as we did for propagators in Sec.(26.4). (See
Eqs.(29.33) and (29.29) in particular). The fact that we have bosonic Mat-
subara frequencies means that we will have a commutator in real frequency
instead of an anticommutator because this time eiqn� = 1 instead of �1:
Furthermore, notice that whether the retarded density response is de�ned
with n (q;t) or with

�n (q;t) = n (q;t)� hn (q;t)i = n (q;t)� n (2�)3 � (q)

is irrelevant since a constant commutes with any operator.

Remark 266 The charge response function is also called charge susceptibility.

39.2 Density response in the non-interacting limit
in terms of G0�

The density response can be expressed in terms of Green�s function starting either
from the Feynman or from the functional derivative approach. In this section we
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arrive at the same result both ways.

39.2.1 *The Feynman way

If you have followed the route of Fenynann, to do the calculation in the non-
interacting case, it su¢ ces to use Wick�s theorem.

�0nn(q; iqn) =
1

V

Z �

0

d�eiqn�
X
�

X
k

X
�0

X
k0

(39.10)264*T�
264cyk;�
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Only the contractions indicated survive. The other possible set of contractions is

canceled by the disconnected piece
D
cyk;�ck;�

E
0

D
cyk0;�0ck0;�0

E
0
. Using momentum

conservation, all that is left is

�0nn(q; iqn) = �
1

V

Z �

0

d�eiqn�
X
�

X
k

G0� (k+ q;�)G0� (k;��) (39.11)

Going to the Matsubara frequency representation for the Green�s functions, and
using again the Kronecker delta that will arise from the � integration, we are
left with something that looks like what could be obtained from the theorem for
Fourier transform of convolutions

�0nn(q; iqn) = �
1

V
X
�

X
k

T
X
ikn

G0� (k+ q;ikn + iqn)G0� (k;ikn) (39.12)

where as usual we will do the replacement in the in�nite volume limit

1

V
X
k

!
Z

d3k

(2�)
3 (39.13)

Remark 267 Although we have not derived Feynman rules for �nn it is clear
that the last expression could have been written down directly from the diagram in
Fig.(39-1) if we had followed trivial generalizations of our old rules. There is even
an overall minus sign for the closed loop and a sum over wave vectors, Matsubara
frequency and spin inside the loop since these are not determined by momentum
conservation. However, we needed to perform the contractions explicitly to see this.
In particular, it was impossible to guess the overall sign and numerical factors since
Feynman�s rules that we have developed were for the Green�s function, not for the
susceptibility. Now that we have obtained the zeroth order term it is clear how
to apply Feynman rules for the terms of the perturbation series. But this is the
subject of another subsection below.

39.2.2 The Schwinger way (source �elds)

Start from the expression for the four-point function Eq.(36.22) for � = 0 and
point 2 = 1+ and 3 = 2+; and 4 = 2: Then we �nd

�G (1; 1+)
�� (2+; 2)

= �
D
T� 

y �1+� (1) y �2+� (2)E+ G �1; 1+�G �2; 2+� : (39.14)
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k+q
q

k

q

Figure 39-1 Diagram for non-interacting charge susceptibility. Note that the dotted
lines just indicate the �ow of momentum. No algebraic expression is associated with
them.

If we sum over the spins associated with point 1 and the spins associated with
point 2 and recall that once we sum over spins, we have G (1; 1+) = G (2; 2+) = n
where n is the average density, then

�
X
�1;�2

�G (1; 1+)
�� (2+; 2)

=
X
�1;�2

D
T� 

y �1+� (1) y �2+� (2)E� n2 (39.15)
= hT�n (1)n (2)i � n2 (39.16)

= hT� (n (1)� n) (n (2)� n)i
= �nn(1� 2): (39.17)

The last expression is from the de�nition of the density-density correlation function
in Eq.(39.7).

The non-interacting contribution is given by the �rst term in Fig. 37-7 (taking
into account the minus sign above) or, if you want, from the �rst term in Eq.(37.11)
for the functional derivative. It takes the form

�nn(1� 2) = �
X
�

G0� (1� 2)G0� (2� 1) : (39.18)

Only one spin sum is left because the spins corresponding the label 1 are identical

in
�G(1;1+)
��(2+;2) , as are the spin labels for label 2: Furthermore, spin is conserved, so the

spin cannot �ip in going from 1 to 2 in G0� (1� 2). Taking the Fourier transform
and using the convolution theorem, one obtains,

�0nn(q; iqn) = �
1

V
X
�

X
k

T
X
ikn

G0� (k+ q;ikn + iqn)G0� (k;ikn) : (39.19)

One of the sums over spins has disappeared because we should think of G0� as a
matrix that is diagonal in spin indices. This is the so-called Lindhard function. It
is also known as the bubble diagram .

Remark 268 To obtain the above result from the �rst term in Fig. 37-7, note that
it is as if we were injecting a momentum (Matsubara-frequency) q on one side of
the diagram and using our rules for momentum conservation at each vertex.
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39.3 Density response in the non-interacting limit:
Lindhard function

To compute

�0nn(q; iqn) = �
1

V
X
�

X
k

T
X
ikn

G0� (k+ q;ikn + iqn)G0� (k;ikn) (39.20)

the sums over Matsubara frequency should be performed �rst and they are easy
to do. The technique is standard. First introduce the notation

�k � "k � � (39.21)

and note that

T
X
ikn

G0� (k+ q;ikn + iqn)G0� (k;ikn) = T
X
ikn

1

ikn + iqn � �k+q
1

ikn � �k
: (39.22)

Substituting in the expression for the susceptibility and decomposing in partial
fractions, we �nd.

�0nn(q; iqn) = �2
Z

d3k

(2�)
3T
X
ikn

�
1

ikn � �k
� 1

ikn + iqn � �k+q

�
1

iqn � �k+q + �k
:

(39.23)
The factor of two comes from the sum over spin �. After the decomposition in
partial fractions, it seems that now we need a convergence factor to do each sum in-
dividually. Using the general results of the preceding chapter for Matsubara sums,
Eqs.(29.85) and (29.86), it is clear that as long as we take the same convergence
factor for both terms, the result is

�0nn(q; iqn) = �2
Z

d3k

(2�)
3

f (�k)� f
�
�k+q

�
iqn + �k � �k+q

(39.24)

independently of the choice of convergence factor. Before the partial fractions, the
terms in the ikn series decreased like (ikn)

�2 so, in fact, no convergence factor is
needed.
The retarded function is easy to obtain by analytic continuation. It is the

so-called Lindhard function

�0Rnn(q; !) = �2
R

d3k
(2�)3

f(�k)�f(�k+q)
!+i�+�k��k+q

(39.25)

This form is very close to the Lehmann representation for this response function.
Clearly at zero temperature poles will be located at ! = �k+q � �k as long as the
states k and k+ q are not on the same side of the Fermi surface. These poles are
particle-hole excitations instead of single-particle excitations as in the case of the
Green�s function. The sign di¤erence between �k+q and �k comes from the fact
that one of them plays the role of a particle while the other plays the role of a
hole.

Remark 269 Summing over ikn �rst: Note that the iqn in the denominator of
1

ikn+iqn��k+q
did not in�uence the result for the sum over Matsubara frequencies

ikn because iqn is bosonic, which means that ikn+iqn is a fermionic frequency: an
odd number plus an even number is an odd number and the sum is from minus to
plus in�nity. The sums over Matsubara freuencies must be performed �rst, before
analytic continuation (unless the sums and integrals are uniformly convergent, and
that is rare).
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Remark 270 Diagrammatic form of particle-hole excitations: If we return to the
diagram in Fig.(39-1), we should notice the following general feature. If we cut
the diagram in two by a vertical line, we see that it is crossed by lines that go in
opposite directions. Hence, we have a particle-hole excitation. In particle-particle
or hole-hole excitations, the lines go in the same direction and the two single-
particle energies �k+q and �k add up instead of subtract.

Remark 271 Absorptive vs reactive part of the response, real vs virtual excita-
tions: There is a contribution to the imaginary part, in other words absorption,
if for a given k and q energy is conserved in the intermediate state, i.e. if the
condition ! = �k+q � �k is realized. If this condition is not realized, the corre-
sponding contribution is reactive, not dissipative, and it goes to the real part of
the response only. The intermediate state then is only virtual. To understand the
type of excitations involved in the imaginary part, rewrite f (�k) � f

�
�k+q

�
=�

1� f
�
�k+q

��
f (�k) � (1� f (�k)) f

�
�k+q

�
. We see that either �k can corre-

spond to a hole and �k+q to a particle or the other way around. In other words a
single Green function line contains both the hole and the particle propagation, as
we expect from its de�nition that allows either a creation operator or a destruction
operator to act �rst.

Remark 272 When there are many Green�s functions, partial fractions are al-
ways an option, but it can be much more e¢ cient to use the Fermi function and
contour integration as in Fig. (29-7) and to deform it around the poles using
Cauchy�s theorem.

39.3.1 Zero-temperature value of the Lindhard function: the particle-hole continuum

To evaluate the integral appearing in the Lindhard function, which is what Lind-
hard did, it is easier to evaluate the imaginary part �rst and then to obtain the
real part using Kramers-Kronig. Let us begin

Im�0Rnn(q; !) = 2�

Z
d3k

(2�)
3

�
f (�k)� f

�
�k+q

��
�
�
! + �k � �k+q

�
(39.26)

With k! k� q in the second term this becomes

Im�0Rnn(q; !) = 2�

Z
d3k

(2�)
3 f (�k)

�
�
�
! + �k � �k+q

�
� �

�
! + �k�q � �k

��
:

Doing the replacement f (�k) = � (kF � k), going to polar coordinates with q
along the polar axis and doing the replacement "k = k2=2m; we have

Im�0Rnn(q; !) =
1

2�

Z kF

0

k2dk

Z 1

�1
d (cos �)

m

kq

�
�

�
! � "q
kq=m

� cos �
�
� �

�
! + "q
kq=m

� cos �
��

:

(39.27)
The angle � is between k and q: It is clear that this strategy in fact allows one to
do the integrals in any spatial dimension. One �nds, for an arbitrary ellipsoidal
dispersion [13]

"k =
dX
i=1

k2i
2mi

(39.28)

Im�0Rnn(q; !) =

Qd
i=1

�p
2mi

�
2d�(d�1)=2�

�
d+1
2

�p
"q
� (39.29)
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Figure 39-2 Imaginary part of the Lindhard function in d = 1 on the vertical axis.
Frequency increases from left to right and wave vector from back to front.
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9=; :

The real part is also calculable [13] but we do not quote it here.
The functional form of this function in low dimension is quite interesting.

Figures (39-2)(39-3) and (39-4) show the imaginary part of the Lindhard function
in, respectively, d = 1; 2; 3: The small plots on the right show a cut in wave
vector at �xed frequency while the plots on the left show Im�0Rnn(q; !) on the
vertical axis, frequency going from left to right and wave vector going from back
to front. In all cases, at �nite frequency it takes a �nite wave vector q to have
absorption. If the wave vector is too large however the delta function cannot
be satis�ed and there is no absorption either. The one-dimensional case is quite
special since at low frequency there is absorption only in a narrow wave vector
band. This has a profound in�uence on the interacting case since it will allow room
for collective modes to propagate without absorption. In fact, in the interacting
one-dimensional case the collective modes become eigenstates. This leads to the
famous spin-charge separation [81]. In two dimensions, there is a peak at q = 2kF
that becomes sharper and sharper as the frequency decreases as we can more
clearly see from the small plot on the right.[13] By contrast, the three-dimensional
function is smoother, despite a discontinuity in slope at q = 2kF :

De�nition 33 The region in q and ! space where there is absorption is referred
to as the particle-hole continuum.

To understand the existence of the particle-hole continuum and its shape, it is
preferable to return to the original expression Eq.(39.26). In Fig.(39-5) we draw
the geometry for the three-dimensional case.[14] The two �spheres�represent the
domain where each of the Fermi functions is non-vanishing. We have to integrate
over the wave vector k while q is �xed. The energy conservation tells us that when
�k+q > 0 and �k < 0 then ! = �k+q � �k > 0 and all wave vectors k located in
the plane

! � q2

2m
=
kq

m
cos � (39.30)

are allowed. This plane in k space with normal q must be inside the left-most
sphere and outside the right-most one. It cannot however be inside both or outside
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Figure 39-3 Imaginary part of the Lindhard function in d = 2: Axes like in the d = 1
case.

Figure 39-4 Imaginary part of the Lindhard function in d = 3: Axes like in the d = 1
case.
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both. We study the case ! > 0: The case ! < 0 follows from the properties of the
charge susceptibility under a change of sign of !.
Consider �rst the case q > 2kF : Take the two Fermi spheres, one where k on

the left is occupied and k+ q on the right is not occupied. Since q > 2kF ; the two
spheres do not overlap. Hence, there is a minimum value for !, given by the case
where k+ q and k are antiparallel and k is on the Fermi surface of the occupied
Fermi sphere. We �nd then,

!min =
(kF � q)2

2m
� k2F
2m

= "q � vF q; q > 2kF : (39.31)

There is also a maximum value of !; namely when k and q are parallel and k is
on the Fermi surface of the occupied sphere. This gives,

!max =
(kF + q)

2

2m
� k2F
2m

(39.32)

= "q + vF q ; q > 2kF : (39.33)

When q < 2kF ; the two spheres overlap. There is still a maximum value, as
illustrated in Fig. (39-5), given by the case where k and k+ q are parallel:

!max =
(kF + q)

2

2m
� k2F
2m

(39.34)

= "q + vF q ; q < 2kF : (39.35)

This line continues without discontinuity the !max line found above for q > 2kF .
When the plane of integration de�ned by Eq. (39.30) intersects the region where
both spheres overlap, the domain of integration is an annulus instead of a �lled
circle. When this occurs, there is a discontinuous change in slope of Im�0Rnn(q; !):
This occurs when the vectors k+ q and k are antiparallel to each other and when
q = kF � k while k = kF � q is inside the left Fermi surface. The corresponding
energy is

!change = �k+q � �k =
k2F
2m
� (kF � q)

2

2m
= vF q � "q (39.36)

This line, !change (q) ; is shown in Fig.(39-6). The minimum allowed value of !
vanishes since both arrows can be right at the Fermi surface in the annulus region.

!min = 0 ; q < 2kF (39.37)

The region in ! and q space where Im�0Rnn(q; !) is non-vanishing, the particle-
hole continuum, is illustrated schematically in Fig.(39-6) for positive frequency.
Since Im�0Rnn(q; !) is odd in frequency, there is a symmetrical region at ! < 0.

Remark 273 2kF singularities: The sudden changes in the Lindhard functions
at q = 2kF have numerous consequences on observable quantities. They lead to
Kohn anomalies in the phonon spectrum and to Friedel oscillations, for example.
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Figure 39-5 Geometry for the integral giving the imaginary part of the d = 3
Lindhard function. The wave vectors in the plane satisfy energy conservation as well
as the restrictions imposed by the Pauli principle. The plane located symmetrically
with respect to the miror plane of the spheres corresponds to energies of opposite
sign.

Figure 39-6 Schematic representation of the domain of frequency and wave vector
where there is a particle-hole continuum.

362 PARTICLE-HOLE
EXCITATIONS IN THE NON-INTERACTING LIMIT AND THE LINDHARD FUNCTION



40. INTERACTIONS AND COL-
LECTIVE MODES IN A SIMPLE
WAY

Before I start the whole machinery to take into account interactions and perhaps
make you lose track of the physics with too much formalism, it is helpful to recall
some of the simple results that we should obtain. We begin by identifying the
expansion parameter.

40.1 Expansion parameter in the presence of inter-
actions: rs

In the presence of interactions, it is convenient to de�ne a dimensionless constant
that measures the strength of interactions relative to the kinetic energy. If the
kinetic energy is very large compared with the interaction strength, perturbative
methods may have a chance. Let us begin by recalling some well known results. In
the hydrogen atom, potential and kinetic energy are comparable. That de�nes a
natural distance for interacting electrons, namely the Bohr radius. Let us remind
ourselves of what this number is. Using the uncertainty principle, we have �k �
a�10 so that the kinetic energy can be estimated as 1=

�
ma2o

�
and the value of a0

itself is obtained by equating this to the potential energy

1

ma2o
=

e2

4�"0a0
(40.1)

giving us for the Bohr radius, in standard units,

a0 =
4�"0~2

me2
= 0:529� 10�10m � 0:5Å (40.2)

It is standard practice to de�ne the dimensionless parameter rs by setting the
density of electrons n equal to 1=(volume of the sphere of radius rsa0 occupied by
a single electron). In other words, we have

n � 1
4�
3 r

3
sa

3
0

(40.3)

where

n =
k3F
3�2

(40.4)

is the density of electrons. Another way to write rs is then

rs �
�
9�
4

�1=3 1
kF a0

(40.5)

In a way, rs is the average distance between electrons measured in units of the Bohr
radius. Large rs means that the electrons are far apart, hence that the kinetic
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energy is small. Using the same uncertainty relation as in the hydrogen atom, this
means that interactions are more important than kinetic energy. Conversely, at
small rs kinetic energy is large compared with interactions and the interactions
are much less important than the kinetic energy. It is natural then to expect that
rs is a measure of the relative strength of the interactions or, if you want, an
expansion parameter. A way to con�rm this role of rs is to show that

Potential

Kinetic
�

e2

4�"0
kF

k2F =2m
�
m e2

4�"0

kF
� 1

kFa0
�
�
1

na30

�1=3
� rs (40.6)

These estimates are obtained as follows. The average momentum exchanged in
interactions is of order kF so that e2

4�"0r
� e2

4�"0
kF should be a sensible value for

the average potential energy while the kinetic energy as usual is estimated from
EF .
It may be counterintuitive at �rst to think that interactions are less important

at large densities but that is a consequence of the uncertainty principle, not a
concept of classical mechanics.

40.2 Thomas-Fermi screening

The elementary theory of screening is the Thomas-Fermi theory.[12] In this ap-
proach, Poisson�s equation is solved simultaneously with the electrochemical equi-
librium equation to obtain an expression for the potential. The screening will not
occur over arbitrarily short distance because localizing the electron�s wave func-
tions costs kinetic energy. In fact, at very short distance the potential will be
basically unscreened.
Consider Poisson�s equation for our electron gas in the presence of an external

charge �e. You can think of this external charge as being for example an impurity
positive charge added to the medium. In the Landau gauge, where r �A = 0, the
result is

�r2� (r) = 1

"0
[�e (r) + �� (r)] (40.7)

The quantity �� (r) is the change in charge density of the background produced
by the charged impurity

�� (r) = � (r)� �0 = �e [n (r)� n] (40.8)

We need to �nd n (r)� n:

Original phenomenological derivation valid in the non-linear case: We will
consider only the linearized case, so if you are in a hurry, you can skip the
discussion in this paragraph which is more phenomenological but also more
general.
Since density and Fermi wave vector are related, kinetic energy will come
in. Assuming that the Fermi energy and the potential both vary slowly in
space, the relation

n (r)

n
=
k3F (r)

k3F
(40.9)

and electrochemical equilibrium

k2F (r)

2m
+ (�e� (r)) = EF =

k2F
2m

(40.10)
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where EF is the value of the Fermi energy in�nitely far from the impurity
potential, lead immediately to the relation between density and electrostatic
potential

n (r)

n
=
k3F (r)

k3F
=

�
k2F (r) =2m

k2F =2m

�3=2
=

�
1� (�e� (r))

EF

�3=2
: (40.11)

Substituting this back into Poisson�s equation, we have a closed equation for
potential

�r2� (r) = 1
"0
�e (r)� 1

"0
ne

��
1� (�e�(r))

EF

�3=2
� 1
�
: (40.12)

In general it is important to solve this full non-linear equation because oth-
erwise at short distances the impurity potential is unscreened � (r) � 1=r
which leads to unphysical negative values of the density in the linearized
expression for the density,

n (r)

n
�
�
1� 3

2

(�e� (r))
EF

�
(40.13)

Nevertheless, if we are interested only in long-distance properties, the linear
approximation turns out to be excellent. In this approximation, Poisson�s
equation Eq.(40.12) becomes

�r2� (r) = 1

"0
�e (r) +

1

"0

3

2

ne

EF
(�e� (r)) : (40.14)

Since we will need only the linearized version, we can immediately obtain the
�nal result from linear response in Poisson�s equation Eq.(40.7). Fourier trans-
forming, we �nd

q2� (q; !) =
1

"0

�
�e (q; !)� �irr;R�� (q; !)� (q; !)

�
: (40.15)

The susceptibility appears with a negative sign because the coupling to charge
density to scalar potential is with a positive sign. Since it gives the density response
to the self-consistent potential, it is called the irreducible susceptibility for reasons
that will become clear in the next section. Since n scales as k3F and EF scales like
k2F ; it is easy to compute @n=@� = @n=@EF : If we then de�ne

q2TF =
3
2
ne2

"0EF
= e2

"0
@n
@� ; (40.16)

both ways of doing the calculation lead to the same result

� (q) = 1
"0

�e(q)
q2+q2TF

: (40.17)

if we use �irr;R�� (q; !) = e2�irr;Rnn (q; !) and the leading term of low-frequency,
long-wavelength limit, namely limq!0 lim!!0 �

irr;R
nn = @n

@� that follows from a ther-
modynamic sum rule discussed in Sec.(10.10.1) when it is generalized to charged
systems, a rather subtle point1 . We can also de�ne a Thomas-Fermi longitudinal
dielectric constant by

"L (q;0) = "0
q2+q2TF
q2 = "0

�
1 +

q2TF
q2

�
: (40.18)

1See the �rst remark below.
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Let us pause to give a physical interpretation of this result. At small distances
(large q) the charge is unscreened since "L ! 1: On the contrary, at large distance
(small q) the sreening is very e¤ective. In real space, one �nds an exponential
decrease of the potential over a length scale q�1TF ; the Thomas-Fermi screening
length. Let us write this length in terms of rs using the de�nition Eq.(40.3) or
(40.5) with ~ appearing explicitly now so that a0 = 4�"0~2

me2

�2 � q�2TF =
2"0EF
3ne2

=
2"0k

2
F =2m

3ne2
=
k2Fa0
12�n

(40.19)

=
k2Fa

4
0

12�

�
4�

3
r3s

�
= a20

 
1

9

�
9�

4

�2=3!
rs (40.20)

Roughly speaking then, for rs � 1 we have that the screening length

� �
�
a0
p
rs =

a0rsp
rs

�
(40.21)

is larger than the interelectronic distance a0rs. In this limit our long wavelength
Thomas-Fermi reasoning makes sense. On the other hand, for rs � 1 the screening
length is much smaller than the interelectronic distance. This is counter intuitive:
When the distance � over which electrons see each other is short, � small, the
potential energy is larger than kinetic energy, i.e. rs � 1: This is because kinetic
energy decreases faster with separation between electrons 1=(rsa0)2 than potential
energy 1=(rsa0): It makes less sense to think that the free electron Hamiltonian is
a good perturbative starting point when rs � 1. Electrons start to localize. Note
however, that we mean by large rs can be pretty large. For sodium, rs � 4 while
for aluminum, rs � 2 but still, these are good metals.

Remark 274 The thermodynamic sum-rule that I have proven in Section (10.10.1)
is that limq!0 lim!!0 �

R
nn =

@n
@� . In the next section, in remark 276, I discuss un-

der what assumptions the equalities limq!0 lim!!0 �
R
nn = limq!0 lim!!0 �

irr;R
nn

= @n
@� are satis�ed.

Remark 275 Two dimensional case: As an exercise, note that if the material is
two dimensional, then the density is con�ned to a surface so that n! ns� (z) and
�! �s� (z) where ns and �s are surface density and charge surface density. Then,
Eq.(40.15) in Fourier space becomes�

q2z + q
2
jj

�
� (q) =

1

"0

�
�s(qjj)� e

@ns
@�

�
+e�(qjj; z = 0)

��
(40.22)

Dividing by q2z + q
2
jj we obtainZ

� (q)
dqz
2�

= �(qjj; z = 0)

=
1

"0

�
�s(qjj)� e

@ns
@�

�
e�(qjj; z = 0)

�� Z 1

q2z + q
2
jj

dqz
2�

:(40.23)

The last integral is equal to (2qjj)�1 so that�
1 +

e2

2"0qjj

@ns
@�

�
�(qjj; z = 0) =

�s(qjj)

2"0qjj
(40.24)

and

�(qjj; z = 0) =
�s(qjj)

2"L(qjj)qjj
=

1

2"0

�s(qjj)

qjj +
e2

2"0
@ns
@�

(40.25)
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"L(qjj)

"0
= 1 +

e2

2"0qjj

@ns
@�

: (40.26)

This result was obtained by Stern [227].

40.3 Reducible and irreducible susceptibilities: an-
other look at the longitudinal dielectric con-
stant

The calculation of the longitudinal dielectric constant for a homogeneous isotropic
medium proceeds, in the Landau gauge r �A = 0, from the following equalities

q2� (q; !) =
1

"0
(�e (q; !) + �� (q; !)) �

1

"L (q; !)
�e (q; !) : (40.27)

In the linear approximation we obtained �� = ��R���e in Sec. 13.2 from the linear
response to the potential "0q2�e (q; !) = �e (q; !) induced by the external charge
�e. This led to

1
"L(q;!)

= 1
"0

�
1� Vq�Rnn (q; !)

�
: (40.28)

where Vq = e2=
�
"0q

2
�
: But we can also obtain the induced charge �� = ��irr;R�� (q; !)� (q; !)

from the linear response to the total self-consistent potential, as we did in the pre-
vious section. In that case, Eq.(40.15) for the total potential can be written as�

q2 +
1

"0
�irr;R�� (q; !)

�
� (q; !) =

1

"0
�e (q; !) (40.29)

so that we have the alternative expression for "L (q; !), namely

1
"L(q;!)

= 1
"0

1

1+Vq�
irr;R
nn (q;!) : (40.30)

Equating the two expressions Eq.(40.28) and Eq.(40.30) for the longitudinal
dielectric constant imposes a relation between the susceptibility to an external
potential and the irreducible susceptibility, namely

1

1 + Vq�
irr;R
nn (q; !)

=
�
1� Vq�Rnn (q; !)

�
(40.31)

which leads, after a little algebra, to

�Rnn (q; !) =
�irr;Rnn (q; !)

1 + Vq�
irr;R
nn (q; !)

: (40.32)

Classical electrodynamics thus imposes the above relation between the two di¤er-
ent kinds of responses. We will see in Chapter 51 on Hedin�s equations, how we
can preserve this structure in general. In the random phase approximation (RPA)
that I will discuss in the next chapter, the above relation will be satis�ed with
�irr;Rnn (q; !) replaced by �0;Rnn (q; !), the non-interacting density-density correla-
tion function. In general, the de�nition �Rnn (q; !) � ��irr;Rnn (q; !) is used for the
so-called irreducible polarization �Rnn (q; !).
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Remark 276 Note that because of the background, Vq=0 = 0: On the other
hand, limq!0 Vq is a di¤erent object. So the limit q ! 0 in the expression
limq!0 lim!!0 �

R
nn = limq!0 lim!!0 �

irr;R
nn , must be taken as meaning that we

take Vq=0. In other words, the thermodynamic sum rule �Rnn (q! 0; ! = 0) =
(@n=@�) has meaning only at charge neutrality, namely at Vq=0 = 0.

Remark 277 Irreducibility with respect to the Coulomb interaction: If we write
the last equation for the susceptibility in the form

�Rnn (q; !) = �irr;Rnn (q; !)� �irr;Rnn (q; !)Vq�
irr;R
nn (q; !)

+�irr;Rnn (q; !)Vq�
irr;R
nn (q; !)Vq�

irr;R
nn (q; !) + : : : (40.33)

we can anticipate that the irreducible susceptibility will be de�ned by the set of
all diagrams that cannot be cut in two by cutting a line representing a Coulomb
interaction.

40.4 Plasma oscillations

Plasma oscillations are the density oscillations of a free electron gas. The physics
of this is that because the system wants to stay neutral everywhere, electrostatic
forces will want to bring back spontaneous electronic density �uctuations towards
the uniform state but, because of the electron inertia, there is overshooting. Hence
oscillations arise at a particular natural frequency, the so-called plasma frequency.
In other words, it su¢ ces to add inertia to our previous considerations to see the
result come out.
We give a very simple minded macroscopic description valid only in the limit

of very long wave length oscillations. Suppose there is a drift current

j = �env (40.34)

Taking the time derivative and using Newton�s equations,

@j

@t
= �en@v

@t
= �en

m
(�eE) (40.35)

Note that in Newton�s equation we should use the total time derivative instead of
the partial, but since we assume a uniform density (q = 0) the total and partial
derivative are identical. We are in a position where one more time derivative

@2j

@t2
=
ne2

m

@E

@t
(40.36)

and an appeal to the longitudinal part of Maxwell�s fourth equation

0 = �0j+�0"0
@E

@t
(40.37)

should give us the desired result, namely

@2j

@t2
= � ne

2

"0m
j (40.38)

This equation has an oscillatory solution at a frequency !p

!2p � ne2

"0m
(40.39)
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the so-called plasma frequency. Since we know that the longitudinal dielectric
constant vanishes at a collective mode, this gives us another expected limit of this
function

lim!!!p "
L (q = 0;!) = lim!!!p a (! � !p) (40.40)

where a is an unknown, for the time being, positive constant. The sign is deter-
mined from the fact that the dielectric constant must return to a positive value
equal to unity at very large frequency.

Alternate derivation: An alternate derivation that is more easily extended to
�lms or wires takes the divergence of Eq.(40.35) and then uses current con-
servation with Maxwell�s �rst equation to obtain

@r � j
@t

= �en
m
(�er �E) (40.41)

�@
2�

@t2
=

e2n

"0m
� (40.42)

which immediately leads to the desired expression for the plasma frequency.
Note that writing r�E =�r2� = �="0 is equivalent to using the unscreened
potential. This is correct at large frequency where screening cannot occur.
This will come out automatically from the q and ! dependence of dielectric
constant.

Remark 278 Two dimensional case: Screening being di¤erent in for two dimen-
sional �lms, as we have just seen, plasma oscillations will be di¤erent. In fact,
the plasma frequency vanishes at zero wave vector. Indeed, current conservation
for the surface quantities reads,

@�s
@t

+rs � js = 0: (40.43)

Taking the two-dimensional divergence of Newton�s equation Eq.(40.35) on both
sides, we obtain

@rs � js
@t

� (z) =
e2ns
m

� (z)rs �E (40.44)

so that Fourier transforming and using charge conservation, we obtain

�
@2�s(qjj)

@t2
=
e2ns
m

iqjj �E(qjj; z = 0): (40.45)

We can express the electric �eld in terms of the surface density to close the system
of equations,

E(qjj; z = 0) = �iqjj�(qjj; z = 0) = �iqjj
�s
2"0qjj

(40.46)

where we used the unscreened Poisson equation for a �lm (two-dimensional mate-
rial). This leads to

@2�s(qjj)

@t2
= � e2ns

2"0m
qjj�s (40.47)

which means that the plasma frequency is

!2p =
e2ns
2"0m

qjj (40.48)

that vanishes as qjj does. It is important to note again that in the derivation we
used the unscreened potential. The order of limits is important. We have assumed
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that the frequency is too large for the other electrons to screen the charge displace-
ment. In the end that frequency, !p, vanishes so we have to be careful. A full
treatment of the momentum and frequency dependence of the dielectric function,
as we will do in the next section, is necessary. In closing, note that the appeal to
the longitudinal part of Maxwell�s fourth equation, done in the very �rst derivation,
is not so trivial in less than three dimension.
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41. DENSITY RESPONSE IN THE
PRESENCE OF INTERACTIONS

Now that we know what to expect, let us see what he complete calculation gives.
As usual, you can follow the tracks of Fenyman or of Schwinger, in the end we
have the same integrals to do.

41.1 Density-density correlations, RPA

As before we derive the relevant equation the Feynman way and the Schwinger
way.

41.1.1 *The Feynman way

We are now ready to start our diagrammatic analysis. Fig.(41-1) shows all charge
susceptibility diagrams to �rst order in the interaction. The four diagrams on the
second line take into account self-energy e¤ects on the single-particle properties.
We will worry about this later. Of the two diagrams on the �rst line, the �rst
one clearly dominates. Indeed, the dotted line leads to a factor e2=

�
"0q

2
�
that

diverges at small wave vectors. On the other hand, the contribution from the
other diagram is proportional to

�2
Z

d3k

(2�)
3T
X
ikn

Z
d3k0

(2�)
3T
X
ik0n

G0� (k+ q;ikn + iqn)G0� (k;ikn)�

e2

"0
��k� k0��2G0� (k0+q;ik0n + iqn)G0� (k0;ik0n) (41.1)

which is a convergent integral with no singularity at q = 0:

Remark 279 For a very short range potential, namely a wave-vector independent
potential, the situation would have been completely di¤erent since the contribution
of the last diagram would have been simply minus half of the contribution of the
�rst one, the only di¤erences being the additional fermion loop in the �rst one that
leads to a sign di¤erence and a factor of two for spin. We will come back on this
in our study of the Hubbard model.

Let us thus concentrate on the most important contribution at long wave
lengths namely the �rst diagram. In addition to being divergent as q ! 0; it
has additional pathologies. Indeed, it has double poles at the particle-hole excita-
tions of the non-interacting problem while the Lehmann representation shows us
that it should not. This problem sounds familiar. We have encountered it with
the single-particle Green�s function. The problem is thus solved in an analogous
manner, by summing an in�nite subset of diagrams. This subset of diagrams is
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Figure 41-1 Charge susceptibility diagrams to �rst order in the interaction

illustrated in Fig.(41-2). It is the famous random phase approximation (RPA).
One also meets the terminology ring diagrams (in the context of free energy cal-
culations) or, more often, one also meets the name bubble diagrams. The full
susceptibility is represented by adding a triangle to one of the external vertices.
That triangle represents the so-called dressed three point vertex. The reason for
this name will come out more clearly later. The full series, represented schemat-
ically on the �rst two lines of the �gure, may be summed to in�nity by writing
down the equation on the last line. This equation looks like a particle-hole ver-
sion of the Dyson equation. The undressed bubble plays the role of an irreducible
susceptibility. It is irreducible with respect to cutting one interaction line.
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Figure 41-2 Bubble diagrams. Random phase approximation.

From our calculation of the susceptibility for non-interacting electrons we know
that Feynman�s rules apply for the diagrams on Fig.(41-2). Each bubble is asso-
ciated with a factor �0nn(q; iqn); a quantity de�ned in such a way that it contains
the minus sign associated with the fermion loop. The dashed interaction lines each
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lead to a factor �Vq = �e2=
�
"0q

2
�
; the minus sign being associated with the fact

that one more Vq means one higher order in perturbation theory (remember the
(�1)n rule). The sum over bubbles, represented by the last line on Fig.(41-2) is
easy to do since it is just a geometric series. The result is.

�nn(q; iqn) =
�0nn(q;iqn)

1+Vq�0nn(q;iqn)
; Vq =

e2

"0q2
(41.2)

41.1.2 The Schwinger way

We keep following our �rst step approach that gave us the Hartree-Fock approx-
imation and corresponding susceptibility. Returning to our expression for the
susceptibility in terms a functional derivative Eq.(90.15), namely

�
X
�1;�2

�G (1; 1+)
�� (2+; 2)

= �nn (1� 2) (41.3)

and Fourier transforming, we obtain in the case where the irreducible vertex is
obtained from functional derivatives of the Hartree-Fock self-energy the set of
diagrams in Fig. 37-7. In the middle diagram on the right-hand side of the equality,
there is a sum over wave vectors k0 because three of the original coordinates of the
functional derivative at the bottom of the diagram were di¤erent. This means there
are two independent momenta, contrary to the last diagram in the �gure. One
of the independent momenta can be taken as q by momentum conservation while
the other one, k0; must be integrated over. The contribution from that middle
diagram is not singular at small wave vector because the Coulomb potential is
integrated over. By contrast, the last diagram has a 1=q2 from the interaction
potential, which is divergent. We thus keep only that last term. The integral
equation, illustrated in Fig. 41-3, then takes an algebraic form

�nn(q) = �0nn(q)� �0nn(q)Vq�nn(q): (41.4)

To �gure out the sign from the �gure, recall that the green triangle stands for
�G(1;1+)
��(2+;2) ; while there is a minus sign in the equation for the susceptibility Eq.
(41.3). Since the integral equation (41.4) for �nn(q) has become an algebraic
equation in Fourier-Matsubara space, it is easy to solve. We �nd,

�nn(q) =
�0nn(q)

1 + Vq�0nn(q)
=

1

�0nn(q)
�1 + Vq

: (41.5)

This is the so-called Random Phase Approximation, or RPA. The last form of the
equality highlights the fact that the irreducible vertex, here Vq, plays the role of
an irreducible self-energy in the particle-hole channel. The analytical continuation
will be trivial.
Note that we have written �0nn(q) for the bubble diagram, i.e. the �rst term

on the right-hand side of the equation in Fig. 37-7 even though everything we
have up to now in the Schwinger formalism are dressed Green�s functions. The
reason is that neglecting the middle diagram on the right-hand side of the equality
is like neglecting the contribution from the Fock, or exchange self-energy in Fig.
37-6. The only term left then is is the Hartree term that we argued should vanish
because of the neutralizing background. Hence, the Green�s functions are bare
ones and the corresponding susceptibility is the Linhard function.
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= k+q k

k+q k

+ q

Figure 41-3 Fourier transform of
�G(1;1+)
��(2+;2) with a momentum q �owing top to

bottom that is used to compute the density-density correlation function in the RPA
approximation.

Remark 280 The integral equation (41.4) for �nn shows very well that the ir-
reducible vertex Vq here plays the role of a self-energy for the particle-hole re-
sponse function. Compare that equation with G = G0 + G0�G: Alternatively, com-
pare G�1 = G0�1 � � and the equation for the RPA susceptibility Eq. (41.5)
��1nn = �0�1nn � Vq:

Remark 281 Equivalence to an in�nite set of bubble diagrams: The integral equa-
tion for the susceptibility has turned into an algebraic equation in 41.4. By recur-
sively replacing �nn(q) on the right-hand side of that equation by higher and higher
order approximations in powers of Vq we obtain

�(1)nn(q) = �0nn(q)� �0nn(q)Vq�0nn(q)
�(2)nn(q) = �0nn(q)� �0nn(q)Vq�0nn(q) (41.6)

+�0nn(q)Vq�
0
nn(q)Vq�

0
nn(q) + : : : (41.7)

etc. By solving the algebraic equation then, it is as if we had summed an in�nite
series which diagrammatically would look, if we turn it sideways, like Fig. 41-2.The
analogy with the self-energy in the case of the Green�s function is again clear.

Remark 282 A direct expansion in powers of Vq without resumming would have
been disatrous. Already the �rst term �0nn(q)Vq�

0
nn(q) diverges as 1=q

2 as q van-
ishes, and the following term as 1=q4 etc. Doing perturbation theory with the
Feynman formalism immediately leads to the questions of why are there diver-
gences and why should we do in�nite resummation to get rid of them. The reason
why is clearer in the Schwinger formalism. Self-consistency is built in naturally in
the formalism.
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41.2 Explicit form for the dielectric constant and
special cases

Using our previous results for the imaginary part of the susceptibility for non-
interacting particles, the real part can be found from taking the Hilbert transform.
From this we obtain the explicit expression for the real and imaginary parts of
the dielectric function in three dimensions at zero temperature. Recall that lon-
gitudinal dielectric constant and charge susceptibility are related by Eq. (13.15),
namely

1

�L(q; !)
=
1

"0

�
1� e2

"0q2
�Rnn(q; !)

�
=

1

"0 (1 + Vq�0Rnn(q; !))
(41.8)

or,

�L(q; !) = "0
�
1 + Vq�

0R
nn(q; !)

�
: (41.9)

For positive frequencies, one �nds

Re

�
�L(q; !)

"0

�
� �L1 (q; !)

"0
(41.10)

= 1 +
q2TF
q2

(
1

2
+
kF
4q

" 
1� (! � "q)

2

q2v2F

!
ln

����! � vF q � "q! + vF q � "q

����
+

 
1� (! + "q)

2

q2v2F

!
ln

����! + vF q + "q! � vF q + "q

����
#)

(41.11)

Im
�
�L(q; !)

�
� �L2 (q; !) (41.12)

=

8>>>><>>>>:
�
2

!
vF q

q2TF
q2 ; ! � vF q � "q

�kF
4q

q2TF
q2

�
1� (!�"q)2

q2v2F

�
; vF q � "q � ! � "q + vF q

0 ; ! � "q + vF q

9>=>; q < 2kF

�kF
4q

q2TF
q2

�
1� (!�"q)2

q2v2F

�
; "q � vF q � ! � "q + vF q

o
q > 2kF

:

I agree this is not obvious. The integral is done at length in Fetter andWalecka [73].
We will see below that we can �nd the interesting limiting cases for the integrals
entering the calculation of the Lindhard function rather easily, except for the log-
arithm. That logarithm is important for Friedel�s oscillations. It comes basically
from the Hilbert transform of the Heaviside � function. Recall in our geometric ar-
guments with Fermi spheres that discontinuities in the slope of the non-interacting
charge susceptibility occur when q = 2kF :
We now analyze these results to extract �ve important physical ingredients:

a) There is a particle-hole continuum but the poles are simply shifted from their
old positions instead of becoming poles of high-order. b) There is screening at
low frequency. c) There are Friedel oscillations in space. d) There are plasma
oscillations in time. e) At long wave lengths the plasma oscillations exhaust the
f�sum rule.
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41.2.1 Particle-hole continuum

Let us �rst think of a �nite system with 2M discrete poles in �0Rnn(q; !) to see that
these have been shifted. The number of simple poles is even because the function
is odd. The spectral representation tells us, using the fact that, �00nn (q;!

0) is odd

�0Rnn(q; !) =

Z
d!0

�

�000nn (q;!
0)

!0 � ! � i� =
Z
d!0

�

!0�000nn (q;!
0)

(!0)
2 � (! + i�)2

=
MX
i=1

Ai

u2i � (! + i�)
2 =

B
Q(M)�1
i=1

�
(! + i�)

2 � v2i
�

QM
i=1

�
u2i � (! + i�)

2
� (41.13)

where Ai is positive because !0�000nn (q;!
0) is positive, as required by positivity

of dissipation, and ui are positions of the delta functions in !0�000nn (q;!
0) : The

parameters Ai and ui then are respectively the residue and the location of each pole
in �0Rnn(q; !). We have combined the sum of fractions on a common denominator
so that the numerator of the last expression has one less power of (! + i�)2 :
We do not need to specify the values of B and vi: Using this expression for the
non-interacting susceptibility in the result Eq.(41.2) for the RPA susceptibility we
�nd,

�Rnn(q; !) =
B
QM�1
i=1

�
(! + i�)

2 � v2i
�

QM
i=1

�
u2i � (! + i�)

2
�
+ VqB

QM�1
i=1

�
(! + i�)

2 � v2i
� (41.14)

The denominator can be rewritten as a polynomial of the same order as the non-
interacting susceptibility, namely of order M in (! + i�)2 ; but the zeros of this
polynomial, corresponding to the poles of the retarded susceptibility, have shifted.
To �nd out the location of the poles of the charge excitations, at least qualita-

tively, it su¢ ces to look for the domain where the imaginary part is non vanishing.
Using our RPA result Eq.(41.2) and simple algebra

Im

�
x+ iy

1 + x+ iy

�
=

y

(1 + x)
2
+ y2

(41.15)

we �nd the following result for the imaginary part

Im�Rnn(q; !) =
Im�0Rnn(q; !)

(1 + VqRe�0Rnn(q; !))
2
+ (Vq Im�0Rnn(q; !))

2 : (41.16)

In a �nite system, as above, Im�0Rnn(q; !) would be proportional to a delta function
whenever there is a pole in the non-interacting susceptibility. The square of this
delta function that appears in the denominator cancels the corresponding delta
function in the numerator, which is another (less clear) way of saying what we
have just shown in full generality above, namely that in the interacting system
the poles are di¤erent from those of the non-interacting system. The new poles
are a solution of

1

Vq
+Re�0Rnn(q; !) =

1

Vq
+

MX
i=1

Ai
u2i � !2

(41.17)

=
1

Vq
+

MX
i=1

Ai
2ui

�
1

ui � !
+

1

ui + !

�
= 0 (41.18)
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The solution of this equation may in principle be found graphically as illustrated
in Fig.(41-4). I have taken the simple case 2M = 6 for clarity. In reality, M !1
and the separation between each discrete pole of Re�0Rnn(q; !) is inversely pro-
portional to a power of the size of the system 1=V: The delta functions of the
non-interacting susceptibility are on the real axis at the intersection of the ver-
tical asymptotes of the poles of Re�0Rnn(q; !): Each delta function of the non-
interacting Im�0Rnn(q; !) leads to a pole in Re�

0R
nn(q; !): The new delta functions

of the interacting Im�Rnn(q; !) are the solution of the above equation. They are the
intersection of the horizontal line 1=Vq and of the lines that behave as 1= (ui � !)
near every vertical asymptote. Clearly, except for the last two symmetrically lo-
cated solutions at large frequency, all the new solutions are very close to those of
the non-interacting system. And they are at a location where the ininteracting
Im�0Rnn(q; !) vanishes so that the interacting Im�

R
nn(q; !) Eq. (41.16) does look as

a set of delta functions displaced from the original positions of the non-interacting
Im�0Rnn(q; !):
In summary then, the particle-hole continuum is basically at the same place as

it was in the non-interacting system, even though the residues may have changed.
The two solutions at large frequency correspond to plasma oscillations, as we will
see later. They are well separated from the particle-hole continuum for small q
where 1=Vq is very small. However, at large wave vector it is quite possible to
�nd that the high frequency poles become very close again to the particle-hole
continuum.

Remark 283 Note that the number of poles in the interacting system is the same
as the number of poles in the non-interacting one. In the situation illustrated in
Fig(41-4), there are six non-interacting poles and six interacting ones. If Vq were
negative and su¢ ciently large, we would loose two solutions. These missing solu-
tions still exist as a pair of complex conjugate imaginary frequencies. One of these
frequencies then is on the wrong half-plane. This indicates an instability towards
another phase. This is a phase transition. The ! = 0 value of the susceptiblity
would be negative, another way to know that the system becomes unstable. I will
discuss this in more detail when we get to phase transitions.

ω

1/V(q)

Reχ0

Figure 41-4 Graphical solution for the poles of the charge susceptibility in the
interacting system.

Since Im
�
�L(q; !)="0

��1
= 1+ Vq Im�

R
nn(q; !) the zeros of the dielectric con-

stant are at the same location as the poles of �Rnn(q; !) and, from what we just
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said, these poles are located basically in the same (!;q) domain as the particle-
hole continuum of the non-interacting system, except for possibly a pair of poles.
This situation is illustrated schematically in Fig.(41-5), that generalizes Fig.(39-6)

q

ω

ε  + v  q ε  − v  qF
F

q q

0 2k
F

v  q  −  ε
F q

ω ωp q

Figure 41-5 Schematic representation of the domain of frequency and wave vector
where there are poles in the charge susceptibility, or zeros in the longitudinal dielectric
function. In addition to the particle-hole continuum, there is a plasma pole.

41.2.2 Screening

At zero frequency, namely for a static charge perturbation, the imaginary part
of the dielectric constant vanishes, as shown by Eq.(41.12), while the real part
Eq.(41.10) becomes

"L1 (q; 0)

"0
= 1 +

q2TF
q2

"
1

2
+
kF
2q

 
1� q2

(2kF )
2

!
ln

����q + 2kFq � 2kF

����
#

(41.19)

In the long wave length limit, we recover our Thomas Fermi result Eq.(40.18).
This limit can also be obtained directly by approximating the integral de�ning
Lindhard function Eq.(39.25) that enters the RPA dielectric function Eqs.(41.9)

lim
q!0

"L1 (q; 0) = lim
q!0

"
1� 2Vq

Z
d3k

(2�)
3

f (�k)� f
�
�k+q

�
�k � �k+q

#
(41.20)

=

"
1� 2Vq
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d3k

(2�)
3

@f (�k)

@�k

#
(41.21)

= 1 + Vq
@

@�

"
2

Z
d3k

(2�)
3 f (�k)

#
(41.22)

= 1 +
e2

"0q2
@n

@�
(41.23)

= 1 +
q2TF
q2

(41.24)
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The de�nition of qTF is in Eq.(40.16). The corresponding potential

Veff (r) =

Z
d3q

(2�)
3

e2

"0

1

q2 + q2TF
eiq�r / e2

"0r
e�rqTF (41.25)

is the screened Coulomb interaction.

Remark 284 The expression "L1 (q; 0) = "0
�
1 + Vq�

0
nn (q; 0)

�
would be replaced

by "L1 (q; 0) = "0

�
1� Vq�R(1)nn (q; 0)

�
in the general case, with ��R(1)nn (q; 0) the ir-

reducible polarization. This is made clearer in Chap.(51). That quantity, �R(1)nn (q; 0),
is the sum of all the diagrams that cannot be cut in two by eliminating one in-
teraction line. In general then, @n=@� in Eq.(41.23) would be di¤erent from the
non-interacting result. This is relevant in e¤ective models such as the Hubbard
model.

41.2.3 Friedel oscillations

If instead of using the limiting Thomas-Fermi form for small wave vectors one does
a more careful evaluation[15] of the Fourier transform of "1 (q; 0) Eq.(41.19), one
�nds

lim
r!1

Veff (r) /
cos (2kF r)

r3
(41.26)

These are so-called Friedel oscillations. Returning to Fig. (39-5) you will recall that
in Fourier space there are discontinuity in slopes at q = 2kF . Friedel oscillations
are the real-space manifestation of these discontinuity in slope. In other words
they come from the real-space version of the logarithm at q = 2kF . They manifest
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themselves physically in several ways. For example they broaden NMR lines and
they give rise to an e¤ective interaction JS1�S2 between magnetic impurities whose
amplitude J oscillates in sign. This is the so-called RKKY interaction. The change
in sign of J with distance is a manifestation of Friedel�s oscillations. The Friedel
oscillations originate in the sharpness of the Fermi surface. At �nite temperature,
where the Fermi surface broadens, they are damped as e�kF r(�=EF ) where � is
of order T: Another way to write this last result is e�r=�th where the thermal
de Broglie wavelength is of order vF =T in our units. Restoring physical units,
that length is de�ned by setting the thermal energy uncertainty kBT equal to
vF~�k and identifying the spread in wave vector around kF as �k � ��1th . We
will encounter this length in other contexts as well.

41.2.4 Plasmons and Landau Damping

We have already suggested in Fig.(41-4) that at small wave numbers, a large
frequency pole far from the particle-hole continuum appears. Let us look at this
parameter range. Taking vF q=! as a small parameter, the imaginary part of the
dielectric constant Eq.(41.12) is in�nitesimal at the plasmon pole but vanishes
everywhere else in its vicinity. On the other hand the limiting form of the real
part of the dielectric constant may be obtained directly by expanding Eqs.(41.9)
and (39.25). Indeed, when the frequency is large and outside the particle-hole
continuum, we can write

lim
q�kF

lim
!�"q+vF q

"L1 (q; !)

"0
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q!0
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!�"q+vF q

"
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= lim
q�kF

"
1 +

4Vq
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(2�)
3 f (�k)

�
�k � �k+q

�#
(41.29)

To obtain the last expression we did the change of variables k! �k� q and used
�k+q = ��k�q: The term linear in q vanishes when the angular integral is done
and we are left with

lim
q�kF

lim
!�"q+vF q

"L1 (q; !)

"0
= 1� 2Vqn

!2
q2

2m
(41.30)

= 1�
!2p
!2

(41.31)

with the value of !2p =
ne2

"0m
de�ned in Eq.(40.39). One can continue the above

approach to higher order or proceed directly with a tedious Taylor series expansion
of the real part Eq.(41.10) in powers of vF q=! to obtain

lim
!�"q+vF q

"L1 (q! 0; !)

"0
= 1�

!2p
!2
� 3
5

!2p
!2
(vF q)

2

!2
+ : : : (41.32)

Several physical remarks follow directly from this result
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� Even at long wave lengths (q ! 0) ; the interaction becomes unscreened at
su¢ ciently high frequency. More speci�cally,

"L1 (q! 0; ! � !p)

"0
! 1 (41.33)

� The collective plasma oscillation that we expected does show up. Indeed,
"1 (q! 0; !) = 0 when

0 = !2 � !2p �
3

5

!2p
!2
(vF q)

2
+ : : : (41.34)

!2 � !2p +
3

5
(vF q)

2
+ : : : (41.35)

Letting the right-had side be called !q, we have in the vicinity of this solution
! � !q

"L1 (q! 0; !)

"0
� 1�

!2q
!2
� 2

!q
(! � !q) (41.36)

which is precisely the form we had obtained from macroscopic considerations.
We now know that the unknown constant we had at this time in Eq.(40.40)
has the value a = 2=!q .

Fig.(41-6) shows a plot of both the real and the imaginary parts of the dielectric
constant for small wave vector (q � qTF ) : We see that the dielectric constant is
real and very large at zero frequency, representing screening, whereas the vanishing
of the real part at large frequency leads to the plasma oscillations, the so-called
plasmon. Given the scale of the �gure, it is hard to see the limiting behavior
"1 (q;1) ! 1 but the zero crossing is illustrated by the maximum in Im (1=") :
There is another zero crossing of "1 but it occurs in the particle-hole continuum
where "2 is large. Hence this is an overdamped mode.
When q is su¢ ciently large that the plasmon enters the particle-hole contin-

uum, damping becomes very large. This mechanism for damping is known as
Landau damping.

41.2.5 f�sum rule

We have not checked yet whether the f�sum rule is satis�ed. Let us �rst recall
that it takes the form,

2

Z 1

0

d!

�
!�00nn (q;!) =

nq2

m
: (41.37)

Using our relation between dielectric constant and density �uctuations Eq.(39.2)
"0=�

L(q; !) = 1� Vq�Rnn(q; !) we obtain the corresponding sum rule for the lon-
gitudinal dielectric constantZ 1

0

d!

2�
! Im

�
"0

"L (q! 0; !)

�
= �Vq

nq2

4m
(41.38)

= � ne2

4m"0
= �

!2p
4

(41.39)
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Figure 41-6 Real and imaginary parts of the dielectric constant and Im (1=") as a
function of frequency, calculated for rs = 3 and q = 0:2kF : Shaded plots correspond
to Im (1=") : Taken from Mahan op. cit. p.430

Let us obtain the plasmon contribution to this sum rule by using the approximate
form Eq.(41.36)Z 1

0

d!
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2
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(! � !q) + i�

#
= ��

Z 1

0

d!

2�
!
���!q
2

��� � (! � !q)(41.40)
= �

!2q
4
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This means that at q = 0; the plasmon exhaust the f�sum rule. Nothing else is
necessary to satisfy this sum rule. On the other hand, for q 6= 0; one can check
that the particle-hole continuum gives a contribution

�
!2p
4
+
!2q
4
=
3

20
(vF q)

2 (41.42)

as necessary to satisfy the f�sum rule.

Remark 285 One of the key general problems in many-body theory is to devise
approximations that satisfy conservation laws in general and the f�sum rule in
particular. The RPA is such an approximation. This is non-trivial. It is a con-
sequence of the fact that RPA is consistent with charge conservation. We will
discuss this problem in more details later.
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42. SINGLE-PARTICLE PROPER-
TIES AND HARTREE-FOCK

We have already mentioned several times our strategy. First we will show the
failure of Hartree-Fock and try to understand the reason for it by returning to
consistency relations between self-energy and density �uctuations. Having cured
the problem by using the screened interaction in the calculation, we will discuss
the physical interpretation of the result, including a derivation of the Fermi liquid
scattering rate that we discussed in the previous Part in the context of photoe-
mission experiments.
It is useful to derive the result from the variational principle as well as directly

from a Green�s function point of view. Since Hartree-Fock is sometimes actually
quite good, it is advisable to develop a deep understanding of this approach.

42.1 *Variational approach

In Hartree-Fock theory, we give ourselves a trial one-particle Hamiltonian and use
the variational principle to �nd the parameters. In the electron gas case the true
non-interacting part of the Hamiltonian is

H0 =
X
k;�

�kc
+
k;�ck;� =

X
k;�

k2

2m
c+k;�ck;� (42.1)

where the spin-sum is represented by a sum over �. The interacting part, written
in Fourier space, takes the form

H �H0 =
1

2V
X
k;�

X
k0;�0

X
q

c+k;�c
+
k0;�0Vqck0�q;�0ck+q;� (42.2)

with Vq the Fourier transform of the Coulomb potential

Vq =
e2

4�"0q2
: (42.3)

Electroneutrality leads to Vq=0 = 0 as before. The form of the interaction with all
the proper indices is not di¢ cult to understand when we consider the diagrammatic
representation in Fig.(42-1). All that is needed is the conservation of momentum
coming from integrals over all space and translational invariance. The factor of
1=V in front comes from a factor V�1=2 for each change of variable from real-

space to momentum space,
�
V�1=2

�4
, and one overall factor of volume V from

translational invariance which is used to eliminate one of the momentum sums
through momentum conservation. Although there are several ways of labeling the
momenta, the above one is convenient. In this notation q is often referred to as
the �transfer variable�while k and k0 are the band variables.
To apply the variational principle, one takes

eH0 =
P

k;� e�kc+k;�ck;� (42.4)
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Figure 42-1 Momentum conservation for the Coulomb interaction.

with the variational parameter e�k. Using the Feynman variational principle, also
known as Bogoliubov�s inequality, Eq.(33.74), we minimize the right-hand side of

�T lnZ � �T lnZ0 +
D
H � eH0

E
0
.

(42.5)

The partition function for eH0 � �N is computed as usual for non-interacting
electrons

� T lnZ0 = �T ln
Y
k;�

�
1 + e��(e�k��)� = �TX

k;�

ln
�
1 + e��(e�k��)� : (42.6)

Then the quantity
D
H � eH0

E
0
is easily evaluated as sums of products of pairs

of Green�s functions since the average is taken in the case where there are no
interactions, i.e. eH0 is quadratic in creation-annihilation operators. This can
be derived from the functional derivative approach and is the content of Wick�s
theorem. Here we use it directly to obtain,D

H � eH0

E
0
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0

(42.7)
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(42.8)
which may be simpli�ed by usingD

c+k0;�0ck;�

E
0
= ��;�0�k;k0

D
c+k;�ck;�

E
0
� ��;�0�k;k0f

�e�k� = 1

e�(e�k��) + 1 (42.9)

to obtainD
H � eH0

E
0
=
X
k;�

(�k �e�k) f �e�k�� 2 12VX
k

X
k0

Vk0�kf
�e�k0� f �e�k� (42.10)

where the overall factor of 2 comes from what is left of the spin sums. We have
dropped the term that leads to Vq=0 as usual because of the neutralizing back-
ground.
We can now determine our variational parametere�k by minimizing with respect

to it:

@

@e�k
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1 + e��(e�k��)�

35 = 2e��(e�k��)�
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(42.12)
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Setting the sum of the last two equations to zero, we see that the coe¢ cient of the
square bracket must vanish. Using Vq = V�q we then have

e�k = �k �
1

V
X
k0

Vk0�kf
�e�k0� = �k �

Z
d3k0

(2�)
3Vk�k0f

�e�k0� (42.13)

e�k = �k �
R

d3k0

(2�)3
e2

"0jk�k0j2
1

e�(e�k0��)+1 (42.14)

As usual the chemical potential is determined by �xing the number of particles.
Before we evaluate this integral let us obtain this same result from the Green�s
function point of view.
In principle we should check that the extremum point that we found by taking

the �rst derivative is a minimum. An alternate derivation of the Hartree-Fock
equations may be found in Appendix C.

42.2 Hartree-Fock from the point of view of Green�s
functions

The above equation Eq.(42.15) may be obtained directly from the Schwinger or
Feynman approaches. First, recall that the Hartree term disappears because it
involves Vq=0 = 0 that vanishes because of the neutralizing background.

Remark 286 The Hartree term vanishes in the translationally invariant case.
Note that to obtain the �rst term of the irreducible vertex entering the RPA equa-
tion, Fig.(37-3), the Hartree term in the self-energy does not vanish. It is because
we cannot assume translational invariance during the process where we take func-
tional derivvatives. Indeed, while we are doing that, there is a source �eld that
breaks that symmetry.

Keeping only the Fock term in the self-energy we get a minus sign when we
work directly in the Schwinger approach. In the Feynman approach, the minus
sign is there because we compute to �rst order and there is no fermion loop.
Furthermore, we have the eik

0
n� convergence factor with � = 0+ in the Feynman

approach. In the Schwinger approach, it comes form the + in V (1� 3)G0 (1; 3+)
in Eq.(36.34) and from the � (�1 � �3) in the potential energy. Ultimately, this
order at equal time comes from the fact that in the potential energy, creation
operators are to the left. Assuming that the Green�s function that appears in
the diagram is a dressed Green�s function, as appears naturally in the Schwinger
approach, we obtain (for the Schwinger approach see Eq. (37.25))

�(1) (k) = �
R

d3k0

(2�)3
T
P
ik0n

e2

"0jk�k0j2
1

ik0n�(�k0��)��(1)(k0)
eik

0
n� : (42.15)

Since the potential is frequency independent, notice that the sum over ik0n is easily
performed and that �(1) (k) is independent of external frequency ikn. De�ning
the new pole of the Green�s function e�k by

e�k = "k +�
(1) (k) ; (42.16)

before we do the sum over ik0n; it is easy to see that we recover the Hartree-Fock
result Eq. (42.14).
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From the point of view of non-interacting Green�s functions, it looks as if the
perturbation expansion for the full Green�s function, illustrated by a thick arrow
in Fig.(42-2), was written in terms of a perturbation series that involves the full
Green�s function itself. Iterating shows that in this approximation we have a self-
energy that resums the in�nite subset of diagrams illustrated on the bottom part
of this same �gure. In the Feynman approach, one commonly says that all the
�rainbow�diagrams have been summed. In principle this Hartree-Fock Green�s

k’

k  k’

+=
k k kk

= +Σ

+ +

Figure 42-2 Hartree-Fock as a self-consistent approximation for the Green�s function.
This self-consistent approximation is equivalent to a self-energy that sums all the
rainbow diagrams illustrated on the bottom part of the �gure. The thick line is the
full Green�s function.

function may be used in further perturbative calculations. We just have to be
careful not to double-count the diagrams we have already included.

42.3 Hartree-Fock from the point of view of renor-
malized perturbation theory and e¤ective medium
theories

We want to do perturbation theory but using this time for the Hamiltonian

H = eH0 +
�
H0 � eH0 + V

�
(42.17)

That is a trick that I will use repeatedly when we study broken symmetries and
phase transitions. That is not the case here, but it is a nice and easy warmup.
The unperturbed Hamiltonian is now eH0 and we assume that it takes the same
form as Eq.(42.4) above. In addition to the usual perturbation V , there is now
a translationally invariant one-body potential H0 � eH0: One determines the self-
energy in such a way that eH0 becomes the best �e¤ective medium�in the sense that

to �rst order in
�
H0 � eH0 + V

�
the self-energy calculated in this e¤ective medium

vanishes completely. This is illustrated in Fig.(42-3). This kind of approach is also
known as renormalized perturbation theory [25].
The so-called Hartree diagram (or tadpole diagram) with one loop does not

contribute because it is proportional to Vq=0 = 0. The Hartree term is in a sense
the classical contribution coming from the interaction of the electron with the
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Figure 42-3 E¤ective medium point of view for the Hartree-Fock approximation. In
this �gure, the propagators are evaluated with the e¤ective medium eH0:The Hartree
term is known as the tadpole diagram and the Fock term as the sunrise diagram.

average charge density. Because of electroneutrality here it vanishes. The last
diagram on the right of the �gure is the Fock term that comes from exchange and
is a quantum e¤ect. Algebraically, Fig.(42-3) gives

e� = �k �e�k +�(1) (k) = 0 (42.18)

Using the expression for the exchange, or Fock, diagram �(1) (k) we obtain for
�(1) (k)

�(1) (k) = �
Z

d3k0

(2�)
3T
X
ik0n

e2

"0
��k� k0��2 eG0 (k0; ik0n) eik0n� (42.19)

that we can evaluate using our formula for Matsubara sums. Substituting back
into Eq.(42.18) we get precisely our Hartree-Fock result Eq.(42.14) obtained from
the variational principle. Performing the summation over Matsubara frequencies
and using Eq.(42.18) to relate e�k to �(1) (k) ; this expression is found identical to
our earlier variational result Eq.(42.14). Using that same equation Eq.(42.18) fore�k; we can remove all reference to e�k and write the above equation in the same
form as Eq. (42.15) for the self-energy that we found directly from the Schwinger
approach.

Remark 287 In all higher order diagrams, if a Green�s function is dressed by
a rainbow diagram in the Feynman formalism, these diagrams are removed and
the Green�s function is judt replaced by the dressed Green�s function that I just
discussed. That is a special case of a skeleton expansion.

42.4 The pathologies of the Hartree-Fock approxi-
mation for the electron gas.

To evaluate our expression for the Hartree-Fock self-energy e�k = �k + �
(1) (k)

Eq.(42.14) we need the chemical potential. As usual in the grand-canonical en-
semble, the chemical potential is determined by requiring that we have the correct
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density. Let us suppose then that we have a density n: Then

n = 2

Z
d3k

(2�)
3T
X
ikn

eG0 (k; ikn) eikn� (42.20)

= 2

Z
d3k

(2�)
3

1

e�(�k+�
(1)(k)��) + 1

(42.21)

Let us focus on the zero temperature case. Then the Fermi function is a step
function and the last integral reduces to

n = 2

Z
d3k

(2�)
3 � (kF � jkj) (42.22)

where the chemical potential is given by

�kF +�
(1) (kF )� � = 0 (42.23)

The equation Eq.(42.22) that gives us n tells us that kF is precisely the same as in
the non-interacting case. This is an elementary example of a much more general
theorem due to Luttinger that we will discuss in a later chapter. This theorem
says that the volume enclosed by the Fermi surface is independent of interactions.
Clearly, if �0 is the value of the chemical potential in the non-interacting system,
then �(1) (kF )� � = ��0:
The integral to do for the Hartree-Fock self-energy is thus, at zero temperature

�(1) (k) = �
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d3k0

(2�)
3

e2

"0
��k� k0��2 � (kF � jk0j) (42.24)
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4�2"0

Z kF

0

k0
1

�2k ln
 ����� (k0 � k)2(k + k0)

2

�����
!
dk0 (42.26)

We evaluated the integral as a principal part integral because we have argued
that the potential should have no q = 0 component which means

��k� k0��2 6= 0.
Pursuing the calculation, we have

�(1) (k) = � e2

4�2"0
kF

�
1 +

1� y2
2y

ln

�����1 + y1� y

������ ; y � k

kF
(42.27)

The function �(1) (k) =
�

e2

4�2"0
kF

�
is plotted in Fig.(42.4).
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Plot of the Hartree-Fock self-energy at zero
temperature.
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Since limx!0 x lnx = 0, we have that

�(1) (kF ) = �
e2

4�2"0
kF (42.28)

The ratio of this term to the zeroth order term, namely the kinetic energy k2F =2m
is of order rs

/ me2kF
k2F "0

/ 1

kFa0
/ rs (42.29)

as can be seen using the de�nitions Eqs.(40.2)(40.5).
Up to here everything seems to be consistent, except if we start to ask about

the e¤ective mass. The plot of the self-energy suggests that there is an anomaly
in the slope at y = 1 (or k = kF ). This re�ects itself in the e¤ective mass. Indeed,
using the general formula found in the previous chapter, Eq.(31.33)

m

m� = lim
k!kF

1 + @
@�k

Re�R (k; Ek � �)
1� @

@! Re�
R (k; !)

��
!=Ek��

= 1 +
dk

d�k

@�(1) (k)

@k

����
k=kF

(42.30)

we have

@�(1) (k)
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����
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/ kF
�
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�
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d
h
1 + 1�y2

2y ln
���� 1+y1�y

����i
dy

������
y=1

: (42.31)

The problem comes from ln (1� y) : Let us concentrate on the contributions pro-
portional to this term

d
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��
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� y
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�
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�
=

�
� 1

2y2
� 1
2

�
ln (1� y)

�
�
1

2y
� y

2

�
1

1� y (42.32)

As y ! 1 we obtain a singularity from ln (0) = �1: This corresponds to the
unphysical result m� = 0: An e¤ective mass smaller than the bare mass is pos-
sible but rather unusual. This is seen for example in three dimension for very
small rs (table 8.7 in Giuliani-Vignale [82]). However, in general, interactions will
make quasiparticles look heavier. The result m� = 0 obtained here is as close to
ridiculous as one can imagine.
The physical reason for the failure of Hartree-Fock is the following. It is correct

to let the electron have exchange interaction of the type included in rainbow
diagrams do, but it is incorrect to neglect the fact that the other electrons in
the background will also react to screen this interaction. We discuss this in more
details below.
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43. *MORE FORMAL MATTERS:
CONSISTENCY RELATIONS BE-
TWEEN SINGLE-PARTICLE SELF-
ENERGY, COLLECTIVE MODES,
POTENTIAL ENERGY AND FREE
ENERGY

To cure the above pathology, it will be useful to relate self-energy to density �uc-
tuations. This is in a sense already done if you followed the Schwinger approach.
You need to read this Chapter if you followed the Feynman approach. Otherwise
part of its main message has already been mentioned in earlier sections and the
considerations on the free energy will come later.
We have found an expression for the density �uctuations that appears correct

since it has all the correct Physics. It was a non-trivial task since we had to sum an
in�nite subset of diagrams. We will see that it is also di¢ cult to obtain the correct
expression for the self-energy without a bit of physical hindsight. We might have
thought that the variational principle would have given us a good starting point
but we will see that in this particular case it is a disaster. The following theorems
will help us to understand why this is so and will suggest how to go around the
di¢ culty.
We thus go back to some formalism again to show that there is a general

relation between self-energy and charge �uctuations. We will have a good approx-
imation for the self-energy only if it is consistent with our good approximation for
the density �uctuations. We also take this opportunity to show how to obtain the
self-energy since just a few additional lines will su¢ ce.

43.1 *Consistency between self-energy and density
�uctuations

43.1.1 *Equations of motion for the Feynmay way

You do not need to read this section if you have followed the source �eld approach.
You can skip to the next subsection. We start from the equations of motion for
the Green�s function. We need �rst those for the �eld operators.

@ (1)

@�1
= � [ (1) ;K] (43.1)
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Using [A;BC] = fA;BgC �B fA;Cg and Eq.(38.1) for K we have

@ �1 (x1; �1)

@�1
=
r21
2m

 �1 (x1; �1) + � �1 (x1; �1) (43.2)

�
X
�10

Z
dx10v (x1�x10) y�10 (x10 ; �1) �10 (x10 ; �1) �1 (x1; �1)

Remark 288 We assume that the potential has no q = 0 component because of the
compensating e¤ect of the positive background. The argument for the neutralizing
background is as follows. If we had kept it, the above equation would have had an
extra term

+ n

�Z
dx10v (x1�x10)

�
 �1 (x1; �1) (43.3)

The q = 0 contribution of the potential in the above equation of motion gives on
the other hand a contribution

�
�Z

dx10v (x1�x10)
�24 1
V

Z
dx10

X
�10

 y�10 (x10 ; �1) �10 (x10 ; �1)

35 �1 (x1; �1)
(43.4)

While the quantity in bracket is an operator and not a number, its deviations
from n vanish like V�1=2 in the thermodynamic limit, even in the grand-canonical
ensemble. Hence, to an excellent degree of approximation we may say that the
only e¤ect of the neutralizing background is to remove the q = 0 component of
the Coulomb potential. The result that we are about to derive would be di¤erent
in other models, such as the Hubbard model, where the q = 0 component of the
interaction potential is far from negligible.

Reintroducing our time-dependent potential Eq.(38.7) the above result can be
written in the shorthand notation

@ (1)

@�1
=
r21
2m

 (1) + � (1)�
Z
10
 y (10)V (1� 10) (10) (1) (43.5)

From this, we can easily �nd the equation of motion for the Green�s function

G (1; 2) = �


T�
�
 (1) + (2)

��
(43.6)

namely,�
@

@�1
� r

2
1

2m
� �

�
G (1; 2) = �� (1� 2)+

�
T�

�Z
10
 y
�
10+
�
V (1� 10) (10) (1) y (2)

��
(43.7)

where as usual the delta function comes from the action of the time derivative
on the � functions implicit in the time ordered product. The right-hand side is
not far from what we want. The last term on the right-hand side can be related
to the product of the self-energy with the Green�s function since, comparing the
equation of motion for the Green�s function with Dyson�s equation

G�10 G =1+�G (43.8)

we have thatR
100
� (1; 100)G (100; 2) = �

D
T�

hR
10
 y (10+)V (10 � 1) (10) (1) y (2)

iE
(43.9)

which, in all generality, can be taken as a de�nition of the self-energy.

392 *MORE
FORMAL MATTERS: CONSISTENCY RELATIONS BETWEEN SINGLE-PARTICLE
SELF-ENERGY, COLLECTIVE MODES, POTENTIAL ENERGY AND FREE ENERGY



43.1.2 Self-energy, potential energy and density �uctuations

The last equation (43.9) has been derived also in Eq.(36.13) in a di¤erent notation
if you followed the functional derivative approach. In this section we keep the
integral on space-time coordinates explicitly. If you have read the �rst remark in
Sec. 36.2 the �rst few equations below are nothing new.
In the limit 2! 1+ where

1+ �
�
x1; �1 + 0

+;�1
�

(43.10)

the term on the right-hand side of Eq.(43.9) is�
T�

�Z
10
 y
�
1+
�
 y
�
10+
�
V (10 � 1) (10) (1)

��
where we have written explicitly the integral. Note that we have placed  y (2)!
 y (1+) to the far left of the three fermion operators  y (10) (10) (1) because
the potential is instantaneous and these three fermion operators are all at the
same time and in the given order. Recalling the de�nition of the average potential
energy

2 hV i =
X
�1

Z
d3x1

Z
10

D
T�

h
 y
�
1+
�
 y (10)V (10 � 1) (10) (1)

iE
(43.11)

we directly get from Eq.(43.9) above a relation between self-energy and potential
energy X

�1

Z
d3x1

Z
10
� (1; 10)G

�
10; 1+

�
= 2 hV i (43.12)

We have the freedom to drop the time-ordered product when we recall that the
operators are all at the same time and in the indicated order. Using time-
translational invariance the last result may also be writtenR
1

R
10
� (1; 10)G (10; 1+) = 2 hV i� =

R
1

R
10

D
T�

h
 y (1+) y (10+)V (10 � 1) (10) (1)

iE
(43.13)

Remark 289 The 1+ on the left-hand side is absolutely necessary for this expres-
sion to make sense. Indeed, taken from the point of view of Matsubara frequencies,
one knows that the self-energy goes to a constant at in�nite frequency while the
Green�s function does not decay fast enough to converge without ambiguity. On
the right-hand side of the above equation, all operators are at the same time, in
the order explicitly given.

The right-hand side of the last equation is in turn related to the density-density
correlation function. To see this, it su¢ ces to return to space spin and time indices
and to recall that the potential is instantaneous and spin independent so that

2 hV i� =
Z
10

Z
1

D
 y
�
1+
�
 y
�
10+
�
V (10 � 1) (10) (1)

E
(43.14)

= ��
X
�1;�10

Z
d3x10

Z
d3x1

D
 y�10 (x10) v (x10 � x1) �1 (x1)

E
��1;�10 � (x10 � x1)

+�
X
�1;�10

Z
d3x10

Z
d3x1

D
 y�10 (x10) �10 (x10) v (x10 � x1) 

y
�1 (x1) �1 (x1)

E
= �nV�v (0) + �

Z
d3x10

Z
d3x1 hn (x10) v (x10 � x1)n (x1)i (43.15)
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where in the last equation we have usedZ
d3x1

X
�1

D
 y�1 (x1) �1 (x1)

E
= N = nV (43.16)

Going to Fourier space, we haveZ
d3x10

Z
d3x1 hn (x10) v (x10 � x1)n (x1)i (43.17)

=

Z
d3x10

Z
d3x1v (x10 � x1)�nn (x10 ; 0;x10) (43.18)

=

Z
d3q

(2�)
3Vq

h
lim
�!0
V�nn (q; �)

i
(43.19)

We did not have to take into account the disconnected piece that appears in
Eq.(43.17) but not in �nn (q; �) because this disconnected piece contributes only
at q = 0 and we have argued that Vq=0 = 0: Note that there is no jump in
�nn (q; �) at � = 0 contrary to the case of the single-particle Green�s function.
Substituting back into Eq.(43.15) we have

2 hV i� =
Z
10

Z
1

D
 y
�
1+
�
 y
�
10+
�
V (10 � 1) (10) (1)

E
= (43.20)

= �V

24�nv (0) + Z d3q

(2�)
3VqT

X
iqn

�nn (q; iqn)

35
= �V

24Z d3q

(2�)
3Vq

24TX
iqn

�nn (q; iqn)� n

3535
Substituting the above Eq.(43.20) into the consistency relation between self-energy
and potential energy Eq.(43.13) and then using invariance under time and space
translations as well as spin rotation symmetry to replace

R
1
by 2�V; this gives the

following relation between self-energy and density �uctuationsZ
10
� (1; 10)G

�
10; 1+

�
= (43.21)

T
X
ikn

Z
d3k

(2�)
3� (k;ikn)G (k;ikn) e

ikn� (43.22)

=
1

2

Z
d3q

(2�)
3Vq

24TX
iqn

�nn (q; iqn)� n

35 : (43.23)

This plays the role of a sum-rule relating single-particle properties, such as the
self-energy and Green function, to a two-particle quantity, the density-density
correlation function or potential energy.

Remark 290 In short range models, we need to restore the vq=0 component and
the disconnected piece has to be treated carefully. Also, the spin �uctuations will
come in. This subject is for the chapter on the Hubbard model.
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44. SECOND STEP OF THE AP-
PROXIMATION: GWCURINGHARTREE-
FOCK THEORY

In this Section, we present the solution to the failure of Hartree-Fock that was
found by Gell-Man and Brueckner[17]. In brief, in the �rst step of the calculation
we obtained collective modes with bare Green�s functions. We saw that just trying
to do Hartree-Fock at the single-particle level was a disaster. Now we want to
improve our calculation of the single-particle properties. The Physics is that the
interaction appearing in Hartree-Fock theory should be screened. Or equivalently,
the self-energy that we �nd should be consistent with the density �uctuations
found earlier since �G is simply related to density �uctuations. The resulting
expresssion that we will �nd is also known as the GW approximation. We will
come back on this nomenclature in Chapter 49.
The �rst subsection should be read if you follow the Feynman way. Otherwise,

skip to the next subsection.

44.1 *An approximation for
P
that is consistent

with the Physics of screening

For Feynman a¢ cionados, we have seen in a previous Chapter, more speci�cally
Eq.(43.21), that the self-energy is related to density �uctuations. More speci�cally,
if we multiply the self-energy by the Green�s function and take the trace, we should
have the same thing basically as we would by multiplying the density-density
correlation function by the potential and taking the trace. This is illustrated
schematically for the Hartree-Fock approximation by the diagram of Fig.(44-1).
The diagram on the left is built from the rainbow self-energy of Fig.(42-2) by
multiplying it by a dressed Green�s function. The one on the right is obtained by
taking a single bubble with dressed propagators and multiplying by a potential.
The change of integration variables k� k0 = �q shows trivially that the diagrams
are identical. The extra term that appears on the right-hand side of the relation
between self-energy and density Eq.(43.21) is due to the fact that one forces the
Green�s functions to correspond to a given time order in the self-energy calculation
that is di¤erent from the one appearing naturally on the right-hand side.

Remark 291 Equality (43.21) for the Hartree-Fock approximation. Let us check
just the sums over Matsubara frequencies on both sides of Eq.(43.21) to see that
they are identical. First, the sum on the left hand-side.

T
X
ikn

T
X
ik0n

eikn�

ikn � �k
eik

0
n�

ik0n � �k0
= f (�k) f (�k0) (44.1)
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Figure 44-1 Approximation for the density �uctuations that corresponds to the
Hartree-Fock self-energy.

While the sum on the right-hand side is

T
X
ikn

T
X
iqn

1

ikn � �k
1

ikn + iqn � �k0
(44.2)

= T
X
ikn

T
X
qn

�
1

ikn � �k
� 1

ikn + iqn � �k0

�
1

iqn � �k0 + �k
(44.3)

= T
X
qn

f (�k)� f (�k0)
iqn � �k0 + �k

= � [f (�k)� f (�k0)]nB (�k0 � �k) (44.4)

where we used, with nB the Bose function

T
X
qn

1

iqn � a
= �nB (a) or � nB (a)� 1 (44.5)

The result of the sum depends on the convergence factor but the �1 in the second
possibility does not contribute once the sum over wave vectors are done. We are
thus left only with

� [f (�k)� f (�k0)]nB (�k0 � �k) = � e��k0 � e��k
(e��k0 + 1) (e��k + 1)

1

e�(�k0��k) � 1

= � e��k

(e��k0 + 1) (e��k + 1)
(44.6)

= � (1� f (�k)) f (�k0) (44.7)

Eq.(44.1) and the last equation are not strictly equal and that is why it is necessary
to subtract n in Eq.(44.1).

Fig.(44-1) shows that the Hartree-Fock approximation corresponds to a very
poor approximation for the density �uctuations, namely one that has no screening,
and no plasma oscillation. Knowing that the RPA approximation for the density
has all the correct properties, it is clear that we should use for the self-energy the
expression appearing in Fig.(44-2). Indeed, in such a case, multiplying � by G0
gives a a result, illustrated in Fig.(44-3) that does correspond to multiplying the
RPA expression for the density Fig.(41-2) by Vq and summing over q: These are
the ring diagrams.
Using Feynman�s rules, the corresponding analytical expression is

�RPA (k;ikn) = (44.8)

�
Z

d3q

(2�)
3T
X
iqn

Vq
1 + Vq�0nn (q;iqn)

G0 (k+ q; ikn + iqn)

= �
Z

d3q

(2�)
3T
X
iqn

Vq
" (q; iqn)

G0 (k+ q; ikn + iqn)
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Figure 44-2 Diagrammatic expression for the self-energy in the RPA approximation.

+ +

+ +      ...

Figure 44-3 Ring diagrams for �G in the RPA approximation. The same diagrams
are used for the free energy calculation.
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Comparing with the Hartree-Fock approximation Eq.(42.15) the di¤erences here
are that a) we do not have self-consistency, b) more importantly, the interaction
is screened. This is illustrated diagrammatically in Fig.(44-4) which is analogous

=Σ

= +

Figure 44-4 RPA self-energy written in terms of the screened interaction.

to the diagram for the Hartree-Fock approximation Fig.(42-2) but with a screened
interaction and only the �rst rainbow diagram, without self-consistency.

Remark 292 If, instead of summing the whole series in Fig.(44-2) we had stopped
at any �nite order, we would have had to deal with divergent integrals. Indeed, con-
sider expanding the RPA susceptibility to �rst order in Eq.(44.8). This corresponds
to the diagram with one bubble. The corresponding expression isZ

d3q

(2�)
3T
X
iqn

V 2q �
0
nn (q;iqn)G0 (k+ q; ikn + iqn)

which is divergent since V 2q is proportional to q�4 while the integral over q is in
three dimensions only. Higher order bubbles are worse.

44.2 Self-energy and screening, GW the Schwinger
way

We have derived in Eq.(36.13) an expression for the product �G:When � = 0 and
2 = 1+; this equation reduces to

�
�
1; 2
�
�
G
�
2; 1+

�
�
= V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 y (1+) (1)

iE
. (44.9)

It shows that we should have an approximation for the self-energy that, when
multiplied by G, gives the density-density correlation function. That is a very
general result, or sum-rule, is a sort of consistency relation between one- and
two-particle properties. It is equivalent to Eq.(43.23). This is a very important
property that we will use also later in the context of non-perturbative treatments
of the Hubbard model.
To obtain an approximation for the self-energy � that is consistent with the

density-density correlation function that we just evaluated in the RPA approxi-
mation, we return to the general expression for the self-energy Eq.(36.34) and the
corresponding pictorial representation Eq.(36-2). We replace the irreducible vertex
��=�G by the one shown in Fig. 41-3 that we used to compute the density-density
correlation function illustrated in Fig. 37-7. Note however that, as we did before,
we keep only the terms where Vq carries a momentum q: We neglect the next to
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Figure 44-5 Coordinate (top) and momentum space (bottom) expressions for the
self-energy at the second step of the approximation. The result, when multiplied by
G; is compatible with the density-density correlation function calculated in the RPA
approximation.

last diagram in Fig.37-7. The other way to justify why we keep only these terms
is that they are the most divergent diagrams. Their sum to in�nity is however
�nite. We also know that by summing all diagrams to in�nity, we are calculating
the two-particle equivalent of a self-energy, shifting poles of the non-interacting
density-density correlation function, as we should.

The �nal result is illustrated in Fig. 44-5. We just need to replace the functional
derivative of the Green function appearing at the bottom right by the RPA series
illustrated in Fig. 41-3. Recalling that the Hartree term vanishes, the �nal result
is equivalent, when looked at sideways, to the series of bubble diagrams illustrated
in Fig. 44-2,

The algebraic expression for this second level of approximation for the self-
energy can be read o¤ the �gure. It takes the explicit form

�RPA (k;ikn) = �(2) (k;ikn) (44.10)

= �
Z

d3q

(2�)
3T
X
iqn

Vq

�
1� Vq�

0
nn (q;iqn)

1 + Vq�0nn (q;iqn)

�
G0 (k+ q; ikn + iqn)

where the �rst term comes from the Fock contribution. The minus sign in the
second term comes from the fact that the bubble with vertex is related to �G=��
that is minus the charge susceptibility. The two terms can be combined into the
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single expression

�(2) (k;ikn) = �
Z

d3q

(2�)
3T
X
iqn

Vq
1 + Vq�0nn (q;iqn)

G0 (k+ q; ikn + iqn) : (44.11)

Using our result for the longitudinal dielectric constant that follows from the
density �uctuations in the RPA approximation Eq. (41.9), the last result can be
written as

�(2) (k;ikn) = �
Z

d3q

(2�)
3T
X
iqn

Vq
"L (q;iqn) ="0

G0 (k+ q; ikn + iqn) (44.12)

which has the very interesting interpretation that the e¤ective interaction entering
the Fock term should be the screened one instead of the bare one. The two are
equal only at very high frequency. The screened potential

Vq
"L (q;iqn) ="0

=
e2

"L (q;iqn) q2

is often denoted W which means that the integrand is WG0, hence the name GW
approximation. We will discuss this further in Chapter 51 on Hedin�s equations.

Remark 293 We can check that the relation between �G Eq.(44.9) and density
�uctuations is satis�ed by noticing that when we integrate this equation over 1;
it is equivalent to computing a trace. That trace can be computed in any basis,
in particular in the k basis. Diagrammatically, from Fig. 44-5, it is clear that
multiplying by G0 and summing over k (i.e. taking the trace), we obtain the
series of bubble diagrams for the density �uctuations, multiplied by the potential.
That corresponds to the total potential energy. Hence, one recovers the sum-rule
relating single and two-particle properties Eq.(43.23). Algebraically, we start from
Eq.(44.11) just above and computeZ

d3k

(2�)
3T
X
ikn

�(2) (k;ikn)G0 (k; ikn) e�ikn0
�
=

�
Z

d3q

(2�)
3T
X
iqn

Vq
1 + Vq�0nn (q;iqn)

Z
d3k

(2�)
3T
X
ikn

G0 (k+ q; ikn + iqn)G0 (k; ikn) e�ikn0
�

The convergence factor e�ikn0
�
is necessary to enforce �

�
1; 2
�
G
�
2; 1+

�
and obtain

the potential energy to the right. It is not obvious from the right-hand side that
we need the convergence factor until one realizes that there is a sum over kn and
qn and only two Green�s functions G0 (k+ q; ikn + iqn)G0 (k; ikn) that survive at
very large frequency, giving a result that is formally divergent. Hence we should
not invert the order of summation over kn and qn as we did. That can cost the
constant term that appears in Eq.(43.23).
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45. PHYSICS INSINGLE-PARTICLE
PROPERTIES

In this Chapter, we interpret the results of calculations based on formulas of the
previous Chapter, and compare with experiments. In particular, after a look at the
overall picture, we will recover theoretically the Fermi liquid regime, and compare
with experiment.

45.1 Single-particle spectral weight

The real-part and the absolute value of the imaginary part of the RPA self-energy
at zero temperature are plotted in Fig.(45-1) as a function of frequency for three
di¤erent wave vectors. In the Hartree-Fock approximation, the self-energy was
completely frequency independent. The result here is quite di¤erent. The screened
interation contains the plasmons and has a drastic e¤ect on single-particle prop-
erties. There are several points worth mentioning.

Figure 45-1 Real and imaginary part of the RPA self-energy for three wave vectors,
in units of the plasma frequency. The chemical potential is included in Re�: The
straight line that appears on the plots is ! � "k: Taken from B.I. Lundqvist, Phys.
Kondens. Mater. 7, 117 (1968). rs = 5?

� Im� (k;! = 0) = 0 for all wave vectors. This is true only at zero temper-
ature. This property will play a key role in the derivation of Luttinger�s
theorem later. It will be proven within our approximation in Sec. (45.2)
below.

� The straight line that appears on the plots is !�"k: The intersection of this
straight line with Re� , which is de�ned on the �gure to contain the chemical
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Figure 45-2 RPA spectral weight, in units of the inverse plasma frequency. Taken
from B.I. Lundqvist, Phys. Kondens. Mater. 7, 117 (1968).

potential, corresponds (in our notation) to the solution of the equation

! � "k = Re�R (k; !)� � (45.1)

As we argued in the previous chapter Eq.(31.20), this determines the position
of maxima in the spectral weight,

A (k;!) = �2 ImGR (k;!) (45.2)

=
�2 Im

PR
(k; !)�

! � �k � Re
PR

(k; !)
�2
+
�
Im
PR

(k; !)
�2 (45.3)

maxima that we identify as quasiparticles. Let us look at the solutions near
! = 0: These correspond to a peak in the spectral weight Fig.(45-2). At the
Fermi wave vector, the peak is located precisely where the imaginary part
of the self-energy vanishes, hence the peak is a delta function. On the other
hand, away from k = kF , the maximum is located in a region where the
imaginary part is not too large, hence the quasiparticle has a �nite lifetime.
Recall that to have the quasiparticle shape described in the previous chapter
Eq.(31.25),

A (k;!) � 2�Zk

"
1

�

�k (!)

(! � Ek + �)2 + (�k (!))2

#
+ inc (45.4)

it is necessary that at the crossing point, the slope of Re�R (k; !) be negative
because it is necessary that

Zk =
1

1� @
@! Re�

R (k; !)
��
!=Ek��

� 0 (45.5)

if the previous formula is to make sense. The value of ZkF , namely 0:6, is
indicated on this plot.

� Note that in Fig. 45-1 there is a threshold-like feature at !p = �1 where
Im�R becomes large. This is when the one-particle excitations can emit or
absorb real plasmons. This is discussed further below.
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� From the previous discussion, we see that the two maxima away from ! = 0
at k = kF do not correspond to quasiparticle solutions. The weight near the
maxima away from ! = 0 come from scattering rates Im�R that are large,
but not too large compared with the value of ! � �k �Re�R (k; !) : At the
threshold where Im�R is really large, the spectral weight in fact vanishes
because of the denominator in the general expression for the spectral weight
Eq.(45.2). Note that the maxima away from ! = 0 at k = kF are near the
value of ! where the quasiparticle condition Eq. (45.1) is almost satis�ed.

� For the �gure on the right, k = 1:4kF , the peak nearest ! = 0 corresponds
to a quasiparticle solution. Note however that for wave vectors so far from
the Fermi surface, the width of the peak starts to be quite a bit larger.
The maxima further away all occur in regions where Im�R is large and the
quasiparticle condition Eq. (45.1) is almost satis�ed.

� For k = 0:6kF , there seems to be an additional quasiparticle solution, namely
a solution where @

@! Re�
R is negative and Im�R is not too large, located

at an energy !p below the main quasiparticle energy. Since the free-electron
band is bounded from below, Im�R vanishes at su¢ ciently negative fre-
quency, allowing a new solution to develop when interactions are su¢ ciently
strong. This solution looks like a bound state.

45.2 Simplifying the expression for �00

In this section, we write the imaginary part of the self-energy in a form that is
easy to interpret physically. The evaluation in the Fermi-liquid limit is given in
the following section. Here we want to �rst show that the imaginary part of the
self-energy de�ned by

�R (k; !) = �0 (k; !) + i�00 (k; !) (45.6)

may be written in the form

�00 (k; !) = � m
2jkj

R
d2q?
(2�)2

R
d!0

� [nB (!
0) + f (! + !0)]V 2q �

00
nn

�
q?; qk; !

0� (45.7)

where qk is the solution of the equation

jkj
m
qk +

q2k

2m
=

�
! + !0 �

�
k2

2m
� �+ q2?

2m

��
(45.8)

Proof: It is preferable to �rst rewrite the RPA expression Eq.(44.8) in the fol-
lowing form

�RPA (k;ikn) = �
Z

d3q

(2�)
3T
X
iqn

Vq

�
1� Vq�

0
nn (q;iqn)

1 + Vq�0nn (q;iqn)

�
G0 (k+ q; ikn + iqn)

(45.9)

= �HF (k) +

Z
d3q

(2�)
3T
X
iqn

�
Vq�

RPA
nn (q;iqn)Vq

�
G0 (k+ q; ikn + iqn)

(45.10)
The �rst term at T = 0 is the Hartree-Fock contribution, as we can see
from Eq.(42.24). In other words, whether we use G0 or the dressed eG0 in
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the Hartree-Fock calculation we obtain the same result at zero temperature.
The important points here however are that (i) it is the only contribution
that survives at in�nite frequency and (ii) the imaginary part comes only
from the second term. That second term contains a quantity in square
brackets that looks like two interaction vertices, Vq coupling to a density
propagator �RPAnn (q;iqn). When we consider interactions with other types
of excitations, including with phonons, this form will reoccur and will be
more easily susceptible to generalizations. To �nd the imaginary part, let us
concentrate on this last expression and use the spectral representation for
�RPAnn : We then have

�RPA (k;ikn)��HF (k) =
Z

d3q

(2�)
3

Z
d!0

�
T
X
iqn

�
Vq
�00nn (q; !

0)

!0 � iqn
Vq

�
1

ikn + iqn � �k+q
:

(45.11)
To do the sum over bosonic Matsubara frequencies �rst, we do the partial
fraction decomposition as usual

� T
X
iqn

1

iqn � !0
1

ikn + iqn � �k+q
(45.12)

= �T
X
iqn

�
1

iqn � !0
� 1

ikn + iqn � �k+q

�
1

ikn + !0 � �k+q
(45.13)

=
�
nB (!

0) + f
�
�k+q

�� 1

ikn + !0 � �k+q
(45.14)

We do not need a convergence factor since the terms of the original sum
decrease in 1= (iqn)

2. However, since we have splitted the sum in two terms
which do not individually converge, we need to use the same convergence
factor for both sums individually. Whichever convergence factor is used, the
result is the same. Note that for any ikn; the sum ikn + iqn is a fermionic
Matsubara frequency when iqn is a bosonic one. That is why we obtained
a Fermi distribution in the last term. Substituting back into our expression
for the self-energy, the analytic continuation ikn ! ! + i� can be done and
we obtain

�R (k; !)��HF (k) =
Z

d3q

(2�)
3

Z
d!0

�

�
nB (!

0) + f
�
�k+q

�� Vq�
00
nn (q; !

0)Vq
! + i� + !0 � �k+q

:

(45.15)
The imaginary part is thus

�00 (k; !) = ��
Z

d3q

(2�)
3

Z
d!0

�
[nB (!

0) + f (! + !0)]V 2q �
00
nn (q; !

0) �
�
! + !0 � �k+q

�
(45.16)

De�ning qjj by the direction parallel to the wave vector k and calling q? the
other directions, the integral over qjj can be performed, giving the condition
in Eq.(45.8). We then obtain, assuming that we are in a region of frequency
where the delta function has a solution, the desired result Eq.(45.7)

Remark 294 Order of summation and analytic continuation: In Eq.(45.11),
we cannot perform the analytical continuation ikn ! ! + i� before we have
performed the sum over iqn because, except for iqn = 0, this would neces-
sitate going through the poles at ! = �iqn + �k+q: In addition, recall that
we want the high-frequency behavior to be 1=ikn before we do the analytic
continuation, but until we have done the sum over iqn we cannot say that
we have that asymptotic behavior since iqn extends to in�nity.
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Figure 45-3 Schematic representation of the processes contained in the imaginary
part of the self-energy. On the left, an electron in with momentum and frequency
k;! decays into another a quasiparticle k+ q;�k+q plus a particle-hole excitation
�q; ! � �k+q that can be a plasmon, depending on the conditions on wave-vector
and frequency. On the right, the analogous process for a hole.

In the zero temperature limit, f (! + !0) = � (�! � !0) and nB (!0) = �� (�!0)
so that if we take ! > 0 then the integral over !0 extends over the interval
�! < !0 < 0 where nB (!0) + f (! + !0) takes the value �1: At low temperature,
the contributions to �00 Eq.(45.7) will come mostly from this same frequency inter-
val since this is where the combination nB (!0)+f (! + !0) 6= 0. This immediately
allows us to understand why the imaginary part of the self-energy in Fig.(45-1)
above starts to be large when the frequency becomes of the order of the plasma
frequency. This is only when ! is that large that the contributions from !0 � !p
in �00nn can start to contribute. This is where the quasiparticles can start to absorb
or emit plasmons.

Remark 295 Vanishing of �00 at zero temperature: Our general formula for the
imaginary part Eq.(45.7) tells us that at zero temperature �00 (k; ! = 0) = 0 for
all wave vectors, as we have seen in Fig.(45-1). Mathematically, this is so be-
cause limT!0 [nB (!

0) + f (!0)] = 0 for all !0: Physically, it is because phase space
vanishes when we sit right at the chemical potential (! = 0) :

45.3 Physical processes contained in �00

It is easier to interpret the physical meaning of the imaginary part by concentrating
on the case ! > 0 and then performing a change of variables !0 ! �!0: Then the
integration window at T = 0 becomes �! < �!0 < 0; or ! > !0 > 0: Using

nB (�!0) = � (1 + nB (!0)) (45.17)

and �00nn (q;�!0) = ��00nn (q; !0) = ��00nn (�q; !0) ; the imaginary part of the self-
energy becomes

�00 (k; !) = ��
Z

d3q

(2�)
3

Z
d!0

�
[(1 + nB (!

0))� f (! � !0)]V 2q �00nn (q; !0) �
�
! � !0 � �k+q

�
= �

Z
d3q
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q �

00
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�
�q; ! � �k+q

�
��
1 + nB

�
! � �k+q

�� �
1� f

�
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��
+ nB

�
! � �k+q

�
f
�
�k+q

��
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The �rst term
�
1 + nB

�
! � �k+q

�� �
1� f

�
�k+q

��
represents the decay of a parti-

cle of energy ! and wave vector k into an empty particle state of energy �k+q and
momentum k+ q; plus a bosonic excitation (particle-hole continuum or plasmon)
of energy !� �k+q and momentum �q: The second term nB

�
! � �k+q

�
f
�
�k+q

�
represents the case where the incident state is a hole of energy ! and wave vector
k that decays into another hole of energy �k+q and momentum k+ q by absorbing
a boson of energy ! � �k+q and momentum �q: The latter is in some sense the
�rst process but time reversed. This is illustrated in Fig.(45-3). �Scattering-in�
terms that represent repopulation of the state k occur in transport equations, or
two-body response functions, not here.

45.4 Fermi liquid results

Perhaps the best known characteristic of a Fermi liquid is that at frequencies and
temperatures much smaller than the Fermi energy, �00R (kF ; !;T = 0) / !2 and
�00R (kF ; ! = 0;T ) / T 2. To recover this result, valid far from phase transitions,
we start from the above expression Eq.(45.7) for �00 but we evaluate it at k = kF
and use vF � kF =m so that

�00 (kF ; !) = � 1
2vF

R
d2q?
(2�)2

R
d!0

� [nB (!
0) + f (! + !0)]V 2q �

00
nn

�
q?; qk; !

0�
(45.18)

where qk is obtained from the solution of

vF qk +
q2k

2m
=

�
! + !0 � q2?

2m

�
: (45.19)

The key to understanding the Fermi liquid regime is in the relative width in
frequency of �00nn (q;!

0) =!0 vs the width of the combined Bose and Fermi functions.
In general, the function nB (!0) + f (! + !0) depends on !0 on a scale max (!; T )
while far from a phase transition, �00nn (q;!

0) =!0 depends on frequency only on the
scale of the Fermi energy. We can assume that it is independent of frequency at
low frequency.

Proof: As we can see from the explicit expression for the imaginary part of �00nn
Eq.(41.16), and using the fact that Im�0Rnn(q; 0) = 0,

lim
!!0

Im�Rnn(q; !)=! = lim
!!0

Im�0Rnn(q; !)=!

(1 + VqRe�0Rnn(q; 0))
2 (45.20)

it su¢ ces that the Lindhard function Im�0Rnn(q; !) has the property that
Im�0Rnn(q; !)=! is independent of frequency at low frequency. As expected
from the fact that Im�0Rnn(q; !) is odd in frequency, it turns out that Im�

0R
nn(q; !)

is indeed linear in frequency at low frequency, which proves our point. The
linearity can be explicitly checked from our previous results Eqs.(41.12) and
(41.9).

Hence, at low frequency, we can assume that �00nn (q;!
0) =!0 is independent of

frequency in the frequency range over which n (!0) + f (! + !0) di¤ers from zero.
Also, V 2q �

00
nn (q;!

0) =!0 depends on wave vector over a scale that is of order qF as
we can see from Fig.(41-5). Hence, we can neglect the ! and !0 dependence of the
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solution for qk in Eq.(45.19) when we substitute it in our expression for �00: One
then �nds

�00 (kF ; !) ' �A(kF )2vF

R
d!0

� [n (!0) + f (! + !0)]!0 = �A(kF )4vF

h
!2 + (�T )

2
i

(45.21)
where the substitution x = e�! allowed the integral to be done exactly [18] and
where

A (kF ) �
Z

d2q?

(2�)
2 lim!0!0

V 2q �
00
nn

�
q?; qk (q?; vF ) ;!

0�
!0

: (45.22)

The presence of V 2q does not give rise to problems in the integral over q? near
q = 0 because in this region the contribution is canceled by V 2q that appears in
the denominator of the RPA susceptibility Eq.(45.20). The above result Eq.(45.21)
for �00 is the well known Fermi liquid result.

Remark 296 Note that the !2 dependence in the T = 0 limit is easy to obtain
since in that limit,Z

d!0 [n (!0) + f (! + !0)]!0 = �
Z 0

�!
d!0!0 =

!2

2
: (45.23)

Remark 297 There are known corrections to the Fermi liquid self-energy that
come from the non-analytic !0=vF q behavior of �00nn (q;!

0) near q = 0. In three
dimensions[19] this non-analyticity leads to subdominant !3 ln! corrections, while
in two dimensions it leads to the dominant !2 ln! behavior.[20][21]

Remark 298 Relevance of screened interaction to low-frequency Physics near the
Fermi surface: It can clearly be seen from the above derivation that it is the low-
frequency limit of the screened interaction that gives rise to the damping near the
Fermi surface. This is a key result. If we are interested in properties near the
Fermi surface, screened interactions su¢ ce. This should be kept in mind when we
discuss the Hubbard model later.

Remark 299 Important result �00 (k; 0) = 0 at zero temperature for all wave
vectors. Although the above result was obtained for k = kF ; the result �00 (k; 0) = 0
is valid for all wave vectors. Indeed the only change is on the relation between qjj

and frequency. Eq. (45.19) will be replaced by kqk
m +

q2k
2m =

h
! + !0 � q2?

2m �
k2

2m + �
i

and once again, the dependence on ! can be neglected. When ! becomes of the
order of the Fermi energy, all of the above fails.

We now just quote without proof some of the results of further calculations
of Fermi liquid parameters. The solution of the quasiparticle equation Eq.(45.1)
gives

Ek = "k � 0:17rs (ln rs + 0:2)
kF k

2m
+ cst (45.24)

The e¤ective mass appearing in this expression is now obviously �nite and given
by

m� =
m

1� 0:08rs (ln rs + 0:2)
(45.25)

If we evaluate the scattering rate for ! = Ek � � we �nd

�k (Ek � �) = 0:25r1=2s

(k � kF )2

2m
(45.26)
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Quinn and Ferrell[22] write the following physically appealing form

�k (�k)Z
�1
k =

p
3�2

128
!p

�
�k
EF

�2
(45.27)

The scattering rate is proportional to the plasma frequency, but reduced by an
important phase space factor. The more general results, beyond leading order in
rs can be found in Eqs.(8.92-8.93) of Giuliani and Vignale "Quantum theory of
the electron liquid".
Fig.(45-4) gives the value of the �0 and �00 evaluated at the frequency corre-

sponding to the quasiparticle position. The important point is that the real-part of
the self-energy is weakly wave vector dependent up to about k = 2kF : The imagi-
nary part on the other hand vanishes as expected on the Fermi surface, while away
from it remains relatively small on the scale of the Fermi energy. This justi�es
a posteriori the success of the free electron picture of solids. Note however that
states far from the Fermi surface do have a lifetime, contrary to the predictions of
band structure calculations.

Remark 300 These results on the �gure were obtained in the zero-temperature
formalism where by construction the imaginary part of the calculated Green�s func-
tion is equal to the imaginary part of the retarded self-energy above the Fermi sur-
face and to the imaginary part of the advanced self-energy below the Fermi surface.
This explains the sign change on the �gure.

Figure 45-4 Real and imaginary parts of the self-energy of the causal Green�s
function in the zero-temperature formalism. From L. Hedin and S. Lundqvist, Solid
State Physics 23, 1 (1969).

45.5 Comparison with experiments

We are �nally ready to compare the predictions of this formalism to experiments.
The results shown in the present section are taken from Ref.[24].
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The �rst quantity that comes to mind to compare with experiment is the ef-
fective mass. This quantity can in principle be obtained from cyclotron resonance
or from speci�c heat measurements. It turns out however that the theoretical
prediction for m�=m di¤ers from unity by only about 10%: But what makes com-
parisons with experiment for this quantity very di¢ cult is that there are two other
contributions to the e¤ective mass in real materials. First there are band structure
e¤ects. These are small in sodium but large in lithium and many other metals. The
second additional contribution to the e¤ective mass comes from electron-phonon
interactions. We will see in the next chapter that these e¤ects can be quite large.
So we need to wait.
A striking prediction of many body theory is that the size of the jump in

momentum distribution at the Fermi level at zero temperature should be quite
di¤erent from unity. Fig.(45-5) illustrates the prediction for sodium at rs = 3:97:
The following Table of expected jumps is from Hedin[8].

Figure 45-5 Momentum density in the RPA approximation for an electron gas with
rs = 3:97: From E. Daniel and S.H. Vosko, Phys. Rev. 120, 2041 (1960).

rs ZRPA
0 1
1 0:859
2 0:768
3 0:700
4 0:646
5 0:602
6 0:568

(45.28)

Unfortunately even through photoemission we do not have access directly to this
jump in three dimensional materials, as we discussed in the previous chapter.
Another probe that gives indirect access to this jump is Compton scattering. In
Compton scattering, a photon scatters o¤ an electron, leaving with a di¤erent
energy an momentum along with an electron in a new momentum state. This is
really as if photons scattered-o¤ electrons as billiard balls, conserving energy and
momentum. Photons are scattered inelastically from all the electrons in the solid.
The contribution from conduction electrons can be extracted by subtraction. In
the so-called �sudden approximation�, the cross section for photon scattering is
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proportional to
d2�

d!d

/
Z
d3knk� (! + "k � "k+q) (45.29)

where ! is the energy and q the wave vector transferred by the photon and nk =D
cykck

E
. We do not need (1� nk+q) to insure that the �nal electron state is empty

because the energy transfer is so large, as we see in the experimental results, that
we are sure the state will be empty. Changing to polar coordinates, we see that

d2�

d!d

/

Z
k2dkd (cos �)nk�

�
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(45.30)

/
Z
kdk

m

q
nk� (k � jQj) (45.31)

where
Q � m

q
("q � !) (45.32)

In terms of Q, we have
d2�

d!d

/ 1
q

Z 1

jQj
nkkdk (45.33)

For free electrons, this gives

d2�

d!d

/ J (Q) / 1

2q

�
k2F �Q2

�
� (kF �Q) : (45.34)

In this case then, the slope is discontinuous at kF = Q as illustrated on the left of
Fig.(45-6). In the interacting case, the change in slope at kF remains theoretically
related to Z: Also, one expects a signal above kF as illustrated on the left of the
�gure. Experimental results for sodium, rs = 3:96, are given on the right of the
�gure along with the theoretical prediction. This metal is the one closest to the
free electron model. The experimentalists have veri�ed that Q is a good scaling
variable, in other words that the cross section depends mainly on Q: Also, the
existence of a tail above kF is con�rmed. However, the agreement with theory is
not excellent.
The experimental results for the mean free path are more satisfactory. Let the

mean free path `k be de�ned by

1

`k
=
�k
vk
=

1

�kvk
= � 2

vk
Im� (k;�k) (45.35)

Remark 301 The factor of 2 is not so easy to explain here, except to say that if
we look at a density perturbation, the scattering rate is twice that appearing in the
single-particle Green functions.

Remark 302 Compton scattering was one of the key experiments that helped con-
vince people that light could behave as if it was made up of particles: photons.

Fig.(45-7) presents the results of experiments on aluminum, rs = 2:07: If one
takes into account only scattering by plasmons one obtains the dashed line. The
full RPA formula, including the contribution from the particle-hole continuum,
was obtained numerically by Lundqvist for rs = 2 and is in excellent agreement
with experiment.
The cross section for inelastic electron scattering, that is proportional to Im

�
1="L

�
;

is shown in Fig. (45-8) for aluminum. The plasma resonance at low momentum
transfer is visible around 15 eV for the larger nanoparticles. You can even see the
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Figure 45-6 a) Dashed line shows the momentum distribution in Compton scattering
for the non-interacting case while the solid line is for an interacting system. b)
Experimental results in metallic sodium compared with theory, rs = 3:96: Eisenberger
et al. Phys. Rev. B 6, 3671 (1972).

two plasmon peak around 30 eV: The resonance is much larger than the particle-
hole continuum, as we saw in the theoretical plot of Fig.(41-6). The small peak
at small frequency is a surface plasmon. In Ref. [228] you can �nd an analysis of
the width of the plasmon. It comes, in particular, from the decay of the plasmon
in other conduction-electron bands.
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Figure 45-7 Mean free path of electrons in aluminum (rs = 2:07) as a function of
energy above the Fermi surface. Circles are experimental results of J.C. Tracy, J. Vac.
Sci. Technol. 11, 280 (1974). The dashed line with symbols X was obtained with
RPA for rs = 2 by B.I. Lundqvist Phys. Status Solidi B 63, 453 (1974).
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Figure 45-8 The top curve shows the plasmon around 15 eV for aluminum. Two
plasmons can also be emitted, as you can see around 30 eV. As the nanoparticles
become smaller, the spectrum deviates from the bulk result. Z. Phys. D 40, 425�428
(1997)
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46. FREE-ENERGY CALCULA-
TIONS

The diagram rules for the free energy are more complicated than for the Green�s
function. For those that have followed the Feynman track, we have seen in the
previous chapter the form of the linked-cluster theorem for the free-energy. It is
given by a sum of connected diagrams. However, in doing the Wick contractions
for a term of order n, there will be (n� 1)! identical diagrams instead of n!.
This means that there will be an additional 1=n in front of diagrams of order
n, by contrast with what happened for Green�s functions. This makes in�nite
resummations a bit more di¢ cult (but not undoable!).
There is an alternate way of obtaining the free energy without devising new

diagram rules. It uses integration over the coupling constant. We discuss this in
full generality in the next section. Then we apply the result to RPA.

46.1 Free energy and consistency between one and
two-particle quantities

I �rst start with a general theorem to compute the free energy and show that it can
be obtained either directly from the density �uctuations or from the self-energy
and the Green�s function, which we know already are related.
This trick is apparently due to Pauli [16]. The proof is simple. First, notice

that

� 1
�

@ lnZ

@�
= � 1

�

1

Z

@Tr
�
e��(H0+�V��N)

�
@�

=
1

Z
Tr
h
e��(H0+�V��N)V

i
=
1

�
h�V i� :
(46.1)

To di¤erentiate the operator, e��(H0+�V��N), we have used its de�nition as a
power series and then taken the derivative with respect to �. Even if the operator
V does not commute with H0, the cyclic property of the trace allows one to always
put V on the right-hand side so that in the end, the derivative worked out just
as with ordinary number. (Alternatively, one can do the proof in the interaction
representation). The subscript � in h�V i� is to remind ourselves that the trace is
taken for a Hamiltonian with coupling constant �.
The free energy we are interested in is for � = 1, so


 = �T lnZ = �T lnZ0 +
R 1
0
d�
� h�V i� : (46.2)

From a diagrammatic point of view, the role of the integral over � is to regive the
factor of 1=n for each order in perturbation theory.

Remark 303 Recall that the free energy in this grand-canonical ensemble is re-
lated to the pressure.


 = �PV: (46.3)
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The expectation value of the potential energy may be obtained by writing down
directly a diagrammatic expansion, or by using what we already know, namely the
density correlations. Indeed we have shown in a previous section, Eq.(43.20), how
the potential energy may be obtained from density correlations,


 = �T lnZ = �T lnZ0 (46.4)

+
V
2

Z 1

0

d�

�

*
�

Z
d3q

(2�)
3Vq

24TX
iqn

�nn (q; iqn)� n

35+
�

:

Using our previous relation between self-energy and potential energy, Eq.(43.13)
the coupling-constant integration in Eq.(46.2) may also be done with


 = �T lnZ0 +
T

2

Z 1

0

d�

�

Z
d1

Z
d1"�� (1; 1")G�

�
1"; 1+

�
: (46.5)

where the subscript � reminds oneself that the interaction Hamiltonian must be
multiplied by a coupling constant �.

46.2 Free energy for the Coulomb gas in the RPA
approximation

We use our coupling-constant integration formula Eq.(46.2). In the zero temper-
ature limit, there will be no contribution from entropy and we will obtain the
ground state energy in the RPA approximation

ERPATot (T = 0)� �N = lim
T!0


 = lim
T!0

8<:�T ln
24Y
k;�

�
1 + e���k

�35 (46.6)
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3Vq
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iqn
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359=;
We have for the sum over Matsubara frequencies

T
X
iqn

�nn (q; iqn) = T
X
iqn

Z
d!0

�

�00nn (q;!
0)

!0 � iqn
(46.7)

=

Z
d!0

�
nB (!

0)�00nn (q;!
0) (46.8)

In the zero temperature limit,

lim
T!0

Z
d!0

�
nB (!

0)�00nn (q;!
0) = �

Z 0

�1

d!0

�
�00nn (q;!

0) (46.9)

=

Z 1

0

d!0
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�00nn (q;�!0) (46.10)

= �
Z 1

0

d!0

�
�00nn (q;!

0) (46.11)
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so that the expression for the ground state energy becomes

ERPATot (T = 0)� �N
V (46.12)

= 2
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�
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3

Z 1
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�
� Im

Z 1

0

d!0

�

�0Rnn (q;!
0)

1 + �Vq�0Rnn (q;!
0)
� n

�
Note that we have replaced everywhere Vq by �Vq as prescribed in the coupling
constant integration trick.

Remark 304 Role of the coupling constant integration from the point of view
of diagrams: By expanding the RPA expression, we see that what this coupling
constant integration trick does, is give a factor 1=n in front of the corresponding
term of order n in the interaction. As mentioned earlier, if we had developed
Feynman rules directly for the free energy instead of using the coupling constant
trick, we would have written down closed loop diagrams such as those of Fig.(44-3)
and modi�ed Feynman�s rules to add the rule that there is a factor 1=n for every
topologically di¤erent diagram of order n:

The coupling constant integration is easy to performZ 1

0

d�

�
�Vq

�
� Im

Z 1

0

d!0

�

�0Rnn (q;!
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1 + �Vq�0Rnn (q;!
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� n

�
= �Vqn�

Z 1

0

d!0
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�
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(46.13)

The rest of the calculation is tedious. One �nds at zero temperature, [23]:

ERPATot (T = 0)

N
=
2:21

r2s
� 0:916

rs
+ 0:0622 ln rs � 0:142 +O (rs; rs ln rs) (46.14)

The �rst term is the kinetic energy, the second the contribution from the Fock (ex-
change) diagram while the rest is the so-called correlation energy, namely every-
thing beyond Hartree-Fock.
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47. LANDAU FERMI LIQUID FOR
RESPONSE FUNCTIONS

3He is an example of a �uid of fermions with short-range interactions. It inspired
Landau to develop �Fermi liquid theory�. Since we saw that interactions become
short range in the Coulomb gas, in the end it can be considered as a Fermi liq-
uid. In this Chapter, I de�ne so-called �Landau Parameters�for thermodynamic
quantities and show how they appear in a few quantities. I neglect the imaginary
part of the self-energy. This assumes that we are at very low temperature. The
imaginary part of the self-energy comes in calculation of transport quantities, such
as resistivity, thermal conductivity etc.
Landau Fermi liquid theory is based on the existence of quasiparticles, so I will

assume that the Green�s function take a quasiparticle form

G (k;ikn) ~
ZkF

(ikn + �� Ek)
(47.1)

where Zk is evaluated at the Fermi level since contributions come mostly from
there.

47.0.1 Compressibility

Assume that I want the compressibility.
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48. *EXPANSION IN TERMS OF
DRESSEDORBAREGREEN�S FUNC-
TIONS: SKELETON DIAGRAMS

In this brief chapter, I try to discuss the delicate question of perturbation theory
in terms of dressed or bare Green�s functions. self-consistency. To be completed...

48.1 The expansion in terms of bare Green�s func-
tions can be derived using the Schwinger ap-
proach
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49. *GENERALCONSIDERATIONS
ONPERTURBATIONTHEORYAND
ASYMPTOTIC EXPANSIONS

It is striking that in the end the RPA results, such as those for the ground state
energy Eq.(46.14), the e¤ective mass Eq.(45.25) or the scattering rate Eq.(45.26)
are non-analytic in rs near rs = 0: This often occurs in perturbation theory.
In fact, the perturbation expansion is at best an asymptotic expansion since for
attractive potential at zero temperature the ground state is a superconductor and
not a Fermi liquid. In other words, rs = 0 is a point of non-analyticity since for
rs < 0 there is symmetry breaking. The following simple example taken from
Ref.[27] is instructive of the nature of asymptotic expansions.
Suppose we want to evaluate the following integral

Z (g) =

Z
dxp
2�
e�

x2

2 �
g
4x

4

(49.1)

This is an example where the integral does not exist for g < 0 but where we will
try nevertheless to expand in powers of g around g = 0: If we do this then,

Z (g) =
1X
n=0

gnZn (49.2)

where

Zn =
(�1)n

4nn!

Z
dxp
2�
e�

x2

2 x4n (49.3)

=
(�1)n

4nn!

(4n� 1)!!
2n

(49.4)

with

(4n� 1)!! � (4n� 1) (4n� 3) (4n� 5) : : : 1 (49.5)

=
(4n)!

(4n) (4n� 2) (4n� 4) : : : 2 (49.6)

=
(4n)!

2n (2n)!
(49.7)

hence,

Zn =
(�1)n

16nn!

(4n)!

(2n)!
(49.8)

Using Stirling�s formula,
n! �

p
2�nn+1=2e�n

we are left with

Zn /
1p
n�

�
�4n
e

�n
(49.9)

The value of each successive term in the power series is illustrated in Fig.(49-1).
Clearly, whatever the value of g; if n is su¢ ciently large, the higher order terms
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Figure 49-1 Asymptotic expansion of Z (g) for di¤erent values of g: The residual
error Rnis plotted for the half-integer values. From J.W. Negele and H. Orland, op.
cit. p.56

start to be larger than the low order ones. This is a characteristic of an asymptotic
series.
We can even evaluate the error done when the series is stopped at order n: Let

this error be

Rn =

�����Z (g)�
nX

m=0

gmZm

����� (49.10)

=

Z
dxp
2�
e�

x2

2

�����e� g
4x

4

�
nX

m=0

(�1)m

4mm!
gm (x)

4m

����� (49.11)

=

Z
dxp
2�
e�

x2

2

�����
1X

m=n+1

(�1)m

4mm!
gm (x)

4m

����� (49.12)

The series in the absolute value is an alternating series and it converges. Hence,
an upper bound for this series is the value of the �rst term, as may be seen from
the fact that

an+1 � (an+2 � an+3)� (an+4 � an+5)� : : : � an+1 (49.13)

Hence,
Rn � gn+1 jZn+1j (49.14)

We also plot the error in Fig.(49-1). Clearly, the error starts to grow eventually.
Despite this terrible behavior of asymptotic expansions they can be quite useful

in practice. For example, for g = 0:01; the precision is 10�10 after 25 terms. This
may be estimated by noting from Eq.(49.9) for the asymptotic value of Zn that
gnZn starts to grow when 4gn becomes of order unity. The minimum error is
then estimated with our formula for Rn: Even quantum electrodynamics is an
asymptotic expansion, but the expansion parameter is � = 1=137: It is thus an
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extremely good expansion parameter. Sometimes the asymptotic series may be
resumed, at least partially as in RPA; or mathematical techniques, such as Borel
summation, may be used to extract the non-analytic behavior.
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50. *BEYOND RPA: SKELETON
DIAGRAMS, VERTEXFUNCTIONS
ANDASSOCIATEDDIFFICULTIES.

It is quite di¢ cult to go beyond RPA while preserving important physical prop-
erties, such as conservation laws, or the f�sum rule. We can illustrate this by
the following simple example. The Lindhard function with bare Green�s function
satis�es conservation laws since it is the charge susceptibility of free electrons.
Suppose that in the presence of interactions, we succeed in computing the exact
one-body Green�s function. Then, it is tempting to compute the density �uctua-
tions using a bubble made up of the exact Green�s functions that we just obtained.
For one-body interactions, as for example in the impurity problem, this would be
the exact result, as we saw in a previous chapter. However, in the case where
two-body interactions are present, this becomes an approximation that violates
charge conservation.
Before we reformulate perturbation theory in general terms at the end of this

Chapter and in the next, we proceed to illustrate some of the problems that arise
if we try to improve on simple perturbation theory or on RPA in naive ways.

50.1 *A dressed bubble diagramviolates charge con-
servation

To see this, we will show that the following consequence of charge conservation is
violated[29]

�nn (q = 0;iqn) = 0 ; if iqn 6= 0: (50.1)

To check that this last equation is a consequence of charge conservation, note that
at q = 0 the density operator is the number operator, an operator that commutes
with the Hamiltonian. This means that �nn (q = 0;�) is independent of imaginary
time, which implies that its only non-vanishing Matsubara frequency component
is qn = 0. Using the spectral representation for the Green�s function and inversion
symmetry in the Brillouin zone, our single dressed bubble calculation for �nn on
the other hand will give us the following expression

~�0 (q; iqn) =
2

N

X
k

Z
d!

2�

Z
d!0

2�
A (k;!)A (k+ q;!0)

(! � !0) (f (!0)� f (!))
(! � !0)2 + q2n

:

(50.2)
When there are no interactions and A (k;!) is a delta function, it is clear that our
exact result Eq.(50.1) is satis�ed since only ! = !0 will contribute. Otherwise, the
integrand is positive de�nite so the result is di¤erent from zero at q = 0.
Another consequence of charge conservation is the f�sum rule. Indeed, recall

that the f�sum rule is obtained from a frequency integral over !�00nn (!) : This
means that in real time it involves the derivative of the density, which is related
to a current by charge conservation. One then has to evaluate an equal-time
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commutator between current and density, which can be done exactly and gives
the f�sum rule.
The f�sum rule manifests itself in the high frequency behavior of �nn (q;iqn) :

This can be seen as follows. First, recall that �00nn (!) is odd by time-reversal
symmetry. Then,

�nn (q; iqn) =

Z
d!0

�

�00nn (q;!
0)

!0 � iqn
=

Z
d!0

�

!0�00nn (q;!
0)

(!0)
2
+ (qn)

2 (50.3)

so that the leading high-frequency behavior is given by the f� sum rule:

lim
qn!1

q2n�nn (q; iqn) =

Z
d!0

�
!0�00nn (q;!

0) : (50.4)

We just saw that if we replace �nn (q; iqn) by the dressed bubble ~�0 (q; iqn)
then ~�0 (q = 0; iqn) is di¤erent from zero so that the equation we just derived,
Eq.(50.4), tells us that the f�sum rule is violated in this approximation.

50.2 *RPA with dressed bubble violates the f�sum
rule and gives bad results

To see that knowing the exact one-body Green�s function in an interacting system
is not enough to know the density �uctuations, it su¢ ces to return to Fig.(41-1).
The diagrams on the bottom may be accounted for by using dressed propagators,
but the diagrams on the �rst line cannot be. In the Schwinger approach, the
diagrams on the �rst line come from iterating the integral equation in Fig. 37-7.
They enter the general category of vertex corrections, namely diagrams that cannot
be included by simply dressing propagators. The lesson we have just learned is
that to satisfy conservation laws, the vertex corrections representing the dressed
interaction between quasiparticles have to do some non-trivial things since the
dressed bubble by itself does not satisfy the conservation law expressed in the
form of Eq.(50.1).
We may think that taking partial care of the vertex corrections by summing the

bubble diagrams in the �rst line of Fig.(41-1) as we did in RPA and just replacing
the Green�s functions by dressed ones would do the trick. This does not happen.
Indeed, consider

�nn (q; iqn) =
~�0 (q; iqn)

1 + Vq~�0 (q; iqn)
: (50.5)

Then we fall back on the violation of the f� sum rule that we saw with the dressed
bubble because

lim
qn!1

q2n�nn (q; iqn) = lim
qn!1

q2n~�0 (q; iqn) : (50.6)

To see another example of how apparently reasonable improvements over RPA
may lead to miserable failures consider the following reasoning. We saw from RPA
that there are quasiparticles near the Fermi surface. Also, the low-frequency and
small momentum density �uctuations are determined mainly by quantities near
the Fermi surface, as one can check from the Lindhard function. It would thus
be tempting, in a next iteration, to compute the bubbles entering RPA with a
renormalized propagator

Zk
ikn � Ek + �

(50.7)
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In practice Zk is in the range 0:5 to 0:7 which means that the dielectric constant
might change from 1 � VqGG to 1 � 1

4VqGG when Zk = 0:5 for example: That
would spoil the agreement that we had with experiment. Again, dressing the
bubble and doing nothing to the vertex is not a good idea. It is as if the vertex
must compensate the Zk appearing in the Green�s functions.

50.3 *Two reformulations of perturbation theory

Another way to approach the problem of going beyond the simple perturbative
approaches is to start from exact reformulations of perturbation theory. Other
useful guides when one tries to push beyond the simplest perturbative approaches
are conservation laws, known as Ward identities, as well as sum rules and other
exact results such as the relation between �G and density �uctuations that we
have introduced in the present chapter. We will come back on these general con-
siderations in a later chapter. For the time being we give two ways to reformulate
the diagrammatic expansion in a formally exact way. From the point of view of
Feynman, this is a way to rearrange the in�nite series of diagrams. But it you
have followed the Schwinger way, this comes out rather naturally, especially in
second case discussed below. I prove the �rst reorganisation of the perturbation
series, due to Hedin, in Chap.(51).
The �rst reformulation is illustrated in Fig.(50-1). The propagators are fully

dressed. The interaction line must also be dressed, as illustrated on the second
line. The bubble appearing there is called the polarization propagator since it
plays the role of the polarizability in the de�nition of the dielectric constant. It
is de�ned as the set of all diagrams that cannot be cut in two pieces by cutting
a single interaction line. The polarization propagator has a bubble with dressed
propagators but this is not enough. We must also include some more vertex
corrections. These vertex corrections, represented by the triangle, are illustrated
by the �rst few terms of their diagrammatic expansion on the last line of the �gure.
A vertex correction (irreducible) of the type envisaged here cannot be cut in two
pieces by cutting either a propagator or an interaction line, and it is attached to
the outside world by three points, two of which are fermionic, and one of which is
bosonic (i.e. attaching to an interaction line). Both in the polarization bubble and
in the self-energy, only one of the vertices is dressed, otherwise that would lead to
double counting as one can easily check by writing down the �rst few terms and
returning to Feynman�s rules (The Schwinger approach is in the next section). One
can also check by writing down a few terms that vertex corrections on the Hartree
diagrams are indistinguishable from self-energy e¤ects so they are included in the
dressed propagator. What is not so obvious from this diagrammatic (Feynman)
approach, is what should be included in the vertex correction. The Schwinger
approach teaches us that it can be obtained from the functional derivative of the
self-energy when we drop the Hartree term. Chapter 51 on Hedin�s equations will
obtain these equations rather easily using the Schwinger approach.
We will see in a subsequent chapter that the theory for electron-phonon in-

teractions may be written precisely in the form of Fig.(50-1) except for the fact
that the interaction line becomes replaced by a phonon propagator. In addition
a key theorem, that we shall prove, the so-called Migdal theorem, shows that for
electron-phonon interactions vertex corrections may be neglected. The �rst two
lines of Fig.(50-1) then form a closed set of equations. Migdal�s theorem is behind
the success of electron-phonon theories, in particular the theory of superconduc-
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Figure 50-1 Exact resummation of the diagrammatic perturbation expansion.
The dressed interaction on the second line involves the one-interaction irreducible
polarisation propagator. The last line gives the �rst terms of the diagrammatic
expansion for the vertex corrections.

tivity in its Eliashberg formulation.
For pure electron-electron interactions, vertex corrections may not be ne-

glected. Non-diagrammatic ways of approaching the problem, such as that of
Singwi[28], have proven more successful. We have already shown algebraically in
the Schwinger approach that perturbation theory for electron-electron interactions
may also be formulated in a way that is diagrammatically equivalent to Fig.(50-
2). That is our second exact reformulation of perturbation theory[29] (there are
others). For those that have followed the Feynman approach only, the triangle
now represents the fully reducible vertex, namely diagrams that can be cut in
two by cutting interaction lines or particle-particle pairs or particle-hole pairs in
a di¤erent channel. (We will discuss the notion of channel in more details in a
later chapter). The box on the other hand represents all terms that are irreducible
with respect to cutting a particle-hole pair of lines in the chosen channel. To be
complete we would need to give a diagrammatic expansion for the square box
but, in practice, the way to make progress with this approach is to proceed non-
perturbatively, namely to parametrize the box in such a way that it can later be
determined by using sum rules and various other exact constraints of many-body
theory, such as the Pauli exclusion principle and conservation laws. This will be
discussed in Chapter 57 dealing with the two-particle self-consistent approach.

50.4 *Skeleton diagrams

The diagrams in Fig.(50-1) and Fig.(50-2) above are skelton diagrams. This means
that the Green�s functions that appear there do not have self-energy insertions.
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Figure 50-2 Exact representation of the full perturbation series. The triangle now
represents the fully reducible vertex whereas the box represents all terms that are
irreducible with respect to cutting a particle-hole pair of lines in the indicated channel.

In other words, we cannot cut two propagator lines and be left with two pieces,
one of which looks like a self-energy diagram. In the jargon, we say that the
diagrams are two-particle irreducible (2PI). Another way to say this is that the
diagrams are built from dressed Green�s functions. In the Schwinger approach,
the diagrams come out this way directly. In the Feynman approach, one needs to
do resummations to see these skeleton diagrams appear.

50.5 *Channels

We know that

�
�
1; 2
�
G
�
2; 3
�
= �V

�
1� 2

� D
T� 

y
�
2
+
�
 
�
2
�
 (1) y (3)

E
: (50.8)

Up to now, we have expressed the four point function by associating the last two
indices to the right,  (1) y (3) ; to a Green�s function and di¤erentiating with
respect to a source �eld. More speci�cally, we have used

�G (1; 3)
�� (2+; 2)

: (50.9)

Then we wrote an integral equation for this quantity that involves ��=�� =
G (��=�G �G=��) G: A momentum q �owing through G G became important in
momentum space and allowd us to select out a series of important diagrams, the
RPA ones. That is the longitudinal particle-hole channel, or sometimes called the
Peierls channel.
We could have decided to take  (2) y (3) as the �elds for the Green�s function.

Then, we would have needed
�G (2; 3)
�� (2+; 1)

: (50.10)

Note this time that the spin indices in � are no longer the same in general
since �2 can be di¤erent from �1. In other words, the �eld � does not con-
serve spin. No problem since in the end we will set � = 0: When we work out
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��=�� = G (��=�G �G=��) G keeping the same de�nitions of Fourier transforms,
i.e. associating q to 1� 2; k to 1� 3 and k0 to 2� 3 for example, the momentum
that will be single out in G G will be di¤erent from the q considered above. We
call this the transverse particle-hole channel.
There is one last possibility as you have already guessed, the particle-particle,

or Cooper channel. There we take for example  
�
2
�
 (1) as associated to a

Green�s function and we take a derivative with respect to a �eld � coupled to

 y
�
2
+
�
 y (3) that breaks particle number conservation: The important func-

tional derivative will be
�G1;2 (2; 1)
�� (2+; 3)

:

The subscripts to G1;2 remind us (in the Nambu notation that we will expand on
later) that the Green�s function no longer involves  and  y, but   : Again, when
we move to G (��=�G �G=��) G , a di¤erent momentum will enter G G and will be
important.
Depending on the details of the interaction, one channel or the other can be im-

portant. For a long-range Coulomb interaction, the longitudinal channel su¢ ces.
For the Hubbard on-site (momentum independent) interaction, both longitudinal
and transverse channels are important, while for an attractive potential, it is the
Cooper channel that counts.

50.6 *Crossing symmetry

The di¤erent channels discussed above are related since the four point function just
gives a sign change if we interchange the indices of two creation or two destruction
operators, namelyD

T� 
y
�
2
+
�
 (2) (1) y (3)

E
= �

D
T� 

y
�
2
+
�
 (1) (2) y (3)

E
(50.11)

andD
T� 

y
�
2
+
�
 (2) (1) y (3)

E
= �

D
T� 

y (3) (2) (1)
E
 y
�
2
+
�
: (50.12)

This is particularly relevant for the two particle-hole channels.
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51. *HEDIN�S EQUATIONS

The idea of an e¤ective screened interaction that is discussed in the previous
section and that you can see in the second line of Fig.(50-1) is quite helpful in
the Coulomb gas context. The Schwinger approach can be rewritten in such a
way that the e¤ective interaction appears explicitly. That will lead to Hedin�s
equations.[11] The diagrammatic Feynman arguments leading to the same result
have been sketched in the previous section.
To proceed with the Schwinger derivation, we �rst identify two contributions

to the irreducible vertex ��=�G represented by the red box appearing in both
Fig.(36-2) for the self-energy and in Fig.(36-1) for the four point function. The
�rst contribution comes from the functional derivative of the Hartree term and
the second contribution from the functional derivative of everything else. We then
include the Hartree term in the non-interacting Green�s function. Fig.(36-2) for
the self-energy and Fig.(36-1) for the four point function then become as illustrated
in Fig.(51-1). In the top row for the four point function, we have simply joined the
points on the bottom and separated the red box for the irreducible vertex into two
contributions, one from the functional derivative of the Hartree term, that is the
last term, and one from the functional derivative of the rest of the self-energy (on
the bottom line), represented by the blue textured box. The same replacement
has been done for the irreducible vertex (red box) entering the self-energy. The
blue textured box will contain diagrams that cannot be cut in two by cutting an
interaction line.
We can now isolate the so-called fully reducible vertex, represented by the

green triangle, by matrix multiplying both sides of the equation appearing on
the �rst line of Fig.(51-1) by G�1

�
4; 1
�
G�1

�
2; 3
�
and relabeling. We then obtain

the �rst line of Fig.(51-2). Note that the dot with the three places to attach is
given algebraically by � (1� 3+) � (2� 3) : We have also put back some variables
of integration on the right-hand side because the triangle does not include the
Green�s functions anymore.
We see now that we can replace the equation for the self-energy appearing on

the second line of Fig.(51-1) by the second line of Fig.(51-2). The latter expression
for the self-energy in terms of the fully reducible vertex does not depend on our
original separation of the irreducible vertex (red box) into two contribution. It is
completely general.
We want to express the fully reducible vertex appearing in the expression for

the self-energy in terms of Green�s functions, e¤ective interaction and irreducible
vertex. To proceed further, we resort to algebra. You can think of each block in
the �rst line of Fig.(51-2) as being a square matrix. Take for example the triangle.
Call it �(2+; 2; 4; 3) : The pair 4; 3 is one matrix index and the pair 2+; 2 another
matrix index. The two indices 2+; 2 happen to be equal, but we can consider the
general case. Then, on the right hand side, reading from bottom to top, is like
matrix multiplication from left to right. It is as if we rotated the diagrams by
�=2 clockwise. We need to recall that it is and incoming Green�s functions that
attaches to 4 and and outgoing one that attaches to 3:
Let us call the blue irreducible vertex with the two attached Green�s functions

GGI, and the bubble with the interaction GGV . Then, the �rst line of Fig.(51-2)
is the matrix equation

� = 1 +�GGI +�GGV (51.1)
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Figure 51-1 Rewriting our two equations for �G=�� and for � in such a way that
the Hartree term has been absorbed in a rede�nition of the chemical potential and
the irreducible vertex that was the red box entering the equation for �G=�� has been
separated in two parts: the last term of the top line that comes from ��=�G of the
Hartree term in � and the blue box that represents the derivative of the rest of �
that appears on the bottom line. The green triangle, as before, is the fully reducible
vertex.

=1 3  1 4 3

2+ 2

Self

4 3

2+ 2

= 4 3

4 3

7 8
+ +

7 7

3 3

2+ 2

2+ 2 2+ 2

9 10 109

Figure 51-2 �G=�� has been separated in two parts: the last term of the top line
that comes from ��=�G of the Hartree term in � and the blue box that represents
the rest. That blue box appears both on the top and the bottom line. The top line
is the same �gure as the preceding one, but with the two external legs amputated.
Comparing with the equation for the self-energy in the previous �gure, we see that
the self-energy can now be written entirely in terms of the green triangle, also known
as fully reducible vertex.
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Figure 51-3 In these Hedin equations, the fully reducible vertex (green triangle of
the previous �gures) has been replaced by a vertex (orange triangle) that is irreducible
with respect to cutting a single interaction line. The terms that are reducible with
respect to cutting a single interaction line have all been gathered in a single e¤ective
interaction W represented by the red dotted line. W obeys the integral equation
appearing on the second line. The loop with orange vertex is the polarization �: The
orange vertex � is irreducible with respect to cutting a single interaction line. It obeys
the integral equation appearing on the third line. As before, the blue box is ��=�G
where the self-energy that is di¤erentiated appears on the �rst line.
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whose solution is
� = (1� GGI � GGV )�1 : (51.2)

This may also be written in the form

� =
h
(1� GGI)

�
1� (1� GGI)�1 GGV

�i�1
(51.3)

=
�
1� (1� GGI)�1 GGV

��1
(1� GGI)�1 (51.4)

= (1� �GGV )�1 � (51.5)

where we de�ned � = (1� GGI)�1. Returning to the second line of Fig.(51-2) and
recalling that G

�
1; 4
�
attaches to the index 4 of �

�
2
+
; 2; 4; 3

�
and that V

�
1� 2

�
attaches to the index 1 of G and 2+; 2 of �

�
2
+
; 2; 4; 3

�
; we have an equation for

the self-energy that looks like

� = �G
�
1; 4
�
V
�
1� 2

�
�
�
2
+
; 2; 4; 3

�
= �GV (1� �GGV )�1 �: (51.6)

The �rst product GV are the two terms we were just talking about: The rest of
the terms obey the rules for matrix multiplication.
Algebraically, the above is equivalent to Dyson�s equation plus the following

set of four equations:

a) The self-energy: written in terms of G; an e¤ective interaction W and a
vertex �

� (1; 3) = �G
�
1; 4
�
W
�
1; 2
�
�
�
2
+
; 2; 4; 3

�
(51.7)

where we de�ned the e¤ective interaction

W = V (1� �GGV )�1 (51.8)

whose explicit form with indices appears below.

b) The e¤ective interaction:

W (1; 2) = V (1; 2) + V
�
1; 3
�
�
�
3; 4
�
W
�
4; 2
�
: (51.9)

This is an integral equation equivalent to V (1� �GGV )�1 if we de�ne a
polarization � = �GG that is a generalization of the Lindhard function
(with a di¤erent sign) that includes vertex corrections. Indeed, in that case,

W = V (1� �GGV )�1 = V (1��V )�1 (51.10)

= V + V�V + V�V�V + � � �
= V + V�W: (51.11)

Being more explicit with the indices, we can write the expression for �:

c) The polarization:

�(3; 4) = �
�
3+; 3; 5; 6

�
G
�
4; 5
�
G
�
6; 4
�
: (51.12)

We used the rule that an incoming Green�s function attaches to the next to
last index while an outgoing one attaches to the last. Note that when we
restore spin indices and use the fact that G is diagonal in spin index, the
polarization will be the only term that will lead to a factor of 2 coming from
the spin sum. The expression involves the vertex � that we already de�ned.
We need to be more explicit with indices.
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d) The vertex: is a function � that came from � = (1� GGI)�1 that is equiva-
lent to the integral equation

�
�
3+; 3; 5; 6

�
= �

�
3+ � 5

�
�
�
3� 6

�
+�
�
3+; 3; 7; 8

�
G
�
9; 7
�
G
�
8; 10

� �� �5; 6�
�G
�
9; 10

� :
(51.13)

The GW approximation that we used for the electron gas is equivalent to

making the approximation �
�
2
+
; 2; 4; 3

�
= �

�
4� 2+

�
�
�
3� 2

�
: The above four

equations plus Dyson�s equation are what is called Hedin�s equations.
To be more speci�c, this set of equations is illustrated in Fig.(51-3) that, for

convenience and contact with the matrix equations, you should read from left to
right instead of from bottom to top.

Remark 305 Relation to the longitudinal dielectric constant: It is important
physically to notice that W is the Coulomb interaction screened by the exact di-
electric constant. This can be seen when you rewrite the exact result Eq.(90.29)
for the dielectric constant in terms of the polarization operator that generalizes
beyond RPA the non-interacting Lindhard function:

1

�L(q; !)
=

1

"0

�
1� e2

q2"0
�Rnn(q; !)

�
(51.14)

=
1

"0

�
1� Vq�Rnn(q; !)

�
(51.15)

=
1

"0

�
1 +

Vq�(q; !)

1� Vq�(q; !)

�
(51.16)

=
1

"0

�
1

1� Vq�(q; !)

�
: (51.17)

Comparison with the expression for W Eq.(51.10) in terms of the polarization
shows that W = V "0

" :

Remark 306 Signi�cance of the polarization: More speci�cally, �(q; !) is the
sum of all diagrams that are one-interaction irreducible, i.e. that cannot be cut in
two parts by cutting a single interaction line Vq: Hence,

�Rnn(q; !) = �
�(q; !)

1� Vq�(q; !)
(51.18)

is an exact result.
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52. EXERCICES FOR PART V

52.0.1 Théorie des perturbations au deuxième ordre pour la self-énergie

a) En utilisant les règles de Feynman dans l�espace des quantités de mouvement,
écrivez les expressions correspondant aux deux diagrammes apparaissant à droite
de la �gure 38-10 des notes de cours. Ces diagrammes représentent la self-énergie
irréductible au deuxième ordre en théorie des perturbations. E¤ectuez la somme
sur les fréquences de Matsubara mais ne faites pas les intégrales.
b) Montrez, avant même de faire la somme sur les fréquences de Matsubara,

que lorsque Vq est indépendant de q, le diagramme du milieu est égal à moins deux
fois le dernier (troisième sur la �gure). Le résultat net est qu�on pourrait considérer
seulement le diagramme du milieu en supposant qu�un électron n�interagit qu�avec
les autres électrons de spin opposé. Montrez, en remontant à l�Hamiltonien, que
ce dernier résultat est général dans le cas où Vq est indépendant de q;(modèle de
Hubbard).
c) Écrivez une expression pour la partie imaginaire de la self-énergie obtenue

en (a), encore une fois sans faire les intégrales.

52.0.2 Théorie des perturbations au deuxième ordre pour la self-énergie à la Schwinger

a) Utilisez la méthode des dérivées fonctionnelles pour trouver tous les diagrammes
au deuxième ordre en interaction Vq pour la self-énergie irréductible. N�oubliez
pas que les fonctions de Green dans la méthode décrite en classe sont des fonctions
de Green habillées, c�est-à-dire qu�elles contiennent la self-énergie et doivent donc
aussi être développées en puissances de l�interaction.
b) Montrez, avant même de faire la somme sur les fréquences de Matsubara,

que lorsque Vq est indépendant de q, le diagramme du milieu de la �gure 38-10 est
égal à moins deux fois le dernier (troisième sur la �gure). Le résultat net est qu�on
pourrait considérer seulement le diagramme du milieu en supposant qu�un électron
n�interagit qu�avec les autres électrons de spin opposé. Montrez, en remontant à
l�Hamiltonien, que ce dernier résultat est général dans le cas où Vq est indépendant
de q;(modèle de Hubbard).

52.0.3 Déterminant, théorème de Wick et fonctions à plusieurs points dans le cas
sans interaction

L�équation générale (36.22)

�G (1; 2)�
�� (3; 4)

=
D
T� (1) 

y (2) y (3) (4)
E
�
+ G (1; 2)� G (4; 3)� : (52.1)

et l�équation valable dans le cas sans interaction

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)� (52.2)
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qu�on peut facilement obtenir de l�Éq. (36.28) lorsque la self s�annule, nous apprend
que dans le cas sans interactionD

T� (1) 
y (2) y (3) (4)

E
�
= G (1; 3)� G (4; 2)� � G (1; 2)� G (4; 3)� (52.3)

ou encore,D
T� (1) (2) 

y (20) y (10)
E
�
= G (1; 10)� G (2; 2

0)��G (1; 2
0)� G (2; 1

0)� : (52.4)

La formule précédente s�écrit aussiD
T� (1) (2) 

y (20) y (10)
E
�
= det

�
G (1; 10)� G (1; 20)�
G (2; 10)� G (2; 20)�

�
: (52.5)

a) Véri�ez que le déterminant a bien les mêmes propriétés que le produit
chronologique à gauche, c�est-à-dire qu�il change de signe lorsqu�on intervertit les
indices (1 et 2) ou (10 et 20) :

Remark 307 Fonction de corrélation à n points et déterminant: Cette réécri-
ture comme un déterminant est possible aussi pour les fonctions de corrélation
d�ordre supérieur. Par exemple, pour la fonction de corrélation à 6 points dans
le problème suivant le résultat s�exprime comme un déterminant d�une matrice
3 � 3 de fonctions de Green. C�est la forme générale qui préserve les propriétés
d�antisymmétrie du produit chronologique et qui est valable pour n�importe quelle
fonction à n points dans le cas sans interactions.

b) Véri�ez que le résultat (52.4) exprimant la fonction de corrélation à 4 points
comme un produit de fonctions de corrélation à deux points dans le cas sans
interaction, peut s�obtenir des règles suivantes: i) Appariez chaque  (i) avec un
 y (j) de toute les façons possibles. ii) Chaque appariement (chaque contraction
dans le jargon) donne un �G (i; j)� : iii) Le signe du produit des �G (i; j)� est
déterminé par le signe de la permutation nécessaire déplacer les  (i) et les  y (j)
pour les mettre côte à côte dans l�ordre où ils apparaissent dans G (i; j)� ; c�est-
a-dire avec l�opérateur de destruction à gauche de l�opérateur de création. Ceci
s�appelle le théorème de Wick et est valable pour une fonction de corrélation
contenant un nombre quelconque de  et de  y; en autaut qu�il y a le même
nombre de  que de  y:

52.0.4 Determinant, Wick�s theorem and many-point correlation functions in the
non-interacting case

The general result (36.22)

�G (1; 2)�
�� (3; 4)

=
D
T� (1) 

y (2) y (3) (4)
E
�
+ G (1; 2)� G (4; 3)� : (52.6)

and the following equation, valid when there are no interactions (or equaivalently
when the self-energy vanishes, as can be deduced from (36.28))

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)� (52.7)
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teaches us that in the non-interacting case, the following is validD
T� (1) 

y (2) y (3) (4)
E
�
= G (1; 3)� G (4; 2)� � G (1; 2)� G (4; 3)� : (52.8)

Changing labels, this is the same asD
T� (1) (2) 

y (20) y (10)
E
�
= G (1; 10)� G (2; 2

0)��G (1; 2
0)� G (2; 1

0)� : (52.9)

The preceeding formula can also be written as followsD
T� (1) (2) 

y (20) y (10)
E
�
= det

�
G (1; 10)� G (1; 20)�
G (2; 10)� G (2; 20)�

�
: (52.10)

a) Verify that the determinant has the same properties as the time-ordered
product to the left of the equation, namely it changes sign when indices (1 and 2)
or (10 and 20) are exchanged:

Remark 308 Determinant and n-point correlation function: This rewriting as a
determinant is possible also from higher-order correlation functions. For example,
for the 6-point correlation function in the following problem, the result can be writ-
ten as the determinant of a 3� 3 matrix of Green�s functions. That is the general
form that preserves the antisymmetric properties of the time-ordering operator and
that is valid for any n-point correlation function in the non-interacting case.

b) Verify that the result (52.4) that represents the 4-point correlation function
as a product of 2-point correlation functions in the non-interacting case can be
obtained from the following rules: i) Pair every  (i) with a  y (j) in all possible
ways. ii) Each pairing (or contraction in the jargon) gives a factor �G (i; j)� : iii)
The sign of the proeuct of �G (i; j)� is determined by the sign of the permutation
that is necessary to displace the  (i) and the  y (j) to put them side by side in
the order in which they appear in G (i; j)� ; i.e. with the destruction operator to
the left of the creation operator. This is called Wick�s theorem and it is valid for a
correlation function containing an arbitrary number of  and  y; as long as there
are as many  as  y:

52.0.5 Cas particulier du théorème de Wick avec la méthode de Schwinger

Pour le cas sans interaction, calculez

�G (1; 2)
�� (3; 4) �� (5; 6)

(52.11)

et montrez que la fonction de corrélation à six points

�
D
T�

h
 y (3) (4) y (5) (6) (1) y (2)

iE
�

(52.12)

s�écrit comme une somme de six termes, chacun étant un produit de trois fonc-
tions de Green. Montrez ensuite que le signe de chaque terme peut se déduire
des permutations. Ceci est un cas particulier du théorème de Wick qui dit que
dans le cas sans interaction les fonction de corrélation d�ordre plus élevé peuvent
s�obtenir de toutes les �contractions�posssibles, une contraction correspondant à
un appariement d�un  y avec un  pour en faire une fonction de Green.
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52.0.6 Fonction de Lindhard et susceptibilité magnétique:

On applique un champ magnétique extérieur h (x; t) produisant sur un système de
fermions de spin 1=2 la perturbation

Hext = ��0
Z
d3x

X
�=�1

� y� (x) � (x)h (x; t) (52.13)

où �0 est le moment magnétique.
a) Utilisez la théorie de la réponse linéaire pour exprimer le coe¢ cient de

proportionalité entre le moment magnétique induit

M (k;!) = �0

*Z
d3x

Z
dte�iq�r+i!t

X
�=�1

� y� (x;t) � (x; t)

+
hors �equilibre

(52.14)
et le champ magnétique extérieur comme une fonction de réponse. Ce coe¢ cient
de proportionalité est la susceptibilité magnétique

�R (k; !) =M (k;!) =h (k;!) (52.15)

b) Supposez qu�il n�y a pas d�interactions dans le système et montrez, en util-
isant le théorème de Wick dans le formalisme de Matsubara, que la susceptibilité
magnétique est alors proportionnelle à la fonction de Lindhard.
c) Montrez que

lim
k!0

�R (k; ! = 0) =

(
3�20n
2EF

T = 0 (Susceptibilité de Pauli)
�20n
T T !1 (Loi de Curie)

(52.16)
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Part VI

Fermions on a lattice:
Hubbard and Mott
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The jellium is clearly a gross caricature of real solids. It does a good job
nevertheless for simple metals, like sodium or aluminum. But it is important
to have more realistic models that take into account the presence of a lattice of
ions. The best methods today to �nd the electronic charge distribution are based
on Density Functional Theory (DFT), that we explain very schematically in the
�rst Chapter of this Part. These methods give a band structure that, strictly
speaking, should not be interpreted as single-particle excitations. Nevertheless,
for elements in the top rows of the periodic table, the band structure found from
DFT works well. If we include the long-range Coulomb interaction with the GW
approximation described above, then results for band gaps for example can be
quite good.
For narrow-band materials however, such as transition metal oxides that in-

clude d electrons, this is not enough. We will explore the rich Physics contained
in a simple model, the Hubbard model, that was proposed to understand narrow
band materials. That model adds to the band structure an on-site interaction term
U that is supposed to represent the screened Coulomb interaction. We will see
that in such a short-range interaction model, spin excitations that had basically
disappeared from the electron-gas problem, will now play a prominent role. Even
when the interaction is not too strong, we will see why the perturbative methods
that we have described in the previous Part are of limited validity. When the
interaction is not too strong, we can treat the problem non-perturbatively using
the Two-Particle-Self-Consistent approach and others.
The Hubbard model will also allow us to understand why certain materials that

are predicted to be good metals by band structure theory are in fact insulators.
Insulating behavior can be induced by the interaction U when it is larger than
the bandwidth. Such interaction-induced insulators are known as Mott insulators.
And the transition between the metallic and the insulating phase that occurs as
a function of U is called the Mott transition. The best known method to treat
materials that are close to a Mott transition is Dynamical Mean-Field Theory and
its cluster generalizations, that we will explain. High-temperature superconduc-
tors and layered organic conductors are examples of systems that display Mott
insulating phases.
In the next Part we will use the Hubbard model to introduce broken symmetry

states with ferromagnetism as an example. In this Part, we restrict ourselves to
the �normal�paramagnetic state.

De�nition 34 Note that it is usual for physicist to call �correlations�all e¤ects
that go beyond DFT. Chemists often refer to correlations when Hartree-Fock theory
is not su¢ cient.
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53. DENSITY FUNCTIONAL THE-
ORY

The presence of a static lattice of ions creates bands, as we know from one-electron
theory. How do we generalize this to the many-body case with electron-electron
interactions. In particular, how do we go beyond Hartree-Fock theory?
Modern versions of band structure calculations, now more frequently refered

to as electronic structure calculations, are based on Density Functional Theory
(DFT). This is a ground state or thermal equilibrium method that is also used for
molecules. We begin by describing the general method, then its implementation
for band-structure calculations and then �nite temperature generalizations.

53.1 The ground state energy is a functional of the
local density

The approach is based on a simple theorem of Hohenberg and Kohn [1].

Theorem 35 When there is a unique ground state, its ground state energy is a
unique functional of the single-electron density.

We present the version of Levy [2, 3] and Lieb [134]. In both cases, we use the
variational principle for the ground state: the ground state wave function is that
which minimizes the energy

E[	] = h	jH j	i :

with the constraint that with the constraint that h	j j	i = 1: So I need to prove
the variational principle �rst. Here is the proof. The theorem has to wait a little
bit.

Proof: We can expand j	i on a complete basis of energy eigenstates

j	i =
X
i

ai jii : (53.1)

Then the average energy is given by

h	jH j	i =
X
i;j

a�jai hjjH jii (53.2)

=
X
i

a�i aiEi (53.3)

where the last line follows because by hypothesis the Hamiltonian is diagonal
in that basis. With E0 the lowest energy state, the inequality followsX

i

a�i aiEi �
 X

i

a�i ai

!
E0: (53.4)
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The prefactor on the right-hand side simpli�es with the norm of the wave
function in the denominator, which proves the theorem.

To continue, let
H = bTkin + V̂c + V̂l (53.5)

where bTkin is the kinetic energy, V̂c the Coulomb interaction between electrons
and V̂l the interaction between the electrons and the positive lattice of ions. We
are working in the limit where the kinetic energy of the ions is neglected, so there
are no phonons. With nl (r0) the charge density of the lattice we can write

h	j V̂l j	i = h	j
Z
d3r

Z
d3r0 y (r) (r)

e2

4�"0 jr� r0j
nl (r

0) j	i (53.6)

=

Z
d3r h	j y (r) (r) j	i

Z
d3r0

e2

4�"0 jr� r0j
nl (r

0) (53.7)

=

Z
d3rn (r)Vl (r) (53.8)

where in the last line I have de�ned the lattice potential

Vl (r) �
Z
d3r0

e2

4�"0 jr� r0j
nl (r

0) (53.9)

and the one-body electronic density

n (r) �
Z
d3r h	j y (r) (r) j	i : (53.10)

Hohenberg and Kohn �rst proved that in the ground state, Vl (r) leads to a
unique density n (r) :That shows that the ground state energy is a unique func-
tional of n (r) since Vl (r) determines the Hamiltonian (kinetic energy and electron-
electron interactions are always the same). That theorem, that assumes that the
ground state is unique, is proven by contradition as follows. Assume that the
potentials Vl (r) and V 0l (r) lead to the same density n (r) : The many-particle
wave functions j	i and j	0i must be di¤erent since they correspond to di¤erent
Schrödinger equations. The variational property then tells us that

E0 = h	0jH 0 j	0i < h	jH 0 j	i = h	jH � V` + V 0` j	i : (53.11)

E0 < E +

Z
drn (r) [V 0l (r)� Vl (r)] : (53.12)

Redoing this calculation with primed and non-primed system exchanging roles, we
�nd that

E < E0 +

Z
drn (r) [Vl (r)� V 0l (r)] : (53.13)

Adding the two equations, we have that

E + E0 < E + E0 (53.14)

which cannot be true since the ground state is unique by hypothesis, so E is not
equal to E 0: This proves that the hypothesis that Vl (r) and V 0l (r) can both lead
to the same density n (r) cannot be correct (unless Vl (r) and V 0l (r) di¤er by a
constant, in which case the corresponding wave functions are identical.). Hence,
given Vl (r), there is no other potential V 0l (r) that can lead to the same density
n (r) : This is equivalent to saying, and that is the important step, that the ground
state energy is a unique functional of the density.
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A more illuminating approach in my opinion, is that of Levy and Lieb [2, 3]
[134]. If we take the set of all normalized wave functions, the variational principle
can be formulated as

E = min
	
h	j bTkin + V̂c + V̂l j	i :

We now perform the minimization in two steps. First with respect to all wave
functions that have the same one-particle density, then with respect to the one-
particle density

E = min
n
min
	!n

h	j bTkin + V̂c + V̂l j	i
E = min

n

��
min
	!n

h	j bTkin + V̂c j	i�+ Z d3rn (r)Vl (r)

�
(53.15)

= min
n

�
F [n] +

Z
d3rn (r)Vl (r)

�
: (53.16)

where we have de�ned

F [n] = min	!n h	j bTkin + V̂c j	i : (53.17)

That functional of n (r) contains kinetic energy and Coulomb interaction between
electrons. It is independent of the lattice potential and is thus a universal property
of the inhomogeneous electron gas. We say inhomogeneous because we have to
�nd this function for densities that depend on position.
We can then write

E [Vl] = minn(r)
�
F [n] +

R
d3rn (r)Vl (r)

�
: (53.18)

From that point of view, the Hohenberg-Kohn ground state energy E is a func-
tional of the external potential and is the Legendre transform of the Levy-Lieb
functional F with

�E [Vl]

�Vl (r)
= n (r) (53.19)

which can in principle be inverted to write Vl (r) as a function of n (r) and then
write E [Vl] as a functional of n (r) ; namely E [Vl[n (r)]] : The inverse Legendre
transform leads to

�F [n]

�n (r)
= �Vl (r) : (53.20)

What have we achieved? We have shown that a) the ground state energy
depends only on n (r) instead of the whole wave function. b) The functional F [n]
is universal in the sense that it depends only on n (r) and nothing else. If we can
�nd the exact F [n] for all possible n (r), it can be applied to all situations. When
the density does not vary too violently, we can just �nd out the functional F [n]
by solving the inhomogeneous electron gas by whatever method we can, Monte
Carlo for example.

53.2 The Kohn-Sham approach

How can we transform the general ideas of the previous section into a calculational
tool? The Hartree contribution to the potential energy depends only on density.
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It is less clear how to write the kinetic energy and the rest of the contributions to
the Coulomb interaction (exchange for example) in a way that depends only on
density. In the Thomas-Fermi approach, we wrote the kinetic energy as a function
of the local Fermi wave vector, and hence as a function of the density. Nevertheless,
that is not very precise when the density changes on short length scales. Kohn
and Sham [116] proposed to expand the density in terms of orthogonal one-body
orbitals for N particles in a paramagnetic state:

n (r) =

N=2X
i=1;�

���KS
i;� (r)

��2 : (53.21)

If the wave function was simply obtained by �lling these orthogonal orbitals
�KS (r), whatever they are, up to the Fermi level, the corresponding kinetic energy
would be easy to compute

TKS = h	KS j bTkin j	KSi = X
i=1;�

Z
d3r�KS

i;� (r)

�
�r2

2m

�
�KS
i;� (r) : (53.22)

The Kohn-Sham method then proposes to write for the universal functional

F [n] = h	KS j bTkin j	KSi+ 1
2

Z
d3r

Z
d3r0

e2n (r)n (r0)

4�"0 jr� r0j
+ Exc[n]:

The above equation de�nes the exchange correlation functional Exc[n]. Going
back to the de�nition of F [n]; we see that

Exc[n] = min
	!n

h	j bTkin + V̂c j	i � min
	KS!n

h	KS j bTkin j	KSi
�1
2

Z
d3r

Z
d3r0

e2n (r)n (r0)

4�"0 jr� r0j
: (53.23)

Note that the Kohn-Sham expression for the kinetic energy is not exact.
Years of experience have yielded good approximations for the universal func-

tional Exc[n]: The simplest approximation, the Local Density Approximation
(LDA) reads, for real orbitals,

ELDAxc [n] = �1
2
min

	KS!n

X
�;�0

N=2X
i;j

Z
d3r

Z
d3r0��;�0

e2�KS
i;� (r)�

KS
j;� (r)�

KS

i;�0 (r
0)�KS

j;�0 (r
0)

4�"0 jr� r0j

+

Z
d3rCXn4=3 (r) :

The �rst term is the Kohn-Sham exchange energy computed from h	j V̂c j	i with
the Kohn-Sham wave function. Instead of minimizing with respect to the Kohn-
Sham orbitals restricted to a given density and then with respect to the density, one
minimizes with respect to the Kohn-Sham orbitals, obtaining equations that have
the structure of the integro-di¤erential Hartree-Fock equation. What has been
achieved is that we have an auxiliary non-interacting electron problem, obeying
Fermi-statistics obviously, that should give a good approximation to the ground-
state energy and ground-state density.
Hartree-Fock equations that are valid for any variational state formed by a

Slater determinant are discussed in Appendix C.
It is important to realize that the Kohn-Sham orbitals serve to compute the

ground-state single-particle density. The eigenstates are Bloch states with a band
index. The corresponding eigenenergies cannot be interpreted as exact single-
particle excitations. They may however serve as a starting point for further calcu-
lations using many-body theory, as I explain in the next Chapter on the Hubbard
model.
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53.3 *Finite temperature

Mermin [5] has used the Feynmann variational principle to show that in the pres-
ence of an external potential, the grand potential is a functional of the density
and that there is a universal part to it.
We have already shown, with % the density matrix, that


 [%] < 
 [%0] + hH �H 0i%0 : (53.24)

We assume that the di¤erence between % and %0 is only the lattice potential but
that su¢ ces to state that there is really an inequality and that the two sides cannot
be equal. Writing explicitly the di¤erence between the two Hamiltonians,


 [%] < 
 [%0] +

Z
d3rn0 (r) (Vl (r)� V 0l (r)) : (53.25)

We could also use the inequality by interchanging the role of % and %0 so that the
following inequality is also valid


 [%0] < 
 [%] +

Z
d3rn (r) (V 0l (r)� Vl (r)) : (53.26)

If the densities are identical for the two di¤erent lattice potentials, then n0 (r) =
n (r) and adding the two inequalities together we �nd the absurd result


 [%] + 
 [%0] < 
 [%0] + 
 [%] : (53.27)

Hence, if the two lattice potentials are di¤erent, the densities have to di¤er. In
other words the local density is uniquely determined by the external lattice po-
tential.
If we know the external lattice potential, we can write down the density matrix

% in the usual way. Since there is a one-to-one correspondance between Vl (r) and
n (r) ; the density matrix % is a functional of n (r) and


 [n] =

Z
d3rn (r)Vl (r) + F [n] (53.28)

where
F [n] =

DbTkin + V̂cE
n
� TS [n] (53.29)

with S the entropy �Tr[% ln %] determined from the density matrix that is uniquely
determined by the density.
One thus obtains a minimization problem with respect to the density n (r) that

is very similar to what we had at zero temperature.

Remark 309 The original Hohenberg-Kohn theorem is along the lines of the ar-
guments in this section. We could also formulate the Mermin result in a manner
similar to that of Levy for the ground state. The density matrix would replace the
wave function.

53.4 Improving DFT with better functionals

DFT is based on the existence of a universal functional of the density. However,
this functional is unknown, so a major part of the work in that �eld has been
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to improve the quality of the functional. A well known example is the Perdew,
Burke, Ernzerhof functional [191]. Another well known author in that �eld that
has helped make DFT a truly �rst principles approach is Marvin L. Cohen [222].
Note that going beyond the LDA approximation leads to more general functionals
of n (r) that can depend for example on derivatives of the density, for example the
Laplacian of the density or the square of the gradient (to make sure we that F [n]
is a scalar) etc.
Another direction for improvement by Car and Parrinello [50] has been to

combine molecular dynamics with DFT to go beyond the pair-potential approx-
imation, thereby making possible the simulation of both covalently bonded and
metallic systems and allowing the application of density-functional theory to much
larger systems than previously feasible.
I note without proof for now that there is an exact expression for the exchange

correlation energy Exc[n]: Given the density n (r) we can write this exchange-
correlation energy as follows [120],

Exc (r) =
��xcDFT [n]

�n (r)
(53.30)

where

�xcDFT [n] = T
X
iqn

Z
d3r

Z
d3r0

Z 1

0

d�
���� (r; r

0; iqn)

4�"0 jr� r0j
(53.31)

where the charge density is � (r) =
p
�e n (r) and the corresponding susceptibility

���� (r; r
0; iqn) is calculated for a Coulomb potential where the electric charge is �e2:

One uses this expression to �nd more accurate exchange-correlation functionals
[?].

53.5 DFT and many-body perturbation theory

DFT has been designed to �nd ground states. The eigenenergies of the Kohn Sham
orbitals are just the result of a parametrization of the density. There is nothing in
the theory that garantees that they represent single-particle excited states. To �nd
excited states and even improve ground state energies, it was proposed to use the
many-body perturbation method developed for the electron gas [200][100]. You
can read about electronic structure and interactions for example in this book [153].
The idea is to expand the �eld operators  � (r) using the Kohn-Sham orbitals.
In that basis, the e¤ect of interactions is minimized, but it is still there. One
can then use any many-body method to �nd excited states and other interesting
properties. The �rst method to use is the RPA to �nd the dielectric constant.
The corresponding self-energy with the screened interaction is refered to in this
context as the GW approximation. These calculations [20] can be seen as an
approximation for the exact equations of Hedin [91, 92] who also performed the
�rst full calculation for the electron gas. Hedin�s equations have been derived
above in Chap. 51.
One had to wait till the mid 80�s to see applications to real materials [99].

As shown in Fig. (53-1), spectacular agreement with experiment for band gaps
has been achieved in the latest version of the approach [240]. In that approach, a
quasiparticle approximation is taken for the Green�s function, which is determined
self-consistently. This helps remove the in�uence of the choice of basis for the
Kohn-Sham orbitals.
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Figure 53-1 Exprimental band gaps for semi-conductors and insulators compared
with theory. The calculations for the top �gures labeled LDA are just the gaps in
the Kohn-Sham eigenenergies, while the other ones are obtained from GW. The
essentially exact agreement in the bottom �gure is for quasiparticle self-consistent
GW. The �gure is taken from M. van Schilfgaarde et al. PRL 96, 226402 (2006).
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Yet, this approach fails for late transition metals oxides, which are insulators,
but predicted to be metals by DFT based methods. A partial remedy for this
was to include an orbital-dependent potential U , that acts only on the d or f
orbitals [15, 136], the so-called LDA+U method. In order of increasing localiza-
tion of the orbitals, meaning larger interactions, we �nd: 5d; 4d; 3d; 4f; and 5f:
Within a given row of the periodic table, moving from left to right also increases
localization. But what is U? That takes me to the next topic.

53.6 Model Hamiltonians

In parallel e¤orts to understand properties of materials, the study of simple Hamil-
tonians revealed very rich physics. One of the �rst di¢ cult problems that was
tackled was that of the Kondo Hamiltonian. That Hamiltonian was suggested
by Nobel Prize winner PW Anderson in his study of a model, now known as
the Anderson impurity model, that introduced a double occupancy cost U for
electrons on an impurity with localized orbital [10]. In the Kondo problem, an
isolated impurity with a local moment is hybridized antiferromagnetically with a
conduction-electron sea. At high temperature, this local moment is free. At low
temperature, there is a crossover to a state where the localized moment essen-
tially disappears by forming a highly entangled singlet state with the conduction
sea. A full solution of that problem had to wait for the renormalization group of
Nobel Prize winner Ken Wilson [254]. The solution to this problem explained in
particular the resistivity minimum found in dilute alloys.
Another important model was proposed independently in 1964 by Hubbard,

Kanamori and Gutwiller. Known today as the Hubbard model, this model has
two non-commuting terms. A term that represents electrons moving on a lattice
with one orbital per site. That term is diagonal in a plane-wave basis. The
other term represents the energy cost U associated with double occupancy and
is diagonal in the site basis. This model was proposed to understand emergent
phases of matter such as ferromagnetism. But in the end, it revealed itself as
a way to explain antiferromagnetism and the metal-insulator transition, or Mott
transition. The latter problem was by far the most di¢ cult one. The interaction-
induced metal insulator transition was proposed by Peierls and Mott around 1937
as an explanation for the discrepancy between the band picture of solids and
observation in materials sur as NiO.
Early explanations of the Mott transition at half-�lling, all based on the Hub-

bard model, included a) Hubbard who proposed that the original density of states
is split in two by U so that when U is small enough, a metal is recovered [98] b)
Brinkmann and Rice who suggested that the e¤ective mass of electrons diverges
at the transition [44], a result recovered by the modern slave-boson approach of
Kotliar and Ruckenstein [122] c) Slater who associated the transition to an emer-
gent long-range antiferromagnetic order [221]. The latter explanation is invalid
for what are called today Mott insulators in a paramagnetic state.
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54. THE HUBBARD MODEL

Let me step back. Suppose we have one-body states, obtained either from Hartree-
Fock or from Density Functional Theory (DFT). The latter is a much better ap-
proach than Hartree-Fock. The Kohn-Sham orbitals give highly accurate electronic
density and energy for the ground state. If the problem has been solved for a trans-
lationally invariant lattice, the one-particle states will be Bloch states indexed by
crystal momentum k and band index n: Nevertheless, these one-particle states
cannot be used to build single-particle states that diagonalize the many-body
Hamiltonian. More speci�cally, if we expand the creation-annihilation operators
in that basis using the general formulas for one-particle and two-particle parts of
the Hamiltonian, it will not be diagonal. Suppose that a material has s and p
electrons, for which DFT does a good job. In addition, suppose that there are
only a few bands of d character near the Fermi surface. Assuming that the only
part of the Hamiltonian that is not diagonal in the DFT basis concerns the states
in those d band, it is possible to write a much simpler form of the Hamiltonian.
We will see that nevertheless, solving such �model�Hamiltonians is non-trivial,
despite their simple-looking form.
After providing a �derivation�of the model, we will solve limiting cases that

will illustrate one limit where states are extended, and one limit where they are
localized, giving a preview of the Mott transition.
Finding an e¤ective Hamiltonian for a few bands near the Fermi level starting

from the full electronic structure is a delicate matter that necessitates a much more
detailed treatment than the one exposed here. The procedure to �nd the e¤ective
Hamiltonian is called "downfolding". This means that one wants to obtain an
e¤ective Hamiltonian that focuses on a few bands near the Fermi level. This is
in a sense our �model space�. These methods, that I will not explain, include
cRPA [21] where the dielectric constant is computed by using in the bubbles all
particle hole-pairs that include at least one of the bands that we do not wish to
consider in our model space. The resulting dielectric constant does not screen
the Coulomb interaction in the sense of Thomas-Fermi as discussed above. The
Coulomb interaction is smaller but still long range. It is only if the model space is
metallic that the Coulomb interaction will become truly short-range. For examples
of derivations of model Hamiltonians, you can also look at Refs. [172] and [173].
The approach that follows to �derive�the Hubbard model is just heuristic.

54.1 Assumptions behind the Hubbard model

A qualitative derivation of the model is as follows. Start from the general Hamil-
tonian Eq.(36.1). The �eld operators can be expanded in single-particle eigen-
states. For the case of interest to us, these would be Bloch states �nk (r) � hr jnki
with band index n and crystal momentum k, so that

 (r) =
X
nk

�nk (r) cnk: (54.1)

Since screening suggests that in the end we need to consider short range interac-
tions that are better described in a localized basis, we can use the Wannier basis
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wn (r�Ri). In that case, the expansion takes the form,

 (r) =
X
nRi

wn (r�Ri) cnRi : (54.2)

The kinetic energy operator with the potential from the lattice, for example, can
be lumped together. They then look as followsX

�

Z
d3r y� (r)

��
�r

2

2m

�
+ V` (r)

�
 � (r) (54.3)

=
X
�

X
nRimRj

cy�;nRi
hnRij bTkin + bV` jmRji cy�;mRj

(54.4)

where

hnRij bTkin + bV` jmRji (54.5)

�
Z
d3rw�n (r�Ri)

��
�r

2

2m

�
+ V` (r)

�
wm (r�Rj) : (54.6)

Remark 310 There is an arbitrariness in the de�nition of the Wannier functions.
Normally, we take for a single band m

wm (r�Rj) =
1p
N

X
k

e�ik�Rj�mk (r) : (54.7)

However, there is an arbitrariness. We can instead perform a unitary transforma-
tion

W` (r�Rj) =
1p
N

X
k

e�ik�Rj

X
m

U`m�mk (r) (54.8)

that gives a di¤erent set of equally valid orthonormal Wannier orbitals. This
has led the group of Vanderbilt to de�ne �maximally localized orbitals� [155][224].
These are not necessarily the best to obtain e¤ectif models but they are quite pop-
ular.

In cases where a single band crosses the Fermi level and is far in energy from
other bands, we can appeal to perturbation-theory ideas and assume that we can
focus on that single band that crosses the Fermi level. I then drop the band index
and use the short-hand notation hnRij bTkin jnRji � hij bTkin jji. The Hamiltonian
in the presence of the Coulomb interaction then takes the form

H =
X
�

X
i;j

cyi� hij bTkin+ V̂l jji cj� + 12X
�;�0

X
ijkl

hij hjj V̂c jki jli cyi�c
y
j�0cl�0ck� (54.9)

where the �rst term contains all the one-body parts of the Hamiltonin, namely
kinetic energy and lattice potential energy. Remember that hij and jki belong to
the same one-particle Hilbert space as do hjj and jli : Here, cyi� (ci�) are creation
and annihilation operators for electrons of spin � in the Wannier orbital centered
around site i: A single many-particle state formed by �lling orbitals, leading to
a Slater determinant as wave function, cannot diagonalize this Hamiltonian be-
cause of the interaction part that empties orbitals and �lls other ones. The true
eigenstates are linear combinations of Slater determinants.
The one-body part by itself is essentially the DFT band structure. In 1964,

Hubbard, Kanamori and Gutzwiller did the most drastic of approximations, hop-
ing to have a model simple enough to solve. They assumed that hij hjj V̂c jki jli
would be much larger than all other interaction matrix elements when all lattice
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sites are equal. De�ning tij � hij bT jji and U � hij hij V̂c jii jii ; and using ci�ci� = 0
they were left with

H =
X
�

X
i;j

tijc
y
i�cj� +

1

2

X
�;�0

X
i

Ucyi�c
y
i�0ci�0ci� (54.10)

=
X
�

X
i;j

tijc
y
i�cj� +

X
i

Ucyi"c
y
i#ci#ci" (54.11)

=
X
�

X
i;j

tijc
y
i�cj� +

X
i

Uni#ni": (54.12)

In this expression, ni� = cyi�ci� is the density of spin � electrons, tij = t�ji is the
hopping amplitude, and U is the screened Coulomb repulsion that acts only on
electrons on the same site. Most of the time, one considers hopping only to nearest
neighbors. In general, we write �t;�t0;�t00 respectively for the �rst-, second- and
third-nearest neighbor hopping amplitudes. To go from the �rst to the second line
we used the Pauli exclusion principle cyi�c

y
i� = 0.

Remark 311 This last statement is important. To obtain the Hubbard model
where up electrons interact only with down, we had to assume that the Pauli ex-
clusion principle is satis�ed exactly. So approximation methods that do not satisfy
this constraint are suspicious.

The model can be solved exactly only in one dimension using the Bethe ansatz,
and in in�nite dimension. The latter solution is the basis for Dynamical Mean Field
Theory (DMFT) that we will discuss below. Despite the fact that the Hubbard
model is the simplest model of interacting electrons, it is far from simple to solve.
Atoms in optical lattices can be used to arti�cially create a system described

by the Hubbard model with parameters that are tunable [101]. A laser interference
pattern can be used to create an optical lattice potential using the AC Stark e¤ect.
One can control tunneling between potential minima as well as the interation of
atoms between them and basically build a physical system that will be described
by the Hubbard Hamiltonian. This kind of experimental setup in a sense is an
analog computer. The derivation given in the case of solids is phenomenological
and the parameters entering the Hamiltonian are not known precisely. In the case
of cold atoms, one can �nd conditions where the Hubbard model description is
very accurate. By the way, in optical lattices, interesting physics occurs mostly in
the nano Kelvin range. Discussing how such low temperatures are achieved would
distract us to much.
Important physics is contained in the Hubbard model. For example, the in-

teraction piece is diagonal in the localized Wannier basis, while the kinetic energy
is diagonal in the momentum basis. Depending on �lling and on the strength of
U compared with band parameters, the true eigenstates will be localized or ex-
tended. The localized solution is called a Mott insulator. The Hubbard model
can describe ferromagnetism, antiferromagnetism (commensurate and incommen-
surate) and it is also believed to describe high-temperature superconductivity,
depending on lattice and range of interaction parameters.

54.2 Where spin �uctuations become important

In deriving the Hubbard model we have used the Pauli exclusion principle. Elec-
trons do not interact with electrons of the same spin since this means they would
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be in the same state. In other words, we have taken into account the fact that
exchange has gotten rid of that type of interactions. This is discussed further from
the point of view of diagrams in Sec. (56.4). The consequence of this is that spin
now starts to play an important role, contrary to the case of the electron gas. In
fact, almost all manifestations of magnetism in solids originates from exchange,
not from direct magnetic-dipole magnetic-dipole interactions. An easy way to see
this is to rewrite the Hubbard interaction in terms of density-density interaction
(ni# + ni")

2 and spin-spin interaction Szi S
z
i as follows:

Uni#ni" =
U

4
(ni# + ni")

2 � U

4
(ni# � ni")2 (54.13)

=
U

4
nini �

U

4
Szi S

z
i : (54.14)

To gain a feeling of the Physics contained in the Hubbard model, let us �rst discuss
two limiting cases where it can be solved exactly.

54.3 The non-interacting limit U = 0

As a simple example that comes back often in the context of high-temperature su-
perconductivity, consider a square lattice in two dimensions with nearest-neighbor
hopping only. Then, when U = 0, we have

H0 =
X
i;j;�

tijc
y
i�cj� (54.15)

where tij is a Hermitian matrix. When there is no magnetic �eld the one-body
states can all be taken real and tij is symmetric. To take advantage of translational
invariance we use our Fourier transforms

ci� =
1p
N

X
k

eik�rick� (54.16)

cyi� =
1p
N

X
k

e�ik�ricyk� (54.17)

with ri the position of site i, andX
i

eik�ri = N�k;0: (54.18)

Here N is the number of atoms and we take the lattice spacing a to be unity.
De�ning rj = ri + � and noting that the hopping matrix depends only on the
distance to the neighbors �, we �nd

H0 =
1

N

X
ri;�;�

X
k0

t�e
�ik0�ricyk0�

X
k

eik�(ri+�)ck�

=
X
k;�

"kz }| {X
�

t�e
ik��cyk�ck� (54.19)

H =
X
k;�

"kc
y
k�ck�: (54.20)
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In the case of nearest-neighbor hopping only, on a two-dimensional square lattice
for example where tij = �t for nearest-neighbor hopping, we have the dispersion
relation

"k = �2t(cos kx + cos ky);

where I have assumed that the lattice spacing, or distance � between nearest-
neighbors, is equal to unity. Clearly, if the Fermi wave vector is su¢ ciently small,
we can de�ne t�1 = 2mb and approximate the dispersion relation by its quadratic
expansion, as in the free electron limit

"k = �2t(cos kx + cos ky) � C +
k2x + k

2
y

2mb
: (54.21)

54.4 The strongly interacting, atomic, limit t = 0

If there are no hoppings and only disconnected atomic sites,

K = U
X
i

ni"ni# � �
X
i;�

ni� (54.22)

there are two energy levels, correspondig to empty, singly (zero energy) and doubly
occupied site (energy U). It is apparently much simpler than the previous problem.
But not quite. A simple thing to compute is the partition function. Since each
site is independent, Z = ZN1 where Z1 is the partition function for one site. We
�nd, since there are four possible states on a site, empty, spin up, spin down and
doubly occupied,

Z1 = 1 + e
�� + e�� + e��(U�2�): (54.23)

Already at this level we see that there are �correlations�. Z 1can be factored into�
1 + e��

�2
only if there are no interactions.

Things become more subtle when we consider the �dynamics�, as embodied
for example in the Green function

G� (�) = �


T�
�
c� (�) c

y
�

��
: (54.24)

We can consider only one site at a time since the Hamiltonian is diagonal in
site indices. Imagine using Lehman representation. It is clear that when the
time evolution operator acts on the intermediate state, we will need to know if
in this intermediate state the system is singly or doubly occupied. We cannot
trace only on up electrons without worrying about down electrons. The Lehman
representation gives a staightforward way of obtaining the Green function.
We can also proceed with the equation of motion approach, a procedure we

will adopt to introduce the concept of hierarchy of equations (the analog of the
BBGKY hierarchy in classical systems). All that we need is

@c�
@�

= [K; c�] = [Un�n�� � �n�; c�] = �Uc�n�� + �c�: (54.25)

From this, the equation of motion for the Green function is

@G� (�)
@�

= �� (�)�


T�
�
[K; c� (�)] c

y
�

��
(54.26)

= �� (�) + �G� (�) + U


T�
�
c� (�)n�� (�) c

y
�

��
(54.27)
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The structure of the equation of motion is a very general result. One-body
Green functions are coupling to higher order correlation functions. Let us write
down the equation of motion for that higher order correlation function that we
de�ne as follows

G2;� (�) = �


T�
�
c� (�)n�� (�) c

y
�

��
: (54.28)

Following the usual approach, and recalling that here @n�� (�) =@� = [K;n�� (�)] =
0 because the Hamiltonian preserves the number of particles, we �nd with the help
of Eq.(54.25) and of the equal-time anticommutator

�
c�n��; c

y
�

	
= n�� arising

from the derivative of the � function in the time-ordered product,

@G2;� (�)
@�

= �� (�) hn��i+ �G2;� (�)� UG2;� (�) : (54.29)

Instead of generating a higher order correlation function in the term coming
from [K; c� (�)], as is usually the case, the system of equations has closed since
n��n�� = n��. This is a very special case. Equations (54.27) and (54.29) form a
closed set of equations that is easy to solve in Matsubara frequencies where they
become

(i!n + �)G� (i!n) = 1 + UG2;� (i!n) (54.30)

(i!n + �)G2;� (i!n) = hn��i+ UG2;� (i!n) : (54.31)

Substituting the second equation in the �rst

(i!n + �)G� (i!n) = 1 +
U hn��i

(i!n + �� U)
: (54.32)

Since

U hn��i
(i!n + �) (i!n + �� U)

=
U hn��i

U

�
1

(i!n + �� U)
� 1

(i!n + �)

�
(54.33)

we are left with

G� (i!n) =
1� hn��i
i!n + �

+
hn��i

i!n + �� U
(54.34)

GR� (!) =
1� hn��i
! + i� + �

+
hn��i

! + i� + �� U :

The imaginary part gives us the single-particle spectral weight. Instead of a
single delta function located at a k dependent position, we have two delta functions
that are completely independent of k, as we must expect for a localized state. The
two levels correspond respectively to the electron a�nity and ionization potential of
the atom. Physically speaking, if the fraction of sites occupied by down electrons
is hn��i, then a spin up electron will have an energy �� + U a fraction hn��i
of the time, and an energy �� for a fraction 1 � hn��i of the time. And that is
independent of the momentum. That is very di¤erent from a quasiparticle. There
is no pole at ! = 0 unless � = 0:
The non-interacting limit is not a good starting point for this problem clearly.

One expects perturbation theory to breakdown. This is simple to see for example
at half �lling when hn��i = 1=2 and � = U=2. Then,

GR� (!) =
1

2

�
1

! + i� + U=2
+

1

! + i� � U=2

�
=

(! + i�)

(! + i�)
2 �

�
U2

4

�(54.35)
=

1

(! + i�)� U2

4(!+i�)

(54.36)
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so that clearly, the retarded self-energy �R (!) = U2

4(!+i�) is singular at low fre-
quency, not good news for perturbation theory. It gets rid of the pole that is at
! = 0 when there is no interaction.
If t is not zero but U=t � 1, then we have a Mott insulator. In a Mott

insulator, the two peaks that we just found in the single-particle spectral weight
are somewhat broadened, but there is a gap at zero frequency. We will leave this
concept aside for the moment and discuss the weak coupling case.
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55. *THE PEIERLS SUBSTITU-
TION ALLOWS ONE TO COU-
PLE GENERAL TIGHT-BINDING
MODELS TO THE ELECTROMAG-
NETIC FIELD

Suppose we have tight-binding bands of atomic or Wannier orbitals. That problem
arises for example when we focus on a few correlated bands near the Fermi level.
It is in general necessary to go a localized basis where short-range interactions,
Hubbard or Hund�s for example, are easiest to write. In this Chapter, I try to
answer the question �How do I write the interaction with the electromagnetic �eld
when we take into account only a �nite number of bands?�
In the presence of the electromagnetic �eld, we still have the usual intra-atomic

transitions, say electric-dipole transitions. But there are extra contributions com-
ing from hopping between atoms. We know, for example, that the vector potential
for a uniform electric �eld couples to the uniform current operator. There is a con-
tribution to that current that is just the gradient of the dispersion relation rk"k:
The gauge-invariant current also has an additional term. In linear reponse, this
later contribution gave the diamagnetic term, that depended inversely on the mass.
So, intuitively, we expect that the velocity and inverse mass tensor must come in.
To derive everything in the most general way with a �nite basis in a tight-binding
model, our best guide is gauge invariance. In fact, without gauge invariance as a
guide, we may be inclined to think that if there are several bands labeled by n then
the current operator is rk"kn. This is incorrect for general response functions, as
I will show. So, here we go.
We already know from Sec. (11.1) that under a gauge transformation, one-

particle wave functions in �rst quantization tranform as follow

 0(r; t) = eie�(r;t)=~ (r; t) (55.1)

or in Dirac�s notation,

hrj  0 (t)
�
= eie�(r;t)=~ hrj  (t)i : (55.2)

Suppose that  (r; t) is expanded in a �nite set of Wannier orbitals (or some other
local orbitals) as in Eq. (54.2)

 (r; t) =
X

nRi+r�

wn (r�Ri � r�) cnRi+r� (t) (55.3)

where n is a band index in the simplest cas, or more generally an orbital index
(Recall the ambiguity in the de�nition of the Wannier functions discussed in Sec.
(54.1)). Here I have generalized Eq. (54.2) by allowing several atoms that are
located at position r� with respect to the unit cell that is itself located at Ri:
Since wn (r�Ri � r�) are just basis functions that we take as given, under a
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gauge transformation the destruction operator must transform in such a way that
the wave-function transforms properly

c0nRi+r� (t) = eie�(Ri+r�;t)=~cnRi+r� (t) : (55.4)

and analogously for the creation operators. Something has happened here! Instead
of �(r; t)=~, I have written �(Ri + r�; t)=~. While we can continue to take into
account intra-atomic transitions since we have localized orbitals, the �nite basis
means that for hopping between di¤erent atoms, we do not have arbitrary spatial
resolution since our basis is �nite. So we have no choice but to consider only
electromagnetic �elds that vary on a scale that is larger than the inter-atomic
distance. In all the usual condensed-matter experiments, this is the case. With
the most powerful lasers today, [257] one can apply �elds of the order of 102V= �A
that vary over the wavelength of light, namely distances of the order of 104 atoms,
and even with micromagnets, the magnetic �eld varies by one Tesla on the scale
of one micron, or 10�6 meters, or 104 atoms [193].
Given the e¤ect of a gauge transformation on orbitals, we see that interaction

terms that depend only on density or spin are automatically gauge independent,
whereas the kinetic energy in a Wannier basis will be gauge invariant if any given
term in the presence of a vector potential takes the form

e
i e~

RRj+r�
Ri+r�

A(r;t)�dr
cymRj+r�

(t) cnRi+r� (t) (55.5)

which is invariant under a gauge transformation A! A+r�; as we can see from
the way the operators transform in Eq. 55.4. The above assumes that the integral
is taken along the straight line connecting Ri + r� and Rj + r� and that A(r; t)
does not vary much over the path of integration, or that it can be replaced by its
value in the mid point. In other words, the phase in the above exponential is

e

~

Z Rj+r�

Ri+r�

A(r; t) � dr = A
�
Rj + r� +Ri + r�

2

�
� (Rj + r� �Ri � r�) (55.6)

The e¤ect of the magnetic induction will come from the part of the vector potential
that cannot be represented by a gradient. The �ux of this �eld thus depends on
the path chosen to go from one site to the other. The above choice is physically
correct because if we write the equations of motion for the Green�s function in a
gauge invariant manner, factoring out the trivial gauge dependence of the Green�s
function, discussed in Sec. 32.3, the resulting equations of motion depend on the
magnetic �ux in the manner expected from path integral considerations. Namely,
recall that the Green�s function describing propagation from one site to another site
goes through all possible intermediate sites. On any given path, these three sites
de�ne a surface and the magnetic �ux through this surface appears in the equation
of motion for the gauge invariant Green�s function when the above de�nition is
used. [177] [114]
The current operator on the lattice is obtained from

j = ��H
�A

(55.7)

as we saw in Eq. (11.26).

Remark 312 When the magnetic �ux
I
A(r; t) � dr through a unit cell is equal

to nh=e; where n is an integer, it is as if the magnetic �eld was absent. There
is thus a periodicity associated with the magnetic �eld that may or may not be
commensurate with the lattice. This induces a spectrum of Landau levels in two
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dimensions that gives a complicated but beautiful fractal picture, often referred to
as a Hofstadter butter�y. [94] The magnetic �elds necessary to observe this e¤ect
are unattainable in solid state systems. It is however possible to engineer the
Peierls substitution in optical lattices of cold atoms [105] [?] This has lead to the
suggestion and to the observation of this spectrum of Landau Levels in cold atom
experiments. [5] [162] [6]

Remark 313 Be careful with the semiclassical de�nition of the band current:
Suppose we want to compute the current-current correlation function to obtain
the conductivity. We need the current operator. A common assumptions for DC
calculations is to consider the contribution of each electronic band b separately
and to take e

~rk"kb as the current vertex in each band. This is the semi-classical
approximation. Note however that the current given by Eq. (55.7) above will in
general include interband transitions. To see this, �rst choose to represent the
electric �eld with a time-dependent vector potential that is independent of position.
In that case, thanslational invariance is preserved. Going to a Fourier basis then,
for each value of k, the kinetic energy operator takes the form of an M�M matrix
where M is the number of orbitals in the unit cell. The Hamiltonian in that form
is said to be in the orbital basis. The band basis is obtained by diagonalizing the
M�M matrix for each value of k: In the orbital basis, the Fourier transform gives

cnRi+r� (t) =

�
1

N

�X
k

eik�(Ri+r�)cnk (t) (55.8)

which means that the e¤ect of the vector potential for the electric �eld can be
included by doing the substitution

k! k� e
~
A (t) (55.9)

Writing the Hamiltonian in the orbital basis then, the expression for the current
Eq.(55.7) in that basis can evaluated from

jmn (k)= �
�Hmn (k)

�A
=
e

~
@Hmn (k)

@k
� e

~
rkHmn (k) : (55.10)

Since Hmn is not diagonal in the orbital basis, the current in that basis is not
diagonal either. Nevertheless, if interband transitions can be neglected in the DC
limit, we can recover the expected semi-classical result. Indeed, let Umb (k) be
the unitary transformation that goes from the orbital to the band basis, namely
Hmn (k)Unb (k) = "kbUmb (k) and assume that there are no interband transitions:
Then

Uybm (k) jmn (k)Unb (k) =
e

~
Uybm (k) (rkHmn (k))Unb (k) (55.11)

=
e

~
rk
�
Uybm (k)Hmn (k)Unb (k)

�
(55.12)

� e
~
rkUybm (k) (Hmn (k)Unb (k)) (55.13)

� e
~

�
Uybm (k)Hmn (k)

�
rkUnb (k) (55.14)

=
e

~
rk
�
Uybm (k) "kbUmb (k)

�
� e

~

�
rkUybm (k)

�
"kbUmb (k)(55.15)

� e
~
Uybn (k) "kb

�
rkUynb (k)

�
(55.16)

=
e

~
rk"kb (55.17)

where the last step is justi�ed by the fact that we have unitary matrices so that

Uybm (k)Umb (k) = 1 and rk
�
Uybm (k)Umb (k)

�
= rk (1) = 0 for all bands b: The
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above steps are just another derivation of the Hellmann-Feynman theorem. [74]
The above arguments do not work any more for second derivatives encountered
for the diamagnetic current or in expressions for the Hall current. The multiband
case for the Hall current must be considered carefully and it is the expression for
the current in the orbital basis that must be used. [178]

Remark 314 In electronic structure calculations, it is customary to omit the fac-
tor eik�r� in the expression for the Fourier transforms Eq. (55.8). This is natural
sine translational invariance is from one unit cell to the next. However, this means
that when the current is calculated from �rkH (k), some intra unit-cell currents
are neglected. This can be corrected by modifying the expression for the current
[233]. The easiest way however is to include the Bloch phase even within a unit
cell, as I have done above. [178] You can �nd the expression for the current that
includes gradients of the periodic part of the Bloch function in this reference [180].

Remark 315 Recall our discussion on the arbitrariness in the de�nition of Wan-
nier orbitals in Sec. 54.1. [154] This does not in�uence the Peierls substitution.

Remark 316 The scalar potential should be included with the time derivative as
usual.

Remark 317 For a mathematical derivation of the Peierls substitution and cor-
rections, see for example Ref. [184].
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56. THE HUBBARD MODEL IN
THE FOOTSTEPS OF THE ELEC-
TRON GAS

In this Chapter, we follow the same steps as the electron gas and derive RPA equa-
tions for the response functions. While spin �uctuations did not play a prominent
role in the electron gas, they will be dominant in the Hubbard model and we will
see why. RPA for the Hubbard model however has a major de�ciency: It does not
satisfy the Pauli exclusion principle, as we will see. This had no major consequence
for the eletron gas, but in the case of the Hubbard model this is crucial. We will
see how to cure this problem and others using the Two-Particle Self-Consistent
Approach in the next Chapter.

56.1 Single-particle properties

Following functional methods of the Schwinger school[23, 25, 152], we begin, as
we have done earlier, with the generating function with source �elds �� and �eld
destruction operators  in the grand canonical ensemble

lnZ [�] = lnTr [e��(
bH�� bN)T� �e� y�(1)��(1;2) �(2)�] (56.1)

We adopt the convention that 1 stands for the position and imaginary time indices
(r1; �1) : The over-bar means summation over every lattice site and integration over
imaginary-time from 0 to �, and � summation over spins. T� is the time-ordering
operator. Before, the spin index was included in the labels.
The propagator in the presence of the source �eld is obtained from functional

di¤erentiation

G� (1; 2)� = �
D
T� � (1) 

y
� (2)

E
�
= � � lnZ [�]

��� (2; 1)
: (56.2)

Physically, relevant correlation functions are obtained for � = 0 but it is extremely
convenient to keep �nite � in intermediate steps of the calculation.
Using the equation of motion for the �eld  and the de�nition of the self-energy,

one obtains the Dyson equation in the presence of the source �eld [110]�
G�10 � �

�
G = 1 + �G ; G�1 = G�10 � �� � (56.3)

where, from the commutator of the interacting part of the Hubbard Hamiltonian
H; one obtains

��
�
1; 1
�
�
G�
�
1; 2
�
�

= �U
D
T� 

y
��
�
1+
�
 �� (1) � (1) 

y
� (2)

E
�

(56.4)

= �U
�
�G� (1; 2)�
���� (1

+; 1)
� G��

�
1; 1+

�
�
G� (1; 2)�

�
:(56.5)
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The imaginary time in 1+ is in�nitesimally larger than in 1. This formula can be
deduced from our previous one with the Coulomb interaction by specializing to a
local interaction only between opposite spins. That removes one integral and one
spin sum.
As in the electron gas, we need to know response functions, more speci�cally

�G� (1; 2)� =���� (1+; 1) :

56.2 Response functions

Response (four-point) functions for spin and charge excitations can be obtained
from functional derivatives (�G=��) of the source-dependent propagator. We will
see that a linear combination of these response functions is related to �G� (1; 2)� =���� (1+; 1)
above. Following the standard approach and using matrix notation to abbreviate
the summations and integrations we have,

GG�1 = 1 (56.6)

�G
��
G�1 + G �G

�1

��
= 0: (56.7)

Using the Dyson equation (56.3) G�1 = G�10 � �� � this may be rewritten

�G
��

= �G �G
�1

��
G = G^G + G

��

��
G; (56.8)

where the symbol ^ reminds us that the neighboring labels of the propagators have
to be the same as those of the � in the functional derivative. If perturbation theory
converges, we may write the self-energy as a functional of the propagator: From
the chain rule, one then obtains an integral equation for the response function in
the particle-hole channel that is the analog of the Bethe-Salpeter equation in the
particle-particle channel

�G
��

= G^G + G
�
��

�G
�G
��

�
G: (56.9)

The labels of the propagators in the last term are attached to the self energy, as
in Eq.(56.8) 1 .
In the Coulomb-gas case, we have solved this equation in the RPA approxi-

mation, where only charge �uctuations are involved. Here let us drop any special
assumption, other than spin-rotation invariance, concerning the form of the irre-
ducible vertices. We will see that in general, both spin and charge �uctuations
in�uence the self-energy, contrary to the Coulomb gas where only charge �uctua-
tions were involved.

Remark 318 In the RPA approximation for the Coulomb gas, the spin �uctua-
tions are given by a single bubble. The diagrams that are reducible with respect to
the Coulomb interaction all vanish. See the exercises.

To obtain spin and charge �uctuations from the above formula, we restore
spin indices explicitly and represent coordinates with numbers (in our previous

1To remind ourselves of this, we may also adopt an additional �vertical matrix notation�

convention and write Eq.(7) as �G
��

= G^G+G

�
��
�G
�G
��

�
G.
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convention, numbers included spin labels, but not here). When the external �eld
is diagonal in spin indices we need only one spin label on G and �. The response
function that can be used then to build both spin and charge �uctuations is

� �G� (1; 1+)
���0 (2

+; 2)
=

D
T� 

y
�

�
1+
�
 � (1) 

y
�0

�
2+
�
 �0 (2)

E
�
� G�

�
1; 1+

�
�
G�0
�
2; 2+

�
�

= hT�n� (1)n�0 (2)i� � hn� (1)i� hn�0 (2)i� : (56.10)

The charge and spin given by

ni � ni" + ni# (56.11)

Szi � ni" (�)� ni# (�) : (56.12)

Hence, the charge �uctuations are obtained from

�ch (1; 2) = �
X
�;�0

�G� (1; 1+)
���0 (2

+; 2)
(56.13)

and the spin �uctuations from

�sp (1; 2) = �
X
�;�0

�
�G� (1; 1+)
���0 (2

+; 2)
�0: (56.14)

We thus need the spin dependence in the integral equation for the susceptibilities
to compute �ch (1; 2) and �sp (1; 2) : It reads:

�G�
���0

= G^G��;�0 + G�
�
���
�G�

�G�
���0

�
G�: (56.15)

Let us focus on the integral equation for the charge �uctuations which is ob-
tained by doing the sums over spins: There is a sum over �. The spin indices on
the Green�s function are unnecessary when there is rotational invariance, hence
we dropped them. From the above Eq.(56.15) we can compute �ch by performing
the sum over spins. If we use that, by rotational invariance, G� is independent of
spin direction � while the quantitiesX

�

�G�
���0

;
X
�

���
�G�0

(56.16)

are independent of �0 and X
�0

�G�
���0

(56.17)

is independent of �, the result can be written as follows

�ch = �
X
�;�0

�G�
���0

= �2G^G � G
"X

�

���
�G�000

X
�00

X
�0

�G�00
���0

#
G (56.18)

where we introduced a label �000 in Eq.(56.18) that does not in�uence the result.
The irreducible charge vertex is given by2 Uch =

��"
�G# +

��"
�G" . In other words,

Eq.(56.18) may be written as

�ch = �2G^G + G
h�

��"
�G" +

��#
�G"

�
�ch

i
G
: (56.19)

2Using spin rotational invariance (SU(2) symmetry) we have that several relations, such as
��"
�G#

=
��#
�G"

. This is used without further comments.
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Similarly, to �nd the integral equation for the spin response function, we notice
that X

�

�
���
�G�0

�0 =

�
��"
�G�0

� ��#
�G�0

�
�0 (56.20)

=

�
��"
�G"
� ��#
�G"

�
(56.21)

We have taken �0 up (+1) and then down (�1) and used rotational invariance
��"
�G" =

��#
�G# and ��#

�G" =
��"
�G# to see that the result is independent of �0. This

means that the general spin resolved response function Eq.(56.15) yieds for the
spin susceptibility, given (�00)2 = 1

�sp = �
X
�;�0

�
�G�
���0

�0 = �2G^G

�G
"X
�00

X
�0

 X
�

�
���
�G�00

�00

!
�00
�G�00
���0

�0

#
G:

= �2G^G + G
"�

��"
�G#
� ��"
�G"

�X
�00

X
�0

�00
�G�00
���0

�0

#
G (56.22)

so that �nally,

�sp = �2G^G � G
h�

��"
�G# �

��"
�G"

�
�sp

i
G
: (56.23)

In summary, we de�ne irreducible vertices appropriate for spin and charge
responses as follows,

Usp =
��"
�G# �

��"
�G"

Uch =
��"
�G# +

��"
�G" : (56.24)

56.3 Hartree-Fock and RPA

As an example of calculation of response functions, consider the Hartree-Fock
approximation which corresponds to factoring the four-point function in the def-
inition of the self-energy Eq.(56.4) as if there were no interactions, in which case

it is easy to see that
�G�(1;2)�
����(1

+;1) = 0: To be more speci�c, starting from

��
�
1; 1
�
�
G�
�
1; 2
�
�

= �U
D
T� 

y
��
�
1+
�
 �� (1) � (1) 

y
� (2)

E
�
(56.25)

= �U
�
�G� (1; 2)�
���� (1

+; 1)
� G��

�
1; 1+

�
�
G� (1; 2)�

�
(56.26)

the Hartree-Fock approximation is

�H�
�
1; 1
�
�
GH�
�
1; 2
�
�
= UGH��

�
1; 1+

�
�
GH� (1; 2)� :

Multiplying the above equation by
�
GH�
��1

; we are left with

�H� (1; 2)� = UGH��
�
1; 1+

�
�
� (1� 2) ; (56.27)
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so that
��H" (1; 2)�
�GH# (3; 4)�

�����
�=0

= U� (1� 2) � (3� 1) � (4� 2) ; (56.28)

and
��H" (1; 2)�
�GH" (3; 4)�

�����
�=0

= 0:

which, when substituted in the integral equation (56.9) for the response function,
tells us that we have generated the random phase approximation (RPA) with,
from Eq.(56.24), Usp = Uch = U: Indeed, when the irreducible vertex comes from
the Hartree term, the same structure as the one found before for the electron
gas results. The charge susceptibility that follows from the result of the previous
section Eq.(56.19) for �ch and the de�nition Uch for the corresponding irreducible
vertex Eq.(56.24) is

�ch (1; 2) = �(0) (1; 2)� 1
2
�(0)

�
1; 3
�
Uch�ch

�
3; 2
�

(56.29)

with �(0) (1; 2) = �2G (1; 2)G (2; 1) : The Fourier transform is

�ch (q) = �(0) (q)� Uch
2
�(0) (q)�ch (q) : (56.30)

Since at this point the self-energy is a constant, we take for G the non-interacting
Green�s function. In Fourier-Matsubara space, �0(q) then is the Lindhard function
that, in analytically continued retarded form is, for a discrete lattice of N sites,

�0R(q; !) = � 2
N

X
k

f (�k)� f
�
�k+q

�
! + i� + �k � �k+q

: (56.31)

Similarly, for the spin susceptibility, using the integral equation Eq.(56.23) and
the de�nition Usp for the corresponding irreducible vertex Eq.(56.24), we obtain

�sp (q) = �(0) (q) +
Usp
2
�(0) (q)�sp (q) : (56.32)

The equations for the spin and charge �uctuations can easily be solved and yield,
respectively

�sp(q) =
�0(q)

1� 1
2U�0(q)

(56.33)

�ch(q) =
�0(q)

1 + 1
2U�0(q)

(56.34)

It is known on general grounds [23] that RPA satis�es conservation laws. We
will describe the general methods that lead to approximations that are consistent
with conservation laws in a later chapter. But it is easy to check that for a special
case. Since spin and charge are conserved, then the equalities �Rsp(q = 0;!) = 0

and �Rch(q = 0;!) = 0 for ! 6= 0 follow from the corresponding equality for the
non-interacting Lindhard function �0R(q = 0;!) = 0:

Remark 319 If we had used dressed Green�s function to compute the Lindhard
susceptibility, the conservation law �sp;ch (q = 0,i!n) = 0 for i!n 6= 0 would have
been violated, as shown in Eq.(50.6) and in Appendix A of Ref.[256]. In general,
irreducible vertices and self-energy (and corresponding Green�s functions) must be
taken at the same level of approximation.
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56.4 RPA and violation of the Pauli exclusion prin-
ciple

RPA has a drawback that is particularly important for the Hubbard model. It
violates the Pauli exclusion principle that is assumed to be satis�ed exactly in its
de�nition where up spins interact only with down spins. To see this requires a bit
more thinking. We derive a sum rule that rests on the use of the Pauli exclusion
principle and check that it is violated by RPA to second order in U .
First note that if we sum the spin and charge susceptibilities over all wave

vectors q and all Matsubara frequencies iqn, we obtain local, equal-time correlation
functions, namely

T

N

X
q

X
iqn

�sp(q;iqn) =
D
(n" � n#)2

E
= hn"i+ hn#i � 2 hn"n#i (56.35)

and

T

N

X
q

X
iqn

�ch(q;iqn) =
D
(n" + n#)

2
E
� hn" + n#i2 = hn"i+ hn#i+ 2 hn"n#i � n2

(56.36)
where on the right-hand side, we used the Pauli exclusion principle n2� =

�
cy�c�

� �
cy�c�

�
=

cy�c� � cy�cy�c�c� = cy�c� = n� that follows from cy�c
y
� = c�c� = 0: This is the sim-

plest version of the Pauli exclusion principle. Full antisymmetry is another matter
[32, 106]. We call the �rst of the above displayed equations the local spin sum-rule
and the second one the local charge sum-rule. For RPA, adding the two sum rules
yields

T

N

X
q

X
iqn

�
�sp(q;iqn) + �ch(q;iqn)

�
= (56.37)

T

N

X
q

�
�0(q)

1� 1
2U�0(q)

+
�0(q)

1 + 1
2U�0(q)

�
= 2n� n2: (56.38)

Since the non-interacting susceptibility �0(q) satis�es the sum rule, we see by
expanding the denominators that in the interacting case it is violated already to
second order in U because �0(q) being real and positive, (See Eq.(58.12)), the
quantity

P
q �0(q)

3 cannot vanish.

56.5 Why RPA violates the Pauli exclusion principle
from the point of view of diagrams

Let us return to the original Coulomb interaction that does not depend on spins.
You can go back to Fig.(37-7) for a refresher. Take only the �rst order diagram
with a single Coulomb interaction and two momentum integrals. Take the same
spin direction for the incoming particle-hole pair, say on top, and for the outgoing
particle-hole pair, say on the bottom. In the case where we have no momen-
tum dependence on the interaction line, the two diagrams have identical values
and opposite sign, so they cancel each other. When the spins are di¤erent for
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the incoming and for the outgoing particle-hole pair, only the reducible diagram
contributes. We have arranged the Hubbard model so that this happens automat-
ically, namely we have used the Pauli exclusion principle so that electrons of a
given spin interact only with electrons of the opposite spin. But that works only
for diagrams to that order. This corresponds to the fact that RPA satis�es the
Pauli exclusion principle to �rst order in U , as we just saw in the previous section.
However, there are many more diagrams. To satisfy the Pauli exclusion princi-

ple, we would need to take into account exact cancellations between all diagrams
that are obtained by interchanging the end or the beginning of Green�s functions
lines. For example, consider the diagram where we have three bubbles and two
interaction lines. Take up spins for the �rst and last bubble and down spin for
the middle bubble. Now consider the diagram obtained by taking one Green�s
function line of the �rst bubble and making it land at the end of the interaction
that begins the last bubble while the Green�s function that used to land there now
lands at the end of the interaction line of the �rst bubble. We have then a dia-
gram that has an opposite sign to the �rst one since two fermions were exchanged.
The values of that diagram and of the �rst one are identical for a contact (i.e.
momentum-independent) interactions. Hence, as soon as we move beyond �rst
order in interaction, there are exact cancellations between diagrams that are not
taken into account if we sum only bubbles, even if up electrons interact only with
down.

56.6 RPA, phase transitions and theMermin-Wagner
theorem

The RPA predicts that the normal state is sometimes unstable, namely that if
we decrease the temperature, spin �uctuations at zero frequency start, in certain
cases, to diverge. Below the temperature where that occurs, the spin susceptibility
is negative, which is prohibited by thermodynamic stability. This indicates that
a paramagnetic ground state is an unstable state. This happens even in two-
dimensions with RPA because

�0(q) =

Z
d!0

�

�00sp(q; !
0)!0

!02 + q2n

is positive so that the expression for the spin susceptibility

�sp (q) =
�0(q)

1� 1
2U�0(q)

(56.39)

is quite likely to become negative for a U su¢ ciently large.
By the way, why does a negative spin susceptibility at qn = 0 signal an insta-

bility? Because there is a thermodynamic inequality that says that susceptibilities
of the form dA=da, where A and a are thermodynamically conjugate variables, are
positive since entropy is a maximum at equilibrium. But there is another way to
look at this from the thermodynamic sum rule in Sec. 10.10.1

�sp(Q; 0) =

Z
d!

�

�00sp(Q; !)

!
: (56.40)

Indeed, if the left-hand side is negative, this means that the imaginary part of
the spin susceptibility for positive frequencies has to be negative.3 This violates

3 It is positive at negative frequencies since it must be odd.
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the positivity criterion imposed by stability, Sec. 10.6, namely �00sp(Q; !)! > 0:
Hence, the system is unstable.
Such an instability in two dimensions at �nite temperature is prohibited by the

Mermin-Wagner theorem that says that a continuous symmetry cannot be broken
in two dimensions at �nite temperature. We will come back on this theorem in a
later chapter, but for now the theorem may intuitively be understood as follows.
If there is long-range order in the presence of a continuous symmetry, there will
be a term in the free energy that will be proportional to jr�j2 ; where � is the
angle representing the deviation of the spins say, from their equilibrium position.
The equipartition theorem then says that

q2


�q��q

�
=
T

2
: (56.41)

Thus, in two dimensions, the thermal �uctuations of that angle are in�nite, proving
the theorem by contradiction:



�2
�
=

Z 1

0

d2q

q2
T

2
=1:

We may think that the instability will occur for U so large that anyway RPA
does not apply. This is not the case. Let us illustrate that this happens with a
speci�c example where in fact the instability occurs for in�nitesimal U .
We evaluate the Lindhard function Eq.(56.31) at zero frequency in the case

where we have only nearest neighbor hopping on a cubic lattice, in other words,
"k = �2t (cos kx + cos ky + cos kz) : In d = 2 this would be replaced by �k =
"k = �2t (cos kx + cos ky) : Then, if we take � = 0; which in this case corresponds
to half-�lling, and choose the wave vector corresponding to an antiferromagnetic
�uctuation, namely Q = (�; �; �) that leads to a phase +1 or �1 on alternating
sites, we �nd

�0R(Q; 0) = � 2
N

X
k

2f ("k)� 1
2"k

(56.42)

because of the equality f (�") = 1 � f (") and the co-called nesting property
"k = �"k+Q: But 2f ("k)�1 = � tanh (�"k=2) which allows one to write by using
the de�nition of the density of states N (")

�0R(Q; 0) =
2

N

X
k

tanh (�"k=2)

2"k
(56.43)

� 2

Z
d3k

(2�)
3

tanh (�"k=2)

2"k
(56.44)

�
Z
d"N (")

tanh (�"=2)

2"
: (56.45)

This last result takes the same form in d = 2: You just need to replace the density
of states by the two-dimensional one. The last integral diverges when T ! 0
or � ! 1: Indeed, take N (") constant near the Fermi level, up to a cuto¤
energy �EF : Near the Fermi level, " = 0; when " > T we can approximate
tanh (�"=2) =2" � 1=4T: So we can extract the logarithmically divergent part of
the integral as follows:Z

d"N (")
tanh (�"=2)

2"
�

Z EF

T

d"N (0)
1

"

� N (0) ln

�
EF
T

�
: (56.46)
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For T su¢ ciently small, �0R(Q; 0) diverges, which means that at a certain tem-
perature, the denominator of the spin susceptibility Eq.(56.33) goes through zero,
even with in�nitesimal U . At that temperature, the spin susceptibility diverges.
Below that it is negative, signaling an instability.
This instability signals a second-order phase transition that it physical. In two

dimensions, N (") has a logarithmic divergence at " = 0 so the above result must
be modi�ed. We would obtain a ln2 (EF =T ) instead of ln (EF =T ) : Nevertheless,
the qualitative result would be the same. There is an instability even in the
presence of an in�nitesimal U: However, in two-dimensions, one cannot have a
phase transition that breaks a continuous symmetry at �nite temperature in two
dimensions. That is the content of the Mermin Wagner theorem.[160, 95] Hence,
RPA fails miserably on many grounds in two dimensions: It violates the Pauli
exclusion principle and the Mermin-Wagner theorem. The approach in the next
section �xes these two problems and more.
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57. THE TWO-PARTICLE-SELF-
CONSISTENT APPROACH

The two-particle-self-consistent approach (TPSC) is designed to remedy the de�-
ciencies found above in the study of the the one-band Hubbard model. It is also
possible to generalize to cases where near-neighbor interactions are included.
TPSC is valid from weak to intermediate coupling. Hence, on the negative side,

it does not describe the Mott transition. Nevertheless, there is a large number of
physical phenomena that it allows to study. An important one is antiferromagnetic
�uctuations. It is extremely important physically that in two dimensions there is
a wide range of temperatures where there are huge antiferromagnetic �uctuations
in the paramagnetic state, without long-range order, as imposed by the Mermin-
Wagner theorem. The standard way to treat �uctuations in many-body theory, the
Random Phase Approximation (RPA) misses this and also, as we saw, the RPA
also violates the Pauli exclusion principle in an important way. The composite
operator method (COM), by F. Mancini, is another approach that satis�es the
Mermin-Wagner theorem and the Pauli exclusion principle. [147, 148, 146] The
Fluctuation Exchange Approximation (FLEX) [30, 31], and the self-consistent
renormalized theory of Moriya-Lonzarich [165, 137, 167] are other approaches that
satisfy the Mermin-Wagner theorem at weak coupling. Each has its strengths and
weaknesses, as discussed in Refs. [256, 8]. Weak coupling renormalization group
approaches become uncontrolled when the antiferromagnetic �uctuations begin to
diverge [70, 211, 130, 97]. Other approaches include the e¤ective spin-Hamiltonian
approach [239].
In summary, the advantages and disadvantages of TPSC are as follows. Ad-

vantages:

� There are no adjustable parameters.

� Several exact results are satis�ed: Conservation laws for spin and charge, the
Mermin-Wagner theorem, the Pauli exclusion principle in the form

D
n2"

E
=

hn"i ; the local moment and local-charge sum rules and the f sum-rule.

� Consistency between one and two-particle properties serves as a guide to the
domain of validity of the approach. (Double occupancy obtained from sum
rules on spin and charge equals that obtained from the self-energy and the
Green function).

� Up to intermediate coupling, TPSC agrees within a few percent with Quan-
tum Monte Carlo (QMC) calculations. Note that QMC calculations can
serve as benchmarks since they are exact within statistical accuracy, but
they are limited in the range of physical parameter accessible.

� We do not need to assume that Migdal�s theorem applies to be able to obtain
the self-energy.

The main successes of TPSC include

� Understanding the physics of the pseudogap induced by precursors of a long-
range ordered phase in two dimensions. For this understanding, one needs
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a method that satis�es the Mermin-Wagner theorem to create a broad tem-
perature range where the antiferromagnetic correlation length is larger than
the thermal de Broglie wavelength. That method must also allow one to
compute the self-energy reliably. Only TPSC does both.

� Explaining the pseudogap in electron-doped cuprate superconductors over a
wide range of dopings.

� Finding estimates of the transition temperature for d-wave superconductivity
that were found later in agreement with quantum cluster approaches such
as the Dynamical Cluster Approximation.

� Giving quantitative estimates of the range of temperature where quantum
critical behavior can a¤ect the physics.

The drawbacks of this approach, that I explain as we go along, are that

� It works well in two or more dimensions, not in one dimension 1 [175].

� It is not valid at strong coupling, except at very high temperature and large
U where it recovers the atomic limit [58].

� It is not valid deep in the renormalized classical regime [246].

� For models other than the one-band Hubbard model, one usually runs out
of sum rules and it is in general not possible to �nd all parameters self-
consistently. With nearest-neighbor repulsion, it has been possible to �nd a
way out [60].

For detailed comparisons with QMC calculations, discussions of the physics
and detailed comparisons with other approaches, you can refer to Ref.[256, 8].
You can read Ref.[237] for a review of the work related to the pseudogap and
superconductivity up to 2005 including detailed comparisons with Quantum Clus-
ter approaches in the regime of validity that overlaps with TPSC (intermediate
coupling). A more recent review appeared in Ref. [236].

57.1 TPSC First step: two-particle self-consistency
for G(1);�(1); �(1)sp = Usp and �

(1)
ch = Uch

Details of the more formal derivation may be also be found in Ref. [7]. In con-
serving approximations, the self-energy is obtained from a functional derivative
� [G] = �� [G] =�G of � the Luttinger-Ward functional, which is itself computed
from a set of diagrams. We will see this approach later in the course. To liber-
ate ourselves from diagrams and �nd results that are valid beyond perturbation
theory, we start instead from the exact expression for the self-energy, Eq.(56.4)

��
�
1; 1
�
�
G�
�
1; 2
�
�
= �U

D
T� 

y
��
�
1+
�
 �� (1) � (1) 

y
� (2)

E
�

and notice that when label 2 equals 1+; the right-hand side of this equation is equal
to double-occupancy hn"n#i. Factoring as in Hartree-Fock amounts to assuming

1Modi�cations have been proposed in zero dimension to use as impurity solver for DMFT [78]
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no correlations. Instead, we should insist that hn"n#i should be obtained self-
consistently. After all, in the Hubbard model, there are only two local four point

functions: hn"n#i and
D
n2"

E
=
D
n2#

E
: The latter is given exactly, through the Pauli

exclusion principle, by
D
n2"

E
=
D
n2#

E
= hn"i = hn#i = n=2; when the �lling n is

known: In a way, hn"n#i in the self-energy equation (56.4), can be considered as
an initial condition for the four point function when one of the points, 2, separates
from all the others which are at 1: When that label 2 does not coincide with 1,
it becomes more reasonable to factor à la Hartree-Fock. These physical ideas are
implemented by postulating

�(1)�
�
1; 1
�
�
G(1)�

�
1; 2
�
�
= A�G(1)��

�
1; 1+

�
�
G(1)� (1; 2)� (57.1a)

where A� depends on external �eld and is chosen such that the exact result 2

��
�
1; 1
�
�
G�
�
1; 1+

�
�
= U hn" (1)n# (1)i� (57.2)

is satis�ed. It is easy to see that the solution is

A� = U
hn" (1)n# (1)i�
hn" (1)i� hn# (1)i�

: (57.3)

Substituting A� back into our ansatz Eq.(58.3) we obtain our �rst approximation

for the self-energy by right-multiplying by
�
G(1)�

��1
:

�(1)� (1; 2)� = A�G(1)��
�
1; 1+

�
�
� (1� 2) : (57.4)

We are now ready to obtain irreducible vertices using the prescription of section
56.2, Eq.(56.24), namely through functional derivatives of � with respect to G: In
the calculation of Usp; the functional derivative of hn"n#i = (hn"i hn#i) drops out,
so we are left with 3 ,

��
(1)
" (1; 2)�

�G(1)# (3; 4)�

�����
�=0

�
��

(1)
" (1; 2)�

�G(1)" (3; 4)�

�����
�=0

= Usp� (1� 2) � (3� 1) � (4� 2)

Usp = A�=0 = U
hn"n#i
hn"i hn#i

: (57.5)

The renormalization of this irreducible vertex may be physically understood as
coming from the physics described by Kanamori and Brueckner [256] (in the lat-
ter case in the context of nuclear physics): The value of the bare interaction is
renormalized down by the fact that the two-particle wave function will want to be
smaller where U is larger. In the language of perturbation theory, one must sum
the Born series to compute how two particles scatter o¤ each other and not work
in the �rst Born approximation. This completes the derivation of the ansatz that
is central to TPSC.
The functional-derivative procedure generates an expression for the charge ver-

tex Uch which involves the functional derivative of hn"n#i = (hn"i hn#i) which con-
tains six point functions that one does not really know how to evaluate. But, if
we again assume that the vertex Uch is a constant, it is simply determined by
the requirement that charge �uctuations also satisfy the �uctuation-dissipation

2See footnote (14) of Ref. [8] for a discussion of the choice of limit 1+ vs 1�.
3For n > 1, all particle occupation numbers must be replaced by hole occupation numbers.
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theorem and the Pauli exclusion principle, as in Eq.(56.36). In summary, spin and
charge �uctuations are obtained from

�sp(q) =
�(1)(q)

1� 1
2Usp�

(1)(q)
(57.6)

�ch(q) =
�(1)(q)

1 + 1
2Uch�

(1)(q)
: (57.7)

with the irreducible vertices determined from the sum rules

T

N

X
q

X
iqn

�(1)(q)

1� 1
2Usp�

(1)(q)
= n� 2 hn"n#i (57.8)

and
T

N

X
q

X
iqn

�(1)(q)

1 + 1
2Uch�

(1)(q)
= n+ 2 hn"n#i � n2: (57.9)

along with the relations that relates Usp to double occupancy, Eq.(57.5).

Remark 320 Note that, in principle, �(1) also depends on double-occupancy, but
since �(1) is a constant, it is absorbed in the de�nition of the chemical potential
and we do not need to worry about it in this case. That is why the non-interacting
irreducible susceptibility �(1)(q) = �0(q) appears in the expressions for the suscep-
tibility, even though it should be evaluated with G(1) that contains �(1): A rough
estimate of the renormalized chemical potential (or equivalently of �(1)), is given
in the appendix of Ref. ([8]). One can check that spin and charge conservation
are satis�ed by the TPSC susceptibilities.

Remark 321 Usp hn"i hn#i = U hn"n#i can be understood as correcting the Hatree-
Fock factorization so that the correct double occupancy be obtained. Expressing the
irreducible vertex in terms of an equal-time correlation function is inspired by the
approach of Singwi [220] to the electron gas. But TPSC is di¤erent since it also
enforces the Pauli exclusion principle and connects to a local correlation function,
namely hn"n#i :

57.2 TPSC Second step: an improved self-energy
�(2)

Collective charge and spin excitations can be obtained accurately from Green�s
functions that contain a simple self-energy, as we have just seen. Such modes are
emergent objects that are less in�uenced by details of the single-particle properties
than the other way around, especially at �nite temperature where the lowest
fermionic Matsubara frequency is not zero. The self-energy on the other hand is
much more sensitive to collective modes since these are important at low frequency.
The second step of TPSC is thus to �nd a better approximation for the self-energy.
This is similar in spirit to what is done in the electron gas [141] where plasmons
are found with non-interacting particles and then used to compute an improved
approximation for the self-energy. This two step process is also analogous to
renormalization group calculations where renormalized interactions are evaluated
to one-loop order and quasiparticle renormalization appears only to two-loop order
[159, 40, 259].
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Figure 57-1 Exact expression for the three point vertex (green triangle) in the
�rst line and for the self-energy in the second line. Irreducible vertices are the red
boxes and Green�s functions solid black lines. The numbers refer to spin, space and
imaginary time coordinates. Symbols with an over-bard are summed/integrated over.
The self-energy is the blue circle and the bare interaction U the dashed line.

The procedure will be the same as for the electron gas. But before we move
to the algebra, we can understand physically the result by looking at Fig. 57-1
that shows the exact diagrammatic expressions for the three-point vertex (green
triangle) and self-energy (blue circle) in terms of Green�s functions (solid black
lines) and irreducible vertices (red boxes). The bare interaction U is the dashed
line. One should keep in mind that we are not using perturbation theory despite
the fact that we draw diagrams. Even within an exact approach, the quantities
de�ned in the �gure have well de�ned meanings. The numbers on the �gure refer
to spin, space and imaginary time coordinates. When there is an over-bar, there
is a sum over spin and spatial indices and an integral over imaginary time.
In TPSC, the irreducible vertices in the �rst line of Fig. 57-1 are local, i.e.

completely momentum and frequency independent. They are given by Usp and
Uch: If we set point 3 to be the same as point 1; then we can obtain directly
the TPSC spin and charge susceptibilities from that �rst line. In the second
line of the �gure, the exact expression for the self-energy is displayed4 . The
�rst term on the right-hand side is the Hartree-Fock contribution. In the second
term, one recognizes the bare interaction U at one vertex that excites a collective
mode represented by the green triangle and the two Green�s functions. The other
vertex is dressed, as expected. In the electron gas, the collective mode would be
the plasmon. If we replace the irreducible vertex using Usp and Uch found for
the collective modes, we �nd that here, both types of modes, spin and charge,
contribute to the self-energy [248].
Moving now to the algebra, let us repeat our procedure for the electron gas

to show how to obtain an improved approximation for the self-energy that takes
advantage of the fact that we have found accurate approximations for the low-
frequency spin and charge �uctuations. We begin from the general de�nition of
the self-energy Eq.(56.4) obtained from Dyson�s equation. The right-hand side of
that equation can be obtained either from a functional derivative with respect to
an external �eld that is diagonal in spin, as in our generating function Eq.(56.1),

or by a functional derivative of
D
 �� (1) 

y
� (2)

E
�t

with respect to a transverse

4 In the Hubbard model the Fock term cancels with the same-spin Hartree term
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external �eld �t; namely an external �eld that is not diagonal in spin indices.
Working �rst in the longitudinal channel, the right-hand side of the general

de�nition of the self-energy Eq.(56.4) may be written as

��
�
1; 1
�
G�
�
1; 2
�
= �U

"
�G� (1; 2)�
���� (1

+; 1)

����
�=0

� G��
�
1; 1+

�
�
G� (1; 2)�

#
: (57.10)

The last term is the Hartree-Fock contribution. It gives the exact result for the
self-energy in the limit ! ! 1.[256] The �G�=���� term is thus a contribution
to lower frequencies and it comes from the spin and charge �uctuations. Right-
multiplying the last equation by G�1 and replacing the lower energy part �G�=����
by its general expression in terms of irreducible vertices, Eq.(56.9) (recalling that
for �G�=���� the �rst term vanishes) we �nd

�(2)� (1; 2) = UG(1)��
�
1; 1+

�
� (1� 2) (57.11)

�UG(1)�
�
1; 3
�24 ��(1)� �

3; 2
�
�

�G(1)�
�
4; 5
�
�

������
�=0

�G(1)�
�
4; 5
�
�

���� (1
+; 1)�

������
�=0

35 :
Every quantity appearing on the right-hand side of that equation has to be taken
from the TPSC results. This means in particular that the irreducible vertices
��

(1)
� =�G(1)�0 are at the same level of approximation as the Green functions G(1)�

and self-energies �(1)� : In other approaches one often sees renormalized Green func-
tions G(2) appearing on the right-hand side along with unrenormalized vertices,
���=�G�0 ! U:We will see later in the context of electron-phonon interactions that
this is equivalent to assuming, without justi�cation, that the so-called Migdal�s
theorem applies to spin and charge �uctuations.
In terms of Usp and Uch in Fourier space, the above formula[248] reads,

�(2)� (k)long = Un�� +
U

4

T

N

X
q

h
Usp�

(1)
sp (q) + Uch�

(1)
ch (q)

i
G(1)� (k + q): (57.12)

This can be seen simply by noting in Eq.(57.11) that

��
(1)
�

�G(1)�
�G(1)�
����

=
1

2
(Uch � Usp)

1

4

�
�ch � �sp

�
(57.13)

��
(1)
�

�G(1)��

�G(1)��
����

=
1

2
(Uch + Usp)

1

4

�
�ch + �sp

�
: (57.14)

The approach to obtain a self-energy formula that takes into account both lon-
gitudinal and transverse �uctuations is detailed in Ref.([8]). Crossing symmetry,
rotational symmetry and sum rules and comparisons with QMC dictate the �nal
formula for the improved self-energy �(2) as we now sketch.
There is an ambiguity in obtaining the self-energy formula [169]. Within the

assumption that only Usp and Uch enter as irreducible particle-hole vertices, the
self-energy expression in the transverse spin �uctuation channel is di¤erent. What
do we mean by that? Consider the exact formula for the self-energy represented
symbolically by the diagram of Fig. 57-2. This is the so-called Schwinger-Dyson
equation. It can be understood from the fact that �G is a four-point function,
which means two Green�s functions in, and two out that scatter in the middle.
One of the Green�s functions has disappeared because to obtain �; we need to
multiply by G�1: In the �gure, the textured box is the fully reducible vertex
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Figure 57-2 Exact self-energy in terms of the Hartree-Fock contribution and of the
fully reducible vertex � represented by a textured box.

� (q; k � k0; k + k0 � q) that depends in general on three momentum-frequency in-
dices. � (q; k � k0; k + k0 � q) comes from the four-point function in the de�nition

of the self-energy
�G�(1;2)

�

����(1
+;1)

����
�=0

G�1�
�
2; 3
�
�
with two incoming Green�s function

and one outgoing one explicitly written down. The other outgoing Green�s function
is removed by G�1�

�
2; 3
�
�
: The longitudinal version of the self-energy corresponds

to expanding the fully reducible vertex � (q; k � k0; k + k0 � q) in terms of dia-
grams that are irreducible in the longitudinal (parallel spins) channel illustrated
in Fig. 57-1. This takes good care of the singularity of � when its �rst argument
q is near (�; �) : The transverse version [169, 8] does the same for the dependence
on the second argument k�k0, which corresponds to the other (antiparallel spins)
particle-hole channel. But the fully reducible vertex obeys crossing symmetry. In
other words, interchanging two fermions just leads to a minus sign. One then
expects that averaging the two possibilities gives a better approximation for �
since it preserves crossing symmetry in the two particle-hole channels [169]. By
considering both particle-hole channels only, we neglect the dependence of � on
k + k0 � q because the particle-particle channel is not singular. The �nal formula
that we obtain is [169]

�(2)� (k) = Un�� +
U

8

T

N

X
q

�
3Usp�sp(q) + Uch�ch(q)

�
G(1)� (k + q): (57.15)

The superscript (2) reminds us that we are at the second level of approximation.
G(1)� is the same Green�s function as that used to compute the susceptibilities
�(1)(q). Since the self-energy is constant at that �rst level of approximation,
this means that G(1)� is the non-interacting Green�s function with the chemical
potential that gives the correct �lling. That chemical potential �(1) is slightly
di¤erent from the one that we must use in

�
G(2)

��1
= iqn + �(2) � "k � �(2) to

obtain the same density [126]. Estimates of �(1) may be found in Ref. [8, 126].
Further justi�cations for the above formula are given below in Sect. (57.3).

Remark 322 Note that a spin �uctuation has S = 1; to that is why, physically,
there is a factor of 3 in front of the spin �uctuations.
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57.3 TPSC, internal accuracy checks

How can we make sure that TPSC is accurate? We will show sample comparisons
with benchmark Quantum Monte Carlo calculations, but we can check the accu-
racy in other ways. For example, we have already mentioned that the f-sum rule
Eq.(58.5) is exactly satis�ed at the �rst level of approximation (i.e. with n(1)k on
the right-hand side). Suppose that on the right-hand side of that equation, one
uses nk obtained from G(2) instead of the Fermi function. One should �nd that
the result does not change by more than a few percent. This is what happens
when agreement with QMC is good.
When we are in the Fermi liquid regime, another way to verify the accuracy of

the approach is to verify if the Fermi surface obtained from G(2) satis�es Luttinger�s
theorem very closely. Luttinger�s theorem says that even an interacting system,
when there is a jump in nk at the Fermi surface at T = 0 (as we have seen in the
electron gas) then the particle density is determined by the number of k points
inside the Fermi surface, as in the non-interacting case.
Finally, there is a consistency relation between one- and two-particle quantities

(� and hn"n#i). The relation

��
�
1; 1
�
G�
�
1; 1+

�
� 1
2
Tr (�G) = T

N

X
k

X
n

�(k; iqn)G(k; iqn)e�iqn0
�
= U hn"n#i

(57.16)
should be satis�ed exactly for the Hubbard model. In standard many-body books
[142], it is encountered in the calculation of the free energy through a coupling-
constant integration. We have seen this in the previous Chapter 43. In TPSC, it
is not di¢ cult to show 5 that the following equation

1

2
Tr
�
�(2)G(1)

�
= U hn"n#i (57.17)

is satis�ed exactly with the self-consistent U hn"n#i obtained with the susceptibili-
ties6 . An internal accuracy check consists in verifying by how much 1

2Tr
�
�(2)G(2)

�
di¤ers from 1

2Tr
�
�(2)G(1)

�
: Again, in regimes where we have agreement with

Quantum Monte Carlo calculations, the di¤erence is only a few percent.
The above relation between � and hn"n#i gives us another way to justify our

expression for �(2): Suppose one starts from Fig. 57-1 to obtain a self-energy
expression that contains only the longitudinal spin �uctuations and the charge
�uctuations, as was done in the �rst papers on TPSC [246]. One �nds that each
of these separately contributes an amount U hn"n#i =2 to the consistency relation
Eq.(57.17). Similarly, if we work only in the transverse spin channel [169, 8] we
�nd that each of the two transverse spin components also contributes U hn"n#i =2
to 1

2Tr
�
�(2)G(1)

�
: Hence, averaging the two expressions also preserves rotational

invariance. In addition, one veri�es numerically that the exact sum rule (Ref.
[256] Appendix A)

�
Z
d!0

�
�00R� (k;!0) = U2n�� (1� n��) (57.18)

determining the high-frequency behavior is satis�ed to a higher degree of accuracy
with the symmetrized self-energy expression Eq. (57.15).
Eq. (57.15) for �(2) is di¤erent from so-called Berk-Schrie¤er type expressions

[29] that do not satisfy 7 the consistency condition between one- and two-particle
5Appendix B or Ref. [256]
6FLEX does not satisfy this consistency requirement. See Appendix E of [256]. In fact

double-occupancy obtained from �G can even become negative [16].
7 [256] Appendix E)
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properties, 12Tr (�G) = U hn"n#i :

Remark 323 Schemes, such as the �uctuation exchange approximation (FLEX),
that we will discuss later, use on the right-hand side G(2), are thermodynamically
consistent (Sect. 74.1) and might look better. However, as we just saw, in Fig.
58-2, FLEX misses some important physics. The reason [256] is that the vertex
entering the self-energy in FLEX is not at the same level of approximation as the
Green�s functions. Indeed, since the latter contain self-energies that are strongly
momentum and frequency dependent, the irreducible vertices that can be derived
from these self-energies should also be frequency and momentum dependent, but
they are not. In fact they are the bare vertices. It is as if the quasi-particles had a
lifetime while at the same time interacting with each other with the bare interac-
tion. Using dressed Green�s functions in the susceptibilities with momentum and
frequency independent vertices leads to problems as well. For example, the conser-
vation law �sp;ch (q = 0,iqn) = 0 is violated in that case, as shown in Appendix A
of Ref.[256]. Further criticism of conserving approaches appears in Appendix E of
Ref.[256] and in Ref.[8].
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58. TPSC, BENCHMARKING AND
PHYSICAL ASPECTS

In this chapter, we present a physically motivated approach to TPSC and bench-
mark the theory by comparing with Quantum Monte Carlo simulations. We also
discuss physical consequences of the approach, in particular the appearance of
a pseudogap that is the precursor of long-range order that occurs only at zero
temperature. We show that this physics seems to be realized in electron-doped
cuprates.

58.1 Physically motivated approach, spin and charge
�uctuations

As basic physical requirements, we would like our approach to satisfy a) conser-
vation laws, b) the Pauli exclusion principle and c) the Mermin Wagner theorem.
The standard RPA approach satis�es the �rst requirement but not the other two
as we saw in Sec. 56.4.
How can we go about curing this violation of the Pauli exclusion principle

while not damaging the fact that RPA satis�es conservation laws? The simplest
way is to proceed in the spirit of Fermi liquid theory and assume that the e¤ective
interaction (irreducible vertex in the jargon) is renormalized. This renormalization
has to be di¤erent for spin and charge so that

�sp(q) =
�(1)(q)

1� 1
2Usp�

(1)(q)
(58.1)

�ch(q) =
�(1)(q)

1 + 1
2Uch�

(1)(q)
: (58.2)

In practice �(1)(q) is the same1 as the Lindhard function �0(q) for U = 0 but,
strictly speaking, there is a constant self-energy term that is absorbed in the
de�nition of � [8]. We are almost done with the collective modes. Substituting
the above expressions for �sp(q) and �ch(q) in the two sum-rules, local-spin and
local-charge appearing in Eqs.(56.35,56.36), we could determine both Usp and Uch
if we knew hn"n#i : The following ansatz

Usp hn"i hn#i = U hn"n#i (58.3)

gives us the missing equation. Now notice that Usp; or equivalently hn"n#i depend-
ing on which of these variables you want to treat as independent, is determined
self-consistently. That explains the name of the approach, �Two-Particle-Self-
Consistent�. Since the the sum-rules are satis�ed exactly, when we add them up
the resulting equation, and hence the Pauli exclusion principle, will also be satis-
�ed exactly. In other words, in Eq.(56.38) that follows from the Pauli exclusion

1The meaning of the superscripts di¤ers from that in Ref. [256]. Superscripts (2) (1) here
correspond respectively to (1) (0) in Ref. [256]
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principle, we now have Usp and Uch on the left-hand side that arrange each other
in such a way that there is no violation of the principle. In standard many-body
theory, two-particle self-consistency is achieved in a much more complicated by
solving parquet equations. [106, 32]
The ansatz Eq.(58.3) is inspired from the work of Singwi [220, 102] and was

also found independently by M. R. Hedeyati and G. Vignale [90]. The whole
procedure was justi�ed in the previous Chapter. For now, let us just add a few
physical considerations.
Since Usp and Uch are renormalized with respect to the bare value, one might

have expected that one should use the dressed Green�s functions in the calculation
of �0 (q) : It is explained in appendix A of Ref.[256] that this would lead to a
violation of the results �Rsp(q = 0;!) = 0 and �Rch(q = 0;!) = 0. In the present
approach, the f-sum ruleZ

d!

�
!�00ch;sp (q;!) = lim

�!0
T
X
iqn

�
e�iqn� � eiqn�

�
iqn�ch;sp (q; iqn) (58.4)

=
1

N

X
k�

(�k+q + �k�q � 2�k)nk� (58.5)

is satis�ed with nk� = n
(1)
k�, the same as the Fermi function for the non-interacting

case since it is computed from G(1). 2 The right-hand side of the �rst line above is
just the equal-time commutator calculated in imaginary time. The denominators
containing Usp or Uch above, will lead to contributions to the sum that are of order
1=(iqn)

2 or higher, so that the convergence factor are not needed which means that
they do not contribute. So, then only the contribution �(1) from the numerator
contributes, which explains the result, which is essentially the non-interacting one
where Luttinger�s theorem is obviously satis�ed.

Remark 324 Usp hn"i hn#i = U hn"n#i can be understood as correcting the Hatree-
Fock factorization so that the correct double occupancy be obtained. Expressing the
irreducible vertex in terms of an equal-time correlation function is inspired by the
approach of Singwi [220] to the electron gas. But TPSC is di¤erent since it also
enforces the Pauli exclusion principle and connects to a local correlation function,
namely hn"n#i :

58.2 Mermin-Wagner, Kanamori-Brueckner

The functional form of the results that we found for spin and charge �uctua-
tions have the RPA form but the renormalized interactions Usp and Uch must be
computed from

T

N

X
q

X
iqn

�(1)(q)

1� 1
2Usp�

(1)(q)
= n� 2 hn"n#i (58.6)

and
T

N

X
q

X
iqn

�(1)(q)

1 + 1
2Uch�

(1)(q)
= n+ 2 hn"n#i � n2: (58.7)

2For the conductivity with vertex corrections [27], the f-sum rule with nk� obtained from
G(2) is satis�ed.
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With the ansatz Eq.(58.3), the above system of equations is closed and the Pauli
exclusion principle is enforced. The �rst of the above equations is solved self-
consistently with the Usp ansatz. This gives the double occupancy hn"n#i that is
then used to obtain Uch from the next equation. The fastest way to numerically
compute �(1)(q) is to use fast Fourier transforms [27].
These TPSC expressions for spin and charge �uctuations were obtained by

enforcing the conservations laws and the Pauli exclusion principle. In particular,
TPSC satis�es the f-sum rule Eq.(58.5). But we obtain for free a lot more of the
physical results, namely Kanamori-Brueckner renormalization and the Mermin-
Wagner theorem.
Let us begin with Kanamori-Brueckner renormalization of U . Many years ago,

Kanamori in the context of the Hubbard model [112], and Brueckner in the context
of nuclear physics, introduced the notion that the bare U corresponds to computing
the scattering of particles in the �rst Born approximation. In reality, we should
use the full scattering cross section and the e¤ective U should be smaller. From
Kanamori�s point of view, the two-body wave function can minimize the e¤ect of
U by becoming smaller to reduce the value of the probability that two electrons
are on the same site. The maximum energy that this can cost is the bandwidth
since that is the energy di¤erence between a one-body wave function with no nodes
and one with the maximum allowed number. Let us see how this physics comes
out of our results. Far from phase transitions, we can expand the denominator of
the local moment sum-rule equation to obtain

T

N

X
q

X
iqn

�(1)(q)

�
1 +

1

2
Usp�

(1)(q)

�
= n� 2Usp

U
hn"i hn#i : (58.8)

Since T
N

P
q

P
iqn

�0(q) = n� 2 hn"i hn#i, we are can solve for Usp and obtain 3 .

Usp =
U

1 + �U
(58.9)

� � 1

n2
T

N

X
iqn

X
q

�
�(1)

�2
(q;iqn) : (58.10)

We see that at large U; Usp saturates to 1=�, which in practice we �nd to be of
the order of the bandwidth. For those that are familiar with diagrams, note that
the Kanamori-Brueckner physics amounts to replacing each of the interactions U
in the ladder or bubble sum for diagrams in the particle-hole channel by in�nite
ladder sums in the particle-particle channel [52]. This is not quite what we obtain

here since
�
�(1)

�2
is in the particle-hole channel, but in the end, numerically, the

results are close and the Physics seems to be the same. One cannot make strict
comparisons between TPSC and diagrams since TPSC is non-perturbative.
While Kanamori-Brueckner renormalization, or screening, is a quantum e¤ect

that occurs even far from phase transitions, when we are close we need to worry
about the Mermin-Wagner theorem. To satisfy this theorem, approximate theories
must prevent hn"n#i from taking unphysical values. This quantity is positive and
bounded by its value for U =1 and its value for non-interacting systems, namely
0 � hn"n#i � n2=4. Hence, the right-hand side of the local-moment sum-rule
Eq.(58.6) is contained in the interval

�
n; n� 1

2n
2
�
: To see how the Mermin-Wagner

theorem is satis�ed, write the self-consistency condition Eq.(58.6) in the form

T

N

X
q

�(1)(q)

1� 1
2U

hn"n#i
hn"ihn#i�

(1) (q)
= n� 2hn"n#i: (58.11)

3There is a misprint of a factor of 2 in Ref. [256]. It is corrected in Ref.[58].
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Consider increasing hn"n#i on the left-hand side of this equation. The denomina-
tor becomes smaller, hence the integral larger. To become larger, hn"n#i has to
decrease on the right-hand side. There is thus negative feedback in this equation
that will make the self-consistent solution �nite. This, however, does not prevent
the expected phase transition in three dimensions [59]. To see this, we need to
look in more details at the phase space for the integral in the sum rule.
As we know from the spectral representation for �;

�ch;sp (q; iqn) =

Z
d!0

�

�00ch;sp (q;!
0)

!0 � iqn
=

Z
d!0

�

!0�00ch;sp (q;!
0)

(!0)
2
+ (!n)

2 : (58.12)

the zero Matsubara frequency contribution is always the largest. There, we �nd
the so-called Ornstein-Zernicke form for the susceptibility.

Ornstein-Zernicke form Let us focus on the zero Matsubara frequency contri-
bution and expand the denominator near the point where 1� 12Usp�

(1)(Q;0) =

0: The wave vector Q is that where �(1) is maximum. We �nd [59],

�sp (q+Q; ! + i�) '
�(1)(Q;0)

1� 1
2Usp�

(1) � 1
4Usp

@2�(1)

@Q2 q2 � 1
2Usp

@�(1)

@! !

� �2

1 + �2q2 � i!=!sp
; (58.13)

where all quantities in the denominator are evaluated at (Q; 0): On dimen-
sional grounds,

�1
4
Usp

@2�(1)(Q; 0)

@Q2
=

�
1� 1

2
Usp�

(1)(Q; 0)

�
scales (noted �) as the square of a length, �, the correlation length. That
length is determined self-consistently. Since, !sp � ��2; all �nite Matsub-
ara frequency contributions are negligible if 2�T=!sp � 2�T�2 � 1. That
condition in the form !sp � T justi�es the name of the regime we are in-
terested in, namely the renormalized classical regime. The classical regime
of a harmonic oscillator occurs when ! � T: The regime here is �renormal-
ized�classical because at temperatures above the degeneracy temperature,
the system is a free classical gas. As temperature decreases below the Fermi
energy, it becomes quantum mechanical, then close to the phase transition,
it becomes classical again.

Substituting the Ornstein-Zernicke form for the susceptibility in the self-consistency
relation Eq.(58.6), we obtain

T

Z
ddq

(2�)
d

1

q2 + ��2
= eC (58.14)

where eC contains non-zero Matsubara frequency contributions as well as n �
2 hn"n#i : Since eC is �nite, this means that in two dimensions (d = 2), it is impos-
sible to have ��2 = 0 on the left-hand side otherwise the integral would diverge
logarithmically. This is clearly a dimension-dependent statement that proves the
Mermin-Wagner theorem. In two-dimensions, we see that the integral gives a
logarithm that leads to

� � exp (C 0=T ) :
where in general, C 0 can be temperature dependent [59]. When C 0 is not temper-
ature dependent, the above result is similar to what is found at strong coupling in
the non-linear sigma model. The above dimensional analysis is a bit expeditive. A
more careful analysis [166, 203] yields prefactors in the temperature dependence
of the correlation length.
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Figure 58-1 Wave vector (q) dependence of the spin and charge structure factors
for di¤erent sets of parameters. Solid lines are from TPSC and symbols are QMC
data. Monte Carlo data for n = 1 and U = 8t are for 6 � 6 clusters and T = 0:5t;
all other data are for 8 � 8 clusters and T = 0:2t. Error bars are shown only when
signi�cant. From Ref. [246].

58.3 Benchmarking

Quantum Monte Carlo calculations, that we explain in a later Chapter of this
book, can be considered exact within statistical sampling. Hence they can be
used as benchmarks for any approximation scheme. In this section, we present a
few benchmarks on spin and charge �uctuations, and then on self-energy. More
comparisons may be found in Refs. [237] and [246, 256, 248, 129] and others
quoted in these papers.

58.3.1 Spin and charge �uctuations

The set of TPSC equations for spin and charge �uctuations Eqs.(58.6,58.7,58.3)
is rather intuitive and simple. The agreement of calculations with benchmark
QMC calculations is rather spectacular, as shown in Fig.(58-1). There, one can
see the results of QMC calculations of the structure factors, i.e. the Fourier trans-
form of the equal-time charge and spin correlation functions, compared with the
corresponding TPSC results.
This �gure allows one to watch the Pauli exclusion principle in action. At U =

4t; Fig.(58-1a) shows that the charge structure factor does not have a monotonic
dependence on density. This is because, as we approach half-�lling, the spin
�uctuations are becoming so large that the charge �uctuations have to decrease so
that the sum still satis�es the Pauli exclusion principle, as expressed by Eq.(56.38).
This kind of agreement is found even at couplings of the order of the bandwidth
and when second-neighbor hopping t0 is present [243, 244].
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Figure 58-2 Single-particle spectral weight A(k; !) for U = 4, � = 5, n = 1, and
all independent wave vectors k of an 8� 8 lattice. Results obtained from maximum
entropy inversion of Quantum Monte Carlo data on the left panel, from TPSC in the
middle panel and form the FLEX approximation on the right panel. (Relative error in
all cases is about 0.3%). Figure from Ref.[169]

Remark 325 Even though the entry in the renormalized classical regime is well
described by TPSC [128], equation (58.3) for Usp fails deep in that regime because
�(1) becomes too di¤erent from the true self-energy. At n = 1, t0 = 0, deep in
the renormalized classical regime, Usp becomes arbitrarily small, which is clearly
unphysical. However, by assuming that hn"n#i is temperature independent below
TX ; a property that can be veri�ed from QMC calculations, one obtains a qualita-
tively correct description of the renormalized-classical regime. One can even drop
the ansatz and take hn"n#i from QMC on the right-hand side of the local moment
sum-rule Eq.(58.6) to obtain Usp:

58.3.2 Self-energy

We check that the formula for the self-energy Eq.(57.15) is accurate by comparing
in Fig. 58-2 the spectral weight (imaginary part of the Green�s function) obtained
from Eq.(57.15) with that obtained from Quantum Monte Carlo calculations. The
latter are exact within statistical accuracy and can be considered as benchmarks.
The meaning of the curves are detailed in the caption. The comparison is for
half-�lling in a regime where the simulations can be done at very low temperature
and where a non-trivial phenomenon, the pseudogap, appears. This all important
phenomenon is discussed further below in subsection 59.1 and in the �rst case
study, Sect. 59.2. In the third panel, we show the results of another popular Many-
Body Approach, the FLuctuation Exchange Approximation (FLEX) [30]. It misses
[63] the physics of the pseudogap in the single-particle spectral weight because it
uses fully dressed Green�s functions and assumes that Migdal�s theorem applies,
i.e. that the vertex does not need to be renormalized consequently Ref.[256, 164].
The same problem exists in the corresponding version of the GW approximation.
[92]
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Remark 326 The dressing of one vertex in the second line of Fig. 57-1 means
that we do not assume a Migdal theorem. Migdal�s theorem arises in the case
of electron-phonon interactions [142]. There, the small ratio m=M; where m is
the electronic mass and M the ionic mass, allows one to show that the vertex
corrections are negligible. This is extremely useful to formulate the Eliashberg
theory of superconductivity.

Remark 327 In Refs. [256, 169] we used the notation �(1) instead of �(2): The
notation of the present paper is the same as that of Ref. [8]

58.3.3 TPSC+, Beyond TPSC

TPSC has been compared to a number of other state of the art methods in [209].
Fig. (58.3.3) for the Hubbard model at half-�lling at U = 2t shows the correlation
length as a function of temperature. The DiagMC result can be considered exact.
This is one of the cases where TPSC is at its worse. It is expected that it does
not work in the renormalized classical regime. An improvement of TPSC, namely
TPSC+ gives better results.
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59. *ANTIFERROMAGNETISM
CLOSE TO HALF-FILLING AND
PSEUDOGAP IN TWO DIMEN-
SIONS

We return to the normal state and look at the dominant instability in the half-
�lled case n = 1. In that case, the Fermi surface of the Hubbard model with
nearest-neighbor hopping exhibits the phenomenon of nesting. For example, the
Fermi surface in the two-dimensional case is a diamond, as illustrated in Fig. (?).
All the points of the �at surfaces are connected by the same wave vectorQ =(�; �)
which leads to a very large susceptibility. Whereas at low �lling the maximum
susceptibility is at q = 0; in the present case it is a local maximum that is smaller
than the maximum at Q; as we will see.

Let us compute the spin susceptibility at that nesting wave vector. Nesting in
the present case means that

�p+Q = �2t (cos (kx + �) + cos (ky + �)) = ��p: (59.1)

Using this result we �nd that the zero-frequency susceptibility at that wave vector
Q is

�R0 (Q; 0) = � 2
N
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p

f
�
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�
� f

�
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= � 2
N

X
p

f
�
�p
�
� f

�
��p

�
2�p

(59.2)

=
1

N

X
p

1� 2f
�
�p
�

�p
=
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2

�
"

: (59.3)

Assume that the density of states is a constant. For " � T; we are integrating
1=": However, for " < T the singularity in the denominator of the integrand is
cuto¤. In other words, we obtain a contribution that diverges at low temperature
like ln (W=T ) where W is the bandwidth. This means that at su¢ ciently low
temperature, the criterion 1 � U

2 �
R
0 (Q; 0) = 0 will always be satis�ed whatever

the value of U and there will be a transition to a state characterized by the wave
vector Q. This is the antiferromagnetic state where spins alternate in direction
from one site to the other. In two dimensions for example, the chemical potential
at n = 1 sits right at a logarithmic van Hove singularity in N (") so that in fact
�R0 (Q; 0) scales like ln

2 (W=T ), which is larger than the single power of ln that
one would obtain at q = 0.

When there is no nesting, like when the next-nearest neighbor hopping t0 con-
tributes, the susceptibility does not diverge at low temperature. In that case, the
transition will occur only if U is large enough.
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Figure 59-1 Cartoon explanation of the pseudogap due to precursors of long-range
order. When the antiferromagnetic correlation length � becomes larger than the
thermal de Broglie wavelength, there appears precursors of the T = 0 Bogoliubov
quasi-particles for the long-range ordered antiferromagnet. This can occur only in the
renormalized classical regime, below the dashed line on the left of the �gure.

59.1 Pseudogap in the renormalized classical regime

When we compared TPSC with Quantum Monte Carlo simulations and with
FLEX in Fig. 58-2 above, perhaps you noticed that at the Fermi surface, the
frequency dependent spectral weight has two peaks instead of one. In addition, at
zero frequency, it has a minimum instead of a maximum. That is called a pseudo-
gap. A cartoon explanation [237] of this pseudogap is given in Fig. 59-1. At high
temperature we start from a Fermi liquid, as illustrated in panel I. Now, suppose
the ground state has long-range antiferromagnetic order as in panel III, in other
words at a �lling between half-�lling and nc. In the mean-�eld approximation we
have a gap and the Bogoliubov transformation from fermion creation-annihilation
operators to quasi-particles has weight at both positive and negative energies. In
two dimensions, because of the Mermin-Wagner theorem, as soon as we raise the
temperature above zero, long-range order disappears, but the antiferromagnetic
correlation length � remains large so we obtain the pseudogap illustrated in panel
II. As we will explain analytically below, the pseudogap survives as long as � is
much larger than the thermal de Broglie wave length �th � vF =(�T ) in our usual
units. At the crossover temperature TX , the relative size of � and �th changes and
we recover the Fermi liquid.
We now proceed to sketch analytically where these results come from starting

from �nite T . Details and more complete formulae may be found in Refs. [246,
248, 256, 247]1 . We begin from the TPSC expression (57.15) for the self-energy.
Normally one has to do the sum over bosonic Matsubara frequencies �rst, but
the zero Matsubara frequency contribution has the correct asymptotic behavior
in fermionic frequencies iqn so that, as in Sect.58.2, one can once more isolate on
the right-hand side the contribution from the zero Matsubara frequency. In the

1Note also the following study from zero temperature [38]
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renormalized classical regime then, we have 2

�(kF ; ikn) / T
Z
qd�1dq

1

q2 + ��2
1

ikn � "kF+Q+q
(59.4)

whereQ is the wave vector of the instability. This integral can be done analytically
in two dimensions [256, 245]. But it is more useful to analyze limiting cases [248].
Expanding around the points known as hot spots where "kF+Q = 0, we �nd after
analytical continuation that the imaginary part of the retarded self-energy at zero
frequency takes the form

�00R(kF ; 0) / ��T
Z
dd�1q?dqjj

1

q2? + q
2
jj + �

�2 �(v
0
F qjj) (59.5)

/ �T

v0F
�3�d: (59.6)

In the last line, we just used dimensional analysis to do the integral.
The importance of dimension comes out clearly [248]. In d = 4, �00R(kF ; 0)

vanishes as temperature decreases, d = 3 is the marginal dimension and in d = 2
we have that �00R(kF ; 0) / �=�th that diverges at zero temperature. In a Fermi
liquid the quantity �00R(kF ; 0) vanishes at zero temperature, hence in three or
four dimensions one recovers the Fermi liquid (or close to one in d = 3). But
in two dimensions, a diverging �00R(kF ; 0) corresponds to a vanishingly small
A(kF ; ! = 0) as we can see from

A(k; !) =
�2�00R(kF ; !)

(! � "k � �0R(kF ; !))2 +�00R(kF ; !)2
: (59.7)

Fig. 31 of Ref.[237] illustrates graphically the relationship between the location
of the pseudogap and large scattering rates at the Fermi surface. At stronger U
the scattering rate is large over a broader region, leading to a depletion of A(k;!)
over a broader range of k values.

Remark 328 Note that the condition �=�th � 1, necessary to obtain a large
scattering rate, is in general harder to satisfy than the condition that corresponds to
being in the renormalized classical regime. Indeed, �=�th � 1 corresponds T=vF �
��1 while the condition !sp � T for the renormalized classical regime corresponds
to T � ��2; with appropriate scale factors, because !sp scales as �

�2 as we saw
in Eq. (58.13) and below.

To understand the splitting into two peaks seen in Figs. 58-2 and 59-1 con-
sider the singular renormalized contribution coming from the spin �uctuations in
Eq. (59.4) at frequencies ! � vF �

�1: Taking into account that contributions to
the integral come mostly from a region q � ��1, one �nds

�0R(kF ; !) =

�
T

Z
qd�1dq

1

q2 + ��2

�
1

ikn � "kF+Q

� �2

! � "kF+Q
(59.8)

which, when substituted in the expression for the spectral weight (59.7) leads to
large contributions when

! � "k �
�2

! � "kF+Q
= 0 (59.9)

2This formula is similar to one that appeared in Ref.[131]
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or, equivalently,

! =
("k + "kF+Q)�

p
("k � "kF+Q)2 + 4�2
2

; (59.10)

which, at ! = 0, corresponds to the position of the hot spots3 . At �nite frequen-
cies, this turns into the dispersion relation for the antiferromagnet [210].
It is important to understand that analogous arguments hold for any �uctua-

tion that becomes soft because of the Mermin-Wagner theorem,[256, 60] including
superconducting ones [256, 7, 126]. The wave vector Q would be di¤erent in each
case.
To understand better when Fermi liquid theory is valid and when it is replaced

by the pseudogap instead, it is useful to perform the calculations that lead to
�00R(kF ; 0) / �=�th in the real frequency formalism. The details may be found in
Appendix D of Ref. [256].

59.2 Pseudogap in electron-doped cuprates

High-temperature superconductors are made of layers of CuO2 planes. The rest of
the structure is commonly considered as providing either electron or hole doping
of these planes depending on chemistry. At half-�lling, or zero-doping, the ground
state is an antiferromagnet. As one dopes the planes, one reaches a doping, so-
called optimal doping, where the superconducting transition temperature Tc is
maximum. Let us start from optimal hole or electron doping and decrease doping
towards half-�lling. That is the underdoped regime. In that regime, one observes
a curious phenomenon, the pseudogap. What this means is that as temperature
decreases, physical quantities behave as if the density of states near the Fermi
level was decreasing. Finding an explanation for this phenomenon has been one
of the major challenges of the �eld [230, 176].
To make progress, we need a microscopic model for high-temperature super-

conductors. Band structure calculations [9, 187] reveal that a single band crosses
the Fermi level. Hence, it is a common assumption that these materials can be
modeled by the one-band Hubbard model. Whether this is an oversimpli�cation
is still a subject of controversy [190, 135, 192, 219, 140, 87]. Indeed, spectroscopic
studies [51, 190] show that hole doping occurs on the oxygen atoms. The resulting
hole behaves as a copper excitation because of Zhang-Rice [260] singlet formation.
In addition, the phase diagram [216, 143, 3, 2, 89, 113] and many properties of
the hole-doped cuprates can be described by the one-band Hubbard model. Typ-
ically, the band parameters that are used are: nearest-neighbor hopping t = 350
to 400 meV and next-nearest-neighbor hopping t0 = �0:15 to �0:3t depending
on the compound [9, 187]. Third-nearest-neighbor hopping t00 = �0:5t0 is some-
times added to �t �ner details of the band structure [187]. The hoppings beyond
nearest-neighbor mean that particle-hole symmetry is lost even at the band struc-
ture level.
In electron-doped cuprates, the doping occurs on the copper, hence there is

little doubt that the single-band Hubbard model is even a better starting point in
this case. Band parameters [156] are similar to those of hole-doped cuprates. It is
sometimes claimed that there is a pseudogap only in the hole-doped cuprates. The
origin of the pseudogap is indeed probably di¤erent in the hole-doped cuprates.

3For comparisons with paramagnon theory see [206].
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But even though the standard signature of a pseudogap is absent in nuclear mag-
netic resonance [262] (NMR) there is de�nitely a pseudogap in the electron-doped
case as well [17], as can be seen in optical conductivity [181] and in Angle Resolved
Photoemission Spectroscopy (ARPES) [18]. As we show in the rest of this sec-
tion, in electron-doped cuprates strong evidence for the origin of the pseudogap is
provided by detailed comparisons of TPSC with ARPES as well as by veri�cation
with neutron scattering [168] that the TPSC condition for a pseudogap, namely
� > �th; is satis�ed. The latter length makes sense from weak to intermediate
coupling when quasi-particles exist above the pseudogap temperature. In strong
coupling, i.e. for values of U larger than that necessary for the Mott transition,
there is evidence that there is another mechanism for the formation of a pseudogap.
This is discussed at length in Refs. [217, 88] 4 . The recent discovery [223] that
at su¢ ciently large U there is a �rst order transition in the paramagnetic state
between two kinds of metals, one of which is highly anomalous, gives a sharper
meaning to what is meant by strong-coupling pseudogap.
Let us come back to modeling of electron-doped cuprates. Evidence that these

are less strongly coupled than their hole-doped counterparts comes from the fact
that a) The value of the optical gap at half-�lling, � 1:5 eV, is smaller than for
hole doping, � 2:0 eV [232]. b) In a simple Thomas-Fermi picture, the screened
interaction scales like @�=@n: Quantum cluster calculations [217] show that @�=@n
is smaller on the electron-doped side, hence U should be smaller. c) Mechanisms
based on the exchange of antiferromagnetic calculations with U=t at weak to inter-
mediate coupling [31, 129] predict that the superconducting Tc increases with U=t.
Hence Tc should decrease with increasing pressure in the simplest model where
pressure increases hopping t while leaving U essentially unchanged. The opposite
behavior, expected at strong coupling where J = 4t2=U is relevant [113, 119], is
observed in the hole-doped cuprates. d) Finally and most importantly, there is
detailed agreement between TPSC calculations [127, 88, 237] and measurements
such as ARPES [18, 157], optical conductivity [181] and neutron [168] scattering.
To illustrate the last point, consider Fig. 59-2 that compares TPSC calcula-

tions with experimental results for ARPES. Apart from a tail in the experimental
results, the agreement is striking. 5 . In particular, if there was no interaction, the
Fermi surface would be a line (red) on the momentum distribution curve (MDC).
Instead, it seems to disappear at symmetrical points displaced from (�=2; �=2) :
These points, so-called hot spots, are linked by the wave vector (�; �) to other
points on the Fermi surface. This is where the antiferromagnetic gap would open
�rst if there was long-range order. The pull back of the weight from ! = 0 at the
hot spots is close to the experimental value: 100 meV for the 15% doping shown,
and 300meV for 10% doping (not shown). More detailed ARPES spectra and com-
parisons with experiment are shown in Ref. [237]. The value of the temperature
T � at which the pseudogap appears [127] is also close to that observed in optical
spectroscopy [181]. In addition, the size of the pseudogap is about ten times T � in
the calculation as well as in the experiments. For optical spectroscopy, vertex cor-
rections (see Sect. ??) have to be added to be more quantitative. Experimentally,
the value of T � is about twice the antiferromagnetic transition temperature up to
x = 0:13. That can be obtained [127] by taking tz = 0:03t for hopping in the third
direction. Recall that in strictly two dimensions, there is no long-range order.
Antiferromagnetism appears on a much larger range of dopings for electron-doped
than for hole-doped cuprates.
These TPSC calculations have predicted the value of the pseudogap tempera-

ture at x = 0:13 before it was observed experimentally [157] by a group unaware

4See also conclusion of Ref.[237].
5Such tails tend to disappear in more recent laser ARPES measurements on hole-doped com-

pounds [118].
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Figure 59-2 On the left, results of TPSC calculations [127, 237] at optimal doping,
x = 0:15; corresponding to �lling 1:15; for t = 350 meV, t0 = �0:175t; t� = 0:05t;
U = 5:75t; T = 1=20: The left-most panel is the magnitude of the spectral weight
times a Fermi function, A (k; !) f (!) at ! = 0; so-called momentum-distribution
curve (MDC). Red (dark black) indicates larger value and purple (light grey) smaller
value. The next panel is A (k; !) f (!) for a set of �xed k values along the Fermi
surface. These are so-called energy-dispersion curves (EDC). The two panels to the
right are the corresponding experimental results [18] for Nd2�xCexCuO4: Dotted
arrows show the correspondence between TPSC and experiment.

of the theoretical prediction in Fig.59.2. In addition, the prediction that � should
scale like �th at the pseudogap temperature has been veri�ed in neutron scattering
experiments [168] in the range x = 0:04 to x = 0:15. The range of temperatures
and doping explored in that work is shown in Fig. 59.2. Note that the antifer-
romagnetic phase boundary, that occurs here because of coupling in the third
dimension, is at a location di¤erent from earlier estimates that appear in Fig.
59.2. However, the location of the pseudogp temperature has not changed. At the
doping that corresponds to optimal doping, T � becomes of the order of 100 K,
more than four times lower than at x = 0:04: The antiferromagnetic correlation
length � beyond optimal doping begins to decrease and violate the scaling of � with
�th: In that doping range, T

� and the superconducting transition temperature are
close. Hence it is likely that there is interference between the two phenomena [42],
an e¤ect that has not yet been taken into account in TPSC.
An important prediction that one should verify is that inelastic neutron scat-

tering will �nd over-damped spin �uctuations in the pseudogap regime and that
the characteristic spin �uctuation energy will be smaller than kBT whenever a
pseudogap is present. Equality should occur above T �.
Finally, note that the agreement found in Fig. 59-2 between ARPES and TPSC

is for U � 6t: At smaller values of U the antiferromagnetic correlations are not
strong enough to produce a pseudogap in that temperature range. For larger U;
the weight near (�=2; �=2) disappears, in disagreement with experiments. The
same value of U is found for the same reasons in strong coupling calculations
with Cluster Perturbation Theory (CPT) [217] and with slave boson methods
[258]. Recent �rst principle calculations [251] �nd essentially the same value of
U: In that approach, the value of U is �xed, whereas in TPSC it was necessary
to increase U by about 10% moving towards half-�lling to get the best agreement
with experiment. In any case, it is quite satisfying that weak and strong coupling
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methods agree on the value of U for electron-doped cuprates. This value of U
is very near the critical value for the Mott transition at half-�lling [186]. Hence,
antiferromagnetic �uctuations at �nite doping can be very well described by Slater-
like physics (nesting) in electron-doped cuprates.
For recent calculations including the e¤ect of the third dimension on the

pseudogap see [212]. Finally, note that the analog of the above mechanism for the
pseudogap has also been seen in two-dimensional charge-density wave dichalco-
genides [39].
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60. DYNAMICAL MEAN-FIELD
THEORYANDMOTTTRANSITION-
I

In this Chapter, we will see a physically motivated derivation of dynamical mean-
�eld theory and discuss the results found by this method on the Mott transition.
A more rigorous approach to the derivation will appear later in this book. There
are many review articles. We quote from Ref.[103] amongs others.
The band picture of electrons explained very well the occurence of metals,

with bands that are un�lled, and insulators, with �lled bands. De Boer and
Verwey (1937) reported that many transition-metal oxides with a partially �lled
d-electron band were exceptions. They were often poor conductors and indeed
often insulators. NiO became the prototypical example. following their report,
Peierls (1937) pointed out the importance of the electron-electron correlation:
According to Mott (1937), Peierls noted

�it is quite possible that the electrostatic interaction between the elec-
trons prevents them from moving at all. At low temperatures the
majority of the electrons are in their proper places in the ions. The
minority which have happened to cross the potential barrier �nd there-
fore all the other atoms occupied, and in order to get through the lattice
have to spend a long time in ions already occupied by other electrons.
This needs a considerable addition of energy and so is extremely im-
probable at low temperatures.�

Peierls is explaining that at half-�lling, every unit cell is occupied by one carrier
in the presence of strong Coulomb repulsion. And the electrons cannot move
because of the large Coulomb repulsion it would cost. Later, Slater found another
way to obtain an insulator at half-�lling even when Coulomb interactions are weak.
This is when long-range antiferromagnetic order leads to a doubling of the unit
cell. We have already seen in the previous Chapter that perfect nesting could lead
to a diverging antiferromagnetic susceptibility, and hence to a phase transition
with arbitrarily weak interaction. In that case, the Brillouin zone becomes half
the size so the band split in two and the lower band is now full. The Mott insulator
and the antiferromagnetic insulator are conceptually very di¤erent. One has long-
range order while the other does not.
In the 1970�s vanadium oxide became an example of a material showing a Mott

transition. The phase diagram appears in Fig. 60. The substitution of vanadium
by another metal with d electrons is modeled here as pressure. The accuracy of this
hypothesis is con�rmed by real pressure experiments that appear on the same plot
(see the top and bottom horizontal axis). Pressure increases the overlap between
orbitals, hence the kinetic energy and tends to delocalize electrons. We see on this
phase diagram a �nite temperature �rst order transition between a metal and an
insulator without long-range order. This material has a three-dimensional lattice
structure.
Layered organic conductors are quasi two-dimensional materials with a half-

�lled band. These are soft materials, so one can apply pressure and have a sizeable
e¤ect on the electronic structure. One observes a �rst-order metal-insulator tran-
sition at high-temperature that ends at a critical point. For both materials there
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is an antiferromagnetic phase at low temperature, suggesting the importance of
electron-electron interactions.
Simple pictures of the Mott transition have been proposed. In the Brinkman-

Rice scenario, the e¤ective mass becomes in�nite at the Mott transition. In the
Mott picture, at large interaction and half-�lling, the non-interacting band splits in
two and there is an empty and a �lled band, so no conduction. As the interaction
strenght decreases, a metallic phase occurs when the bands overlap.
The modern view of this transition contains a bit of both of the above ideas.

That view emerges from dynamical mean-�eld theory, that we explain in this
Chapter. This theory was discovered after Vollhardt and Metzner proposed and
exact solution for the Hubbard model in in�nite dimension. Georges and Kotliar
and independently Jarrell arrived at the same theory. I begin by an example
in classical statistical mechanics where mean-�eld theory is exact. Before the
contribution of Metzner and Vollhardt, there was no known limit where a mean-
�eld theory for a quantum system becomes exact. The mean-�eld in that case
is a function of frequency, not a single number. We will argue that in in�nite
dimension the self-energy depends only on frequency. This allows a mapping
to the co-called Anderson impurity model, where a single site with a Hubbard
interaction is connected to a bath of non-interacting electrons. When this model
can be solved, dynamical mean-�eld theory establishes a self-consistency relation
with the in�nite system.

60.1 A simple example of a model exactly soluble
by mean-�eld theory

Let us forget momentarily about quantum mechanics and consider a simpler prob-
lem of classical statistical mechanics. Mean-�eld theory is often taken as an ap-
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proximate solution to a model. It can also be formulated as an exact solution of
a di¤erent model. That helps understand the content of mean-�eld theory.
Mean-�eld theory is the exact solution of the following in�nite-range Ising

model

H = � 1

2N

 
NX
i=1

Si

!2
� h

X
i

Si: (60.1)

with Si = �1:We have chosen the exchange J = 1. The range of the interaction is
extremely weak in the thermodynamic limit. The 1=N normalisation is necessary
to have an energy that is extensive, i.e. proportional to the number of sites. In
the usual Ising model, a given site interacts only with its neighbors so the energy
is clearly extensive.
To compute the partition function, we use the Hubbard-Stratonovich transfor-

mation that represents e��H as a Gaussian integral

e

h
�
2N (

PN
i=1 Si)

2
+�h

P
i Si

i
=

�
N�

2�

�1=2 Z 1

�1
d�e[�

�N
2 �2+�(�+h)

P
i Si]: (60.2)

The result can be checked by completing the square. Then, the partition function
can be computed easily

Z =
X
fSig

e��H

=

�
N�

2�

�1=2 Z 1

�1
d�e�

�N
2 �2 [2 cosh (� (�+ h))]

N

=

�
N�

2�

�1=2 Z 1

�1
d�e�N�F (�) (60.3)

where

F (�) =
�2

2
� 1
�
ln [2 cosh (� (�+ h))] : (60.4)
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Because N ! 1; we can evaluate the integral by steepest descent and the free
energy per site is given by

f (h) = min
�
F (�) +O

�
1

N

�
: (60.5)

The value of � which minimizes F has the meaning of magnetization density.
Indeed, @F=@� = 0 leads to

� = tanh[� (�+ h)] (60.6)

and using the previous result,

m =

�
@F

@h

�
�

= tanh[� (�+ h)] = �: (60.7)

This is what is found in mean-�eld theory.

60.2 Mean-�eld theory in classical physics

***

60.3 The self-energy is independent of momentum
in in�nite dimension

It took a long time to �nd a variant of the Hubbard model that could be solved by
a mean-�eld theory. That the Hubbard model was exactly soluble in in�nite di-
mension was discovered by Metzner and Vollhardt [161]. Georges and Kotliar [77]
and Jarrell [107] found that is was possible to formulate a mean-�eld theory based
on these ideas. The key result is that in in�nite dimension, the self-energy de-
pends only on frequency. This is sharp contrast with the TPSC results where
we saw that in two dimensions, the spatial dependence of the self-energy is very
important. Hot spots appear along the Fermi surface. However, we also saw that
the imaginary part of the self-energy at the hot spots vanishes at T = 0 in four or
more dimensions since we found �00 (kF ; 0) � T�3�d=vF : So, since the hot spots
disappear, it is likely that the self-energy is not momentum dependent anymore.
That is what I proceed to show more rigorously here.
First we need to formulate the Hubbard model in such a way that in in�nite

dimension it gives a non-trivial and physical result, somewhat in the way that we
did for the Ising model above. The possibly troublesome term is the kinetic energy.

Consider the value of
D
cyi�cj�

E
for nearest neighbors. In the ground state, that

quantity can be interpreted as the matrix element h i�
�� j�� where �� j�� is the

ground state with one less particle at site j and h i�j the ground state where we
remove a particle at site i (think of cyi� acting to the left bra): Hence

��h i� �� j����2
is the probability for a particle to go from j to i: It has to scale like 1=d if we

want particle-number to be conserved. This means that
D
cyi�cj�

E
scales as 1=

p
d
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so if we want a �nite number for the kinetic energy, we need to multiply t by
p
d:

Taking into account that there are Z neighbors, with Z = 2d for a hypercubic
lattice, we need an additional factor of 1=d: The kinetic energy in the end is thus
written as

Ekin = �
�
t�
p
d
� 1
d

X
hi;ji

�
cyi�cj� + h:c:

�
: (60.8)

The interaction term does not need to be scaled since it is local. The quantity
t�=
p
d thus plays the role of the usual t entering the kinetic energy, with t� �nite

in the d!1 limit
We can �nd the same result by requiring that the bandwidth remains �nite in

the in�nite dimensional limit. Consider the single-particle density of states

N (!) =

Z �

��

dk1
2�

Z �

��

dk2
2�

: : :

Z �

��

dkd
2�

� (! � "1 � "2 � : : : "d) (60.9)

with "i = �2t cos ki. This has the structure of a probability density for a variable
that is the sum of identically distributed statistically independent variables. One
can make the change of variables from P (ki) = 1= (2�) to P ("i) so that

N (!) =

Z
d"1

Z
d"2 : : :

Z
d"dP ("1)P ("2) : : : P ("d) � (! � "1 � "2 � : : : "d) :

(60.10)
The resulting probability density is a Gaussian with mean zero since

R
d"1P ("1) "1 =

0 and variance 2t2d because
R
d"1P ("1) "

2
1 =

R �
��

dk1
2� (2t cos (k1))

2
= (2t)

2
=2:

More speci�cally,

N (!) =
1q

2� (2t)
2
d
exp

"
�
�

!

2t
p
d

�2#
: (60.11)

This means that in the limit d!1, we need to choose

t = t�=
p
d

with t� �nite if we want a density of states with a �nite width in that limit. In
the same way that we had to take an e¤ective exchange interaction smaller in our
Ising model example, here we need to take an e¤ective hopping that is smaller,
t�=
p
d; in the in�nite dimensional limit.

The fact that
D
cyi�cj�

E
scales as 1=

p
d in the d ! 1 limit has important

consequences on the self energy. Indeed, G will also scale as 1=
p
d: Hence, if we

consider the real space expression for �12 where 1 and 2 are near-neighbor sites,
then apart from the Hartree-Fock term that arises in �rst order perturbation
theory, we �nd from second order that the contribution is proportional to G31;2
which is proportional to 1=d3=2: There is an additional factor 1=

p
d in the Green�s

function every time the distance increases by one so �ij for more distant ij is even
smaller. In the end, this means that the self-energy depends only on frequency.

60.4 The dynamical mean-�eld self-consistency re-
lation, derivation 1

Suppose we start from the premise that the self-energy is purely local, namely that
it is calculated with diagrams where only the local self-consistent Green�s function
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comes in the calculation. Suppose we can solve this problem, either by summing
all diagrams or by some other method. Since we have proven that in in�nite
dimension the exact self-energy for the lattice has only frequency dependence, we
take the impurity self-energy as the self-energy for the lattice. In other words, the
Green�s function on the in�nite lattice reads in Fourier-Matsubara space

G (k;ikn) =
1

ikn � ("k � �)� � (ikn)
: (60.12)

It is clear that with the appropriate Fourier transform of the lattice Green�s func-
tion we obtain the Green�s function on a single site:

Gii (ikn) =

Z
ddk

(2�)
d

1

ikn � ("k � �)� � (ikn)

=

Z
ddk

(2�)
d

Z
d"� ("� ("k � �))

1

ikn � "� � (ikn)

=

Z
d"N (")

1

ikn � "� � (ikn)
: (60.13)

That is the only Green�s function that is involved in the calculation of the self-
energy. Suppose now that we compute the self-energy with that Green�s function.
When we substitute that self-energy back into the Green�s function for the in�nite
lattice and project it back on a single site, as in Eq. (60.13) above, it is possible
that we do not �nd the Gii (ikn) that we started with. This means that we need
to modify it until self-consistency is achieved. This is not the way it is done
in practice, although new methods exist to obtain the self-energy directly from
Gii (ikn), so it could be done in principle.
The question we have not answered, is how, given Gii (ikn), do we �nd the

self-energy if we do not have these recent methods available to us? Suppose we
can write the new Gii (ikn) obtained with the self-energy in the following form

G�1ii (ikn) =
�
G0ii (ikn)

��1 � � (ikn) : (60.14)

In this form, it is G0ii (ikn) that we need to modify before starting the next itera-
tion. If we want to use perturbative methods in terms of an unperturbed Green�s
function, it is G0ii (ikn) that we need. It is not clear at this point that this last
equation is correct or that we can do that.
And in practice, how do we do we �nd the self-energy and how do we do this

iteration? The answer is that it su¢ ces to solve a single-impurity Anderson model
with the same U as the Hubbard model. That allows us to take advantage of a
whole set of methods that have been developed to solve that model. But what is
the Anderson impurity model? This is the subject of the next section.

Remark 329 The DMFT equations may also be found by looking for a lattice
propagator with a frequency-dependent self-energy � that is such that the e¤ective
medium self-energy is zero. The e¤ective medium self-energy will be calculated
from all diagrams that involve only propagators beginning and ending on the same
site. This is like mean-�eld but going beyond Hartree-Fock for the calculation of the
self-energy of the residual interactions. That self-energy is like that of a quantum-
impurity problem with a Gff obtained from the lattice. See the discussion in the
section on Eliashberg equations.

Remark 330 There are many methods to �nd the solution to the single-impurity
Anderson model. Here is a partial list (To come ???)
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Figure 60-1 Anderson impurity model. There is a conduction band of non-interacting
electrons, a localized site located at i = 0 that is hybridized to the conduction band.

60.5 Quantum impurities: The Anderson impurity
model

The problem of a single site with a Hubbard interaction, connected to a bath of
non-interacting electrons is the so-called Anderson impurity model. It is a gen-
eralization of the static single-impurity problem that we saw in an exercice. Its
self-energy depends only on frequency. Since in in�nite dimension the self-energy
depends only on frequency, this will allow us to �nd a mapping between the single-
impurity Anderson model and the DMFT approximation to the lattice problem.
I will only set up the problem of quantum impurities without solving it. The
Numerical Renormalization Group approach (NRG) Density Matrix Renormaliza-
tion Group and continuous-time quantum Monte-Carlo methods are examples of
approaches that can be used to solve this problem.
Including the chemical potential, the model is de�ned by

KI = Hf +Hc +Hfc � �N (60.15)

Kf �
X
�

("� �) fyi�fi� + U
�
fyi"fi"

��
fyi#fi#

�
(60.16)

Kc �
X
�

X
k

("k � �) cyk�ck� (60.17)

Hfc �
X
�

X
k

�
Vkic

y
k�fi� + V

�
kif

y
i�ck�

�
(60.18)

To physically motivate this model, think of a single f level on an atom where
the on-site interaction is very large. That site is hybridized through Vki with
conduction electrons around it. The sum over k in the hybridization part of the
Hamiltonian Hfc basically tells us that it is the local overlap of the conduction
band with the impurity that produces the coupling.
Suppose we want to know the properties of the impurity, such as the local

density of states. It can be obtained from the Green function

Gff (�) = �
D
T�fi� (�) f

y
i�

E
: (60.19)

We will proceed with the equations of motion method, following steps analogous
to those in the exercise on non-interacting impurities. We �rst write the equations

QUANTUM IMPURITIES: THE ANDERSON IMPURITY MODEL 511



of motion for ck� and fi�

@

@�
ck� = [KI ; ck�] (60.20)

= � ("k � �) ck� � Vkifi� (60.21)
@

@�
fi� = [KI ; fi�] (60.22)

= � ("� �) fi� � Ufyi��fi��fi� �
X
k

V �kick� (60.23)

Proceeding like our in our earlier derivation of the equations of motion we have

@

@�
Gff (�) = �� (�)

Dn
fi� (�) ; f

y
i�

oE
�
*
T�

 
� ("� �) fi� (�)� Ufyi�� (�) fi�� (�) fi� (�)�

X
k

V �kick�

!
fyi�

+
(60.24)

= �� (�)� ("� �)Gff (�) + U
D
T�f

y
i�� (�) fi�� (�) fi� (�) f

y
i�

E
�
X
k

V �kiGcf (k; i; �)

where we de�ned
Gcf (k; i; �) = �

D
T� ck� (�) f

y
i�

E
: (60.25)

To eliminate this quantity, we write its equations of motion

@

@�
Gcf (k; i; �) = �� (�)

Dn
ck� (�) ; f

y
i�

oE
�
D
T� (� ("k � �) ck� (�)� Vkifi� (�)) fyi�

E
= � ("k � �)Gcf (k; i; �)� VkiGff (�) (60.26)

that follows because
n
ck�; f

y
i�

o
= 0: It can be solved by going to Matsubara

frequencies

Gcf (k; i; ikn) =
1

ikn � ("k � �)
VkiGff (ikn) : (60.27)

Substituting in the equation for Gff (ikn) we obtain"
ikn � ("� �)�

X
k

V �ki
1

ikn � ("k � �)
Vki

#
Gff (ikn)

= 1� U
Z �

0

d�eikn�
D
T�f

y
i�� (�) fi�� (�) fi� (�) f

y
i�

E
: (60.28)

The last term on the right-hand side is related to the self-energy as usual by

�ff (ikn)Gff (ikn) � �U
Z �

0

d�eikn�
D
T�f

y
i�� (�) fi�� (�) fi� (�) f

y
i�

E
(60.29)

Except for the self-energy, the equation to be solved has exactly the same Dyson
equation structure as that which we would �nd for a single impurity,

G0ff (ikn)
�1 Gff (ikn) = 1 + �ff (ikn)Gff (ikn) (60.30)

Gff (ikn) = G0ff (ikn) + G0ff (ikn) �ff (ikn)Gff (ikn) ;(60.31)

with the �non-interacting�Green function�s

G0ff (ikn)
�1

= ikn � ("� �)�
X
k

V �ki
1

ikn � ("k � �)
Vki: (60.32)

= ikn � ("� �)��ff (ikn) : (60.33)
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This is in fact exactly the non-interacting Green�s function that we would �nd
with U = 0: The signi�cance of �ff (ikn) is that over the imaginary-time interval
�; it takes into account that one can propagate from the impurity site back to the
impurity site by going through the bath. This function �ff (ikn), de�ned by

�ff (ikn) =
X
k

V �ki
1

ikn � ("k � �)
Vki

=
X
k

V yik
1

ikn � ("k � �)
Vki (60.34)

is called the hybridization function.
What is important to remember is that the self-energy a¤ects only the site

where there is an interaction U: Equations (85.29) and (85.31) for the Green�s
functions, written in Matsubara frequency, read:�

ikn � ("� �)� �ff (ikn) �V �ki
�Vki ikn � ("k � �)

��
Gff (ikn)
Gcf (k; i; ikn)

�
=

�
1
0

�
:

In this equation, the sum over k is implicit. This problem is analogous to the one
we encountered with the harmonic oscillator in Eq.(4.7). Except that we now have
a self-energy to compute. Correspondingly, the column vector has N +1 elements
if there are N possible values of k. Explicitly, for three values of k, the matrix is
that acts on the Green�s function column is0BB@

ikn � ("� �)� �ff (ikn) �V �ki �V �k0i �V �k00i
�Vki ikn � ("k � �) 0 0
�Vk0i 0 ikn � ("k0 � �) 0
�Vk00i 0 0 ikn � ("k00 � �)

1CCA :

What we have done, is to use the second block of this equation to eliminate
Gcf (k; i; ikn) i.e. the bath, completely. We are left with a single-site problem
where the bath is replaced by a hybridization function. We are left with Dyson�s
equation for Gff and and a new G0ff (ikn)

�1 which contains the bath as a hy-
bridization function Eq.(60.34).
As mentionned above, the structure of this last equation is not too di¤erent

from what we saw with the harmonic oscillator in Eq. (4.6).

Remark 331 To see that we are left with Dyson�s equation for Gff and and a
new G0ff (ikn)

�1 which contains the bath as a hybridization function Eq.(60.34),
let us write the problem as follows 

G0ff (ikn)
�1 �V y

�V G0 (ikn)
�1

!�
G0ff (ikn) G0cf (ikn)
G0fc (ikn) G0

cc (ikn)

�
=

�
1 0
0 I

�
where V is a column vector with as many entries as there are values of k and
V ythe corresponding row vector. The general matrix form is�

A B
C D

��
E F
G H

�
= I: (60.35)

where A and D are square matrices while B and C are rectangular matrices.
Then simple algebra leads to E =

�
A� BD�1C

��1
. This is called the inverse of

Shur�s complement. The other components of the matrix can be obtained by similar
manipulations.
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The solution to this impurity problem is complicated. The structure in imag-
inary time is highly non-trivial. Contrary to the atomic limit, the number of
electrons on a site is not conserved, i.e. it is time-dependent, and the simplicity
of the problem is lost. There is a complicated dynamics where electrons move in
and out of the impurity site and what happens at a given time depends on what
happened at earlier ones. For example, if there is a down electron on the impurity
site, another down electron will not be able to come on the site unless the previous
one comes out. This problem, when U is large, contains the rich Physics that goes
under the name of Kondo and could be the subject of many chapters in this book.
It has been the focus of much attention in Condensed Matter Physics for decades.
We will not for now expand further on this.

Remark 332 The self-energy will in�uence the value of Gcf (k; ikn) ; as we can
see by inverting the matrix in the last equation. Nevertheless, the self-energy comes
only from the site that has interactions. When particles propagate in the bath, they
can step on the interacting site and that is where the e¤ect of interactions show
up.

Remark 333 Note that the hybridization function is analog to our source �eld �
in the Schwinger formalism, but in the latter case, the �elds  yand  in  y� were
evolving in the interaction representation with the full Hamiltonian. Now, assume
we do something analogous with  y� . Perturbation theory can the be formulated
in terms of a G� as we discuss below in Sec.60.7. We can also generate high-order
correlation functions as functional derivatives with respect to �. In the functional
integral formalism with Grassmann variables, this comes out more naturally.

Remark 334 The hybridization function can be understood in the Feynman path-
integral formalism as representing the amplitude to come back to the starting site
after a certain time � :

60.6 The dynamical mean-�eld self-consistency re-
lation, derivation 2

In the next section, I will show that perturbation theory for the impurity Anderson
model is identical to perturbation theory for the Hubbard model on a lattice when
the self-energy is calculated using only local Green�s functions.
For now, suppose the self-energy for the Anderson model can be obtained.

For example, one can solve the Anderson impurity problem from exact diago-
nalization if the bath is �nite. Then, we can solve the DMFT self-consistency

problem iteratively as follows. Take a
�
G0ff (ikn)

��1
and a self-energy to write

down Gff (ikn) : From that quantity, compute � (ikn) for the single-site Anderson
impurity problem. Substitute that self-energy in the expression for the in�nite
lattice Green�s function and ask that the projected Green�s function found from
Eq.(60.13) be equal to the impurity Green�s function Eq.(60.14). If this is not
the case, change G0ff (ikn) until the condition is satis�ed. One can think of the
hybridization function as the self-consistent dynamical mean-�eld, as we will see.

Remark 335 It is not enough to say that one is working with dynamical mean-
�eld theory. One also has to specify the �impurity solver�, in other words to
specify with what approximation the Anderson impurity model is solved. Exact
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diagonalization, as mentioned above, is an example. Solving the single-site Ander-
son impurity model is analog to solving the model of a single spin in an e¤ective
�eld as a mean-�eld solution to the Ising model. It is much more complicated for
the quantum impurity, but it can be done, mostly with numerical methods.

Let me do explain this in more detail. Suppose we have a way to solve the
Anderson impurity problem, a so-called impurity solver. Then we can achieve the
DMFT self-consistency by the following iterative procedure. I use the Anderson
impurity notation here, but we are really talking about the same objects as before.
For example, Gff (ikn) is what I called Gii (ikn) in the �rst derivation of the DMFT
self-consistency.

Since we do not know the self-energy from the start, we need to begin with
a trial �(n)ff (ikn) that can be obtained for example from projecting the lattice
Green�s function with zero self energy. Then,

1. From �
(n)
ff (ikn) obtain G

0(n)
ff (ikn)

2. G0(n)ff (ikn) and the value of U is used by the impurity solver to compute
�(n+1) (ikn) :

3. The above self-energy should be the self-energy for the lattice Green�s func-
tion. Project that Green�s function on a single site using

G(n+1)ff (ikn) =

Z
ddk

(2�)
d

1

ikn � ("k � �)� �(n+1) (ikn)
: (60.36)

4. Obtain a new hybridization function�(n+1)ff (ikn) = ikn�("� �)�
h
G(n+1)ff (ikn)

i�1
�

�(n+1) (ikn) :

5. If �(n)ff (ikn) and �
(n+1)
ff (ikn) are not equal, go back to 1 with �

(n)
ff (ikn)!

�
(n+1)
ff (ikn).

We still need to show that summing all diagrams of the original problem, but
using only the local Green�s function Gff (ikn) ; is equivalent to solving exactly
a single-impurity Anderson model. In the next section then, I will show that
perturbation theory, or more generally the many-body problem for the Anderson
impurity model, has the same structure as the original problem when the self-
energy of the original problem is calculated using G(0)ff (ikn) that contains the
hybridization function.

Remark 336 When the Anderson model is solvved using exact diagonalization,
the hybridization function at each cycle is obtained by adjusting the parameters
Vki and "k so that the value of the hybridization function is as closed as possible
to the one we want.[46].
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60.7 Perturbation theory for the Anderson impurity
model is the same as before but with a Green�s
function that contains the hybridization func-
tion.

In this section, I want to show that perturbation theory for the impurity site of f
electrons has the same structure as the perturbation theory we have done up to
now, except that what plays the role of the �unperturbed�Green�s function is the
Green�s function that includes the hybridization function, namely Eq.(85.37) or if
you want

G0ff (ikn)
�1
= ikn � ("� �)��(ikn) (60.37)

where �(ikn) is the hybridization function Eq.(60.34).
There are several possible proofs as usual. I start from the linked-cluster

theorem. First we use Kf +Kc as �unperturbed�Hamiltonian in the interaction
representation. Since [Kf ;Kc] = 0 we have that

Z = Tr
h
e��Kf e��KcT�e

�
R �
0
Hfc(�)d�

i
= Z0Tr

h
e��Kf

D
T�e

�
R �
0
Hfc(�)d�

E
0

i
(60.38)

with Z0 de�ned by Tr
�
e��Kc

�
, the partition function of the the bath of non-

interacting electrons alone, and where we also de�ned the average over that bath
by D

T�e
�
R �
0
Hfc(�)d�

E
0
�
Tr
h
e��KcT�e

�
R �
0
Hfc(�)d�

i
Tr [e��Kc ]

: (60.39)

Since we can manipulate exponentials inside time-ordered products as if they were
ordinary numbers, this has precisely the structure of the linked-cluster theorem
Eq.(33.60) that can be rewritten asD

e�f(x)
E
= exp

hD
e�f(x)

E
c
� 1
i
: (60.40)

Thus, applying this theorem, we haveD
T�e

�
R �
0
Hfc(�)d�

E
0
= exp

hD
T�e

�
R �
0
Hfc(�)d�

E
oc
� 1
i
: (60.41)

The cumulant average is easy to evaluate because the average is over non-interacting

electrons. Since in
D
T�

�
�
R �
0
Hfc (�) d�

�E
oc
there is a single creation or annihi-

lation operator for the conduction electrons, this �rst order term vanishes. Then,
because of Wick�s theorem, the only term that cannot be factored in lower-order
correlations is the second order one.1 ThusD

T�e
�
R �
0
Hfc(�)d�

E
0
= exp

"
1

2

*
T�

Z �

0

Hfc (�) d�

Z �

0

Hfc (�
0) d� 0

+
oc

#
: (60.42)

Using the explicit expression for Hfc in Eq.(60.15) and the fact that the bath is
diagonal in k, we are left with the following non-vanishing terms

1Note that f electrons evolve with Kf while c electrons evolve with Kc because
�
Kc;Kf

�
= 0.
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+V �kif
y
i� (�) ck� (�)Vkic

y
k� (�

0) fi� (�
0)
E
0c
: (60.44)

The two terms on the right-hand side give identical results, simplifying the factor
of 2: We can use the fact that the average does not a¤ect the f electrons and
substitute in our equation for the full average, Eq.(60.42) to write

D
T�e

�
R �
0
Hfc(�)d�

E
0

(60.45)
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The Green�s function is that of the bath. Using the fact that it depends only on
time di¤erences, we can �nd its value in Matsubara frequency,X

k

V yikG�k (ikn)Vki =
X
k

V �ki
1

ikn � ("k � �)
Vki: = �(ikn) : (60.47)

We recognize the hybridation function.
Substituting our �nal resultD
T�e

�
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(60.48)

back in the partition function, we see that

Z = Z0Tr

"
e��KfT� exp

"
�
X
�

Z �

0

d�

Z �

0

d� 0fyi� (�
0)� (� � � 0) fi� (�)

##
:

(60.49)
This has the same structure as our generating function in the Schwinger formalism,
but for a single-site problem that depends only on imaginary time. The imagi-
nary time evolution of the f fermions is through Kf that contains interactions.
The equation of motion will be precisely that which we found in Eqs.(85.36) and
(85.37). The perturbation series that can be generated by adding a source term
will have precisely the same structure as before, except that the hybridation func-
tion will enter in the function that plays the role of the non-interacting Green�s
function, namely Eq.(60.37) is our non-interacting part.

Remark 337 The link between the hybridization function and G�k (� ; � 0) makes
it clear that it is as if the non-interacting Green�s function now contained all the
ways to evolve in imaginary time going through the bath, as in the Feynman path
integral formalism. This evolution is retarded.

Remark 338 Another way to think about this result is that if we do perturbation
theory for the interaction U , all the diagrams where the Green functions go in the
bath can be resummed into the hybridization function.

PERTURBATION THEORY FOR THE ANDERSON IMPURITY MODEL IS THE SAME AS
BEFORE BUT WITH A GREEN�S FUNCTION THAT CONTAINS THE HYBRIDIZATION
FUNCTION. 517



Figure 60-2 First order transition for the Mott transition. (a) shows the result fro
two dimensions obtained for a 2� 2 plaquette in a bath. In (b), the result obtained
for a single site. The horizontal axis is Ur = (U � UMIT ) =UMIT with UMIT = 6:05t
in the plaquette case and U = 9:35t in the single site case.

60.8 The Mott transition

Clausius-Clapeyron

dE = TdS + �dN +DdU (60.50)

d (E � TS � �N) = �SdT �Nd�+DdU (60.51)

Set d� = 0;then along the phase boundary

� SMdTc +DMdUc = �SIdTc +DIdUc: (60.52)

Hence
dTc
dUc

=
DI �DM

SI � SM
(60.53)
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Figure 60-3 decrease for U 1:1 W; from Ref. [78] in Vollhardt in Mancini.

60.9 Doped Mott insulators

dTc
d�c

=
nUD � nOD
SOD � SUD

: (60.54)

The calculation shows that Tc increases as �c increases (i.e. the �rst-order line
bends toward the Mott insulator). This implies that the UD phase has a lower
entropy than the OD phase. In an analogous way, by taking a constant T plane,
one obtains

dUc
d�c

=
nUD � nOD
DUD �DOD

: (60.55)

The calculations show that �c decreases as Uc increases. Hence, the UD phase
has lower double occupancy than the OD phase. This is as expected and suggests
again that in the UD phase the correlations are stronger.
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61. A SHORT HISTORY

61.1 Model Hamiltonians

61.1.1 Early work

In parallel to DFT e¤orts to understand properties of materials, the study of sim-
ple Hamiltonians revealed very rich physics. One of the �rst di¢ cult problems
that was tackled was that of the Kondo Hamiltonian. That Hamiltonian was sug-
gested by Nobel Prize winner PW Anderson in his study of a model, now known
as the Anderson impurity model, that introduced a double occupancy cost U for
electrons on an impurity with localized orbital [10]. In the Kondo problem, an
isolated impurity with a local moment is hybridized antiferromagnetically with a
conduction-electron sea. At high temperature, this local moment is free. At low
temperature, there is a crossover to a state where the localized moment essen-
tially disappears by forming a highly entangled singlet state with the conduction
sea. A full solution of that problem had to wait for the renormalization group of
Nobel Prize winner Ken Wilson [254]. The solution to this problem explained in
particular the resistivity minimum found in dilute alloys.
Another important model was proposed independently in 1964 by Hubbard,

Kanamori and Gutwiller. Known today as the Hubbard model, this model has
two non-commuting terms. A term that represents electrons moving on a lattice
with one orbital per site. That term is diagonal in a plane-wave basis. The
other term represents the energy cost U associated with double occupancy and
is diagonal in the site basis. This model was proposed to understand emergent
phases of matter such as ferromagnetism. But in the end, it revealed itself as
a way to explain antiferromagnetism and the metal-insulator transition, or Mott
transition. The latter problem was by far the most di¢ cult one. The interaction-
induced metal insulator transition was proposed by Peierls and Mott around 1937
as an explanation for the discrepancy between the band picture of solids and
observation in materials sur as NiO.
Early explanations of the Mott transition at half-�lling, all based on the Hub-

bard model, included a) Hubbard who proposed that the original density of states
is split in two by U so that when U is small enough, a metal is recovered [98] b)
Brinkmann and Rice who suggested that the e¤ective mass of electrons diverges
at the transition [44], a result recovered by the modern slave-boson approach of
Kotliar and Ruckenstein [122] c) Slater who associated the transition to an emer-
gent long-range antiferromagnetic order [221]. The latter explanation is invalid
for what are called today Mott insulators in a paramagnetic state.

61.1.2 Solving the Hubbard Hamiltonian in in�nite dimension

The Hubbard model is the paradygmatic model for electrons that interact strongly.
Apart from an exact solution in zero and one dimension, there was no simple
tractable case where the model could be solved. Metzner and Vollhardt [161]
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made the �rst important contribution by showing that it was possible to scale the
hopping amplitude of the model in such a way that there was an interesting non-
trivial limit in in�nite dimension where perturbation theory became completely
local, i.e. depended only on frequency. Müller-Hartmann [170] also proved the
locality of perturbation theory. A number of authors, Brandt, Mielsch, Jani�, van
Dongen, among others, applied these ideas to a simpler but related model, the
Falicov-Kimball model.

61.2 Dynamical Mean-Field Theory (DMFT)

61.2.1 Single-Site Dynamical Mean-Field Theory

Following the seminal paper of Metzner and Vollhardt [161], the breakthrough
came in the 1992 seminal paper of Georges and Kotliar [77]. In that paper, they
showed that the functional equations could be interpreted as an Anderson impurity
model in a self-consistent bath. They established a correspondence with classical
mean-�eld theory and identi�ed the quantum analog of the Weiss e¤ective �eld.
Their approach captured both the itinerant and localized nature of electrons that
interact strongly. They could show how Hubbard bands appear. They solved
the Lorentzian model exactly. This allowed to understand the high-temperature
spin-�uctuation dominated regime and the low-temperature Fermi liquid regime.
It opened the way to the study of broken symmetry phases of strongly interacting
systems. Importantly, the mean-�eld interpretation meant that the method would
be useful in �nite dimension, even though it was exact only in in�nite dimension
or for large coordination number, in the same way that the mean-�eld solution
of the Ising model is useful in low dimension, even if it is exact only in the same
limits as above. Since a number of methods had been developed to understand
the Anderson-impurity model in the context of Kondo physics, all these methods
became available for the study of the Hubbard model.
A few months later, in an apparently independent paper, Jarrell [107], using a

Quantum Monte Carlo method, provided an essentially exact numerical solution
of the DMFT equations that demonstrated the metal-insulator Mott transition in
the paramagnetic state as well as the antiferromagnetic transition. Georges and
Krauth [79] later, but independently, obtained similar results. The paper demon-
strating the three peak structure of the spectral weight near the Mott transition
by Kotliar and collaborators [261] is a classic.
One should note that the DMFT equations had appeared in print before in

the 1987 paper by Kuramoto and Watanabe [125] that focused on the periodic
Anderson model and in the 1991 paper by Ohkawa [104] who studied the antifer-
romagnetic ground state and who also argued that solving the DMFT equations
amounts to �nding the exact solution to the Hubbard model in in�nite dimension.
These authors however failed to recognize the depth, importance and the wide
applicability of these ideas and to pursue their consequences.
A number of reviews of DMFT have appeared [199, 78, 120, 123, 188]. They

explain some of this history in detail. Vollhardt has continued to contribute to
DMFT by, for example, developing an accurate method of solution [45]. Metzner
moved in another directions, in particular developing the functional renormaliza-
tion group method.
Single-site DMFT applied to model Hamiltonians has shed light on a number

of problems, in particular the metal-insulator Mott transition, revealing the for-
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mation of both Hubbard bands and of the Fermi liquid that, in this picture, is a
highly entangled state of matter [249].
But Kotliar and collaborators have also found applications of DMFT in biology,

for example in elucidating the importance of many-body e¤ects in the kernel of
hemoglobin for ligand binding [252]. In fact, many enzymes contain transition
metal elements where DMFT could go beyond DFT to predict properties.

61.2.2 Cluster generalizations of DMFT

While the self-energy can be considered to depend only on frequency in in�nite
dimension, momentum dependence becomes important in lower dimension. This
is obvious in angle-resolved photoemission experiments on cuprate superconduc-
tors for example, that are quasi-two dimensional. There are several ways to add
momentum dependence to dynamical mean-�eld theory. Clearly, one can extend
the concept to clusters. The exact result would be obtained for an in�nite cluster.
A �rst generalization to clusters, the so-called Dyanmical Cluster Approximation
(DCA) was introduced in 1998 by Jarrell and collaborators [93]. It discretized mo-
mentum space. A real space version, the Cellular Dynamical Mean-Field theory
(CDMFT), was introduced in 2001 by Kotliar and collaborators [121]. Early re-
views appeared in Refs. [145, 120, 237]. In CDMFT, a �nite cluster is embedded in
an in�nite medium and extended to the in�nite lattice using Cluster Perturbation
Theory [84, 214].
Functional formulations of DMFT and its cluster generalization by Chitra and

Kotliar [53] and Pottho¤ [195, 197, 194] have suggested several other variants of
DCA and CDMFT [196]. Extensions of single-site DMFT to the in�nite lattice
have also been done using diagrammatic methods by the Vienna group [202] and
also using so-called dual fermions [204, 183] or dual bosons [205] by Rubtsov and
collaborators.
The Hubbard model is commonly used to understand the physics of high-

temperature superconductors, one of the great challenges of twentieth century
physics. In my opinion, one of the main achievements of these cluster extensions
of dynamical mean-�eld theory has been to show that the most prominent phases
of the temperature-doping phase diagram, namely antiferromagnetism and d-wave
superconductivity, occur in calculations basically for the doping and temperature
range where they are found experimentally. What is special, is that these emergent
phases of matter are obtained without any static mean-�eld approximation on the
clusters. The symmetry is broken dynamically in the in�nite bath only [144, 143],
even in the doped Mott insulator regime [216, 49, 54, ?, 86, 76]. The pseudogap
also �nds a natural explanation.

61.2.3 Impurity solvers

The di¢ cult part of any DMFT or cluster DMFT calculation is to solve the prob-
lem of the correlated site or cluster in an in�nite bath of electrons. A number of
methods have been devised, but the breakthrough occured when continuous-time
Monte Carlo methods allowed solutions that were exact to within small statistical
errors. Rubstov, Werner and Millis and Haule were the main contributors in the
development of these methods that are reviewed in this Ref. [85].
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61.3 Merging DFT and Dynamical Mean-Field The-
ory

Just �ve years after the discovery of DMFT, Kotliar, with Anisimov and collabo-
rators [14] began to lead the e¤ort to combine this approach with DFT to develop
general computational tools that start from �rst principles to predict the proper-
ties of correlated electron materials. With his postdoc Savrasov, Kotliar developed
the �rst code that combined DMFT with DFT and obtained remarkable results for
the delta phase of plutonium [208]. He began to consider functionals of the spec-
tral weight as the general conceptual framework within which DFT and DMFT
could be understood within the same formalism. This was clearly formulated in
his 2006 review [120] using the constraining �eld approach in conjunction with the
Kadano¤-Baym et Luttinger Ward functionals.
Georges and Kotliar also developed ways to extract frequency-dependent in-

teractions from electronic structure calculations [21] These interactions enter the
DMFT part of LDA+DMFT calculations. Georges also extended the LDA+DMFT
approach by showing how to introduce the longer-range part of interactions with
the GW approach in the LDA+DMFT calculations (where DMFT treats mostly
the short-range part of the interaction) [33].
The successes of the LDA+DMFT approach are already numerous. For exam-

ple, no other method can explain the Mott transition observed in V2O3. Similarly,
plutonium was actually not understood by any other electronic structure method
before the LDA+DMFT calculations that also predicted a lot of experimentally
relevant properties, such as the neutron scattering spectra, and various form fac-
tors [208]. With Haule, Kotliar predicted that plutonium hexaboride is a corre-
lated topological insulator [66] and made ground-breaking studies of iron arsenide
superconductors that unveiled the fundamental role of Hund�s coupling in these
materials [255]. Georges on the other hand developed the ideas of orbital-selective
Mott transition [65] that had been proposed before by Anisimov et al. [13] and
also showed the role of Hund�s coupling in leading to strong correlations, what
is now known as Hund�s metals [61, 80]. Kotliar and Georges both contributed
to the understanding of iron pnictide superconductors [4, 255]. They not only
developed the DMFT methodology, they used it to solve a number of outstanding
problems. The list of achievements is really very long. LDA+DMFT is by now
routinely used to explain ARPES, optical conductivity and many other types of
experiments on correlated materials.
Open source software packages such AbInit and TRIQS, have been developed

to make the latest DFT approaches that include many-body perturbation theory
and DMFT widely accessible. Kotliar and Georges made some of their software
publicly available early on [78].
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62. EXERCICES FOR PART VI

62.0.1 Symétrie particule-trou pour Hubbard

Soit le modèle de Hubbard sur un réseau carré bi-dimensionnel. On pose une
intégrale de saut t pour les premiers voisins et t0 pour les seconds voisins.
a) Montrez que la relation de dispersion prend la forme suivante lorsque le pas

du réseau est pris égal à l�unité:

"k = �2t(cos kx + cos ky)� 2t0 (cos (kx + ky) + cos (kx � ky)) : (62.1)

b) Montrez que la transformation canonique suivante

dk� = cyk+Q�

dyk� = ck+Q� (62.2)

où Q = (�; �) ; transforme H � �N en un Hamiltonien ayant la même forme
mais avec des paramètres di¤érents. Sachant ce résultat, montrez que la solution
obtenue avec t0 > 0 pour le modèle original est reliée à la solution qu�on obtiendrait
pour ce modèle avec t0 < 0 à un potentiel chimique di¤érent. Quelle est la relation
entre la densité évaluée à ces deux potentiels chimiques? Finalement, lorsque
t0 = 0, montrez que � = U=2 correspond au demi-remplissage.

62.0.2 Règle de somme f

En utilisant la dé�nition exacte de �ch et de �sp et l�expression pour leurs parties
imaginaires comme des commutateurs, montrez que pour le modèle de Hubbard,
la règle de somme f devientZ

d!

�
!�00ch;sp (q;!) =

1

N

X
k�

(�k+q + �k�q � 2�k)nk� (62.3)

où nk� =
D
cyk�ck�

E
:

62.0.3 Impureté quantique dans le cas sans interaction

Soit le hamiltonien

KI = Hf +Hc +Hfc � �N (62.4)

Kf �
X
�

("� �) fyi�fi� (62.5)

Kc �
X
�

X
k

("k � �) cyk�ck� (62.6)

Hfc �
X
�

X
k

�
Vkic

y
k�fi� + V

�
ikf

y
i�ck�

�
: (62.7)
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On peut motiver ce modèle en pensant à un seul niveau d�énergie f hybridé avec
une bande de conduction par le terme Vik. La somme sur k dans la partie de
l�hamiltonien représentant l�hybridation Hfc nous dit que c�est le recouvrement
local entre l�impureté et la bande de conduction qui compte.
Supposons que nous désirions savoir les propriétés de l�impureté, comme par

exemple la densité d�états locale. Celle-ci peut s�obtenir de la fonction de Green

Gff (�) = �
D
T�fi� (�) f

y
i�

E
: (62.8)

En procédant par la méthode des équations du mouvement, montrez que

@

@�
Gff (�) = �� (�)� ("� �)Gff (�)�

X
k

V �ikGcf (k; i; �)

où nous avons dé�ni

Gcf (k; i; �) = �
D
T� ck� (�) f

y
i�

E
: (62.9)

Pour éliminer cette dernière quantité, montrez que

@

@�
Gcf (k; i; �) = � ("k � �)Gcf (k; i; �)� VkiGff (�)

dont la solution en fréquance de Matsubara est:

Gcf (k; i; ikn) =
1

ikn � ("k � �)
VkiGff (ikn) : (62.10)

Montrez ensuite que

Gff (ikn) =
"
ikn � ("� �)�

X
k

V �ik
1

ikn � ("k � �)
Vki

#�1
:

On dé�nit la fonction d�hybridation par �ff (ikn)

�ff (ikn) �
X
k

V �ik
1

ikn � ("k � �)
Vki: (62.11)

62.0.4 Screening of spin �uctuations by the Coulomb interaction:

Show with the help of diagrams, but without any lenghty calculations, that for
a spin-rotation invariant system, the diagrams for spin �uctuations that are re-
ducible with respect to the Coulomb interaction, (that is spin independent), all
vanish. This is di¤erent from the Hubbard model where the spins do not interact
with spins of the same species, a manifestaton of the Pauli exclusion principle.

62.0.5 Generalized RPA:

Going back to the original Coulomb interaction, it is possible to sum bubbles
and ladders at the same time. This is like taking ladders for the vertex that is
irreducible with respect to the Coulomb interaction. Do this calculation for the
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Hubbard model, but starting with the version Eq.(54.10) where the Pauli exclusion
principle has not been used yet, and up electrons still interact with up electrons.
You will show that there are a lot of cancellations so that the �nal result for spin
and charge �uctuations is the same as the one found starting from the model where
there are interactions only between up and down electrons.

62.0.6 Atomic limit (t = 0)::

a) Using elementary arguments in the grand canonical ensemble, �nd the value of
hn#i.
b) Then, using the de�nition of the evolution operators in imaginary time

compute the spectral weight directly using the Lehmann representation.

62.0.7 Limite atomique (t = 0) :

a) Utilisant des arguments élémentaires d�ensemble grand canonique, trouvez la
valeur de hn#i :
b) Calculez le poids spectral directement en utilisant la représentation de

Lehmann.
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From now on, these are very sketchy notes that will evolve towards a more
structured text with time.
In this chapter we encounter the limits of our �rst principle of adiabatic conti-

nuity, mentioned in the introduction: That principle is in competition with another
one. Indeed. interactions may lead to divergent perturbation theory that cannot
be resummed in any way. This breakdown re�ects a deep fact of nature, that inter-
actions may lead to new phases of matter, and these phases may be characterized
sometimes by broken symmetries. This is the principle of broken symmetry. It is
a principle because it is an empirically observed fact of very broad applicability.
This is a very important concept that applies throughout the theory of condensed
matter physics, or quantum materials. This idea was even taken by elementary-
particle physics to unify forces for example. At high energy, or high temperature,
the forces are identical. The symmetry between the forces is broken at low energy.
We will see how it arises in the simplest manner in a model of ferromagnetism

proposed many years ago by Stoner. Original ideas go back to Weiss. This will
allow us to develop most of the concepts and approaches we will need to study
superconductivity. One of the lessons of this chapter will be that it is impossible
to reach a broken symmetry phase from the phase without the broken symmetry
by using perturbation theory. And vice-versa. The transition point, whether as a
function of interaction strength or as a function of temperature, is a singularity.
Our main example will be ferromagnetism. At the end of the chapter we will touch
upon many problems of mean-�eld theories.
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63. SOME GENERAL IDEAS ON
THE ORIGIN OF BROKEN SYM-
METRY

Interactions will often lead to broken symmetries. As a simple example, I will
shortly discuss the ferromagnet. Suppose that in some model I �nd that the
uniform spin susceptibility (q = 0) diverges at some temperature. This means
that below that temperature, perturbation theory does not converge any more.
The paramagnetic state is not adiabatically connected to the state below that
temperature. We can guess what is happening. If there is in the Hamiltonian a
near-neighbor interaction that favors spin alignment, spins will be aligned in the
ground state. In what direction? If the Hamiltonian is symmetric under rotation,
there is no prefered direction. Nevertheless, it su¢ ces to assume that there is some
small stray magnetic �eld to see that this will determine the direction in which
the spins will align. The stray �eld breaks the symmetry. The trick then is to
make our computations in the presence of an in�nitesimal stray �eld and then to
let that �eld go to zero at the end. In practice, it su¢ ces to choose an arbitrary
direction in which the spins will point.
While the expectation value of a spin on a site is zero in the paramagnetic

state, in the broken symmetry state it does not vanish. It becomes an �order
parameter�. That is also another key concept for broken symmetry states.
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64. INSTABILITY OF THE NOR-
MAL STATE

In this Chapter, I will show that there are signs of the ferromagnetic instability in
the normal state itself. We will �nd a divergence of the q = 0 spin susceptibility.
That divergence is physical, but it also signals a breakdown of perturbation theory.
Starting from the normal state, we cannot go below the transition temperature,
or below the critical value of U:We �rst treat the U = 0 case and then include the
e¤ect of interactions.
As a preamble, we recall why it is the connected function that we are interested

in

@ hSzi
�@h

����
h=0

=
@

�@h

Tr
�
e��(K�hSz)Sz

�
Tr
�
e��(K�hSz)

� �����
h=0

(64.1)

= hSzSzi � hSzi hSzi � hSzSzic : (64.2)

64.1 The noninteracting limit and rotational invari-
ance

The spin susceptibility is obtained from the spin-spin correlation function. Very
schematically, consider the connected part of the time-ordered product,

hT�SzSzic = hT� (n" � n#) (n" � n#)ic (64.3)

= hT�n"n"ic + hT�n#n#ic � hT�n"n#ic � hT�n#n"ic (64.4)

We have assumed ~=2 = 1 here for the purposes of this discussion. As illustrated in
Fig.(?), only the �rst two terms have non-zero contractions. Hence, for the nonin-
teracting system, the charge and spin susceptibilities are identical when expressed
in units ~=2 = 1 since

hT���ic = hT� (n" + n#) (n" + n#)ic (64.5)

= hT�n"n"ic + hT�n#n#ic + hT�n"n#ic + hT�n#n"ic : (64.6)

Since the last two terms do not contribute, we are left for both spin and charge
with

�0 (q; iqn) = � 1
N

X
p;�

T
X
n

G0� (p+ q; ipn + iqn)G
0
� (p; ipn) (64.7)

= � 2
N

X
p

f
�
�p
�
� f

�
�p+q

�
iqn + �p � �p+q

: (64.8)
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Rotational invariance should give us in general, even in the presence of interactions
and again with ~=2 = 1,



T�S

+S�
�
c
+


T�S

�S+
�
c
=

1

4
hT� (Sx + iSy) (Sx � iSy)ic (64.9)

+
1

4
hT� (Sx � iSy) (Sx + iSy)ic (64.10)

=
1

2

�
hT�SxSxic + hT�SySyic

�
= hT�SzSzic : (64.11)

This comes out indeed from considering the diagrams in Fig.(). At the outer ver-
tices, the spin must now �ip as indicated because of the presence of the operators
S+S�.

64.2 E¤ect of interactions for ferromagnetism, the
Schwinger way

We have seen in Eq.(56.33) how to compute the spin �uctuations for the Hubbard
model, either through RPA, or in Eq.(57.6) with the more accurate TPSC method.
The simple RPA result su¢ ces to illustrate the main principles. In Sec.(66.4), I
will address a more subtle point where TPSC is useful.

64.3 *E¤ect of interactions for ferromagnetism, the
Feynman way

You can read the next section immediately if you have read the previous part.
In the Hubbard model, we took into account the Pauli principle so that up

electrons interact only with down electrons. If we return to the original problem
where up can interact with down, we need to sum at the same time ladders and
bubbles in the way indicated in Fig.(?) to recover rotational invariance in an
RPA-like approximation. Since the interaction U is independent of momentum,
the two diagrams in Fig.(?a) cancel each other exactly and we are left only with
Fig.(?b) which corresponds to the theory where up interacts only with down.
In that theory, the set of diagrams that contributes to hT�SzSzic is given in

Fig.(?). It is di¤erent from the set of diagrams that contributes to hT�S+S�ic +
hT�S�S+ic but the �nal answer is the same in the paramgnetic state with no
broken symmetry. Bubbles only contribute to hT�SzSzic but the odd terms have
one extra minus sign because the minus sign in �hT�n"n#ic � hT�n#n"ic : Hence,
the result is exacly the same as for hT�S+S�ic + hT�S�S+ic that we compute
with the ladder sum in Fig.(?). Consider for example hT�S+S�ic : There is one
minus sign for each order in perturbation theory, hence a factor (�U) and since
there are no extra fermion loops included and U is momentum independent, it is
the quantity ��0=2 that is multiplied when we increase the order by one. More
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speci�cally, we obtain

T�S

+S�
�
c
=

�0
2
+
�0
2
(�U)

�
��0
2

�
+
�0
2
(�U)2

�
��0
2

�2
+ : : :(64.12)

=
�0=2

1� U
2 �0

: (64.13)

We thus obtain in Fourier space where the above equation is algebraic,

� =


T�S

+S�
�
c
+


T�S

�S+
�
c
= hT�SzSzic =

�0
1� U

2 �0
: (64.14)

64.4 The thermodynamic Stoner instability

At �nite frequency, a retarded response function can be positive or negative be-
cause of resonances. But at zero frequency, we are looking at thermodynamics,
hence a susceptibility must be positive. One can show that any � (q; iqn) is positive
when �000 (q; !) = ��000 (q;�!), since

� (q; iqn) =

Z
d!

�

�00 (q; !)

! � iqn

=

Z
d!

�

!�00 (q; !)

(!)
2
+ (qn)

2 (64.15)

hence a fortiori � (q; 0) is positive. Hence, the RPA result Eq.(64.14) is non-
physical when 1 < U

2 �0 (q; 0) : There is a phase transition when the generalized
Stoner criterion

1 = U
2 �0 (q; 0) (64.16)

is satis�ed. Note that the �rst wave vector for which the above result is satis�ed is
the one that becomes unstable. It does not necessarily correspond to a uniform fer-
romagnet (q = 0). We will see a speci�c example below with the antiferromagnet.
In the special ferromagnetic case

lim
q!0

�0 (q; 0) = lim
q!0
� 2
N

X
p

f
�
�p
�
� f

�
�p+q

�
�p � �p+q

= � 2
N

X
p

@f
�
�p
�

@�p
(64.17)

that reduces to 2N ("pF ) in the zero temperature limit. So we recover a simple
special case that I will discuss below in Eq.(65.6).

64.5 Magnetic structure factor and paramagnons

The transition to the ferromagnetic state is a continuous transition (or second
order transition in the mean-�eld language). It is signaled by a diverging suscepti-
bility, as we saw above. The correlation length is diverging at the transition point.
We can see this by expanding � (q;0) near the transition point so that it becomes
asymptotically equal to

� (q;0) � �0 (0; 0)

1� U
2 �0 (q; 0)�

1
2

�
U
2

� @2�0(q;0)
@2q2 q2

� A

��2 + q2
(64.18)
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which shows an exponential decrease in real space with correlation length ��2 �
1 � U

2 �0 (q; 0) : The above functional form is known by the name of Ornstein-
Zernicke. At the transition point, the system becomes �critical�. The transition
point itself is called a critical point. The presence of this long correlation length
also manifests itself in the existence of �critical slowing down�. In the present case,
we will discover an overdamped collective mode whose typical frequency decreases
as we approach the critical point.
Consider for example, the zero temperature transverse magnetic structure fac-

tor
S? (q; !) =

2

1� e��! �
00
? (q;!) : (64.19)

In the paramagnetic state there is rotational invariance so there is in fact no
di¤erence between longitudinal and transverse. We see that T = 0, S? (q; !) =
2�00? (q;!) for ! > 0. The RPA prediction is thus,

S? (q; !) = 2 Im

"
�R0

1� U
2 �

R
0

#
=

2�000 (q; !)�
1� U

2 �
0
0 (q; !)

�2
+
�
U
2 �

00
0 (q; !)

�2(64.20)
� 2�000 (q; !)

(1� UN ("pF ))
2
+
�
U
2 �

00
0 (q; !)

�2 : (64.21)

To evaluate �000 (q; !), it su¢ ces to analytically continue our general result for the
non-interacting spin susceptibility Eq.(64.8) in the small q limit

�R0 (q; !) = � 2
N

X
p

f
�
�p
�
� f

�
�p+q

�
! + i� + �p � �p+q

(64.22)

� � 2
N

X
p

@f
�
�p
�

@�p

�p � �p+q
! + i� + �p � �p+q

(64.23)

and to use

�p � �p+q = �
p � q
m
� q2

2m

as well as the fact that p in the integrand is constrained to lie near the Fermi
surface and that vF � q=m so that �p � �p+q � �vF � q

�R0 (q; !) = 2

Z
d"N (")

Z 1

�1

d (cos �)

2

@f ("� �)
@"

vF q cos �

! + i� � vF q cos �
(64.24)

�000 (q; !) = �2�
Z
d"N (")

Z 1

�1

d (cos �)

2

@f ("� �)
@"

vfq cos (�) �(! � vF q cos �)

= �N ("pF )
!

vF q
� C !

vF q
(64.25)

Substituting in the RPA expression Eq.(64.20) we �nd

S? (q; !) = 2�
00
? (q;!) =

2C !
vF q

(1� UN ("pF ))
2
+
�
C !
vF q

�2 : (64.26)

This function is plotted in Fig.(?) as a function of ! for two small values of
q and for U = 0 and UN ("pF ) = 0:8 along with 2�00? (q;!) =!. Clearly this
mode is in the particle-hole continuum, in other words it is overdamped. Also
its characteristic frequency is becoming smaller as the correlation length ��2 �
1�UN ("pF ) increases, to eventually diverge at the critical point. We have a �soft
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mode�. In the presence of a small uniform magnetic �eld h, the low-frequency
small q limit takes the form

�? (q; !) =
A

��2 + aq2 + bh2=3 � c i!
vF q

: (64.27)

To see what is meant by critical slowing down, it su¢ ces to note that the e¤ect
of the frequency becomes important when ! becomes of order ��2vF q=C, which
is a small number.
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65. WEAK INTERACTIONS AT
LOW FILLING, STONER FERRO-
MAGNETISM AND THE BROKEN
SYMMETRY PHASE

Consider the case of an almost empty band where the dispersion relation is
quadratic. And take U=t small so that we may think a priori that perturba-
tion theory is applicable. Stoner showed using simple arguments that if U is large
enough, the system has a tendency to become ferromagnetic. This is easy to un-
derstand in the ground state by an energy balance argument. When U is very
large, it is energetically favourable to populate the states with only spins with the
same orientation, say up. Indeed, there is then no potential energy since Un"n#
then vanishes. This costs kinetic energy since the Fermi energy of the up spins
needs to be larger to accomodate more spins than if the spin down band was also
occupied. The balance determines whether the symmetry will be broken or not.
There is thus a simple energetic argument that tells us why it is preferable to
break a symmetry (choose up spins for example). It is often possible to �guess�
which symmetry will be broken using that type of arguments, but it is not always
possible.
We will look at ferromagnetism from many points of view. And then we will

see that so-called Stoner argument has some problems and that ferromagnetism is
much harder to �nd than what Stoner �rst thought.

65.1 Simple arguments, the Stoner model

In the Hartree Fock approximation,

e"k� = "k + U hn��i (65.1)

The idea of Stoner, illustrated in Figs.() and () for two and three dimensions, is
best illustrated in the limiting case where U is very large. Then by taking all the
spins to be up, one increases the kinetic energy, but there is no potential energy.
Clearly, if U is large enough (Nagaoka ferromagnetism) it seems that this will
always be the lowest energy solution since the kinetic energy is the same whatever
the value of U .
The above solution breaks the rotational symmetry of the original Hamiltonian,

yet it is a lower energy state. The proper way to consider this problem is to put
an in�nitesimal magnetic �eld pointing in one direction in the original Hamil-
tonian, then take the in�nite volume limit, then take the �eld to zero. In pratical
situations, this is how symmetry is broken anyway.
At the threshold for the instability, when the two wave vectors become di¤erent,

the energies for up and down spins are still identical, so

"
kF " � "kF# = U

�
hn#i �



n"
��
: (65.2)
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Expanding the left-hand side in powers of hn#i�


n"
�
we have, using that

���@"kF�@kF�
@kF�
@n�

���
is independent of spin,

@"kF
@kF

@kF
@n

�
hn#i �



n"
��

= U
�
hn#i �



n"
��

(65.3)

@"kF
@n

= U (65.4)

1 = U
@n

@"kF
= U

@

@"kF

Z "kF
N (") d" (65.5)

1 = UN ("kF ) (65.6)

where N (E) is the density of states for a given spin species. The last formula is
the celebrated Stoner criterion for ferromagnetism (or antiferromagnetism).

65.2 Variational wave function

If we take a non-interacting solution but with two di¤erent Fermi wave vectors for
up and down electrons, then we can write a variational wave function

j	i = �
k"
� (kF" � jkj) �

k#
� (kF# � jkj) cyk"c

y
k# j0i : (65.7)

Using Ritz�s variational principle, we need to minimize

h	jH � �N j	i =
X
k;�

("k � �) hnk;�i+NU hn��i hn�i : (65.8)

We will not proceed further since this is a special case (T = 0) of the more general
equations treated in the following section.

65.3 Feynman�s variational principle for variational
Hamiltonian. Order parameter and ordered
state

We start from one-body a trial Hamiltonian where the symmetry between up and
down spins can be broken. In other words we postulate

eH0 �
X
k;�

e�k�cyk�ck� (65.9)

where e�k� = e"k� � � can be di¤erent for up and down spins.
The calculation then proceeds as usual by using Feynman�s variational principle

� T lnZ � �T lnZe0 +
D�
H � eH0

�E
e0 (65.10)
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to minimize the right-hand side, which can be evaluated as

�T ln
"Y
k�

�
1 + e��

e�k��#+X
k;�

�
�k� � e�k��Dcyk�ck�Ee0

+U
X
i

D
cyi"ci"

E
e0
D
cyi#ci#

E
e0 : (65.11)

where the last term can also be written by translational invariance as UN hn�ie0 hn��ie0
with, as usual, N the number of sites. To evaluate hHie0 we have used Wick�s the-
orem since eH0 is non-interacting. Our variational parameters are e�k�: We thus
set to zero the derivative of the above expression with respect to e�k�; recalling
that the values

D
cyk�ck�

E
e0 taken with the trial Hamiltonian also depend on e�k�:

Using translational invariance and the de�nition of Fourier transforms we have
the following equalities

N
D
cyi�ci�

E
e0 =

X
i

D
cyi�ci�

E
e0 =

X
k;�

D
cyk�ck�

E
e0 (65.12)

so that for the spin �,

U
X
i

D
cyi�ci�

E
e0
D
cyi��ci��

E
e0 = U

D
cyi��ci��

E
e0
X
k;�

D
cyk�ck�

E
e0 :

This leads to the spin-dependent equation

0 = �T e��
e�k�

1 + e��e�k� (��)�
D
cyk�ck�

E
e0

+
�
�k� + U

D
cyi��ci��

E
e0 � e�k�� @

D
cyk�ck�

E
e0

@e�k� : (65.13)

Note that
D
cyk�ck�

E
e0 depends only on e�k� with the same k; � index. Given that

for the trial Hamiltonian D
cyk�ck�

E
e0 =

1

1 + e�e�k� ; (65.14)

the �rst two terms cancel and the minimization equation is satis�ed if we require

the coe¢ cient of @
D
cyk�ck�

E
e0 =@e�k� to vanish. This leads to

e�k� = �k� + U
D
cyi��ci��

E
e0 (65.15)

= �k� + U hn��ie0 (65.16)

De�ning
n = hn"ie0 + hn#ie0 (65.17)

and the �order parameter�
m = hn"ie0 � hn#ie0 (65.18)

that measures the magnetization, or spin polarization that can occur because the
number of up spins is not restricted to be equal to the number of down spins,
we obtain from this equation and from the equation for the occupation number
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Eq. (65.14) the self-consistency equation Eq. (65.15) and the relation betweenD
cyi��ci��

E
e0 and

D
cyk��ck��

E
e0 Eq. (65.12)

1
N

P
k f
�
�k + U



n#
�e0�� 1

N

P
k f
�
�k + U hn"ie0� = hn"ie0 � hn#ie0 : (65.19)

This equation is called the �gap equation�, as we will understand in the following
sections. It must be solved simultaneously with the equation for the chemical
potential

hn#ie0 + hn"ie0 = 1
N

P
k

�
f
�
�k + U hn"ie0�+ f ��k + U 
n#�e0��. (65.20)

Remark 339 If we add a constant to the trial Hamiltonian Eq. (65.9), it drops
out from �T lnZe0 +

D�
H � eH0

�E
e0 and from the minimization equation. See the

remark in the next section, Sec. 65.4 about the calculation of the total energy or
free energy.

65.4 The mean-�eld Hamiltonian can be obtained
by a method where the neglect of �uctuations
is explicit

It is possible to �guess� the form of the best one-body Hamiltonian by a simple
procedure where the neglect of �uctuations is more explicit. Let us de�ne

cyk�ck� =
�
cyk�ck� �

D
cyk�ck�

E�
+
D
cyk�ck�

E
; (65.21)

so that

ni� = (ni� � hni�i) + hni�i (65.22)

� �ni� + hni�i : (65.23)

The expectation values are with respect to a yet unspeci�ed one-body Hamiltonian.
With the above de�nitions, the original Hamiltonian can be rewritten as follows:

H =
X
k;�

�kc
y
k�ck� + U

X
i

(�ni" + hni"i) (�ni# + hni#i) : (65.24)

So far there is no approximation. If we neglect terms that are quadratic in �uctu-
ations, namely proportional to �ni"�ni#; we are left with the following one-body
Hamiltonian

eH0 =
X
k;�

�kc
y
k�ck� + U

X
i

(�ni" hni#i+ hni"i �ni# + hni#i hni"i) : (65.25)

Subtituting back �ni� = ni� � hni�i and imposing self-consistency by requiring
that expectation values appearing on the right-hand side of this equation be the
same as those obtained from eH0; namely replacing hni�i by hni�ie0 we obtaineH0 =

X
k;�

�kc
y
k�ck� + U

X
i

�
ni" hni#ie0 + hni"ie0 ni# � hni#ie0 hni"ie0� : (65.26)
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Applying Wick�s theorem for expectation values computed with eH0, this one-body
Hamiltonian has the property that

hHie0 =
D eH0

E
e0 : (65.27)

Remark 340 The above steps could be repeated in position space without assum-
ing translational invariance simply by starting from the beginning with

cyi�cj� =
�
cyi�cj� �

D
cyi�cj�

E�
+
D
cyi�cj�

E
(65.28)

and making replacements such that when Wick�s theorem is applied the expectations
values of the full Hamiltonian and of the mean-�eld Hamiltonian are equal, as in
Eq. (65.27). In the above example there is no exchange term. In general there will
be.

Remark 341 eH0 in this section di¤ers by a constant from eH0 in the previous
section 65.3. In that previous section, the partition function, or ground state

energy in the zero temperature limit, is �T lnZe0+
D�
H � eH0

�E
e0 and not

D eH0

E
e0 :

Indeed, in the T ! 0 limit we evaluate

� T ln
"Y
k�

�
1 + e��

e�k��# = 0X
k;�

e�k�; (65.29)

where the sum is restricted to e�k� < 0: On the other hand,X
k;�
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�k� � e�k��Dcyk�ck�Ee0 + UX
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D
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E
e0
D
cyi#ci#

E
e0 :

= �U
X
i

D
cyi"ci"

E
e0
D
cyi#ci#

E
e0 : (65.30)

Combining the two previous results and using
D
cyk�ck�

E
e0 = 0 for e�k� > 0 andD

cyk�ck�

E
e0 = 1 for e�k� < 0; leads to
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�k + U hn��ie0� Dcyk�ck�Ee0 � UX
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cyi"ci"

E
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D
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�k

D
cyk�ck�

E
e0 + U

X
i

D
cyi"ci"

E
e0
D
cyi#ci#

E
e0 : (65.31)

This is the correct expression for the mean-�eld ground-state energy.

65.5 The gap equation and Landau theory in the
ordered state

Using our de�nition of the magnetization Eq.(65.18) and the equation for the
minimum Eq.(65.19), we obtain an equation (also called the gap equation) for the
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order parameter m,

m =
1

N

X
k

�
f
�
�k + U

n

2
� Um

2

�
� f

�
�k + U

n

2
+ U

m

2

��
: (65.32)

Suppose we are close to the transition wherem is small. Expanding the right-hand
side, we have

m =
1

N

X
k

@f
�
�k + U

n
2

�
@�k

(�Um) +O
�
m3
�

(65.33)

= UN ("kF )m+O
�
m3
�
; (65.34)

where we have used that as T ! 0 the derivative of the Fermi function becomes
minus a delta function. Here, "kF is de�ned by ("kF � �) + U n

2 = 0:

The last equation may also be written

(1� UN ("kF ))m = bm3 (65.35)

where a more detailed calculation gives that

b =
N 00 ("kF )

24
� (N

0 ("kF ))
2

8N ("kF )
: (65.36)

That quantity is generally negative, although one must watch in two dimensions
for example where the second derivative of the density of state is positive. The
calculation of b is tedious since one must also take into account the dependence of
the chemical potential on m2.
The last form of the equation form Eq.(65.35) is the so-called Landau-Ginzburg

equation for the magnetization. If we had expanded the trial free energy in powers
of m, we would have obtained the Landau-Ginzburg free energy. That free energy
would have been of the form of a polynomial in powers of m2 given the structure
of its �rst derivative in m; m3 etc... It could have been guessed based purely on
general symmetry arguments. The free energy must be a scalar so given that m is
a vector, one has to take its square. The di¤erence here is that we have explicit ex-
pression for the coe¢ cients of m2 in terms of a microscopic theory. In the absence
of a microscopic theory, one can make progress anyway with the Landau-Ginzburg
strategy.
What are the consequences of the equation for the magnetisation Eq.(65.35)?

First of all we recover the Stoner criterion, m = 0 when 1 = UN (EF ) and takes
a �nite value m2 = (1� UN (EF )) =b if U is su¢ ciently large. This is the broken
symmetry state. Here that state breaks rotational invariance.
Broken symmetry is an empirically observed property of matter. Ferromagnets,

solids, antiferromagnets, superconductors are all broken symmetry states. The
fact the broken symmetry is a general result that is empirically observed makes
it a principle. Landau-Ginzburg type theories are theories of principle. The free
energy is a scalar, the broken symmetry is described by an order parameter so the
free energy is a function of all scalars that can be built with this order parameter.

Remark 342 It should be clear that the phase transition can occur at �xed tem-
perature by increasing U; or at �xed U by decreasing T: Indeed, in general the equa-
tion for the order parameter Eq.(65.33) is temperature dependent. In Eq.(65.34)
we have taken the zero temperature limit.
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65.6 The Green function point of view (e¤ective
medium)

We can obtain the same results from the e¤ective medium point of view. We
proceed exactly as with Hartree-Fock theory for the normal state except that this
time, our trial Hamiltonian eH0 is spin dependent

eH0 =
X
k;�

e"k�cyk�ck�: (65.37)

Starting from the diagrams in Fig.(42-3) and recalling that only the Hartree dia-
gram survives because up electrons interact only with down, the e¤ective medium
equations are obtained for each spin component

e�� = U hn��i+ "k � e"k� = 0 (65.38)

so that we recover the Stoner result e�k� = �k + U hn��i : The gap equation is
obtained from

G� (k;ikn) =
1

ikn � e"k� + � (65.39)

from which we extract the spin-dependent density

hn�i = T
X
n

eikn�
1

N

X
k

1

ikn � e"k� + � (65.40)

=
1

N

X
k

f ("k + U hn��i � �) (65.41)

=
1

N

X
k

f (�k + U hn��i) : (65.42)

Adding the previous equations to that for hn#i+ hn"i ; we recover all the previous
results for the magnetization etc.

65.7 There are residual interactions

The full Hamiltonian we need to work with is

H = eH0 +
�
H � eH0

�
(65.43)

H � �N = eH0 � �N +
X
i

Uni#ni" +
X
k;�

("k � e"k�) cyk�ck�: (65.44)

The second term
�
H � eH0

�
in the �rst line is our residual interaction. The termP

k;� ("k � e"k�) cyk�ck� in the last line is known as a counter term. Its role is
to cancel all Hartree-Fock diagrams that could appear from

P
i Uni#ni" when we

do perturbation theory. The perturbation theory in U will be in terms of an
unperturbed Green�s function obtained from eH0. It will not contain any Hartree-
Fock terms.
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66. COLLECTIVE GOLDSTONE
MODE, STABILITYANDTHEMERMIN-
WAGNER THEOREM

What do the collective modes look like in the ordered state? The minimal energy
to excite a particle with an up spin to a state with down spin is "pF# � "pF " =

U
�

n
F"

�
� hn#i

�
= Um: This tells us, with m > 0; that there is a single-particle

gap

� = Um: (66.1)

This same gap exists for particle-hole excitations in the ordered state that �ip a
spin. There is thus a gap in the particle-hole continuum for what is called the
�longitudinal susceptibility�. We see in passing that the equation for m is also the
equation for the gap �. But that is not the whole story. We also need to look at
all the collective modes, in particular those of the transverse spin susceptibility.
It is a general result (Goldstone�s theorem) that when there is a continuous sym-
metry that is broken, such as rotational symmetry, then there is a collective mode
whose frequency vanishes at long wave lengths and whose role is to �restore�the
symmetry. In the case of the ferromagnet, it does not cost any energy to rotate the
overall magnetization of the system. This is the mode that restores the symmetry.
At small q the frequency is very small by continuity.

66.1 The longitudinal susceptibility does not diverge
anymore

The �rst thing we need to check in a sense is that breaking the symmetry leads to
a state where the susceptibility does not diverge anymore. Now however, there are
two susceptibilities. A �longitudinal�one that gives the response to a �eld applied
in the direction where the spins are aligned and a �tansverse�one that gives the
response to a �eld applied in the perpendicular direction. In this section, I show
that the longitudinal susceptibility diverges only at the phase transition. In the
next section, I will show that the transverse susceptibility contains the Goldstone
mode.
The longitudinal spin susceptibility is, when the ferromagnetic spins are aligned

in the z direction

h�Sz (1) �Sz (2)i = h(n" (1)� n# (1))(n" (2)� n# (2)i � hSz (1)i hSz (2)i (66.2)

where as usual, we imply time-ordered products and 1 now stands for imaginary
time and position on a lattice. We just saw that there are residual interactions.
So the e¤ect of U can be obtained from solving the integral equations represented
in Fig. (66-1). The contributions to the susceptibility are represented by the
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Figure 66-1 Diagrams for the calculation of the longitudinal susceptibility in the
Schwinger formalism.

diagrams to the left of the �gure, in other words algebraically by

� �"" (1; 2) =
�G� (1; 1+)
���0 (2

+; 2)
= �hn� (1)n�0 (2)i+ hn� (1)i hn�0 (2)i : (66.3)

For the Feynman fans, this is the usual RPA approximation but the diagrams are
not Feynman diagrams, they are for Schwinger�s a¢ cionados. In that language
I took for the irreducible vertex just the term that comes from the functional
derivative of the Hartree term because the functional derivative of the Fock term
contributes only to the transverse susceptibility, as I discuss in the next section.
Assuming translational invariance, we can Fourier transform and obtain, in

analogy with the electron gas, or RPA, or TPSC cases

�"" (q; !) = �0"" (q; !)� �0"" (q; !)U�"# (q; !) (66.4)

and
�"# (q; !) = ��0## (q; !)U�"" (q; !) : (66.5)

Note that up spin electrons interact only with down spin electrons. Also �0"# (q; !)
vanishes because electrons do not �ip spins at the vertices and the broken sym-
metry Hamiltonian conserves the z component of spin, so the propagators are
diagonal in spin indices. This is another way to say that the Green�s function that
starts with an up electron ends with an up electron. Usually, we sum spin up and
spin down using rotational invariance and there is a factor of two in the de�nition
of the susceptibility. Here, I consider each term separately.
In momentum-frequency space, the integral equations have become algebraic

equations. Substituting the last equation in the previous one, we obtain

�"" (q; !) =
�0"" (q; !)

1� U2�0## (q; !)�0"" (q; !)
: (66.6)

Given this, the corresponding equation for down spin susceptibility is

�## (q; !) =
�0## (q; !)

1� U2�0## (q; !)�0"" (q; !)
: (66.7)
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Using Eq. (66.5) for the up down susceptibility, and the result we just obtained
for up-up, we �nd

�"# (q; !) = �
�0## (q; !)U�

0
"" (q; !)

1� U2�0## (q; !)�0"" (q; !)
(66.8)

and �ipping all the spins, we �nally have

�#" (q; !) = �
�0"" (q; !)U�

0
## (q; !)

1� U2�0## (q; !)�0"" (q; !)
: (66.9)

Finally, the longitudinal spin susceptibility is obtained from all of the above terms

�"" (q; !) + �## (q; !)� �"# (q; !)� �#" (q; !) (66.10)

=
�0"" (q; !) + �

0
## (q; !) + 2�

0
"" (q; !)U�

0
## (q; !)

1� U2�0## (q; !)�0"" (q; !)
(66.11)

Remembering the factor of two in our de�nition of susceptibility, it is easy to show
that we recover the usual RPA form in the normal state.
So much for generalities. Let us get to the point and check that we have gotten

rid of the divergence, in other words of the zero of the denominator since clearly
the numerator is well behaved. I consider T = 0 as we have done up to now. The
thermodynamic susceptibility in the ferromagnetic case is

lim
q!0

�0"" (q; 0) = lim
q!0

0@� 1
N

X
p

f
�e�p"�� f �e�p+q"�e�p" � e�p+q"

1A (66.12)

= � 1
N

X
p

@f
�e�p"�
@e�p" = N ("F") (66.13)

where N ("F") is the single-spin density of states for up electrons. This means
that

1� U2�0## (q; !)�0"" (q; !) = 1� U2N ("F")N ("F#) : (66.14)

In general, refering to the Hartree-Fock results we found above with the de�nition
of the magnetization in Eq. (65.18), I can write

"F" = "F + U hn#i = "F + U

�
n�m
2

�
(66.15)

"F# = "F + U hn"i = "F + U

�
n+m

2

�
(66.16)

I now work near the transition point where m us small and both Fermi energies
can be expanded in powers of m near "F + Un=2: Then I can approximate

N ("F") = N ("F )�
dN ("F )

d"F

m

2
+
1

2

d2N ("F )

d"2F

�m
2

�2
+ � � � (66.17)

N ("F#) = N ("F ) +
dN ("F )

d"F

m

2
+
1

2

d2N ("F )

d"2F

�m
2

�2
+ � � � (66.18)

so that because UN ("F ) = 1 near the transition point and because the linear
term drops out I am left with

1� U2N ("F")N ("F#) �
 �

dN ("F )

d"F

�2
+N ("F )

d2N ("F )

d"2F

!�m
2

�2
(66.19)

that is positive unless the second derivative is large and negative. Otherwise, in
the usual case, the denominator is positive and vanishes only at the transition
point where m = 0 as we set up to prove. Nice.
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66.2 The tranverse susceptibility contains the Gold-
stone mode

The longitudinal susceptibility is always gapped in the ordered state since it corre-
sponds to changing the magnetization. The transverse susceptibility on the other
hand is given by a RPA formula analogous to above Eq.(64.14). Being careful that
�R�+? (q; !) � hT�S�S+ic has one less factor of two in its de�nition we �nd,

�R�+? (q; !) =
�R�+0? (q; !)

1� U�R�+0? (q; !)
(66.20)

with, given the new excitation spectrum in the ordered state, a new de�nition of
the �non-interacting�susceptibility �R�+0? (q; !)

�R�+0? (q; !) = � 1
N

X
p

f(e�p+q")� f(e�p#)
! + i� + e�p+q" � e�p# : (66.21)

that corresponds to the diagram in Fig.(?).
To simplify the calculations, we assume that � << EF so that we can neglect

the energy dependence of the density of states and take the Fermi velocities for
up and down electrons to be identical. Expanding as before in the small q limit,
we then have, for small wave vectore�p+q" � e�p# � vF � q+ U �
n#�� hn"i� = vF � q�� (66.22)

so that for vF � q� � we can expand,

�R�+0? (q; !) � � 1
N

X
p

f(e�p+q")� f(e�p#)
! + i� �� (66.23)

�
"
1� vF � q

! + i� �� +

�
vF � q

! + i� ��

�2
+ � � �

#
(66.24)

� �
�
hn"i �



n#
��

! + i� ��
�
1 +O

�
q2
��
=

��=U
! + i� ��

�
1 +

C

�2
q2
�

At then end of this section, we prove that C < 0; which is necessary for stability
as we will show. Note that the above formula immediately gives that at q = 0
the imaginary part is vanishing for ! < �; i.e. there is a gap in the particle-hole
continuum.
To see the e¤ect of residual interactions in the ordered state, in other words the

e¤ect of the interactions that are not taken care of by the mean �eld, we consider
the corresponding RPA result in the additional limit j!j < �

�R�+? (q; !) =
�R�+0? (q; !)

1� U�R�+0? (q; !)
�

��=U
!+i���

1� (��)
!+i��� �

(��)C
(!+i���)�2 q2

(66.25)

� ��=U
! + i� �Dq2 ; (66.26)

with D = �C=� > 0: The complete transverse spin susceptibility is obtained by
combining the two results

�R�+? (q; !) + �R+�? (q; !) =
��=U

! + i� �Dq2 +
�=U

! + i� +Dq2
(66.27)

= ��
U

2Dq2

(! + i�)
2 � (Dq2)2

: (66.28)

556 COL-
LECTIVE GOLDSTONE MODE, STABILITY AND THE MERMIN-WAGNER THEOREM



In these expressions we have used that the calculation of �R�+0? (q; !) amounts to
changing �! �� as can be seen by repeating the steps above with up and down
spins interchanged. Note also that the last form is that of the propagator for a
single boson of frequency Dq2: There is thus a collective mode at ! = �Dq2.
This mode, a Goldstone mode, appears in the particle-hole continuum gap.

We can also see this from the imaginary part

Im
�
�R�+? (q; !) + �R+�? (q; !)

�
= �

�

U
�
�
! �Dq2

�
� ��

U
�
�
! +Dq2

�
: (66.29)

It is thus a propagating mode and here it has a quadratic dispersion relation,
just like we �nd in the 1=S expansion of ferromagnetic spin models. Stability
requires that D be positive, otherwise the condition for positivity of dissipation
Im
�
�R�+? (q; !) + �R+�? (q; !)

�
! > 0 is violated.

To show thatD = �C=� is positive, it su¢ ces to show that C in the expression
for the non-interacting transverse susceptibility, Eq.(66.23), is negative. Note �rst
that in the small q limit, i.e. q � kF , we are justi�ed to have neglected q2=2m
compared with vF � q. There are two terms of order q2 that contribute. The �rst
obvious one is given by,

� 1
N

X
p

f(e�p+q")� f(e�p#)
! + i� ��

�
vF � q

! + i� ��

�2

� � 1
N

X
p

f(e�p")� f(e�p#)
! + i� ��

hvF � q
�

i2
= �
hn"i �



n#
�

! + i� ��
1

3

(vF q)
2

�2

= � �=U

! + i� ��
1

3

(vF q)
2

�2
: (66.30)

The other contribution comes from the expansion of e�p+q" in the argument of the
Fermi function, combined with the �rst order expansion of the denominator

� 1
N

X
p

@f(e�p")
@e�p" vF � q

! + i� ��

�
� vF � q
! + i� ��

�
(66.31)

=
N ("pF )

! + i� ��
1

3

(vF q)
2

�
; (66.32)

where, as mentioned above, we assume N ("pF ) = N ("pF ") = N
�
"pF#

�
: Note that

the contribution from
�
@2f(e�p")=@2e�p"� (vF � q)2 vanishes when we can neglect

the " dependence of the density of states at the Fermi surface, as we can see by
integrating by parts. The two non-zero contributions add up to

� �=U

! + i� ��

"
1

3

(vF q)
2

�2
(1� UN ("pF ))

#
: (66.33)

We have thus shown that

C =
1

3
(vF q)

2
(1� UN ("pF )) < 0 (66.34)

because we are in the ferromagnetic state, which means that U is larger than the
critical value Uc = 1=N ("pF ) :

Remark 343 Critical slowing down: Note that as U is decreased, approaching
the transition from the ferromagnetic state, the di¤usion constant, D = �C=�;
decreases, until it reaches zero. This means that the typical frequencies (Dq2 in
our case) become small, showing that the critical slowing down phenomenon that
we encountered in the paramagnetic state also occurs in the ferromagnetic state.
Critical slowing down is a very general phenomenon.
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66.3 Thermodynamics and theMermin-Wagner the-
orem

The thermodynamic transverse susceptibility is obtained from the usual thermo-
dynamic sum rule (Note that Im

�
�R�+? (q; !0) + �R+�? (q; !0)

�
is odd but not each

of the terms individually).

�R�+? (q; ! = 0) + �R+�? (q; ! = 0) =

Z
d!0

�

Im
�
�R�+? (q; !0) + �R+�? (q; !0)

�
!0

(66.35)
The contribution of the Goldstone mode to that susceptibility is easy to obtain
from our previous results, either from the imaginary part or from the full suscep-
tibility Eq.(66.27),

�R�+? (q; ! = 0) + �R+�? (q; ! = 0) =
�

U

2

Dq2
: (66.36)

Again we see that D must be positive if we want a positive susceptibility. Note
however that the divergence of the susceptibility at q = 0 is physical and does not
denote an instability of the system. It just re�ects the fact that the orientation of
the magnetization can be changed at will, without energy cost, since the broken
rotation symmetry is a continuous symmetry. It is a consequence of so-called
Bogoliubov inequalities [?]. Physically, in the original position space it means
that there are long-range correlations in Sx and in Sy.
Despite the singular behavior in the long-wave length �uctuations, the local

quantities, such as


S2x
�
on one site for example, should be �nite. This may be

obtained from the correlation function for hS+S�i since we still have rotation
symmetry around the z axis, so that



S2x
�
=


S2y
�
, and inversion symmetry, so

that hSxSyi = 0. This means that the following quantity

T
X
iqn

1

N

X
q

��+? (q; iqn) e
�iqn� (66.37)

must be �nite. Since S+ and S� do not commute, we must specify the convergence
factor, as usual, but either one must give a �nite result. But we know from the
previous section Eq.(66.26) that the spin-wave contribution to that susceptibility
is

��+? (q; iqn) =
��=U

iqn �Dq2
: (66.38)

Substituting this in our previous condition and using the usual result

lim
�!0

T
X
n

eiqn�

iqn � x
=

�1
e�x � 1 (66.39)

for performing the sum over bosonic Matsubara frequencies, we obtain in the long
wavelength limit

T
X
iqn

1

N

X
q

��=U
iqn �Dq2

eiqn� =
�

U

1

N

X
q

1

e�Dq2 � 1 (66.40)

� �

U

Z
ddq

(2�)
d

T

Dq2
(66.41)

a quantity that diverges logarithmically in d = 2: That is a manifestation of the
Mermin-Wagner theorem, a much more general result that says that a continuous
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symmetry cannot be broken in two dimension at �nite temperature. In other
words, if we assume that a continuous symmetry is broken at �nite temperature,
we �nd that the thermal �uctuations of the Goldstone modes destroy it.

Remark 344 A classical way to obtain the last result is to see that the free energy
functional should contains a term C (rSx)2 as a restoring force for deviations
from the perfectly aligned state. In Fournier space, this means q2CSxqSx�q; so
that by the equipartition theorem, q2C hSxqSx�qi / T . Since the local value of

S2x
�
is obtained from

R
ddq

(2�)d
hSxqSx�qi we recover the previous result Eq.(66.41)

concerning the divergence of local �uctuations in two dimensions.

66.4 Kanamori-Brückner screening: Why Stoner fer-
romagnetism has problems

Very early on, Kanamori in the context of Solid State Physics and Brückner in
the context of nuclear matter, found in the low density limit that interactions
U are renormalized by quantum �uctuations. Said in a less mysterious manner,
the cross section for two electrons scattering o¤ each other should be calculated
beyond the Born approximation. As we have seen in the problem of one electron
scattering o¤ and impurity in Fig.(?), in the case of only two electrons scattering
o¤ each other, summing the Born series, or the analog of the Lipmann-Schwinger
equation, corresponds to summing the ladder diagrams in Fig. (?). This means
that in the calculation of the diagram in Fig.(?) that contributes to the transverse
spin susceptibility, we should use instead the diagram in Fig.(?). By �ipping the
lines, one also sees that this is identical to computing the �fan diagrams�illustrated
in Fig.(?). In other words, everywhere U appears in the summationn of the ladder
diagrams to compute the transverse susceptibility, we should instead use

Ueff (Q;iQn) =
U

1 + U� (Q;iQn)
(66.42)

where � is given by the diagram in Fig.(?). To recover a simple momentum
independent Ueff ; we average the above expression overQ: In addition, we assume
that the iQn = 0 piece dominates. It was shown by Chen et al. (1991) by
comparing the results of the above approximation with essentially exact quantum
Monte Carlo calculations, that this is a good approximation. It does not seem to
work however for the charge �uctuations.
The consequences of this e¤ect are important. Indeed, there is a maximum

value of Ueff given by the average of 1=� (Q;0) : This gives roughly the bandwidth
since physically this e¤ect comes about from making the two-body wave function
small where U is large. This is more or less like making a strong depression in
the two-body wave function when the two electrons are on top of each other. The
maximum kinetic energy that can cost is the bandwidth W: Hence, the maximum
of Ueff is W: On the other hand, the density of states N ("pF ) is proportional to
1=W: So at best the product UeffN ("pF ) can become equal to unity with di¢ culty
at large U . In more exact calculations, one sees that ferromagnetism does not
generally occur in the one-band Hubbard model, because of this e¤ect, except
perhaps in special cases where there is a Van Hove singularity in the density of
states that is not located at half-�lling (otherwise antiferromagnetism dominates),
a possibility that arises when t0 6= 0: (Hankevych et al. 2004).
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Amore systematic way of taking these e¤ects into account, including the charge
channel and the absence of ferromagnetism unless one is close to the Van Hove
singularity, is the TPSC that we introduced in the previous part.

66.5 Exercices

66.5.1 Antiferromagnétisme itinérant

La fonction de Green dans l�état Hartree-Fock d�un antiferroaimant itinérant est
donnée par la matrice deux par deux suivante

eG0 (k; �) = �DT�	k (�)	yk (0)E (66.43)

où le spineur 	k est dé�ni par

	k =

�
ck"
ck+Q#

�
(66.44)

avec Q =(�; �) : La forme explicite de la fonction de Green est,

eG0 (k; ikn) = ikn�0 + "k�3 +��1

(ikn)
2 � ("2k +�2)

(66.45)

où "k = �2t (cos kx + cos ky) alors que les � i sont les matrices de Pauli et la
matrice identité et où � obéit à l�équation d�autocohérence suivante

� =
U

N

X
k

�

2Ek
(1� 2f (Ek)) (66.46)

E2k � "2k +�2 (66.47)

Exprimez

G (k; �) � �
D
T� ck" (�) c

y
k" (0)

E
�
D
T� ck# (�) c

y
k# (0)

E
(66.48)

en fonction de eG0 (k; �) seulement, (i.e. en négligeant les termes d�interactions
résiduelles) puis obtenez le poids spectral correspondant à G (k; ikn) : Interprétez
votre résultat en utilisant les idées de quasiparticules. Comment expliquez-vous
le fait que les opérateurs ck" (�) semblent être des combinaisons linéaires d�autres
quasiparticules?
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68. ELECTRON-PHONON INTER-
ACTIONS IN METALS (JELLIUM)

BCS theory is based on two important concepts, Cooper pairs and broken U (1)
symmetry. Whatever the superconductor, these two �emergent� properties are
always present. Several mechanisms can lead to the same kind of Cooper pair and
associated broken symmetry. The one put forward at the beginning by Bardeen,
Cooper and Schrie¤er was based on electron-phonon interactions. The fact that
the transition temperature dependend on the isotopic content of the material had
suggested that phonons were important. So we will �rst discuss these interactions.

68.1 Beyond the Born-Oppenheimer approximation,
electron-phonon interaction, Kohn anomaly

We add the kinetic energy of the ions.
They become quantized.
There is an interaction between electrons and phonons. Phonons can create

electron-hole pairs. That modi�es the bare phonon frequencies. This is going
beyond Born Oppenheimer.
The polarization bubble to lowest order contains Kohn anomalies.
Migdal Theorem allows one to neglect vertex corrections.
Integrating out the phonons leads to an e¤ective electron-electron interaction.
M � =M = 1 + �

68.2 Hamiltonian and matrix elements for interac-
tions in the jellium model

Up to now we have considered a �xed lattice. If we let the lattice have its own
dynamics we need to solve the problem of two interspersed jellium models. It
is quite amazing that in the end, if we take into account the heavy mass of the
ions, this simple model gives us phonons with a linear dispersion relation at long
wavelengths along with a retarded electron-phonon interaction that is attractive
at low frequencies. This is the basis for the standard electron-phonon theory
of superconductivity. We will see in the following sections and chapters why
the normal metal is unstable at low temperature in the presence of an e¤ective
attraction between electrons.
We want an expression for an e¤ective potential U (r) that takes into account

the Coulomb interaction and the retardation e¤ects. In the jellium model, we
consider a system of n electrons per cm3 of mass m and charge �e and ions
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of mass M and charge +Ze: Charge neuterality imposes n=Z ions per cm3: We
only take electrostatic interactions into account and suppose that the ions form a
continuous �uid. That model neglects
a) Short range repulsion e¤ects coming from the Pauli exclusion principle.
b) The fact that wave functions must be orthogonal to those of valence elec-

trons.
c) Transverse phonons.
In this simple model, the e¤ective interaction between electrons takes the form,

e2

" (q;!) q2
: (68.1)

Our objective is to compute the dielectric constant. Clearly, there should not be
a frequency in a Hamiltonian. It is preferable to think in terms of perturbation
theory where there are energy denominators, or to use an action formalism. The
calculation of the dielectric constant is as follows

68.2.1 Place holder

68.2.2 Dielectric constant for mobile ions

The Poisson equation is

r �E = 1
"0
� (68.2)

where � is the charge density. Using E = �r�; the equation for the scalar poten-
tial induced by all deviations from electroneutrality is

r2� = � 1
"0
(� h�ii+ � h�ei+ �ext) (68.3)

where � h�ii is the �uctuation in the ion density, � h�ei is the �uctuation in the
electronic density, both induced by the electrostatic potential, and �ext is an �ex-
ternal�charge that depends on both space and time. The dielectric constant that
we are looking for is de�ned by

r2� = �1
"
�ext: (68.4)

Proceeding as in Sec. (40.3) where we explain that the dielectric constant can be
calculated with irreducible susceptibility, I can write

q2� (q; !) =
1

"0

�
��irr;R�i�i

(q; !)� (q; !)� �irr;R�e�e
(q; !)� (q; !) + �ext (q; !)

�
:

(68.5)
There is no cross term �irr;R�i�e

because such a term is necessarily reducible with
respect to the Coulomb interaction. With the de�nition Vq = e2=

�
"0q

2
�
, we are

left with
� (q; !)

�
1 + Vq�

irr;R
nini (q; !) + Vq�

irr;R
nene (q; !)

�
=
�ext
"0q2

: (68.6)

This gives the dielectric function

" (q; !) = "0
�
1 + Vq�

irr;R
nini (q; !) + Vq�

irr;R
nene (q; !)

�
:
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The Lindhard function in the case of the ions �irr;Rnini (q; !) is calculated the
same way as in the case of the electrons, �irr;Rnene (q; !), but the masses are di¤erent
in the two cases. In the case of the ions, we are at frequencies well above the ion
plasma frequency, whereas the opposite is true for the electrons. This means that
for ions we can use the limiting case for the Lindhard function that we found for
the plasmon in Sec.41.2.4,

1 + Vq�
irr;R
nini (q; !) = 1�

!2i
!2

(68.7)

whereas for the electrons we can use the limiting case in Sec.?? appropriate for
Thomas-Fermi screening, namely

1 + Vq�
irr;R
nene (q; !) =

�
1 +

q2TF
q2

�
: (68.8)

We thus have the �nal result

" (q;!) = "0

�
1� !2i

!2
+
q2TF
q2

�
: (68.9)

68.3 The plasmon frequency of the ions is replaced
by an acoustic mode due to screening

The phonon frequencies correspond to the case where there are spontaneous oscil-
lations of the system in the absence of external charges, namely when " (q;!) = 0:
This happens when

!2q2 = !2i q
2 � !2q2TF

!2 = !2i
q2

q2TF + q
2
� !2q: (68.10)

The Thomas Fermi wavelength is very short, of the order of the inverse Fermi
wave vector. This means that at long wavelength,

!q ' csq (68.11)

where the speed of sound is given approximatively by

cs =
!i
qTF

: (68.12)

This is the Bohm-Staver relation, that gives a good approximation for the speed
of sound in metals that are not transition metals when for Z one uses the number
of valence electrons.
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68.4 E¤ective electron-electron interactionmediated
by phonons

The e¤ective interaction between electrons is obtained from the dielectric constant,

e2

" (q; !) q2
=

e2

"0q2
!2q2

!2q2 � !2i q2 + !2q2TF

=
e2

"0

1

q2 + q2TF

!2

!2 � !2q

=
e2

"0

1

q2 + q2TF

 
1 +

!2q
!2 � !2q

!
: (68.13)

The �rst term is the screened Coulomb interaction that we obtained in the absence
of phonons (!q = 0) : The second term comes from the electron-phonon interac-
tion. It can be negative for frequencies smaller than phononic frequencies. It
can even be very negative close to the reconnance. As a �rst approximation, we
take the interaction as attractive for the frequencies smaller than the Debye fre-
quency. It is retardation (! small) that leads to an attractive interaction, despite
the strong direct Coulomb repulsion.

68.5 RPA approximation

***

68.6 E¤ective mass, quasiparticle renormalization,
Kohn anomaly and Migdal�s theorem

***
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69. INSTABILITY OF THE NOR-
MAL PHASE IN THE SCHWINGER
FORMALISM

In the same way that the divergence of the spin susceptibility in the normal state
signaled the emergence of a new ordered state, ferromagnetism and antiferromag-
netism providing examples of such a situation, the divergence of the pair suscepti-
bility in the normal state signals the appearance of superconductivity. But what
is the pair susceptibility? Let us go back to the spin susceptibility: we measure
the spin at a certain point in space and imaginary time and then at a second
space-time point later we measure again, checking whether the zero Matsubara
frequency component at a certain wave-vector diverges. Phase transitions are
thermodynamic quantities and hence we see them coming at zero frequency. For
the pair susceptibility, we replace spin in the above reasoning by measurement of
the operator that corresponds to adding a pair of electrons  y# (r2; 0) 

y
" (r2; 0).

These extra electrons must be destroyed later since the normal state conserves the
number of particle. The corresponding zero-Matsubara frequency susceptibility
(in the so-called s-wave channel)Z �

0

d�

Z
d3 (r1 � r2)

D
T� " (r1; �) # (r1; �) 

y
# (r2; 0) 

y
" (r2; 0)

E
will diverge at the transition. Historically, Cooper considered a single pair of
electrons and found that in the presence of a Fermi surface, a bound state always
exists at low temperature. Here we do the full problem where both electrons or
holes can be injected and are antisymmetrized with all other electrons.
We �rst begin by introducing the Nambu representation. It is sort of an overkill

in the normal state but then the superconducting state will be easy to treat. To
compute the pair susceptibility we will need the functional derivative of the self-
energy as usual, so we need to �rst �nd the equations of motion before we compute
the pair susceptibility.

69.1 Nambu space and generating functional

De�ne the spinor

	 =

�
 "
 y#

�
;	y =

�
 y"  #

�
:

This is a canonical transformation since it is easy to verify thatn
	�;	

y
�

o
= ��;� (69.1)

where we take 	 and 	y at the same space-time point. Greek indices like � take
the values 1; 2 to indicate the two components of the spinor.
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The ground state that is annihilated by 	 has all down-spin electron states
�lled. It is clear that instead of working with  � we can work with 	�: We have
exactly the same number of operators. In this case, the Green function takes the
form

G (1; 2) = �


T�	 (1)	

y (2)
�

=

0@ �DT� " (1) y" (2)E �


T� " (1) # (2)

�
�
D
T� 

y
# (1) 

y
" (2)

E
�
D
T� 

y
# (1) # (2)

E 1A :

In the normal state, the o¤-diagonal terms vanish, but they don�t in the su-
perconducting state. To compute the susceptibility, it is useful to introduce an
o¤-diagonal source �eld in the presence of which the o¤-diagonal Green function
does not vanish even in the normal state:

G�� (1; 2) = �
� lnZ[�]

���� (2; 1)
(69.2)

Z[�] = Tr
h
e��KT�e

�	y(1)�(1;2)	(2)
i
: (69.3)

In the last expression, the argument of the exponential should be thought of as row-
vector, matrix, column-vector product. Clearly, in the presence of o¤ -diagonal
components of �; it is possible for the o¤-diagonal components of G to survive.

69.2 Equations of motion

Given that we preserve the structure that we had before, the equations of motion
will give us

G�1 (1; 2) = G�1
0 (1; 2)� � (1; 2)�� (1; 2) : (69.4)

To �nd out the expression for �; we need to �rst �nd out what happens to all the
terms in the Hamiltonian when it is expressed in terms of the Nambu �eld oper-
ators. For the quadratic terms of the Hamiltonian, the creation and destruction
operators come now in the wrong order for down spins. Namely,  y# (1) # (2) !
	2 (1)	

y
2 (2) :We had no such trouble for the up spins:  

y
" (1) " (2)! 	y1 (1)	1 (2) :

We can get away with this by using anticommutation, 	2 (1)	
y
2 (2)! �	

y
2 (2)	2 (1) :

There is a constant term that can be generated, but since we will not compute the
free energy itself, we can forget about it.1

Take the kinetic energy in momentum space for example. We have,X
k�

"kc
y
k�ck� =

X
k

"k	
y
k1	k1 �

X
k

"k	
y
k2	k2

=
X
k

"k	
y
k�

3	k: (69.5)

In the last line, we just used the third Pauli matrix. For memory, we write the
three of them here

�1 =

�
0 1
1 0

�
; �2 =

�
0 �i
i 0

�
; �3 =

�
1 0
0 �1

�
: (69.6)

1 In practice, when we return to the original operators in the end, the constant terms disappear.
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For the potential energy, we recall that if we anticommute operators to put
them in the form of a density-density interaction, we introduce quadratic terms
that modify the chemical potential. This is not important since, anyway, we
will determine the chemical potential by requiring that we obtain the correct
total number of particles. Each of the two density operators may be written in
Nambu space at the price of introducing a �3 matrix. So, we have the following
modi�cation of the potential energy

1

2

X
�;�0

 y�
�
1
�
 �
�
1
�
V
�
1� 2

�
 y�0

�
2
�
 �0

�
2
�
! 1

2
	y �1� �3	 �1�V �1� 2�	y �2� �3	 �2� :

What can be thought of as an identity matrix sandwiched between the  y and  
spinor in the usual notation now becomes a �3 matrix. The equations of motion
will thus lead to the following equation for the self-energy. First, we introduce
(�G) (1; 3)�� as the element (1; 3) in space time and �� in Nambu space of the
generalized matrix product (�G)

(�G) (1; 3)�� = �V
�
1� 2

� D
T�	

y �2� �3	 �2� ��3	 (1)�
�
	y (3)�

E
:

Note that �3	 (1) is a vector and recall that the right hand-side comes from
computing the commutator of 	� (1) with the interaction and appending 	y (3)�
to the right. It is easier to draw a diagram. It will take the same form as in the
ordinary notation. The only di¤erence is the presence of �3 at each of the two
vertices of the Coulomb interaction. Also, the Green functions are matrix Green
function in Nambu space that are not necessarily diagonal.
The equation for the self-energy will be given by Fig.?? which is very similar

to what was obtained before. The main di¤erences are that the Green�s functions
are now in Nambu space and are not necessarily diagonal. The irreducible vertices
have a Nambu index at each entry or exit point. In addition, each vertex of the
interaction has a Pauli matrix �3 associated with it, linking incoming and outgoing
Green functions. In the normal state, the Nambu Green functions become diago-
nal. But the irreducible vertex can nevertheless be written in terms of ��12=�G12
if we wish instead of ���=�G�0 :

69.3 Pair susceptibility

The diagram in Fig.?? illustrates the susceptibility we want to compute. We have
an incoming up electron and an incoming down electron. The diagram looks as if
we have a spin-up hole on the right but if we take the component 2 of the Nambu
spinor, we really have a down electron. The susceptibility we are after, using our
usual trick of di¤erentiating

�
GG�1 = 1

�
is thus

�G12 (1; 1)

��12 (2; 2)
= �G1�

�
1; 2
� "
�
����

�
2; 3
�

��12 (2; 2)

#
G�2

�
3; 1
�

�G1�
�
1; 2
� "
�
����

�
2; 3
�

�G�
�
4; 5
� �G� �4; 5�
��12 (2; 2)

#
G�2

�
3; 1
�
: (69.7)

Since we will evaluate the derivatives with o¤-diagonal components of � that

vanish, only
�G12(4;5)
��12(2;2)

is non-vanishing. Indeed, the other components will give
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four-point functions that viiolate particle-number conservation. Similarly, G1� is
non-zero only for � = 1 and G�2 for � = 2: We are thus left with

�G12 (1; 1)

��12 (2; 2)
= G11 (1; 2)G22 (2; 1)

+G11
�
1; 2
� " ��12 �2; 3�

�G12
�
4; 5
� �G12 �4; 5�
��12 (2; 2)

#
G22

�
3; 1
�
: (69.8)

To compute the functional derivative of the irreducible vertex, we use the Hartree-
Fock approximation for the self-energy in Fig.??. The Hartree term contains only
diagonal components of the Nambu Green function, so it drops out. For the
Hartree term, since we have indices 1; 2; the two �3 matrices give a net minus
sign that cancels the minus sign in front of the Fock term. Consequently, the
irreducible vertex is

��12
�
2; 3
�

�G12
�
4; 5
� = V

�
2; 3
�
�
�
2� 4

�
�
�
3� 5

�
: (69.9)

We can thus rewrite our integral equation for the pair susceptibility as using this
previous result as well as G22

�
3; 1
�
= �G#

�
1; 3
�

�G12 (1; 1)

��12 (2; 2)
= �G" (1; 2)G# (1; 2)

�G"
�
1; 2
� "
V
�
2; 3
� �G12 �2; 3�
��12 (2; 2)

#
G#
�
1; 3
�
: (69.10)

The result is illustrated in Fig. ??

Remark 345 This integral equation in the particle-particle channel is known as
the Bethe-Salpeter equation. It is a natural generalization, in the many-body con-
text, of the integral equation that also occurs naturally in the theory of two-particle
scattering in a vacuum.

For illustrative purposes, take contact interaction, i.e. V
�
2; 3
�
= V �

�
2� 3

�
like in an attractive Hubbard model. Then, Fig.?? which draws the diagram in
momentum space using the four-momentum conservation law at vertices gives

� �p (q) = ��0p (q) + �0p (q)V �p (q) (69.11)

where we have de�ned the pair susceptibility �p (q) as the Fourier transform of

� �G12(1;1)
��12(2;2)

: The solution is

�p (q) =
�0p (q)

1 + V �0p (q)
:

The pair susceptibility will diverge, signaling an instability, if there is a solution
to 1 + V �0p (q) = 0: So let us evaluate �

0
p (q) : From the diagram, it is clear that

�0p (q) =
T

N

X
k

X
ikn

1

ikn + iqn � �k+q
1

�ikn � ��k

=
T

N

X
k

X
ikn

�
1

ikn + iqn � �k+q
� 1

ikn + ��k

�
1

iqn � �k+q � ��k
(69.12)

=
1

N

X
k

f
�
�k+q

�
� f

�
���k

�
iqn � �k+q � ��k

: (69.13)

570 INSTABILITY OF THE NORMAL PHASE IN THE SCHWINGER FORMALISM



To look for a thermodynamic instability, we need to take iqn = 0. The most
diverging wave vector will be q = 0 also. It will become clear why when you see
the �nal form

�0p (0) =

Z
d3k

(2�)
3

1� 2f (�k)
2�k

; (69.14)

where we have used f (��) = 1�f (�) and assumed inversion symmetry, ��k = �k:
The equation for the diverging pair susceptibility, 1 + V �0p (q) = 0; thus reads

1 = �V
Z

d3k

(2�)
3

1� 2f (�k)
2�k

: (69.15)

If V is negative, there will always be a solution at su¢ ciently low temperature
because Z

d3k

(2�)
3

1� 2f (�k)
2�k

=

Z
d�N (�)

tanh
�
��
2

�
2�

(69.16)

is positive and logarithmically divergent at low temperature. Indeed, take a con-
stant density of state N (�) ; then we integrate 1=� up to a lower energy cuto¤ of
order T given by the tanh and an upper energy cuto¤ of the order of the Fermi
energy. It looks like the antiferromagnet with perfect nesting. This gives the BCS
equation for Tc: We now move to the superconducting state.
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70. BCS THEORY

The phenomenological Ginzburg-Landay theory, based on an order parameter with
U (1) symmetry, just as a wave function, allows one to understand many phenom-
enological aspects of the superconducting state: The Meissner e¤ect, the existence
of two critical �elds, associated to the existence of two critical magnetic �elds, the
relation between critical �eld and condensation energy, persistent currents in a
torus, �ux quantization, jump of speci�c heat. BCS theory will allow us to un-
derstand how the e¤ective attraction leads to phase rigidity and will give us a
theory where there is a gap that appears in several observable quantities, like the
speci�c heat, ultrasonic attenuation, �nite frequency infrared conductivity. It ex-
plains naturally the isotopic e¤ect and allows one to compute the ratio between
the T = 0 gap and Tc: The BCS theory is based on an e¤ective interaction between
electrons V that is attractive in a range of wave vectors located within a shell of en-
ergy equal to the Debye frequency. This is clearly an approximation, but it gives
remarkable agreement with experiment. This comes about because the Cooper
pair size is so large, that the mean-�eld approximation is a good approximation.

70.1 Broken symmetry, analogy with the ferromag-
net

Having more spins up and spin down is like having a bound state of up spins with
down holes. That is the analog of the Cooper pair. Having the same bound state
on all sites is the analog of having phase coherence in BCS. But the analogy is even
closer with itinerant antiferromagnet because, as in the case of superconductivity,
the order parameter does not commute with the Hamiltonian, whereas it does in
the case of the ferromagnet.

70.2 The BCS equation the Green�s function way
(e¤ective medium)

The broken symmetry state has to be guessed. It cannot be reached by perturba-
tion theory since there is a phase transition. However, the divergence of pertur-
bation theory at the phase transition gives us a hint of what symmetry we should
break. Here, it seems that the pair �eld takes a non-zero expectation value, in the
same way that the spin at a given wave vector took a non-zero expectation value
in the magnetic case. In modern treatments, the BCS theory of superconductivity
in the presence of electromagnetic �elds is a theory with topological order instead
of broken symmetry. We give the standard treatment here. We take for our trial
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Hamiltonian in the Nambu notationeK0 =
X
k

	y
k

�
(e"k � �) �3 +�1k�1 +�2k�2�	k: (70.1)

In this expression the o¤-diagonal components � violate total charge conserva-
tion. Our o¤-diagonal �eld � entering the generating function now has a �nite
expectation value.
The Green�s function is

G (k; ikn) =

0@ �
D
T� ck" (�) c

y
k"

E
�hT� ck" (�) c�k#i

�
D
T� c

y
�k# (�) c

y
k"

E
�
D
T� c

y
�k# (�) c�k#

E 1A (70.2)

or rewriting the lower-right matrix element in terms of a more usual Green�s
function using anti-commutation properties under a time-ordered product, the
above takes the form

G (k; ikn) =

0@ �
D
T� ck" (�) c

y
k"

E
�hT� ck" (�) c�k#i

�
D
T� c

y
�k# (�) c

y
k"

E D
T� c�k# (��) cy�k#

E 1A : (70.3)

With the above trial Hamiltonian, the trial inverse Green�s function then iseG�1 (k; ikn) =
�
iknI � (e"k � �) �3 ��1k�1 ��2k�2� (70.4)

where I is the identity matrix in Nambu space and where e"�k = e"k has been
used in the equation of motion of

D
T� c�k# (��) cy�k#

E
: The overall sign of that

last quantity combined with the �ikn instead of ikn coming from the Fourier
transform of c�k# (��) allows ikn in the equation for eG�1 (k; ikn) to appear with

the identity matrix. The absence of minus sign in front of
D
T� c�k# (��) cy�k#

E
leads to the �3 matrix.
To invert this equation, it su¢ ces to use the fact that Pauli matrices anticom-

mute when their index is di¤erent while their square is the identity matrix. In
other words, we can use the result

(aI � b � �) (aI + b � �) =
�
a2 � b � b

�
I:

With this identity, we �nd

eG (k; ikn) = iknI + (e"k � �) �3 +�1k�1 +�2k�2
(ikn)

2 � E2k
(70.5)

where Ek will be the quasiparticle energy

Ek =

q
(e"k � �)2 + (�k)2 (70.6)

with
(�k)

2
=
�
�1k
�2
+
�
�2k
�2
: (70.7)

Now we move to mean-�eld theory the Green function way. The total Hamil-
tonian with quadratic part K0 = H0 � �N; and attractive potential energy V
having the properties described at the beginning of this section, is

K0 + V = K = eK0 +
�
H0 � eH0 + V

�
(70.8)

where eK0 is our trial quadratic part eH0��N . The term in parenthesis represents
the residual interactions. Evaluating the e¤ect of these residual interactions within
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Hartree-Fock, neglecting the Hartree term for now, and requiring that the resulting
self-energy e� of the e¤ective medium vanish, we obtain

e� (k; ikn) = 0 = ("k � �) �3 �
�
(e"k � �) �3 +�1k�1 +�2k�2�

� T
N

X
k0

X
ik0n

Vk�k0�
3 ik

0

nI + (e"k0 � �) �3 +�1k0�1 +�2k0�2
(ik0n)

2 � E2k0
�3:

The Hartree term contributes mostly to e"k and does not concern us here. Note
the �3 matrices from the interaction. Since the Pauli matrices and I form a basis,
the coe¢ cient of each of the matrices must vanish separately. The terms with
the identity matrix and the �3 Pauli matrix give the Hartree-Fock contribution of
the normal state, slightly modi�ed by the presence of the gap. The new equation
involves the o¤-diagonal components. The equation for �1k0 is identical to that of
�2k0 : Let us thus look at one of them, recalling that �

3�1�3 = ��1:

�1k =
T

N

X
k0

X
ik0n

Vk�k0
�1k0

(ik0n)
2 � E2k0

(70.9)

=
T

N

X
k0

X
ik0n

Vk�k0

�
1

ik0n � Ek0
� 1

ik0n + Ek0

�
�1k0

2Ek0
(70.10)

=
1

N

X
k0

Vk�k0
f (Ek0)� f (�Ek0)

2Ek0
�1k0 (70.11)

�1k = �
R

d3k
(2�)3

Vk�k0
1�2f(Ek0 )

2Ek0
�1k0 : (70.12)

This is the BCS gap equation. When we take a momentum independent interac-
tion, it clearly reduces at Tc to Eq.(69.15) that we found before.
Note that since �1k0 and �

2
k0 obey the same equation, we can always choose

an overall phase factor and work with one of them only.

Remark 346 The normal-state part of the calculation in the presence of a frequency-
dependent interaction, i.e. phonon-mediated interactions, gives non-trivial results.
In particular, the e¤ective mass is strongly in�uenced by electron-phonon interac-
tions.

70.3 Phase coherence

One of the most important results from a conceptual point of view that BCS
teaches us is that even when the interaction depends on k� k0, the phase of the
gap must be k independent. Indeed, the gap equation (70.12) can be written in
the form

[Ck�k] = �
1

2V
X
k0

CkVk�k0Ck0 [Ck0�k0 ] : (70.13)

where

Ck =

�
(1� 2f (Ek))

Ek

�1=2
: (70.14)

Everything within the square root is positive since with Ek positive, f (Ek) is
less than 1=2: The BCS gap equation can then be interpreted as an eigenvalue
equation. The eigenvectors are in the square brackets and the eigenvalue is unity.
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Since the matrix �CkU
�
k� k0

�
Ck0= (2V) whose eigenvectors we are looking for

is real symmetric, this eigenvector must be real within an overall k independent
phase factor, unless the eigenvalue is degenerate. This means that all the pairs
have the same phase, independently of their wave vector k: This is what we mean
by phase coherence.

Remark 347 There is one obvious degeneracy, that associated with time-reversal
symmetry. When that symmetry is broken, the order parameter is complex. This
gives a non-trivial result only for values of the orbital angular momentum di¤erent
from zero.

70.4 Eliashberg theory of superconductivity

The idea is in a way similar to DMFT. You can �nd a recent review here ([149]).
Instead of looking for the best trial Hamiltonian, we look for the best trial Green
function, taking for Vk�k0 the e¤ective interaction with the phonons that is fre-
quency dependent. We also assume that the wave vector dependence only comes
from the angle between k and k0; the magnitude of k being taken at the Fermi sur-
face. Then, the frequency dependence survives. For an s�wave superconductor,
the trial Green function is

G (k; ikn) =
iknI + (e"k � �) �3 +�1 (ikn) �1

(ikn)
2 � E2k

(70.15)

and again we ask that in the Hartree-Fock approximation, the self-energy vanishes.
We will thus obtain a frequency dependent gap with a real and an imaginary part.
It is customary to de�ne the odd part of the self-energy in Matsubara frequency
by

ikn (1� Z (k; ikn)) =
1

2
[� (k; ikn)� � (k;�ikn)] (70.16)

and the even part by

� (k; ikn) =
1

2
[� (k; ikn) + � (k;�ikn)] : (70.17)

In the presence of spin rotational invariance, the self-consistency equations give
three integral equations to solve for the above quantities, Z,� and� (the equations
for the two o¤-diagonal components of the Green�s functions are equivalent).
The electron-electron interaction in the energy window !D that we are inter-

ested in is smaller than the bare interaction. That can be seen by integrating
out scattering processes that are outside the low-energy window. The electron
repulsion is taken into account by a term called ��: Since the interaction is me-
diated by phonons, the phonon spectrum leaves some structures in the frequency
dependence of �1 (ikn) : In addition to the isotope e¤ect, this is what convinced
people that the electron-phonon mechanism was the correct explanation. As a
mean-�eld theory, BCS by itself does not give many hints as to the origin of the
superconductivity.
The reason the Eliashberg approach works so well is that Migdal�s theorem tells

us that the vertex corrections coming from terms other than the Fock contribution
are small by a factor

p
m=M that involves the ratio of the electron mass m to the

ionic mass M:
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Remark 348 The DMFT equations can be obtained in a similar spirit. We look
for a one-particle Green function G�1 (k) = ("k � �� � (k)) which is such that
the self-energy computed with it, the self-energy of the e¤ective medium, vanishes.
However, instead of taking only the Fock term for the self-energy, we take the self-
energy to all orders but local, i.e. computed with G (k) integrated over all wave
vectors (so that it is local).

70.5 Hamiltonien BCS réduit

Avec le changement de base

 y� (r) =
X
k

cyk;� hk jri =
X
k

cyk;�
e�ik�rp
V

(70.18)

cyk;� =

Z
 y� (r)

eik�rp
V
d3r (70.19)Z

eiq�rd3r = V�q;0 (70.20)

on a que

� (q) =

Z
e�iq�r� (r) d3r =

X
�

Z
e�iq�r y� (r) � (r) d

3r

=
X
�

Z
e�iq�r

X
k

cyk;�
e�ik�rp
V

X
k0

ck0;�
eik

0�r
p
V

=
X
�

X
k

cyk;�ck+q;� (70.21)

et la partie hamiltonien à deux corps s�écrit

HI =
1

2V
X
�;�0

X
k;k0;q

U (q) cyk;�c
y
k0;�0ck0�q;�0ck+q;� (70.22)

où par dé�nition,

U (q) =

Z
d3rU (r) e�iq�r (70.23)

U (r) =
1

V
X
q

U (q) eiq�r: (70.24)

Dans leur article de 1957, Bardeen-Cooper et Schrie¤er partent d�un hamil-
tonien réduit très simpli�é, ayant en tête que pour des énergies plus petites que
l�énergie de Debye ~!D, le potentiel e¤ectif entre deux électrons peut devenir at-
tractif. Retournons à notre Hamiltonien d�interaction général Éq.(70.22). Partant
de l�idée de Cooper, on veut savoir comment traiter en champ moyen l�e¤et de
l�attraction sur les paires d�électron de centre de masse nulle.
L�idée générale est que cyp"c

y
�p# joue presque le rôle d�un boson b

y
p. Les relations

de commutation de sont pas exactement les mêmes, mais nous voulons utiliser
l�idée générale que la super�uidité pourra être décrite par une valeur moyenne

non nulle de byp dans l�état supraconducteur. Cette valeur moyenne,
D
cyp"c

y
�p#

E
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se retrouve dans l�équation de Ginzburg-Landau dans le rôle de fonction d�onde
de paire. De la même façon que la supra�uidité pouvait être décrite par un or-
dre à longue portée hors-diagonal dans la matrice densité à une particule, ici ce
phénomène apparaîtra dans la matrice densité à deux particules puisque chaque
boson sera formé de deux fermions. L�état champ moyen que nous trouverons sera
décrit par un état cohérent, comme vous le calculerez dans le devoir.

Dans l�esprit de la théorie de Weiss, nous supposerons que
D
cyk;�c

y
k0;�0

E
est

non nul. Comme l�état fondamental conserve la quantité de mouvement et le

spin, il faut que
D
cyk;�c

y
k0;�0

E
=
D
cyk;�c

y
�k;��

E
�k;�k0��;��0 : En tenant compte de

l�invariance sous rotation pour les spins, l�hamiltonien d�essai que nous utiliserons
pour la théorie champ moyen s�écrit à partir de l�expression générale Éq.(70.22)
et de quelques changement de variables comme k! p et k+ q! p0

HE � �N = H0 � �N +
1

V
X
p;p0

U (p� p0)
D
cyp"c

y
�p#

E
c�p0#cp0"

+
1

V
X
p;p0

U (p� p0) cyp"c
y
�p# hc�p0#cp0"i

= H0 � �N +
X
p

�
��pc�p#cp" + c

y
p"c

y
�p#�p

�
(70.25)

où on a dé�ni
�p =

1

V
X
p0

U (p� p0) hc�p0#cp0"i : (70.26)

La forme de U (p� p0) sera discutée plus tard, mais ici nous gardons à l�esprit que
ce potentiel est attractif pour des états qui sont à l�intérieur d�une coque d�énergie
de taille ~!D autour du niveau de Fermi.
Pour la partie cinétique de l�hamiltonien on écrit

H0 � �N =
X
p;�

("p � �) cyp;�cp;� (70.27)

�
X
p;�

�pc
y
p;�cp;�: (70.28)

Dans le modèle du jellium, "p = ~2p2=2me mais on peut prendre une relation
de dispersion plus générale. Sous forme matricielle, la combinaison de tous ces
termes nous donne, à une constante près

HE � �N =
X
p

�
cyp" c�p#

�� �p �p
��p ���p

��
cp"
cy�p#

�
: (70.29)

Comme dans le cas de l�antiferroaimant, on veut trouver une transformation
canonique qui diagonalise la matrice. Lorsque ce sera fait, les c(y)�p# seront des
combinaisons linéaires des opérateurs propres qui diagonalisent l�hamiltonien. Ces
combinaisons linéaires feront intervenir �p: Pour déterminer la valeur de �p; il
su¢ ra donc de substituer pour les cp� de l�équation dé�nissant �p; Éq.(E.2), les
combinaisons linéaires d�opérateurs propres et nous obtiendrons alors une équa-
tion auto-cohérente pour �p:C0est la même procédure que celle que nous avons
employée dans la théorie de Weiss du modèle d�Ising.
Cette fois-ci, dans la diagonalisation ce sont les relations d�anticommutation

qu�on veut préserver. Soit le spineur de Nambu, qu�on dé�nit par

	p =

�
cp"
cy�p#

�
(70.30)
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on a alors que l�anticommutateur est donné parn
	p;i;	

y
p0:j

o
= �p;p0�i;j (70.31)

où i et j identifent les composantes du spineur de Nambu. Dans le cas des bosons
de Holstein-Primakov nous avions une matrice de Pauli à droite. Cette fois-ci
nous avons l�identité, donc n�importe quelle transformation unitaire des spineurs
de Nambu satisfera les relations d�anticommutation. On peut donc procéder par
des moyens standards puisque la matrice à diagonaliser est hermitienne et donc
diagonalisable par une transformation unitaire. Nous allons donner deux façons
de trouver la matrice de transformation unitaire.

70.6 Méthode de diagonalisation utilisant l�algèbre
des spineurs

On peut écrire la matrice hamiltonienne Éq.(70.29) sous la forme

HE � �N = �p�3 +�1�1 ��2�2 (70.32)

où les � i sont les matrices de Pauli dé�nies dans l�espace de Nambu de la même
façon que les matrices de Pauli habituelles:

�1 =

�
0 1
1 0

�
: �2 =

�
0 �i
i 0

�
; �1 =

�
1 0
0 �1

�
: (70.33)

Les quantités �1 et �2 sont, respectivement, les parties réelles et imaginaires du
gap �p. On peut aussi écrire

HE � �N = jnj bn�� (70.34)

où le vecteur n est de norme jnj =
q
�2p + j�pj

2 et dirigé dans la direction du
vecteur unité bn de composantes n1 = �p= jnj, n2 = �1= jnj et n3 = ��2= jnj :
Pour diagonaliser, il su¢ ra de faire des combinaisons linéaires qui correpondent
à se placer dans la base où bn pointe dans la direction 3: À ce moment, la mtrice
sera diagonale et les valeurs porpres seront Les valeurs propres sont � jnj =
�
q
�2p + j�pj

2
= �Ep:

La dépendance en p de n de �1;�2 et des angles � et � que nous introduisons à
l�instant sont sous-entendues. En coordonnées polaires, le vecteur bn est à un angle
� de l�axe 3 dont le cosinus est cos � = �p=

q
�2p + j�pj

2
= �p=Ep: L�angle � dans

le plan est obtenu de tan� = ��2=�1; i.e. � = �1+i�2 = j�j e�i�: Les vecteurs

propres dans le cas où bn est dans la direction de l�axe 3 sont � 1
0

�
et
�
0
1

�
.

Les vecteurs propres correspondant à bn�� sont donc obtenus en tournant � 1
0

�
et
�
0
1

�
d�un angle � autour de l�axe 2 puis � autour de l�axe 3 pour ramener

l�axe de quanti�cation dans la direction de bn: Ceci se fait avec la transformation
unitaire U = e�i�3

�
2 e�i�2

�
2 comme pour un spin 1=2: On a

e�i�3
�
2 =

�
e�i�=2 0
0 ei�=2

�
(70.35)
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et

e�i�2
�
2 = cos

�

2
� i�2 sin

�

2
: (70.36)

Il su¢ t d�utiliser des identités trigonométriques et la valeur de cos � = �p=Ep pour
obtenir

cos
�

2
=

r
cos � + 1

2
=

1p
2

�
1 +

�p
Ep

�1=2
(70.37)

sin
�

2
=

1p
2

�
1�

�p
Ep

�1=2
(70.38)

ce qui donne la matrice des vecteurs propres, i.e. la transformation unitaire requise

U = e�i�3
�
2 e�i�2

�
2 =

�
e�i�=2 0
0 ei�=2

�0B@ 1p
2

�
1 +

�p
Ep

�1=2
� 1p

2

�
1� �p

Ep

�1=2
1p
2

�
1� �p

Ep

�1=2
1p
2

�
1 +

�p
Ep

�1=2
1CA

=

0B@ 1p
2

�
1 +

�p
Ep

�1=2
e�i�p=2 � 1p

2

�
1� �p

Ep

�1=2
e�i�p=2

1p
2

�
1� �p

Ep

�1=2
ei�p=2 1p

2

�
1 +

�p
Ep

�1=2
ei�p=2

1CA : (70.39)

Nous avons réinséré la dépendance en p de la phase et introduit, dans la dernière
ligne, les dé�nitions conventionnelles pour up et vp:

Transformation de Boboliubov

La matrice U permet de diagonaliser l�hamiltonien d�essai�
Ep 0
0 �Ep

�
= Uy

�
�p �p
��p ��p

�
U:

donc

HE � �N =
X
p

�
cyp" c�p#

�
UUy

�
�p �p
��p ��p

�
UUy

�
cp"
cy�p#

�

=
X
p

�
�yp" ��p#

�� Ep 0
0 �Ep

��
�p"
�y�p#

�
(70.40)

=
X
p;�

Ep�
y
p;��p;� + cte: (70.41)

où les nouveaux opérateurs sont reliés aux anciens par la transformation de Bogoliubov-
Valentin (1958)�

�p"
�y�p#

�
= Uy

�
cp"
cy�p#

�
=

�
u�p vp
�v�p up

��
cp"
cy�p#

�
: (70.42)

avec jupj2 + jvpj2 = 1. Le fondamental est l�état qui est détruit par ces nouveaux
opérateurs d�annihilation

�p� jBCSi = 0:

Les nouveaux opérateurs sont des combinaisons linéaires d�opérateurs de création
et d�annihilation puisque l�état propre est une combinaison linéaire d�états ayant
des nombres de particules di¤érents.
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État fondamental BCS

L�état fondamental s�obtient de façon systématique comme suit. Tout d�abord,
on remarque que le vide de l�opérateur de destruction de Nambu Éq.(70.30) est
donné par j
i =

Y
p

cy�p# j0i ; où le produit est sur toutes les valeurs de p dans

la zone de Brillouin. Si on appelle p l�opérateur de destruction de Nambu dans
la base propre, alors cet opérateur de destruction est relié aux opérateurs trouvés
ci-dessus par

p�
�

�p"
�y�p#

�
�
�

1;p
2;p

�
: (70.43)

L�hamiltonien diagonalisé Éq.(70.40) s�écrit alors

HE � �NE =
X
p

�
y1;p y2;p

�� Ep 0
0 �Ep

��
1;p
2;p

�
: (70.44)

Le fondamental s�obtient en remplissant tous les états d�énergie négative, donc

jBCSi =
Y
p0

y2;p0 j
i =
Y
p0

y2;p0
Y
p

cy�p# j0i

=
Y
p0

��p0#
Y
p

cy�p# j0i

=
Y
p0

�
�vp0cyp0" + u

�
p0c�p0#

�Y
p

cy�p# j0i

=
Y
p

�
�vpcyp"c

y
�p# + u

�
p

�
j0i (70.45)

ce qui correspond bien, à un facteur de normalisation près, à la fonction d�onde
de BCS mentionnée plus loin Éq.(70.68).

Équation du gap

Comme dans le cas de la théorie de Weiss pour le modèle d�Ising au chapitre 4,
l�Hamiltonien dépend d�un paramètre d�ordre hc�p0#cp0"i (hSzi dans le cas d�Ising)
dont la valeur peut être calculée une fois l�Hamiltonien diagonalisé. Cela donne
une équation d�auto-cohérence.
Ici donc, la valeur du gap �p s�obtient de l�équation autocohérente Éq.(E.2).

Il su¢ t de réécrire les opérateurs cp" en fonction des opérateurs diagonaux �p�:
Inversons la transformation de Bogoliubov Éq.(E.18)�

cp"
cy�p#

�
=

�
up �vp
v�p u�p

��
�p"
�y�p#

�
(70.46)

dont l�adjoint donne�
cyp" c�p#

�
=
�
�yp" ��p#

�� u�p vp
�v�p up

�
(70.47)

On note aussi que

n (Ep) �
D
�yp"�p"

E
=

1

e�Ep + 1
: (70.48)

La distribution de Fermi Dirac vient du fait que l�hamiltonien est quadratique
lorsqu�exprimé en fonction des opérateurs fermioniques �(y)p : Ces quasiparticules
n�ont pas de potentiel chimique qui leur est associé. Ce dernier demeure associé
au nombre de particules total.
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Preuve Chaque état p est indépendant. En d�autres mots, à une constante près,
l�Hamiltonien BCS peut s�écrire

HBCS =
X
p;�

Ep�
y
p��p� (70.49)

et donc, la fonction de partition factorise. Ceci veut dire que le nombre

moyen
D
�yp"�p"

E
peut s�écrire

D
�yp"�p"

E
=

Tr
h
exp

�
��Ep�yp"�p"

�
�yp"�p"

i
Tr
h
exp

�
��Ep�yp"�p"

�i (70.50)

= � @

@ (�Ep)
lnTr

h
exp

�
��Ep�yp"�p"

�i
(70.51)

avec

Tr
�
exp

�
��Ep�yp��p�

��
= hBCSj exp

�
��Ep�yp"�p"

�
jBCSi (70.52)

+ hBCSj�p" exp
�
��Ep�yp"�p"

�
�yp" jBCSi(70.53)

= 1 + exp (��Ep) : (70.54)

De là, on trouveD
�yp"�p"

E
= � @

@ (�Ep)
ln (1 + exp (��Ep))

=
exp (��Ep)

1 + exp (��Ep)
=

1

e�Ep + 1
:

À l�aide du résultat précédent, nous pouvons maintenant évaluer la valeur
moyenne d�occupation d�une paire

hc�p0#cp0"i =
D�
vp0�

y
p0" + up0��p0#

��
up0�p0" � vp0�y�p0#

�E
(70.55)

= vp0up0
D
�yp0"�p0" � ��p0#�

y
�p0#

E
(70.56)

= �vp0up0 (1� 2f(Ep0)) (70.57)

= �1
2

�p0

Ep0
(1� 2f(Ep0)) : (70.58)

Nous avons utilisé le fait que dans l�état BCS
D
�yp0"�

y
�p0#

E
= 0: Dans la dernière

équation, �p0 est un nombre complexe. La dernière égalité est vraie, peu importe
la convention qu�on prend pour les phases de vp0 et up0 : En e¤et, si on utilise
les phases obtenues avec la méthode standard pour obtenir la transformation de
Boliubov, �vp0up0 (1� 2f(Ep0)) s�écrit

hc�p0#cp0"i = �1
2

 
1�

�2p0

E2p0

!1=2
e�i�1p0�i�2p0 (1� 2f(Ep0))

= �1
2

j�p0 j
Ep0

e�i�1p0�i�2p0 (1� 2f(Ep0)) : (70.59)

alors qu�avec les phases de la méthode des spineurs

hc�p0#cp0"i = �
1

2

j�p0 j
Ep0

e�i�p0 (1� 2f(Ep0)) : (70.60)
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Dans les deux cas, les phases se combinent avec la grandeur du gap pour donner
�p0 :
Les facteurs du type vp0up0 que l�on retrouve ci-dessus s�appellent des fac-

teurs de cohérence. En substituant l�Expression obtenue pour hc�p0#cp0"i dans
l�équation autocohérente Éq.(E.2) on obtient

�p = �
1

2V
X
p0

U (p� p0) �p
0

Ep0
(1� 2f(Ep0)) : (70.61)

Ceci est l�équation du gap de BCS.

Remark 349 Notons que cp" et c�p# créent des états qui sont reliés par la symétrie
d�inversion du temps. En présence d�impuretés, il faut apparier des états propres
du système qui sont aussi reliés par la symétrie d�inversion du temps. La présence
d�impuretés qui ne brisent pas cette symétrie n�in�uence donc essentiellement pas
la valeur de Tc: C�est un théorème dû à P.W. Anderson.

Remark 350 L�équation Éq.(70.60) révèle que le paramètre d�ordre hc�p0#cp0"i
qui apparaît sous la forme  dans l�équation de Ginzburg-Landau est proportionnel
au gap dans la théorie de BCS mais il n�est pas identique au gap. Il aura cependant
la même symétrie.

Remark 351 Fonction d�onde de paire: On peut trouver l�étendue de la fonction
d�onde de paire de la façon suivante.

hcr#cr0"i =
1

V
X
p0

X
p

e�ip�re�ip
0�r0 hcp#cp0"i (70.62)

Utilisant le fait qu�il n�y a que p0 = �p qui a une valeur moyene non nulle, il
reste

hcr#cr0"i =
X
p

e�ip�(r�r
0) hcp#c�p"i : (70.63)

La valeur moyenne dans l�intégrand a été calculée plus haut 70.60. À T = 0 il
reste

hcr#cr0"i = �
1

2

X
p

e�ip�(r�r
0)

 
1�

�2p0

E2p0

!1=2
e�i�1p�i�2p : (70.64)

Nous allons voir plus loin que les phases sont indépendantes de p: De plus, l�intégrand
s�annule pour �2p >> j�pj2 car dans ce cas E2p � �2p: Le vecteur d�onde ne
peut donc varier sur des intervalles plus grand que �p � �p ce qui correspond
à une énergie ~vF �p � �p: Comme en transformée de Fourier, la largeur dans
l�espace �r est reliée à la largeur en vecteur d�onde �p par �x � 1=�p; on a que
�x � ~vF =�p:Ceci est l�ordre de grandeur de la longueur de corrélation à tem-
pérature nulle.

70.6.1 Approche variationnelle

Suivant l�approche générale développée antérieurement, on peut utiliser l�hamiltonien
d�essai BCS Eq.(E.1) pour dé�nir une fonctionelle à minimiser

hH � �NiE � TS (DE) (70.65)
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par rapport à �p: On retrouve alors les résultats précédents. C�est l�approche qui
est utilisée dans l�article original de BCS. L�équation du gap est obtenu à partir
de la doncition de minimisation de l�énergie libre. Pour plus de détails, voir les
notes de Claude Bourbonnais.

70.6.2 Cohérence de phase, fonction d�onde

Un des résultats les plus importants du point de vue conceptuel que nous apprend
BCS est que même lorsque l�interaction dépend de p� p0, la phase du gap doit
nécessairement être indépendante de p. En e¤et, réécrivons l�équation du gap
Éq.(70.61) sous la forme

[Cp�p] = �
1

2V
X
p0

CpU (p� p0)Cp0 [Cp0�p0 ] : (70.66)

où

Cp =

�
(1� 2n (Ep))

Ep

�1=2
: (70.67)

Tout à l�intérieur de la racine carré est positif (Ep est positif, donc n (Ep) est
plus petit que 1=2). Donc, la quantité Cp est réelle. On peut alors la réinterpréter
comme une équation aux valeurs propres. Les vecteurs propres sont entre crochets
et la valeur propre est l�unité: Comme la matrice �CpU (p� p0)Cp0= (2V) dont
on cherche le vecteur propre est réelle symétrique, ce vecteur propre est réel à une
phase globale près, à moins que la valeur propre ne soit dégénérée. Il y a une
dégénérescence évidente associée à la symétrie sous inversion du temps. Lorsqu�on
brise cette symétrie, le paramètre d�ordre est complexe. Cela ne donne un résultat
non trivial que pour les valeurs de moment cinétique orbital di¤érents de zéro (voir
plus loin).
Cela nous permet de revenir sur la notion de cohérence. Nous venons de

montrer que �p est un nombre complexe dont la phase est indépendante de p; en
d�autres mots �1p + �2p = � pour toutes les valeurs de p: Toutes les paires sont
ajoutées à la fonction d�onde avec exactement la même phase. Ceci se voit bien
avec la forme de la fonction d�onde de BCS traitée en devoir:Y

k

�
1 +

vk
u�k
cy�k#c

y
k"

�
j0i : (70.68)

À chaque fois qu�on crée une paire, il y a un facteur de phase e�i�1p�i�2p = e�i�p

associé qui vient du vk=u�k. Seule la phase de � indépendante de p est arbitraire.
On brise la symétrie de jauge globale en la �xant parce que phase et nombre de
particules obéissent à une relation d�incertitude. Fixer la phase correspond donc à
rendre le nombre total de particules incertain. Nous reviendrons à cette discussion
avec la jonction Josephson.
La structure de la fonction d�onde BCS est la même que dans un état co-

hérent. La composante à n paires de Cooper de la fonction d�onde contient un
préfacteur proportionnel à e�in�; analogue au zn que nous avions discuté:Nous

pouvons même aller plus point en réécrivant chaque facteur
�
1 + vk

u�k
cy�k#c

y
k"

�
sous

la forme exponentielle de telle sorte que la fonction d�onde s�écrit aussiY
k

e
vk
u�
k
cy�k#c

y
k" j0i : (70.69)
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Les puissances d�ordre plus élevé de l�argument de l�exponentielle s�annulent car
nous avons a¤aire à des fermions.
Comme nous avons vu au début de cette section, ce sont les interactions qui

imposent cette cohérence de phase qui est à l�origine du phénomène de supracon-
ductivité. On peut aussi comprendre la cohérence de phase intuitivement ainsi.
Considérons un des termes de l�Hamiltonien:

P
p;p0 U (p� p0) c

y
p"c

y
�p# c�p0#cp0":

On voit qu�il y a avantage à ce que les paires aient la même phase, sinon on aurait
un terme ei(�p��p0) qui apparaîtrait et aurait tendance à moyenner les phases à
zéro. Retournant à l�expression pour l�interaction dans l�hamiltonien réduit de

BCS;
P

p

�
��pc�p#cp" + c

y
p"c

y
�p#�p

�
; On voit que de défaire une paire c�p#cp"

est coûteux car celle-ci est couplée à un champ moyen macroscopique �p: C�est
tout à fait analogues à ce que nous avons fait avec le modèle d�Ising traité dans
l�approximation de Weiss où chaque spin est couplé à un champ moyen.

70.6.3 Singlet s� wave superconductivity

Going to the continuum limit, the gap equation takes the form,

�k = �
1

2

Z
d3k0

(2�)
3U
�
k� k0

� �k0
Ek0

(1� 2f(Ek0)) : (70.70)

The wave vectors that are involved in pairing are close to the Fermi surface. I take
a spherical Fermi surface to simplfy the calculations. Going to polar coordinates
and using the single-spin density of states N (�) relating the integral over the
magnitude of p to the integral over �Z

k02dk0

(2�)
3 =

Z �max

�min

N
�
� 0
�
d� 0
Z 1

�1

d cos �0

2

Z 2�

0

d�0

2�
(70.71)

the gap equation becomes

�k = �
Z 1

0

N
�
� 0
�
d� 0
Z 1

�1

d cos �0

2

Z 2�

0

d�0

2�
U
�
k� k0

� �k0
2Ek0

(1� 2f(Ek0)) :

(70.72)
For the simpli�ed BCS Hamiltonian, U

�
k� k0

�
is simply a negative constant, let

us say U0, that vanishes as soon as k or k0 have an energy di¤erence with the
Fermi surface that is larger in absolute value than the Debye energy. In that case,
the gap equation takes the simpli�ed form

�k = jU0j
Z ~!D

�~!D
N
�
� 0
�
d� 0
Z 1

�1

d cos �0

2

Z 2�

0

d�0

2�

�k0

2Ek0
(1� 2f(Ek0)) : (70.73)

The right-hand side of this equation is independent of p; so we write �p = � and
the gap equation becomes

� = jU0j
Z ~!D

�~!D
N
�
� 0
�
d� 0

�

2Ek0
(1� 2f(Ek0)) : (70.74)

I will show you the solution of this equation in the following section. But �rst, I
discuss in more details symmetry questions, and �rst, questions of spin symmetry
of the Cooper pair wave function. The latter is related to the gap by Eq. (70.60)
obtained with the Bogoliubov transformation

hc�k0#ck0"i = �
1

2

�

Ek0
(1� 2f(Ek0)) : (70.75)
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This result is invariant under symmetry operations on the lattice since � and

Ek =

q
�2k + j�j

2 are. But, anticommutation of destruction operators leads to

hc�k0#ck0"i = �hck0"c�k0#i : (70.76)

Using invariance under inversion of k0; I can change k0 into �k0 on the right-hand
side to �nd,

hc�k0#ck0"i = �hc�k0"ck0#i : (70.77)

In other words, the pair wave function is odd under interchange of the spins. It is
a spin singlet. Since there is no dependence on the orientation of k; it is usually
stated that the pair wave function is in an s state: In reality, we should say that
it belongs to the totally symmetric irreducible representation of the symmetry
group of the crystal. But that is another matter since here I am working with a
continuum model.
There will be a spin singlet in all cases where �k will be even under inversion

of k;namely when the angular momentum of the pair will be even. We will end
up with a spin triplet when the angular momentum is odd, following the gen-
eral principle that the wave function must change sign when two particles are
interchanged.
One more word. One can also de�ne the superconducting coherence length by

�nding the spread of the pair wave function.

hcr#cr0"i =
1

V
X
k0

X
k

e�ik�re�ik
0�r0 hck#ck0"i (70.78)

Using the fact that only k0 = �k has a non-zero value, one is left with

hcr#cr0"i =
X
k

e�ik�(r�r
0) hck#c�k"i : (70.79)

The expectation value in the sum was evaluated above in Eq. (70.75). At T = 0;
dropping the phase, we are left with, in the simple BCS s-wave case

hcr#cr0"i = �1
2

X
k

e�ik�(r�r
0)
�
1� �2k0

E2k0

�1=2
(70.80)

= �1
2

X
k

e�ik�(r�r
0)
�

�2

�2k0 +�
2

�1=2
: (70.81)

Only states in a shell of width !D contribute so that I can write �2k0 = v2F �k
2

where �k measured with respect to the Fermi wave vector. So in the end

hcr#cr0"i = �
1

2
e�ikF �(r�r

0)
X
k

e�i�k�(r�r
0)

 
1

v2F
�2 �k2 + 1

!1=2
: (70.82)

On a dimensional basis, or using general theorems about Fourier transforms, we
see that superimposed on the fast oscillation at the Fermi wave vector, there will
be an envelope decaying on a scale called de superconducting coherence length

�0 � vF
� : (70.83)
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70.7 Solution of the BCS equation for Tc, Ginzburg-
Landau equation and T = 0 gap

Since only states near the Fermi level contribute, in simple metals it is custumary
to assume that the density of states is a constant. The BCS superconductivity
for s�wave then becomes, using the de�nition D (EF ) = 2N (EF ) ; and assuming
particule-hole symmetry to integrate for � 0 positive

� = jU0jD (EF )
Z ~!D

0

d� 0
�

2Ek0
(1� 2f(Ek0))

= �
jU0jD (EF )

2

Z ~!D

0

tanh

�
1
2�

q
�2 + j�j2

�
q
�2 + j�j2

d�: (70.84)

I have used 1� 2f(Ek0) = tanh (�Ek0=2) :
It is possible to �nd the extremum condition for Landau Ginzburg theory in

j�j2 using that for small j�j2 it is possible to do a Taylor expansion

tanh
�p
a+ x

�
p
a+ x

=
tanh

p
ap

a

+x

�
� tanh

p
a

2a
3
2

+
1

2a

1

cosh2
p
a

�
+O

�
x2
�
:

Substituting in the gap equation, one �nds an equation that looks like

� = a00�+ b00 j�j2� (70.85)

where the constants a00 and b00 depend on temperature. The value of Tc is that for
which a00 = 1: For T < Tc one has a00 < 1 so that j�j2 is positive.
Finding the space dependent Ginzburg Landau equation is more complicated.

Clearly however, the electromagnetic �eld will couple to the creation-annihilation
operators with minimal coupling to recover the standard Ginzburg Landau equa-
tion.
The analytic value of Tc and the value of the gap �0 at T = 0 can be obtained

leading to one of the famous results of BCS theory, namely

2�0

kBTc
= 3:53: (70.86)

70.7.1 Gat at T = 0

Let us begin with the calculation of the T = 0 gap: In that case, the hyperbolic
tangent can be taken as unity, and the gap equation becomes

�0 = �0
jU0jD (EF )

2

Z ~!D

0

1q
�2 + j�0j2

d�: (70.87)
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The substitution � = j�0j sinh � leads to d� = d� j�0j cosh � andZ ~!D

0

1q
�2 + j�0j2

d� =

Z sinh�1 ~!D=j�0j

0

cosh � d�p
sinh2 � + 1

=

Z sinh�1 ~!D=j�0j

0

d�

= sinh�1 (~!D= j�0j) (70.88)

so that

2

jU0jD (EF )
= sinh�1 (~!D= j�0j) (70.89)

j�0j = ~!D= sinh
�

2

jU0jD (EF )

�
: (70.90)

BCS theory is valid in the weak-coupling limit, namely when jU0jD (EF )� 1:
This inequality can be understood intuitively since D (EF ) is inversely propor-
tional to the Fermi energy, while jU0j is a much smaller energy. In that limit, one
can thus approximate

j�0j = 2~!D exp
�
� 2
jU0jD(EF )

�
: (70.91)

70.7.2 Equation for Tc

To compute the value of Tc it su¢ ces to set j�j = 0 in the gap equation. We are
thus looking for T such that

1 =
jU0jD (EF )

2

Z ~!D

0

tanh (�c�=2)

�
d�: (70.92)

The right-hand side is a00 that appeared above. Integrating by parts in the limit
�c~!D � 1; one �nds

1 =
jU0jD (EF )

2

�
ln

�
�c~!D
2

�
�
Z 1

0

lnx

cosh2 x
dx

�
: (70.93)

The integral converged su¢ ciently slowly that the upper limit of integration �c~!D
2

can be taken equal to in�nity. One is left with

1 =
jU0jD (EF )

2

�
ln

�
�c~!D
2

�
+ ln

�
4

�

��
(70.94)

where ln  = C � 0:577216 is Euler�s constant. From this, it is easy to �nd

kBTc =
2~!D
� exp

�
� 2
jU0jD(EF )

�
(70.95)

= 1:1336 ~!D exp
�
� 2

jU0jD (EF )

�
: (70.96)

Combining with the results for the zero temperature gap j�0j Eq.(70.74) and
for kBTc above, one recovers the famous BCS ratio Eq.(70.86). Experiimental
results for simple metals are
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Al Cd Hg In Nb Pb Sn Ta
3:37� 0:1 3:2� :1 4:6 3:63� :1 3:84� :06 4:29� :04 3:46� :1 3:6� :1

Lead and Mercury are typical examples of strong coupling superconductors
where Eliashberg theory is necessary.

Remark 352 The equation for Tc immediately explains the isotopic e¤ect since
the Debye frequency, like that of a simple harmonic oscillator scales like M�1=2:

70.7.3 s; p; d::: symmetries in the solution of the BCS equation

To see if it is possible to obtain angular momenta for the pair that are di¤erent
from zero, we proceed as follows. Since U depends only on the magnitude of k� k0
and that

��k� k0�� = pk2 + k02 � 2kk00 cos� ' p2kFp1� cos� I can assume that
U
�
k� k0

�
is a function of cos� only, a variable contained in the interval �1 to

1. It can thus be expanded in Legendre polynomials

U (cos�) =
1X
l=0

U`P` (cos�) : (70.97)

I can then use the addition theorem for spherical harmonics that relates P` (cos�)
to spherical harmonics de�ned for angles �; � and �0; �0 that give the orientation
in polar coordinates of vectors k and k0

P` (cos�) =
4�

(2`+ 1)

X̀
m=�`

Y`;m (�; �)Y
�
`;m

�
�0; �0

�
: (70.98)

Close to Tc the gap equation (E.2) can be linearized, so that for a spherical
Fermi surface and the same hypothesis as before, it takes the form,

�k = �2
Z ~!D

0

N
�
� 0
�
d� 0
Z 1

�1

d cos �0

2

Z 2�

0

d�0

2�
(70.99)

1X
l=0

U`
4�

(2`+ 1)

X̀
m=�`

Y m` (�; �)Y m�`

�
�0; �0

� �k0
2� 0

�
1� 2f(� 0)

�
:

Using the orthogonality theorem for spherical harmonicsZ 1

�1
d cos �

Z 2�

0

d�Y m�` (�; �)Y m
0

`0 (�; �) = �`;`0�m;m0 (70.100)

and the fac that �k depends only on angle, I can de�ne

�`;m =

Z 1

�1
d cos �

Z 2�

0

d�Y m�` (�; �)�k: (70.101)

The gap equation can then be rewritten independently for each component of the
spherical harmonics

�`;m = �2
Z ~!D

0

N
�
� 0
�
d� 0U`

1

(2`+ 1)

�`;m

2� 0
�
1� 2f(� 0)

�
; (70.102)

and the value of Tc is obtained from the temperature where the value of the right-
hand side is equal to �`;m: This is analogous to mean-�eld theory for the Ising
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model. The value of ` for which U` is most negative will the that which determines
the largest Tc; then determining the symmetry of the superconducting gap. If `
is odd, we have a triplet. This happens in super�uid ?? 3He and in ?? UPt3
1 . The presence of ferromagnetic �uctuations can explain this result, especially
in the case of the super�uid since in this case, triplet pairs are clearly favored.
The case ` = 2 is the case of high-temperature superconductors. In the above
approximation, all the values of m are degenerate.

Remark 353 In practice, the cristal �eld lifts that degeneracy and m combines
with �m so that there is no net angular momentum along an axis. A solution with
a single spherical harmonic would lead to a complex order parameter that breaks
time reversal symmetry.

Note that even if the potential U (cos�) is repulsive, it is possible to have
pairing. Indeed, it is possible to have U (cos�) positive everywhere when, for
example, U0 > 0 and U2 < 0 if U0 � U2: As an example, consider the case where
the boson that leads to binding is an antiferromagnetic �uctuation. On a square
lattice for example, this interaction would be maximal when k� k0 = (�=a; �=a)
where a is the lattice spacing. This happens when the two vectors are at �=2 one
from the other. One can then write a simple model for the interaction that takes
the form

U
�
cos
�
�� �0

��
= U0 � V cos2

�
�� �0

�
(70.103)

with the inequality U0 > V and where � are azimuthal angles: In that case, we see
that the repulsion is maximal, U = U0; when �� �0 = �=2; 3�=2 et and minimal,
U = U0 � V; when �� �0 = 0; �: with the help of trigonometric identities

cos2 � =
1 + cos 2�

2
(70.104)

cos (�1 � �2) = cos �1 cos �2 + sin �1 sin �2 (70.105)

one can write

cos2
�
�� �0

�
=

1 + cos 2
�
�� �0

�
2

=
1 + cos 2� cos 2�0 + sin 2� sin 2�0

2

U
�
cos
�
�� �0

��
= U0 � V

�
1 + cos 2� cos 2�0 + sin 2� sin 2�0

2

�
: (70.106)

Knowing that

Y �22 (�; �) =

r
15

32�
sin2 �e�2i� (70.107)

one �nds Z
d�

2�

Z
d�0

2�
Y ��22 (�=2; �)U

�
cos
�
�� �0

��
Y �22

�
�=2; �0

�
= �V

2

Z
d�

2�

Z
d�0

2�

15

32�
e�2i�

�
cos 2� cos 2�0 + sin 2� sin 2�0

�
e2i�

0

= �V
2

15

32�

�
1

2

1

2
+
1

2i

1

(�2i)

�
(70.108)

that clearly shows attracition in the ` = 2 channel.

1The presence of nodes in the gap was shown by C. Lupien, W.A. MacFarlane, Cyril Proust,
Louis Taillefer, Z.Q. Mao and Y. Maeno
Ultrasound attenuation in Sr2RuO4: an angle-resolved study of the superconducting gap
Physical Review Letters 86 (2001) 5986.
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A simpler way to understand this last result, is to notice that the gap equation

�k = �
1

2

Z
d3p0

(2�)
3U
�
k� k0

� �k0
Ek0

(1� 2f(Ek0)) (70.109)

can have a solution for U
�
k� k0

�
positive if the maximum of this function is when

k and k0 are separated by an angle �=2 since for a d�wave (i.e. ` = 2) ; �k et �k0
have opposite signs in this situation. That sign will cancel the minum sign in fron
of the integral, as if the potential was attractive.

Remark 354 In the case of triplet superconductivity, there are three spin com-
ponents. Take the case of 3He where there is rotational invariance. The spatial
component of the wave function can be expanded using the ` = 1 spherical har-
monics in this tace. That allows atoms in the pair to avoid the hard-core and to
take maximal advantage of the minimum of the Lennard-Jones potential. For each
of the three spin components, there is a spatial part that must be described by three
basis functions, px; py; pz: There are thus 3 � 3 independent complex components
to the order parameter, so 17 independent quantities. The global phase does not
show up. One can thus play to break the symmetry in many di¤erent ways.

One must also remark that there is nothing that forbids a superconductor
that condensed in the ` = 2 state to make an additional phase transition to a
more cmplex symmetry at lower temperature. It is also possible below Tc to
have an ` = 4 component to the order parameter. There is only one spherical
harmonic that contributes near Tc because the gap equation can be linearized.
Otherwise, the equation is non-linear and it is possible to have solutions that are
linear combinations of spherical harmonics.

Remark 355 In the case of solids, it is possible in general to expand the order
parameter on a basis of irreducible representations of the symmetry group of the
crystal, namely

�k =
X
�

��f
�
k (70.110)

where � is the irreducible representation and f�k is a basis function that trans-
forms like that representation. (Within each irreducible representation, one is free
to expand f�k on an arbitrary basis of functions that transform according to the
irreducible representation). From the linearity of the gap equation near Tc; one
deduces that the order parameter must transform like one of the irreducible rep-
resentations of the symmetry group of the crystal since they are orthogonal, by
analoby with the spherical harmonics. There can be additional phase transitions
at lower temperature, where the gap equation is non-linear. In that case, the order
parameter does not transform anymore like a single irreducible representation of
the symmetry group. This has been seen for example in organic superconductors 2

and in strontium ruthenate Sr2RuO4 ??

70.8 Coherence factors

One very interesting aspect of BCS theory is the appearance of coherence fac-
tors. The quasiparticles are linear combinations of electrons and holes with the

2Maxime Dion, David Fournier, Mario Poirier, Kim D. Truong, et A.-M.S., Tremblay
"Mixed pairing symmetry in �-(BEDT-TTF)2X organic superconductors from ultrasonic ve-

locity measurements"
Phys. Rev. B 80, 220511(R) (2009) (4 pages)
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probabilities obtained from so-called coherence factors. Let us see that. I will
�rst introduce the single-particle spectral weight. I �rst analytically continue the
Matsubara Green�s function Eq. (70.15)

GR (k; !) =
!I + (e"k � �) �3 +�1 (ikn) �1

(! + i�)
2 � E2k

(70.111)

so that the corresponding single-particle spectral weight for the 11 component,
that corresponds to up electrons, is

A11 (k; !) =
! + e�k
2Ek

(� (! � Ek)� � (! + Ek)) (70.112)

=
1

2

 
1 +

e�k
Ek

!
� (! � Ek)�

 
�1 +

e�k
Ek

!
� (! + Ek) :(70.113)

Spin-rotational invariance has not been lost, so the spectral weight for the down
electrons is identical.
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71. EXERCICES FOR PART VII

71.0.1 Principe variationel et ferromagnétisme de Stoner:

Soit l�Hamiltonien de Hubbard

H =
X
k;�

�kc
y
k;�ck;� +

U

2

X
i;�;�0

�
ni;� �

1

2

��
ni;�0 �

1

2

�
(71.1)

La somme sur i s�étend sur tous les sites d�un réseau et la somme sur k sur la
première zone de Brillouin correspondante. Comme d�habitude, � = �1 représente
le spin ("#) et

P
i ni;" =

P
k c

y
k;"ck;".

a) Montrez qu�à une constante près le terme d�interaction peut être réécrit sous
la forme habituelle

U

2

X
i;�;�0

cyi;�c
y
i;�0ci;�0ci;� (71.2)

Soit l�Hamiltonien d�essai

eH0 =
X
k;�

(�k + ��+ �) c
y
k;�ck;� (71.3)

Cet Hamiltonien d�essai brise la symétrie de rotation. Il correspond à un état fon-
damental ferromagnétique. (� agit comme un champ magnétique auto-cohérent).
b) Utilisez le principe variationnel dans l�ensemble grand canonique pour trou-

ver les équations qui déterminent � et �. Écrivez aussi l�équation qui détermine
le potentiel chimique. Il n�est pas nécessaire de résoudre ces équations, mais ex-
primez � en fonction de la densité électronique et de U . Notez que � peut être
absorbée dans la dé�nition du potentiel chimique.
c) Redérivez ces mêmes équations à partir de l�approximation Hartree-Fock

pour les fonctions de Green. Notez en passant que, dans l�état paramagnétique
� = 0, le terme de Hartree est ici égal à �2 fois le terme de Fock.
d) Montrez qu�il est possible d�avoir une solution avec � 6= 0 à basse tempéra-

ture à condition que les inégalités

UN (0) > 1 ;
d2N (E)

dE2

����
E=0

< 0 (71.4)

soient satisfaites. Dans ces équations, N (0) est la densité d�états au niveau de
Fermi pour une espèce de spins. La condition UN (0) > 1 s�appelle le critère de
Stoner.

71.0.2 Antiferromagnétisme itinérant

La fonction de Green dans l�état Hartree-Fock d�un antiferroaimant itinérant est
donnée par la matrice deux par deux suivante

eG0 (k; �) = �DT�	k (�)	yk (0)E (71.5)
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où le spineur 	k est dé�ni par

	k =

�
ck"
ck+Q#

�
(71.6)

avec Q =(�; �) : La forme explicite de la fonction de Green est,

eG0 (k; ikn) = ikn�0 + "k�3 +��1

(ikn)
2 � ("2k +�2)

(71.7)

où "k = �2t (cos kx + cos ky) alors que les � i sont les matrices de Pauli et la
matrice identité et où � obéit à l�équation d�autocohérence suivante

� =
U

N

X
k

�

2Ek
(1� 2f (Ek)) (71.8)

E2k � "2k +�2 (71.9)

Exprimez

G (k; �) � �
D
T� ck" (�) c

y
k" (0)

E
�
D
T� ck# (�) c

y
k# (0)

E
(71.10)

en fonction de eG0 (k; �) seulement, (i.e. en négligeant les termes d�interactions
résiduelles) puis obtenez le poids spectral correspondant à G (k; ikn) : Interprétez
votre résultat en utilisant les idées de quasiparticules. Comment expliquez-vous
le fait que les opérateurs ck" (�) semblent être des combinaisons linéaires d�autres
quasiparticules?

71.0.3 Supraconductivité: conductivité in�nie et e¤et Meissner:

L�objectif de ce problème est de montrer que la théorie BCS prédit que la con-
ductivité électrique DC transverse est in�nie dans l�état supraconducteur et que
l�e¤et Meissner existe dans cette théorie. On obtient ce résultat en calculant la
réponse linéaire du courant à un potentiel vecteur transversal. Vous pouvez vous
placer dans la limite de température nulle, ou très faible, et dans la limite dite de
London. Ce problème est discuté dans beaucoup de volumes.
Suivez le développement du volume de votre choix en donnant toutes les étapes

intermédiaires du calcul. Vous pouvez rester dans le continuum (modèle du jel-
lium).
Partez de la formule de Kubo pour la conductivité après avoir dérivé une

expression pour le courant dans la base de Nambu. Pour cette étape, notez que le
courant en l�absence de potentiel vecteur s�écrit

j =
e

2mi

X
�

Z
dr
�
 y� (r) � r � (r)�r y� (r) �  � (r)

�
: (71.11)

Réexprimerez cet opérateur avec les opérateurs de Nambu et les matrices de Pauli.
Passez ensuite dans l�espace des vecteurs d�onde où l�expression est plus simple. Il
su¢ t ensuite de calculer la fonction de corrélation courant-courant avec la fonction
de Green de Nambu dans l�état supraconducteur. Vous devrez faire la convolution
de deux fonctions de Green, i.e. une seul boucle. C�est l�analogue de la fonction
de Lindhard. Il est plus facile d�obtenir le résultat en utilisant le fait que dans
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l�approximation BCS un théorème de Wick s�applique pour les fonctions de Green
de Nambu. Vous pouvez utiliser pour la fonction de Green de Nambu l�expression

G (k;ikn) =
ikn + "k�

3 +��1

(ikn)
2 � "2k � j�j

2 : (71.12)

Notez que le théorème de Wick s�applique pour les fonctions de Green de Nambu
dans l�approximation BCS puisque l�hamiltonien d�essai est quadratique. L�expression
pour la fonction de corrélation courant-courant fera intervenir des traces sur des
produits de matrice de Pauli. Les propriétés des matrices de Pauli (comme anti-
commutation et trace nulle) simpli�ent beaucoup les calculs.
Ensuite, vous pourrez montrer qu�à température nulle tout se passe e¤ective-

ment comme si seulement le terme diamagnétique contribuait à la réponse linéaire.
En d�autres mots, montrez que la fonction de corrélation courant-courant retardée
s�annule dans la limite q!0. Pourquoi cela ne contredit-il pas la règle de somme
f ? Qu�est-ce que cela implique sur la continuité de la limite q!0 de la fonc-
tion de corrélation courant-courant? Discutez ensuite comment ceci est relié au
fait qu�un supraconducteur est aussi caractérisé par l�existence de corrélations à
longue portée de la quantité de mouvement.

71.0.4 Principe variationnel à T = 0 pour le ferroaimant

À T = 0, la fonction d�onde variationnelle de la Section (65.2) donne

h	jH � �N j	i =
X
k;�

("k � �) hnk;�i+NU hn��i hn�i : (71.13)

Cette fonction d�onde variationnelle suppose une surface de Fermi sphérique.
a) Montrez que le côté droit de l�équation ci-dessus prend la formeZ "F"

0

N (") ("� �) d"+
Z "F#

0

N (") ("� �) d"+ U
Z "F"

0

N (") d"

Z "F#

0

N (") d"

(71.14)
où N (") est la densité d�états pour une espèce de spin et "F� est l�énergie de Fermi
correspondant à la valeur de kF� pour le spin �:
b) Il est possible d�utiliser kF� ou "F� ou hn�i comme paramètre variationnel

puisque ces quantités sont toutes simplement reliées. En dérivant par rapport à
"F�, trouvez les deux équations qui donnent le minimum. Le potentiel chimique
détermine le remplissage, qui est �xe.
c) La di¤érence entre les deux équations ci-dessus, donnent une équation pour

le paramètre d�ordre. En supposant que hn"i � hn#i est petit, montrez qu�on
retrouve la condition pour l�instabilité ferromagnétique, soit 1�UN ("F ) = 0, où
"F est l�énergie de l�état symétrique (paramagnétique).

71.0.5 Équations de champ moyen pour le ferroaimant

Faites en détail les calculs de la section (65.4), incluant ceux dans les remarques.
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71.0.6 Variational principle at T = 0 for the ferromagnet

At T = 0, the variational wave function in Section (65.2) leads to

h	jH � �N j	i =
X
k;�

("k � �) hnk;�i+NU hn��i hn�i : (71.15)

This variational wave function assumes a spherical Fermi surface.
a) Show that the right-hand side of the above result can be written in the formZ "F"

0

N (") ("� �) d"+
Z "F#

0

N (") ("� �) d"+ U
Z "F"

0

N (") d"

Z "F#

0

N (") d"

(71.16)
where N (") is the single-spin density of states and "F� is the Fermi energy corre-
sponding to the value of kF� for spin �:
b) It is clear that one can use either kF� or "F� or hn�i as variational para-

meters since they are all simply related. Di¤erentiating with respect to "F�, �nd
the two equations that give the minimum. The chemical potential determines the
�lling, that is �xed.
c) The di¤erence between the above two equations gives an equation for the

order parameter. Assuming that hn"i � hn#i is small, show that one recovers the
condition for the ferromagnetic instability, namely 1� UN ("F ) = 0, where "F is
the Fermi energy of the symmetric (paramagnetic) state.

71.0.7 Mean-�eld equations for the ferromagnet

Redo in detail the calcuations of section (65.4), including those in the remarks.
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Part VIII

Advanced topics: Coherent
state functional integral,
Luttinger Ward etc

597





Two useful points of view on many-body physics remain to be discussed. First
the coherent-state functional integral approach. It is the many-body analog of
path integrals we have discussed already in the one-body case.22 In this elegant
formulation, some of the general results of many-body theory are easier to derive.
Others are more complicated, but this is a very common case in physics. Feyn-
man in his Lectures on Physics, points out that physicists work like Babylonian
mathematicians. There are several ideas or starting points that are all equivalent.
We should know all of them since, depending on the situation, a given formula-
tion might be more natural. This is to be contrasted with Greek mathematicians
which, after Euclid, started from a given set of axioms to do everything else. In
addition to allowing simple derivations of important results in many-body theory,
coherent-state functional integrals have several virtues, including the following.

� In the same way that in classical statistical physics the partition function is
an integral over all con�gurations of the classical �eld (like magnetization),
in the quantum case it will be an integral over all �eld con�gurations.

� Up to now, we have worked with a Hamiltonian, but we have seen that the
natural object that comes everywhere is the Green function. In the coherent-
state functional integral, the Green function comes out naturally right from
the start as the basic object. It is very useful to have the Green function
as a natural object in the context, for example, of more advanced mean-
�eld theories, like Eliashberg theory for superconductivity and Dynamical
Mean-Field theory.

� From our experience with path integrals, we expect the Lagrangian to occupy
the central role, instead of the Hamiltonian. The Green function is in a way
the Lagrangian equivalent of the quadratic part of the Hamiltonian. The
@=@� that comes in the Green function and not the Hamiltonian comes from
the Legendre transform that takes us between the two objects.

� When we trace-out degrees of freedom, like we did in the quantum-impurity
problem, for example, and in obtaining the e¤ective interaction mediated by
phonons, retardation is introduced. In other words we need time-ordered
products with time di¤erences appearing in the exponentials. This is not
natural for Hamiltonians since the Hamiltonian, by construction, cannot
involve more than one time: it is the generator of in�nitesimal translations
in time. There is no such problem in the coherent-state functional-integral
representation since we have to integrate over quantum �elds that are de�ned
over all space-time.

� The coherent-state functional-integral representation allows us to formulate
approximations that are less natural in the Hamiltonian formalism. For
example, mean-�eld theories can appear as saddle-point approximations, in
a spirit similar to what we saw in the in�nite-range Ising model treated in
Sec.60.1. Corrections can then be obtained as systematic loop expansions,
Gaussian �uctuations giving the �rst corrections.

� The coherent-state functional integral also reveals topological properties and
topological excitations that are hard to �nd otherwise. They are good for
Feynmann diagrams, but they also allow incursions outside of the perturba-
tive realm.

The other quantity we have not introduced yet is the Luttinger-Ward functional
and the corresponding Baym-Kadano¤ functional. The Luttinger Ward functional
can be used in practice to obtain approximations in Many-Body theory that are
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garanteed to satisfy conservation laws. In addition, it can be used to obtain
other functionals to formulate naturally various approximations, such as dynamical
mean-�eld theory.
This part then, starts with Chapters on the Luttinger-Ward functional, Kadano¤-

Baym functional, the self-energy functional formulation of dynamical mean-�eld
theory for clusters and conserving approximations. We then end with coherent
states to introduce afterwards coherent-state path integrals. Coherent states are
�rst presented for bosons, then for fermions. The functional integral is derived only
in the fermion case. The boson case is an easy exercise after that. For fermions,
we will need to introduce Grassman numbers and the corresponding integrals and
derivatives. Some interesting results that follow simply include Wick�s theorem
and the expression for the partition function as a determinant, or as exp (Tr ln) :

600



72. LUTTINGER-WARD FUNC-
TIONAL

There is a very elegant formulation of the Many-Body problem that focuses on a
functional of the interacting Green function instead of on a functional of source
�elds. The two approaches are related by a Legendre transform. This is where
one encounters the so-called Luttinger-Ward functional [139][198], that plays a
prominent role in de�ning approximations that satisfy conservation laws, thermo-
dynamic consistency and in deriving Dynamical Mean-Field Theory. But �rst,
a short digression to argue that the self-energy can be written as a functional
derivative with respect to the Green�s function.

72.1 The self-energy can be expressed as a func-
tional derivative with respect to the Green�s
function

In this section, I follow Baym [23] to show that the functional derivative of the self-
energy obeys a curl condition that proves that the self-energy itself is a functional
derivative with respect to G of an appropriately de�ned Luttinger-Ward functional
that we �nd in the following sections.
We have seen in Eq. (35.27) that the four-point function can be written as

�G
��

= G ��
��
G + G ��

��
G: (72.1)

This suggests that the functional dependence of � on � comes only from the
dependence of G on �: Hence, the above equation may be rewritten as follows

�G
�� = G

��
��G + G

�
��
�G

�G
��

�
G: (72.2)

Multiplying by G�1 on both sides, we are left with the following

G�1 �G
��
G�1 = ��

��
+

�
��

�G
�G
��

�
: (72.3)

To avoid confusion, let us rewrite all the indices. Then, the above can be rewritten
as follows"

G�1
�
10; 1

�
G�1

�
2; 20

�
� �� (10; 20)

�G
�
1; 2
� # �G �1; 2�

�� (3; 4)
= � (10 � 3) � (20 � 4) : (72.4)

This equation means that the quantity in brackets is the inverse of �G (1; 2) =�� (3; 4) :
But since G (1; 2) = �� lnZ[�]=�� (2; 1) ; the matrix �G (1; 2) =�� (3; 4) is symmet-
ric under the interchange 2; 1! 3; 4; in other words,

�G (1; 2)
�� (3; 4)

=
�G (4; 3)
�� (2; 1)

(72.5)
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Note that the symmetry here means interchanging indices of the numerator with
those of the denominator, and then permuting the indices of the numerator and
of the denominator separately. So for example, G�1

�
10; 1

�
G�1

�
2; 20

�
has this

symmetry taking 10 and 20 as indices in the numerator and 1; 2 as indices of the
denominator.
The inverse of as symmetric matrix is also symmetric. This will be true if and

only if
�� (10; 20)

�G (1; 2) =
�� (2; 1)

�G (20; 10) : (72.6)

This is a curl condition that will be satis�ed if and only if the self-energy is itself
a functional derivative with respect to G, in other words if

1

T

�� [G]
�G (20; 10) = � (1

0; 20) : (72.7)

The quantity � [G] will be the Luttinger-Ward functional. We will see that it also
has a diagrammatic expansion that is related to the potential energy.

72.2 The free energy of a non-interacting but time-
dependent problem is �TTr

h
ln
�
�G�1
�G�11

�i
We know how to compute the free-energy for a non-interacting Hamiltonian. In
general, we can also do it even if we know only the imaginary-time-dependent
Green�s function. The solution of this problem will be extremely useful in what
follows. The derivation will be done using a completely di¤erent approach in
Sec.(80.2) using coherent state functional integrals.
The generating function as a functional of the source �eld � is given by

F [�] = �T lnZ [�] = �T lnTr
h
e��KT� exp

�
� y

�
1
�
�
�
1; 2
�
 
�
2
��i

: (72.8)

The derivative with respect to the source �eld is simply related to the Green
function by

1

T

�F [�]

�� (1; 2)
= G (2; 1)� : (72.9)

We know from the equations of motion Eq. (36.14) that when there are no inter-
actions the self-energy vanishes so that

G�1 (1; 2)� = G
�1
0 (1; 2)� � (1; 2) : (72.10)

This means that we can do a change of variables, use the chain rule and obtain

1

T

�F [�]

�G�1 (1; 2) =
1

T

�F [�]

�� (1; 2)

�� (1; 2)

�G�1 (1; 2) = �G (2; 1) (72.11)

The solution is

F [G] = �Tr
�
ln

�
�G�1

�G�11

��
: (72.12)

For the de�nition of G1 and a thorough discussion, see Eq.(80.18). It is necessary
for convergence. It plays the role of a constant of integration if we redo the proof
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below with in integral instead of checking the derivative. The trace contains a
factor of temperature. More speci�cally, when there is time and space translational
invariance,

Tr [� � � ] = T
X
ikn

X
k

[� � � ] (72.13)

while in general,
Tr [�G] = T�

�
1; 2
�
G
�
2; 1
�
: (72.14)

Proof: Proof of the formula for F [G]. We show that the derivative is the correct
one. G�11 is not di¤erentiated since it is a constant. In fact in most discus-
sions encountered in the literature, G1 is simply omitted. Let us evaluate
the trace in the basis where G�1 is diagonal

� Tr
�
ln
�
�G�1

��
= �T

X
d

ln
�
�g�1d

�
: (72.15)

G�1 is related to its diagonal form by a general similarity transformation

g�1d = T�1
d�1
G�1 (�1; �2)T�2d: (72.16)

Then

1

T

�F [�]

�G�1 (1; 2) = � 1
T

�Tr
�
ln
�
�G�1

��
�G�1 (1; 2)�

= �
X
d

1

g�1d

�g�1d
�G�1 (1; 2)�

(72.17)

= �
X
d

1

g�1d
T�1d1 T2d = �

X
d

T2d
1

g�1d
T�1d1 = �G (2; 1)

In the last step, we used that the similarity transformation that diagonalizes
a matrix also diagonalizes its inverse.

Remark 356 Let us verify that in the non-interacting case, this leads to the cor-
rect result. Take only one energy level. Then the Matsubara basis is the diagonal
basis and G�1 = ikn � ": This means that

F [G] = �T
X
n

�
ln

�
ikn � "
ikn � E

��
: (72.18)

At in�nite Matsubara frequency, a Taylor expansion gives

� T
X
n

�
ln

�
1� "=ikn
1� E=ikn

��
� �T

X
n

[�"=ikn + E=ikn] (72.19)

which shows that the series converges if we use a convergence factor. The states
involved should be those below the Fermi surface. Appeal to the complex plane
methods of section (29.9) leads to

� T
X
n

�
ln

�
ikn � "
ikn � E

��
=

1

2�i

Z
C1

dz

e�z + 1
e�z0

�
�
ln

�
z � "
z � E

��
: (72.20)

This can be done most easily by integrating by parts. Note �rst that

@

@z
ln
�
e��z + 1

�
= �� e��z

e��z + 1
= �� 1

e�z + 1
(72.21)

THE FREE ENERGY OF A NON-INTERACTING BUT TIME-DEPENDENT PROBLEM IS
�TTR

h
LN

�
�G�1

�G�11

�i
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which allows us to write

1

2�i

Z
C1

dz

e�z + 1
e�z0

�
�
ln

�
z � "
z � E

��
= � 1

�
ln
�
e��z + 1

�
ln

�
z � "
z � E

�
e�z0

�

2�i

�����
i1

�i1

(72.22)

+
1

2�i

1

�

Z
C1

dze�z0
�
ln
�
e��z + 1

� � 1

z � " �
1

z � E

�
(72.23)

= � 1
�

�
ln
�
e��" + 1

�
� ln

�
e��E + 1

��
: (72.24)

In the �rst line, the second logarithm vanishes at the limits of integration because
its argument becomes equal to unity. I have appealed to Cauchy�s theorem in the
last line. The last term can be neglected since E !1: We thus have the expected
result because the partition function in this simple case is e��" + 1.

72.3 The Luttinger-Ward functional and the Legen-
dre transform of �T lnZ [�]

The �rst two equations of the previous section can be used to de�ne a Legendre
transform of the generating function, where G is the natural variable:


[G] = F [�]� Tr [�G] : (72.25)

The physical free energy is F [� = 0] :

Remark 357 Legendre transforms are usually de�ned between convex functions.
We cannot prove continuity in our case. The best we can hope is that the Legendre
transform is de�ned locally and check that the results make sense. Recent results
show that indeed there may be problems with the assumption that the Legendre
transform is always well de�ned [124]. In the latter reference, it is shown that
perturbation in the dressed G at large interaction can lead to an unphysical branch
of the self-energy when the interaction is large. This does not happen with the
expansion is in terms of G0.

The functional 
[G] is the so-called Kadano¤-Baym functional. As expected
for Legendre transforms

1

T

�
 [G]
�G (1; 2) = �� (2; 1) : (72.26)

Proof:

1

T

�
 [G]
�G (1; 2) =

1

T

�F [�]

�� (�3; �4)

�� (�3; �4)

�G (1; 2) �
�

�G (1; 2) [� (
�3; �4)G (�4; �3)](72.27)

= G (�4; �3) �� (
�3; �4)

�G (1; 2) �
�� (�3; �4)

�G (1; 2)G (
�4; �3)� � (2; 1) : (72.28)

Using the equations of motion Eq. (36.14), we have that the relation between
� and G is given by

G�1 (1; 2)� = G
�1
0 (1; 2)� � (1; 2)� � (1; 2)� (72.29)
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which means that

1

T

�
 [G]
�G (1; 2) = �� (2; 1) = G

�1 (2; 1)� � G
�1
0 (2; 1) + � (2; 1)� (72.30)

and Dyson�s equation in its usual form is satis�ed only for � = 0 where the
extremum principle

1

T

�
 [G]
�G (1; 2) = 0 (72.31)

is satis�ed and where the functional 
[G] is simply equal to the free energy as
follows from the de�nition Eq.(72.25) with � = 0:
We can guess an explicit expression for 
 [G] in the general case (� 6= 0) by

starting from its derivative Eq.(72.30). We obtain the so-called Baym-Kadano¤
functional,


 [G] = � [G]� Tr
��
G�10 � G�1

�
G
�
+ Tr

�
ln

�
�G
�G1

��
(72.32)

which gives the correct result in the non-interacting case (for the de�nition of G1
see Eq.(80.18)) and reduces to Eq.(72.30) when functionally di¤erentiated, as long
as

1

T

�� [G]
�G (1; 2) = � (2; 1) : (72.33)

That this functional exists was discussed in section (72.1) above. We also need to

prove that 1
T

�
�G(1;2)Tr

h
ln
�

�G
�G1

�i
= G�1 (2; 1) : The proof follows the same steps

as those in the previous section. Also, note that

1

T
Tr
�
ln

�
�G
�G1

��
= � 1

T
Tr
�
ln

�
�G�1

�G�11

��
: (72.34)

The latter form is more common.
The functional � [G] is the so-called Luttinger-Ward functional. We can obtain

an explicit form for it by using the basic property of Legendre transforms exem-
pli�ed by our example with pressure in ordinary statistical mechanics, Eq.(A.17).
More speci�cally, multiply the potential energy term in the Hamiltonian by �;
then the physical case corresponds to � = 1 and the general properties of Legen-
dre transforms tell us that

@
� [G]
@�

����
G
=
@F� [�]

@�

����
�

: (72.35)

But the explicit form of the Baym-Kadano¤ functional Eq.(91.10) tells us that

@
� [G]
@�

����
G
=
@�� [G]
@�

����
G

(72.36)

while the derivative of the free energy is

@F� [�]

@�

����
�

=
1

�

D
�V̂
E
�
: (72.37)

The average hi� means that the potential energy is averaged with the Hamiltonian
where the coupling constant is multiplied by � so that V̂ ! �V̂ : Hence, knowing
that ��=0 = 0; I can obtain the Luttinger-Ward functional by a coupling constant
integration

��=1 [G] =
Z 1

0

d�
1

�

D
�V̂
E
�
: (72.38)
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Note that since the equality of the two potentials with respect to �; Eq.(91.12), is
valid for any G and the corresponding �; the coupling constant integration for the
Luttinger-Ward functional may be evaluated for � = 0 and for G that satis�es the
usual Dyson equation or for any G we wish. The average of the potential energy
in the last equation is related to the density-density correlation function. The
resulting integral over coupling constant gives for �� [G] the same result that we
would have obtained from the linked cluster theorem. There is a 1=n factor for a
term of order n:

Remark 358 � [G] is the sum of two-particle irreducible skeleton diagrams hence
1
T

��[G]
�G(1;2) = �(2; 1) is the sum of all one-particle irreducible skeleton diagrams.

This is proven in Section (76.1). A skeleton diagram is a diagram that has no
self-energy insertions.
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73. * FORMALMATTERS: RECIPES
TOSATISFYCONSERVATIONLAWS

Designing approximations that satisfy conservation laws and other exact results,
such as the Pauli principle, is a non-trivial matter. Order by order calculations
satisfy these requirements, but in general we want to sum in�nite subsets of dia-
grams. For example, I discuss in detail in Sec. 56.5 speci�c approximations, such as
the RPA, that fail to satisfy the Pauli principle. How to satisfy conservation laws
in approximate theories is another problem. It was solved by Baym and Kadano¤
[25, 23]. In practice, one starts from the Legendre transform of lnZ[�] that is
based on the conjugate variable of �, namely G. That Legendre transform is the
Kadano¤-Baym functional and approximations are based on functional derivatives
of one of the components of that functional, the Luttinger-Ward functional, that
I discussed in Chapter 72.
Conservation laws also imply some relations between correlation functions with

n �eld operators (n�point functions) and correlation functions with n � 2 �eld
operators. These are also known as Ward-Takahashi identities [250]. These identi-
ties can be used to explicitly check the consistency of various approximations with
conservation laws. When the the self-energy is a functional of G[�], they satisfy
Ward-Takahashi identities as I will show.
In what follows, I concentrate on particle-number conservation. Other conser-

vation laws can be derived using a similar procedure.

73.1 *Ward-Takahashi identity for charge conserva-
tion

Here I present the Ward-Takahashi identity for a 4� point function. This is the
most useful one, but it is easy to generalize this to 6� point etc. Let b� (1) be the
density operator, and bj (1) the corresponding current. Then

@
D
T�

hb� (1) (2) y (3)iE
@�1

+r1 �
D
T�

hbj (1) (2) y (3)iE (73.1)

= � (1� 2)
D
T�

h
[b� (1) ;  (2)] y (3)iE+ � (1� 3)DT� h (2) hb� (1) ;  y (3)iiE(73.2)

where the term on the right-hand side is non-zero just because of the action of the
time derivative on the time-ordered product. Note that in a time-ordered product,
the density operator commutes with the �eld operators. The commutators on the
right-hand side can be evaluated because they are at equal time. The right-had
side becomes

� � (1� 2)
D
T�

h
 (1) y (3)

iE
+ � (1� 3)

D
T�

h
 (2) y (1)

iE
(73.3)
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3

2
1

Figure 73-1 Four point function entering the Ward identity. The legs are usually
�cut-o¤� to focus on the vertex in green.

which yields, using the de�nition of the Green�s functions

@
D
T�

hb� (1) (2) y (3)iE
@�1

+r1 �
D
T�

hbj (1) (2) y (3)iE (73.4)

= � (1� 2)G (1; 3)� � (1� 3)G (2; 1) = (� (1� 2)� � (1� 3))G (2; 3) :(73.5)

The four-point function on the left, without the derivatives, can be represented
graphically as in Fig. (73-1). It is customary to cut-o¤ the Green�s functions to
focus on the vertex part in green. This is done by mutiplying the above equation
from the left by G�1 (4; 2) and from the right by G�1 (3; 5) : This yields

G�1
�
4; 2
�24@

D
T�

hb� (1) �2� y �3�iE
@�1

+r1 �
D
T�

hbj (1) �2� y �3�iE
35G�1 �3; 5�(73.6)

= G�1 (4; 1) � (1� 5)� � (1� 4)G�1 (1; 5) (73.7)

= �� (4; 1) � (1� 5) + � (1� 4)� (1; 5) : (73.8)

Since G�10 (4; 1) is proportional to �(4 � 1) and analogously for G�10 (1; 5) what is
left on the right-hand side is the di¤erence of the self energies. This is another
way that vertices and self-energies are related.

73.2 *The Ward identity from gauge invariance

In this section, I will outline how gauge invariance and linear response theory
imply the Ward-Takahashi identities of the previous section. And it will become
clear that if the self-energy is a functional of G[�], in other words �[G[�]] and if
the linear response is obtained from our fundtional derivative approach, namely
�G[�]=��; that identity is satis�ed.
I follow Baym [23]. I take the parabolic band model to be speci�c, but it works

in general. The perturbation here is a pure gauge transformation, as de�ned in Sec.
11.1. In other words, we have, taking the electron charge and Planck�s constant
equal to unity

 y
�
3
�
�
�
3; 4
�
 
�
4
�
= � y

�
3
+
� @� �3�

@�3
+

�
r�

�
3
��2

2m

!
 
�
3
�

(73.9)

�
r�

�
3
�

2mi

n
 y
�
3
+
�
r 

�
3
�
�
�
r y

�
3
+
��

 
�
3
�o
:(73.10)
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You recognize the coupling to the charge density and to the current. I will not
do the calculation in detail. It goes as follows. Compute the linear response of
say G (1; 2) to the above pure gauge potential. Integrating by part, we obtain
derivatives with respect to 3

+
and 3 of the four-point functionD

T�

h
 (1) y (2) y

�
3
+
�
 
�
3
�iE

(73.11)

times �
�
3
�
: But we know from Sec. (??) how the Green�s function transforms to

linear order under a gauge transformation

G (1; 2)! ei�(1)G (1; 2) e�i�(2) ! G (1; 2)+i� (1)G (1; 2)�G (1; 2) i� (2) : (73.12)

Setting equal the two ways of computing the e¤ect of a gauge transformation on
the Green�s function, we obtain the Ward-Takahashi identity Eq. (73.4).
The important point here, is that G (1; 2)! ei�(1)G (1; 2) e�i�(2) is valid only if

every Green�s function entering the self-energy transforms the same way. Indeed,
in that case, the phase factors cancel at every interaction vertex except the one
that connects to the two labels of the self-energy. Hence, the Ward-Takahashi
identity is satis�ed only if we do linear response theory using functional derivative
and if the self-energy satis�es the above condition.
But charge conservation has consequences also on the labels 1; 2 of the four-

point function in Eq. (73.11). And to satisfy that, we will need to use the
Luttinger-Ward functional, as I now explain.

73.3 *Particle-number conservation is garanteed if
� is obtained from ��[G]=�G

Particle number conservation implies that the time-derivative of the density is
equal to the divergence of a current. By simple analytic continuation, this should
be true also for the derivative of the density in imaginary time. But the time-
derivative of the density can be obtained from the time-derivative of the Green�s
function, as can be seen from the following identities that follow from the de�nition
of the Green�s function:

@
D
 y (1) (1)

E
@�

=
@
D
 y (2) (1)

E
@�1

������
2!1

+
@
D
 y (2) (1)

E
@�2

������
2!1

(73.13)

=
@G (1; 2)
@�1

����
2!1+

+
@G (1; 2)
@�2

����
2!1+

: (73.14)

I have already obtained the result from the �rst term when I considered the equa-
tion of motion for the Green�s function in Eq. (36.12). I take the physical case
� = 0 so that the time derivatives can be obtained as in Eqs. (36.10) and (36.12)
knowing the equations of motion for  y, the analog of that obtained for  in Eq.
(36.7)

@ y (2)

@�2
= �r

2
1

2m
 y (2)� � y (2) +  y (2) y

�
1
�
V
�
1� 2

�
 
�
1
�
: (73.15)
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We can append  (1) to the left and use the de�nition of the Green�s function to
obtain��

@

@�2
+
r22
2m

+ �

��
G (1; 2) = � (1� 2)�V

�
1� 2

� D
T�

h
 (1) y (2) y

�
1+
�
 
�
1
�iE

:

(73.16)
which reminds us of the equation we had already found when we started from the
equation of motion for  (1), namely�
�
�

@

@�1
� r

2
1

2m
� �

��
G (1; 2) = � (1� 2)�V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y (2)

iE
(73.17)

The di¤erence between the next to last and the last equations and r22 �r21 =
(r2 +r1) � (r2 �r1) lead to the usual form of current conservation, namely

@G (1; 2)
@�1

����
2!1+

+
@G (1; 2)
@�2

����
2!1+

= � (r2 +r1) � (r2 �r1)G (1; 2)j2!1+ :

(73.18)

Remark 359 Fundamentally, potential energy has disappeared because the den-
sity commutes with itself.

It is useful to rewrite the above equations to show that the above considerations
lead to a constraint on the self-energy. Using the de�nition of G�10

�
1; 2
�
in Eq.

(36.11)

G�10
�
1; 2
�
� �

�
@

@�1
� r

2
1

2m
� �

�
�
�
1� 2

�
; (73.19)

and

G�10
�
2; 2
�
� �

 
@

@�2
�
r22
2m
� �

!
�
�
2� 2

�
(73.20)

= �
 
� @

@�2
�
r22
2m
� �

!
�
�
2� 2

�
: (73.21)

the two equations of motion can be rewritten as follows

G�10
�
1; 2
�
G
�
2; 2
�
= � (1� 2)�V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y (2)

iE
(73.22)

and

G
�
1; 2
�
G�10

�
2; 2
�
= � (1� 2)�V

�
1� 2

� D
T�

h
 (1) y (2) y

�
1+
�
 
�
1
�iE

:

(73.23)

Remark 360 The rewriting in terms of G�10 and G shows that charge conser-
vation comes from the commutator of the density operator with the kinetic en-
ergy operator, in other words it can be written in the form G

�
1; 2
�
G�10

�
2; 1+

�
�

G�10
�
1; 2
�
G
�
2; 1+

�
= 0; a form that will remain true in e¤ective models such as

the Hubbard model.

Using Dyson�s equation,

G�1
�
1; 2
�
=
�
G�10

�
1; 2
�
� �

�
1� 2

��
: (73.24)
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the �rst of these equations of motion takes the form�
G�10

�
1; 2
�
� �

�
1� 2

��
G
�
2; 2
�
= � (1� 2) (73.25)

as long as the self-energy is de�ned by

�
�
1; 2
�
G
�
2; 2
�
= �V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y (2)

iE
(73.26)

as in Eq. (36.13). Following a similar argument, the second form of the equation
of motion, Eq. (73.17) implies

G
�
1; 2
�
�
�
2; 2
�
= �V

�
1� 2

� D
T�

h
 (1) y (2) y

�
1+
�
 
�
1
�iE

�
(73.27)

where  (1) has been anticommuted twice. Since G�1G =1 implies that GG�1=1
this second expression for the self-energy must give the same result as the previous
one. We still need to prove this. Assuming this is the case, setting 2 ! 1+ we
obtain the conservation law

G
�
1; 2
�
G�10

�
2; 1+

�
� G�10

�
1; 2
�
G
�
2; 1+

�
= 0 (73.28)

if the self-energy satis�es both equations, since we will then have

�
�
1; 2
�
G
�
2; 1+

�
� G

�
1; 2
�
�
�
2; 1+

�
= 0: (73.29)

The last step is to show that last equality. This is done using the Luttinger-
Ward fuctional. First note that the relation between Luttinger-Ward functional
and self-energy Eq. (72.33) gives

��[G]= ��[G]
�G
�
1; 2
��G �1; 2� = T�

�
2; 1
�
�G
�
1; 2
�
: (73.30)

But the relation between the Luttinger Ward functional and the potential energy
shows that it is gauge invariant since potential energy is an observable. Diagram-
matically, for every entering Green�s function at a vertex there is an outgoing one,
so that under the gauge transformation,

G
�
1; 2
�
! ei�(1)G

�
1; 2
�
e�i�(2) (73.31)

�[G] is invariant. Gauge transformations were discussed in Sections (11.1) and
(32.3). The above gauge transformation corresponds to

�G
�
1; 2
�
=
�
i�
�
1
�
� i�

�
2
��
G
�
1; 2
�

(73.32)

which means that

��[G] = T�
�
2; 1
�
G
�
1; 2
� �
i�
�
1
�
� i�

�
2
��
= 0: (73.33)

Doing a change of dummy integration variables, we have

��[G] = �iT (�
�
2; 1
�
G
�
1; 2
�
��

�
1; 2
�
G
�
2; 1
�
)�
�
2
�
= 0: (73.34)

Since this must be true for any �
�
2
�
; this gives the desired equation (73.29).

The conclusion is that if the self-energy is obtained from a functional derivative
of any approximation for �[G] that is a set of closed diagrams, then particle number
conservation laws will be satis�ed. This is true for the other conservation laws, as
shown by Baym [23].
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Remark 361 Approximations obtained from the above prescription are called con-
serving. There is an in�nite number of conserving approximations since there is
an in�nite number of ways of keeping diagrams to approximate the Luttinger-Ward
functional.

Remark 362 The equivalence of these two results shows that vertex corrections
to the self-energy must be included only once, either on the left or on the right
of the diagram. This is more obvious in the diagrammatic language. To see this
algebraically, consider the case where the self-energy is obtained from Eq. (73.26)
by right multiplying by G�1� ; We obtain,

� (1; 3)� = �V
�
1� 2

�24 �G �1; 4��
��
�
2+; 2

� � G �2; 2+�
�
G
�
1; 4
�
�

35G�1 �4; 3�
�

(73.35)

= �V
�
1� 2

�24 �G �1; 4��
��
�
2+; 2

�G�1 �4; 3�
�
� G

�
2; 2+

�
�
� (1� 3)

35(73.36)
= V
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1� 2

�24�G �1; 4�
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�G�1
�
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��
�
2+; 2

� + G
�
2; 2+

�
�
� (1� 3)

35(73.37)
where the �rst term contains both the Fock term and the vertex corrections asso-

ciated with
��(4;3)

�

��(2+;2)
: In the case where � is left-multiplied by G; as in Eq. (73.27)

above, we �nd
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�24G�1 �3; 4�
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35(73.39)
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�24�G�1 �3; 4��
��
�
1+; 1

� G �4; 2�
�
+ G

�
1; 1+

�
�
� (3� 2)

35 :(73.40)
and the vertex correction comes in the other side of the self-energy diagrams.
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74. *OTHER FORMAL CONSE-
QUENCES OF �[G]

Approximations that are obtained by starting from some �[G] to obtain a self-
energy are thermodynamically consistent. In addition, the existence of �[G] allows
us to show that Fermi liquids satisfy the so-called Luttinger�s theorem. I explain
these two results in this chapter.

74.1 *Thermodynamic consistency

Another advantage of approximations that are obtained from conserving approxi-
mations, as de�ned above, is that they satisfy thermodynamic consistency. What
do I mean by that? Consider for example how we obtain particle number. Either
we start from its expression in terms of the Green�s function

N = Tr
h
Ge�ikn0

�
i

(74.1)

with the de�nition of the trace in Eq. (72.13), or we take a derivative of the grand
potential with respect to the chemical potential,

N = T
@ lnZ

@�
= �@F

@�
: (74.2)

Assume that the approximation for Z was obtained from an integration over cou-
pling constant of some approximation for the potential energy. That approxima-
tion and the approximation for the self-energy entering the Green�s function can
lead to two di¤erent answers in general when we use the above two equations.
A systematic way of obtaining consistent approximations is to �rst approximate

the Baym-Kadano¤ functional Eq. (91.10), and then to obtain the number of
particles from a derivative of that functional at equilibrium, where it is equal to
the free energy.
So, let us start from 
 [G] evaluated in equilibrium (i.e. � = 0). It is a function

of � and � through its dependence on the equilibrium G:

N = � @

@�

�
� [G]� Tr

��
G�10 � G�1

�
G
�
+ Tr

�
ln

�
�G
�G1

�
e�ikn0

�
��

(74.3)

N = �Tr
�
�
@G
@�

�
+

@

@�
Tr [�G]� Tr

�
G�1 @G

@�
e�ikn0

�
�
: (74.4)

As we discussed below Eq. (72.19) in the context of the free energy in the non-

interacting case, the convergence factor in Tr
h
ln
�

�G
�G1

�i
is the same as that to

compute the density. In the last term, we use G�1 @G@� = �
@G�1
@� G so that

N = Tr
�
@�

@�
G
�
+ Tr

�
@G�1
@�
Ge�ikn0

�
�
: (74.5)

*OTHER FORMAL CONSEQUENCES OF �[G] 613



Since
@G�1
@�

=
@G�10
@�

� @�
@�

(74.6)

we are left with
N = Tr

h
Ge�ikn0

�
i
; (74.7)

which is what we wanted to prove.

74.2 * Luttinger�s theorem

The theorem is that in a normal Fermi liquid, the volume of the Fermi sea in
reciprocal space at zero temperature is independent of interactions. For spherical
Fermi surfaces, it means that the Fermi wave vector is a constant [138][1].
The proof is as follows. At T = 0, we can replace the sum over Matsubara

frequencies by an integral along the imaginary axis using �(i!n) = 2�iT and
i!n ! ! with ! purely imaginary

T
X
n

! P

Z i1

�i1

d!

2�i
(74.8)

where P is just to remind us that there is a cut along the real axis and that we
cannot integrate across it in general. We also have that

@

@!
lnG (k;!) =

@

@!

�
ln

�
1

! + �� "k � � (k;!)

��
(74.9)

= � 1

! + �� "k � � (k;!)

�
1� @� (k;!)

@!

�
: (74.10)

Hence, we may rewrite the expression for the density in d dimensions as follows

n = 2T
X
n

Z
ddk

(2�)
d
G (k;!) e�ikn0

�
! 2P

Z i1

�i1

d!

2�i

Z
ddk

(2�)
d
G (k;!) e!0

+

(74.11)

= �2P
Z i1

�i1

d!

2�i

Z
ddk

(2�)
d

�
@

@!
lnG (k;!) + G (k;!) @� (k;!)

@!

�
e!0

+

:(74.12)

The last term vanishes because integrating by parts gives

Z i1

�i1

d!

2�

Z
ddk

(2�)
d
G (k;!) @� (k;!)

@!
(74.13)

=

Z
ddk

(2�)
d
G (k;!)� (k;!)ji1�i1 �

Z i1

�i1

d!

2�

Z
ddk

(2�)
d

@G (k;!)
@!

� (k;!) :(74.14)

The �rst term vanishes because the self-energy goes to a constant at in�nite fre-
quency while G (k;!) decreases as 1=!: The last term vanishes because it is the
change in the Luttinger Ward functional when we change the origin of the fre-
quency integral for all the Green�s functions entering the diagrams, and since the
integrals all go from �i1 to i1 this does not change anything.Z i1

�i1

d!

2�

Z
ddk

(2�)
d
� (k;!)

@G (k;!)
@!

=

Z i1

�i1

d!

2�

Z
ddk

(2�)
d

1

T

��[G]
�G (k;!)

@G (k;!)
@!
(74.15)

= 0 (74.16)
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We are thus left with

n = �2P
Z i1

�i1

d!

2�i

Z
ddk

(2�)
d
e!0

+ @

@!
lnG (k;!) : (74.17)

To evaluate the integral, form a closed contour by adding at in�nity a half-circle
with Re! < 0: The convergence factor e!0

+

gives us permission to do that. There
is no contribution from the half-circle, but now we can use Cauchy�s theorem.
There is a discontinuity along the real axis, so we are left with

n = �2
Z 0

�1

d!

2�i

Z
ddk

(2�)
d
e!0

+ @

@!
ln

�
GA (k;!)
GR (k;!)

�
(74.18)

where GA (k;!) is the Green�s function when ! is in�nitesimally below the real
axis and GR (k;!) when ! is in�nitesimally above the real axis. In general

GR=A (k;!) = ReG (k;!)� 1
2
iA (k;!) (74.19)

where A (k;!) is the spectral weight, which is positive. The integral over frequency
can thus be written in the form

n = � 1
��

Z
ddk

(2�)
d
ln

�
ReG (k;!) + 1

2 iA (k;!)

ReG (k;!)� 1
2 iA (k;!)

�����0
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(74.20)

= � 1
��

Z
ddk

(2�)
d
2i tan�1

�
1

2

A (k;!)

ReG (k;!)

�����0
�1

(74.21)

The argument of the arctangent is the phase of the complex valuee of the Green�s
function. We have that A (k;!) falls much faster than ReG (k;!), which vanishes
like ReG (k;!) � 1=! < 0 at ! = �1. This means that

tan�1
�
1

2

A (k;! = �1)
ReG (k;! = �1)

�
= tan�1 (�0) = �: (74.22)

So far, everything is very general. For a Fermi liquid, there is a further sim-
pli�cation. Indeed, the self-energy satis�es �00 (k;! = 0) = 0 for all wave vectors
so the spectral weight also vanishes, namely A (k;! = 0) = +0: So in the domain
of k where ReG (k;! = 0) < 0; the arctangent at ! = 0 will also be � and the
integrand vanishes. But when ReG (k;! = 0) > 0

tan�1
�
1

2

A (k;! = �1)
ReG (k;! = �1)

�
= tan�1 (+0) = 0 (74.23)

and we are left with

n = 2

Z
ReG(k;!=0)>0

ddk

(2�)
d
: (74.24)

Since ReG (k;! = 0) changes sign when this equation is satis�ed "kF��+�(kF ;! = 0) =
0, this gives the value of the wave vectors where the Fermi surface is located. The
expression for n then is exactly the same as that for a non-interacting Fermi gas.
Otherwise, interactions do not modify the volume of the Fermi surface but its
shape can change. The chemical potential � is simply renormalized for parabolic
bands in arbitrary dimensions, but the Fermi wave vector is unmodi�ed.

Remark 363 The sign of ReG (k;! = 0) can change not only because it goes
through in�nity, as above, but also because it goes to zero. So, we also have the
possibility to have a gap at ! = 0; so that the spectral weight vanishes there, and
ReG (k;! = 0) that changes sign because it goes through zero.
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Remark 364 Various elegant derivations and generalizations of Luttinger�s the-
orem are in the litterature. For example, Masaki Oshikawa [182] has given a non-
perturbative proof based on topological arguments. This proof has been generalized
to Z2 fractionalized phases of matter for example [185].
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75. CONSERVING APPROXIMA-
TIONS ARE NOT A PANACEA

Conserving approximations are based from an approximation for the Baym-Kadano¤
functional. Such approximations satisfy conservation laws and are thermodynam-
ically consistent as we saw above. But they also have limitations that I discuss
here following Ref. [256].
In the conserving approximation schemes [23], one takes any physically moti-

vated subset of skeleton diagrams to de�ne a Luttinger-Ward functional �. Skele-
ton diagrams contain fully dressed Green�s functions and no self-energy insertions.
This functional is functionally di¤erentiated to generate a self-energy that is then
calculated self-consistently since it appears implicitly in the Green�s functions used
in the original set of diagrams. A further functional di¤erentiation allows one to
calculate the irreducible vertices necessary to obtain the collective modes in a way
that preserves Ward identities. If one uses for the free energy the formula

lnZ = Tr [ln (�G)] + Tr (�G)� � (75.1)

then one obtains thermodynamic consistency in the sense that thermodynamic
quantities obtained by derivatives of the free energy are identical to quantities
computed directly from the single-particle Green�s function, as we just saw in
Sec. 74.1. For example, particle number can be obtained either from a trace of
the Green�s function or from a chemical potential derivative of the free energy.
In this scheme, Luttinger�s theorem is satis�ed as long as perturbation theory
converges since then any initial guess for the Luttinger-Ward functional will satisfy
Luttinger�s theorem, again as we saw above in Sec. 74.2.
Requiring that an approximation be conserving does not constrains the approx-

imation very much in the sense that there is an in�nite number of Luttinger-Ward
functionals that one can write by summing subserts of diagrams. The Fluctuation
exachange approximation (FLEX) is a broadly used conserving approximation that
refers to a particular physically motivated choice of diagrams for �: This choice
leads to the following self-consistent expression for the self-energy

�BS� (k) = Un�� +
U

4

T

N

X
q

��
3U ~�RPAsp (q)� 2U ~�0(q)

�
+ U ~�RPAch (q)

�
G�(k + q):

(75.2)
This expression for the self-energy does not contain vertex corrections, despite
the fact that, contrary to the electron-phonon case, Migdal�s theorem does not
apply here. This may lead to qualitatively wrong results, such as the absence of
precursors of antiferromagnetic bands and of the pseudogap in A(~kF ; !) in two
dimensions.
Another drawback of this approach is that it does not satisfy the Pauli principle

in any form, either local or through crossing symmetry [189]. Indeed, one would
need to include all exchange diagrams to satisfy it. In practice this is never done.
In the same way that there is nothing to constrain the value of hn"n"i obtained
by the �uctuation-dissipation theorem to be equal to hn"i, there is nothing to ex-
plicitly constrain the value of hn"n#i. Nevertheless, the Mermin-Wagner theorem
is believed to be satis�ed in FLEX because the feedback through the self-energy
tends to prevent the divergence of �uctuations in low dimension 1 ,[64]. Physi-

1N.E. Bickers, private communication
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cally however, this seems to be an arti�cial way of satisfying the Mermin-Wagner
theorem since this theorem should be valid even in localized spin systems where
single-particle properties are negligibly in�uenced by thermal �uctuations. Note
that the proof of the Mermin-Wagner theorem in n ! 1 models implies that
a �nite temperature phase transition in two dimensions is not simply removed
by thermal �uctuations, it is replaced by a crossover to the renormalized classical
regime with exponentially growing susceptibility. The fact that the conserving sus-
ceptibility in FLEX does not show such behavior [64] means that FLEX is actually
inconsistent with the generic phase space arguments responsible for the absence of
�nite-temperature phase transition in two dimensions. The case of one dimension
also suggests that collective modes by themselves should su¢ ce to guarantee the
Mermin-Wagner theorem without feedback on single-particle properties. Indeed,
in one dimension one shows by diagrammatic methods (parquet summation or
renormalization) that the zero-temperature phase transition is prohibited at the
two-particle level even without self-energy e¤ects [41].
Although, the second-order diagram is included correctly in FLEX, it does

not have the correct coe¢ cient in the 1=ikn expansion of the self-energy. More
importantly, the high-frequency behavior sets-in too late to give the Hubbard
bands. We have also seen a case where FLEX, as judged from comparisons with
Monte Carlo simulations (Fig.(1a) of Ref. [248] and Fig. 5 of [169]), does not
reproduce the results of second-order perturbation theory even when it is a good
low-energy approximation.
One of the inconsistencies of conserving approximations that is seldom realized,

is that the self-energy is inconsistent with the collective modes. In other words the
explicit calculation of �G leads to an estimate of U hn"n#i that di¤ers from the
one obtained by applying the �uctuation-dissipation theorem to the conserving
spin and charge susceptibilities, namely those obtained with the irreducible vertex
��=�G.
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76. THE CONSTRAINING FIELD
METHOD

I �rst derive the Baym-Kadano¤ functional more rigorously using the co-called
constraining-�eld method [120], and then I extend this methodology for perturba-
tive calculations.

76.1 Another derivation of the Baym-Kadano¤func-
tional

Instead of �guessing�the correct form of the Baym-Kadano¤functional Eq. (91.10),
as we did above, we can start from the di¤erential equation (91.12) for the coupling-
constant dependence of the Baym-Kadano¤ functional 
� [G] : We �nd that


�=1 [G] = 
�=0 [G] +
Z 1

0

d�
1

�

D
�V̂
E
�

(76.1)

= 
�=0 [G] + ��=1 [G] (76.2)

But we know 
�=0 [G] since G is given and � = 0 means that we are considering
a case when there is no interaction but where G takes the value it should have for
the full problem. So, using the Legendre transform formula Eq.(72.25), we have


�=0 [G] = F�=0 [�0]� Tr [�0G] (76.3)

where the �constraining �eld��0 is the value of the source �eld that is nec-
essary for G to take the correct value for the Green�s function. When � = 0 we
know that

F�=0 [�0] = Tr
�
ln

�
�G
�G1

��
(76.4)

because (see Secs. (72.2) and (80.2)) this is the result for the non-interacting case
when we know G, the actual value of G as enforced by our choice of �0. Substituting
the equation for F�=0 [�0] in our expression for 
�=0 [G] and then in our expression
for 
� [G] in Eq.(76.2), we are left with


�=1 [G] = Tr
�
ln

�
�G
�G1

��
� Tr [�0G] + ��=1 [G] (76.5)

All that we need to know is �0 (1; 2) :But by de�nition of �0 (1; 2) as the source
�eld that allows the non-interacting problem to have the same Green�s function
as the interacting one, we have that

G�1 (1; 2)� = G
�1
0 (1; 2)� �0 (1; 2) : (76.6)

This gives us the expression for �0 (1; 2) (basically the self-energy when � = 0) so
that, �nally, 
�=1 [G] in the next to last equation takes the form


�=1 [G] = Tr
�
ln

�
�G
�G1

��
� Tr

�
(G�10 � G�1)G

�
+��=1 [G] ; (76.7)

which is what we were looking for.
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76.2 The Luttinger-Ward functional can be written
in terms of two-particle irreducible skeleton di-
agrams

I follow Ref. [120], to prove that the lines in the diagrams that give the Luttinger-
Ward functional do not have self-energy insertions, in other words that they are
skeleton diagrams. Start from the expression in the previous section for the Lut-
tinger Ward functional

��=1 [G] =
Z 1

0

d�
1

�

D
�V̂
E
�;�[�;G]

: (76.8)

For each value of �; we need a � that leads to the �nal self-consistent Green�s func-
tion. And the Green�s function that is used to do the expansion is G�1 (1; 2)= G�10 (1; 2)�
�0 (1; 2) : This means that in addition to the usual interaction, there is an addi-
tional interaction that is of the form � y

�
1
� �
�
�
1; 2
�
� �0

�
1; 2
��
 
�
2
�
that goes

in the perturbation series for the potential energy because �0 (1; 2) is just helping
us to work with the self-consistent Green�s function even at � = 0: But, given that

G�1 = G�10 � �0 = G�10 � �� � �� (76.9)

we have that
�� � �0 = ��� (76.10)

so that every self-energy insertion is cancelled by �� � �0: So the diagrams for
the Luttinger-Ward functional do not have self-energy insertions and they are
fully connected since they do not depend on external variables. The self-energy,
which is 1

T
��[G]
�G(1;2) ; can then be written in terms of skeleton diagrams. Since it is

one-particle irreducible, it means that � [G] is two-particle irreducible. If it was
one-particle irreducible, it would be a self-energy.

76.3 A non-perturbative approach based on the con-
straining �eld vs the skeleton expansion

The above results are exact. But we can use this procedure to derive a non-
perturbative approach where, instead of expanding about G0, we expand around
G [120]. Instead of doing the replacement V̂ ! �V̂ , assume this time that � is the
actual value of the coupling constant, for example e2 in the case of electron-electron
interactions. We start from


�=e2 [G] = F�=0 [�0]� Tr [�0G] + ��=e2 [G] : (76.11)

We expand the source �eld � in powers of the coupling constant:

� = �0 + e
2�1 +

�
e2
�2
�2 + : : : (76.12)

Similarly, we assume that the Luttinger Ward functional can be expanded. Re-
calling that ��=0 [G] = 0;we have that

��=e2 [G] = 0 + e2�1 +
�
e2
�2
�2 + : : : (76.13)
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By construction, 
�=e2 [G] is stationnary with respect to �0 since �0 simply gives
the appropriate G:

�F�=0 [�0]

��0
= G: (76.14)

The stationnarity condition on 
�=e2 [G] with respect to G then becomes, for the
physical solution at � = 0;

�
�=e2 [G]
�G = �� = 0 = ��0 � e2�1 �

�
e2
�2
�2 + : : :

�
�=e2 [G]
�G = 0 = ��0 + e2

��1
�G +

�
e2
�2 ��2

�G + : : : (76.15)

and this last equation with the de�nition of �0 may be written as

�0 = e2
��1
�G +

�
e2
�2 ��2

�G + : : : = G�10 � G�1 (76.16)

where the last equality give an implicit equation for G. This is just like saying
that the self-energy is expanded in powers of e2; but with dressed G instead of
G0: The expansion is not with respect to G0, it is instead with respect to the full
Green�s function G. So the self-consistent solution of the above equation di¤ers
from a straightforward perturbation expansion.

Remark 365 This approach can be used to derive ordinary mean-�eld theory for
the Ising model for example, or for the Thouless-Anderson-Palmer solution of the
spin glass.

Remark 366 In the many-body context, this gives the skeleton expansion for the
Green�s function. Unfortunately, the vertex and the Green�s function in this ap-
proach are not expanded with respect to G0 to the same order in coupling constant
and this may lead to problems.

Remark 367 * Formal matters: conservation laws are satis�ed
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77. THE SELF-ENERGY FUNC-
TIONAL APPROACH AND DMFT

It is possible to formulate dynamical mean-�eld theory either by restricting all the
diagrams in 
 [G] to local diagrams, but the self-consistency relations comes out
more naturally in the so-called self-energy functional approach. After introducing
this functional, introduced by Pottho¤, we show its relation to DMFT and its
cluster generalizations.

77.1 The self-energy functional

There are various ways to use the stationarity property Eq.(72.31) that we de-
scribed above. The most common one, is to approximate �[G] by a �nite set of
diagrams. This is how one obtains the Hartree-Fock, the FLEX approximation[30]
or other so-called thermodynamically consistent theories. This is what Pottho¤
calls a type II approximation strategy.[194] A type I approximation simpli�es the
Euler equation itself. In a type III approximation, one uses the exact form of �[G]
but only on a limited domain of trial Green functions.
Following Pottho¤, I consider here type III approximation on a functional of

the self-energy instead of on a functional of the Green function. This will lead to
the dynamical mean-�eld equations. Suppose we can locally invert Eq. (72.33) for
the self-energy to write G as a functional of �: We can use this result to write,


t[�] = P [�]� Tr ln(�G�10t +�): (77.1)

where we de�ned
P [�] = �[G]� Tr(�G): (77.2)

and where it is implicit that G = G[�] is now a functional of �. I have added a sub-
script t to the non-interacting Green function G�10t to suggest which Hamiltonian
we refer to. This will become necessary shortly. The quantity P [�] along with the
expression (72.33) for the derivative of the Luttinger-Ward functional, de�ne the
Legendre transform of the Luttinger-Ward functional. It is easy to verify that, as
expected

�P [�]

��
=
��[G]
�G

�G[�]
��

� ��G[�]
��

� G = �G (77.3)

hence, 
t[�] is stationary with respect to � when Dyson�s equation is satis�ed

�
t[�]

��
= �G + (G�10t � �)�1 = 0: (77.4)

To perform a type III approximation on P [�], we must take advantage of the
fact that it is universal, i.e., that it depends only on the interaction part of the
Hamiltonian and not on the one-body part. This follows from the analogous uni-
versal character of its Legendre transform �[G]. To be convinced of this universal
character, it su¢ ces to think of its two-particle irreducible skeleton diagrams that
is a functional of whatever Green functions we decide to use.
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The strategy then consists in evaluating P [�] exactly for a HamiltonianH 0 that
shares the same interaction part as the Hubbard Hamiltonian, but that is exactly
solvable. This Hamiltonian H 0 is taken as a cluster decomposition of the original
problem, i.e., we tile the in�nite lattice into identical, disconnected clusters that
can be solved exactly. Denoting the corresponding quantities with a prime, we
obtain,


t0 [�
0] = P [�0]� Tr ln(�G�10t0 +�

0): (77.5)

from which we can extract P [�0]. It follows that


t[�
0] = 
t0 [�

0] + Tr ln(�G�10t0 +�
0)� Tr ln(�G�10t +�0): (77.6)

The type III approximation comes from the fact that the self-energy �0 is restricted
to the exact self-energy of the cluster problem H 0, so that variational parameters
appear in the de�nition of the one-body part of H 0.
In practice, we look for values of the cluster one-body parameters t0 such that

�
t[�
0]=�t0 = 0. It is useful for what follows to write the latter equation formally,

although we do not use it in actual calculations. Given that 
t0 [�0] is the actual
grand potential evaluated for the cluster, @
t0 [�0]=@t0 is canceled by the explicit
t0 dependence of Tr ln(�G�10t0 +�0) and we are left with

0 =
�
t[�

0]

��0
��0

�t0

= �Tr
��

1

G�10t0 � �0
� 1

G�10t � �0

�
��0

�t0

�
: (77.7)

Given that the clusters corresponding to t0 are disconnected and that translation
symmetry holds on the superlattice of clusters, each of which contains Nc sites,
the last equation may be written

X
ikn

X
��

�
N

Nc

�
1

G�10t0 � �0(ikn)

�
��

�
X
~k

 
1

G�10t (
~k)� �0(ikn)

!
��

�
��0��(ikn)

�t0
= 0: (77.8)

The above equation can be considered as a scalar product of two vectors when
the labels �; � are combined in a single one. One wau to have the dot product
equal to zero is to have each of the components of one of them vanish. In this
case, the CDMFT equations are obtained in the form�

1

G�10t0 � �0(ikn)

�
��

=
Nc
N

X
~k

 
1

G�10t (
~k)� �0(ikn)

!
��

: (77.9)

In the case where the bath is approximated by a discrete lattice, as in exact
diagonalization, this cannot be satis�ed exactly. Instead one tries to minimize the
norm of the vector by minimizing

X
ikn

X
��

������
�

1

G�10t0 � �0(ikn)

�
��

� Nc
N

X
~k

 
1

G�10t (
~k)� �0(ikn)

!
��

������
2

(77.10)

that you can check is invariant under a similarity transformation.
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77.2 Variational cluster perturbation theory, or vari-
ational cluster approximation

In Variational Cluster Perturbation Theory (VCPT), more aptly named the Vari-
ational Cluster Approach (VCA), solutions to the Euler equations (77.8) are found
by looking for numerical minima (or more generally, saddle-points) of the func-
tional. Typically, the VCA cluster Hamiltonian H 0 will have the same form as
H except that there is no hopping between clusters and that long-range order is
allowed by adding some Weiss �elds. The hopping terms and chemical potential
within H 0 may also be treated like additional variational parameters. In contrast
with Mean-Field theory, these Weiss �elds are not mean �elds, in the sense that
they do not coincide with the corresponding order parameters. The interaction
part of H (or H�) is not factorized in any way and short-range correlations are
treated exactly. In fact, the Hamiltonian H is not altered in any way; the Weiss
�elds are introduced to let the variational principle act on a space of self-energies
that includes the possibility of speci�c long-range orders, without imposing those
orders. Indeed, the more naturally an order arises in the system, the smaller the
Weiss �eld needs to be, and one observes that the strength of the Weiss �eld at the
stationary point of the self-energy functional generally decreases with increasing
cluster size, as it should since in the thermodynamic limit no Weiss �eld should
be necessary to establish order.

77.3 Cellular dynamical mean-�eld theory

The Cellular dynamical mean-�eld theory (CDMFT) is obtained by including in
the cluster Hamiltonian H 0 a bath of uncorrelated electrons that somehow must
mimic the e¤ect on the cluster of the rest of the lattice. Explicitly, H 0 takes the
form

H 0 = �
X
�;�;�

t0��c
y
��c�� + U

X
�

n�"n�#

+
X
�;�;�

V��(c
y
��a�� +H:c:) +

X
�

��a
y
��a�� (77.11)

where a�� annihilates an electron of spin � on a bath orbital labelled �. The bath is
characterized by the energy of each orbital (��) and the bath-cluster hybridization
matrix V��. This representation of the environment through an Anderson impurity
model was introduced in Ref. [46] in the context of DMFT (i.e., a single site). The
e¤ect of the bath on the electron Green function is encapsulated in the so-called
hybridization function

���(!) =
X
�

V��V
�
��

! � ��
(77.12)

that enters the Green function as

[G0�1]�� = ! + �� t0�� � ���(!)� ���(!): (77.13)

Moreover, the CDMFT does not look for a strict solution of the Euler equation
(77.8), but tries instead to set each of the terms between brackets to zero sepa-
rately. Since the Euler equation (77.8) can be seen as a scalar product, CDMFT
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requires that the modulus of one of the vectors vanish to make the scalar product
vanish. From a heuristic point of view, it is as if each component of the Green
function in the cluster were equal to the corresponding component deduced from
the lattice Green function. This clearly reduces to single site DMFT when there
is only one lattice site.
When the bath is discretized, i.e., is made of a �nite number of bath �orbitals�,

the left-hand side of Eq. (77.8) cannot vanish separately for each frequency, since
the number of degrees of freedom in the bath is insu¢ cient. Instead, one adopts
the following self-consistent scheme: (1) one starts with a guess value of the bath
parameters (V��; ��) and solves the cluster Hamiltonian H 0 numerically. (2) One
then calculates the combination

Ĝ�10 (ikn) =

24X
~k

1

Ĝ�10t (
~k)� �̂0(ikn)

35�1 + �̂0(ikn) (77.14)

and (3) minimizes the following canonically invariant distance function:

d =
X
n;�;�

�����ikn + �� t̂0 � �̂(ikn)� Ĝ�10 �
��

����2 (77.15)

over the set of bath parameters (changing the bath parameters at this step does
not require a new solution of the Hamiltonian H 0, but merely a recalculation of the
hybridization function �̂). The bath parameters obtained from this minimization
are then put back into step (1) and the procedure is iterated until convergence.
In practice, the distance function (77.15) can take various forms, for instance

by adding a frequency-dependent weight in order to emphasize low-frequency
properties[?, 37, 225] or by using a sharp frequency cuto¤.[?] These weighting fac-
tors can be considered as rough approximations for the missing factor ��0��(ikn)=�t

0

in the Euler equation (77.8). The frequencies are summed over on a discrete, regu-
lar grid along the imaginary axis, de�ned by some �ctitious inverse temperature �,
typically of the order of 20 or 40 (in units of t�1). Even when the total number of
cluster plus bath sites in CDMFT equals the number of sites in a VCA calculation,
CDMFT is much faster than the VCA since the minimization of a grand potential
functional requires many exact diagonalizations of the cluster Hamiltonian H 0.
The �nal lattice Green function from which one computes observable quantities

may be obtained by periodizing the self-energy, as in Ref. [121] or in the as in
cluter perturbation theory. I prefer the last approach because it corresponds to
the Green function needed to obtain the density from @
=@� = �Tr(G) and also
because periodization of the self-energy gives additional unphysical states in the
Mott gap[213] (see also Ref. [226]).

77.4 The Dynamical cluster approximation

The DCA[93] cannot be formulated within the self-energy functional approach.1

It is based on the idea of discretizing irreducible quantities, such as the self-energy,
in reciprocal space. It is believed to converge faster for q = 0 quantities whereas
CDMFT converges exponentially fast for local quantities.[35, 19, 34]

1Th. Maier, M. Pottho¤ and D. Sénéchal, unpublished.
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78. COHERENT-STATES FORBOSONS

In the many-body context, the amplitudes that are interesting are of the form

Tr
h
�cf (t) c

y
i

i
: (78.1)

In the special case where only the ground state contibutes and that state is the
vacuum state (i.e. no particle present), the above reduces precisely to the de�nition
for the one-body Schrödinger equation since cyi j0i = jxii and h0j e��Hcf (t) =
h0j e��HeiHtcfe�iHt = h0j cfe�iHt = hxf j e�iHt:
To derive a path integral formulation for that type of amplitude, we note that

destruction operators in H always appear �rst on the right. Hence, if we replace
the position eigenstates in the one-particle case by eigenstates of the destruction
operator, we will be able to derive a path integral formulation in the many-body
case by following a route analogous to that followed for the one-body cases.22
States that are eigenstates of the destruction operator are so-called coherent states.
We introduce them for bosons �rst, that are simpler.
Let

�
a; ay

�
= 1; then de�ne the coherent state jzi by

jzi = e�jzj
2=2eza

y
j0i : (78.2)

To show that this is an eigenstate of the destruction operator a; note �rst that
one can easily show by induction thath

a;
�
ay
�ni

= n
�
ay
�n�1

(78.3)

which formally looks like h
a;
�
ay
�ni

=
@
�
ay
�n

@ay
(78.4)

and since the exponential is de�ned in terms of its power series

h
a; eza

y
i
=
@eza

y

@ay
= zeza

y
(78.5)

Using our little theorem on commutators of ladder operators (B.2), we have that
since a j0i = 0 then

a
�
eza

y
j0i
�
= z

�
eza

y
j0i
�

and jzi is an eigenstate of a:
To show that jzi is normalized, consider

hz jzi = e�jzj
2

h0j ez
�aeza

y
j0i = e�jzj

2

ejzj
2

h0j eza
y
j0i

= 1 (78.6)

In the last step, one has simply expanded the exponential in a power series and
used the normalization of the vacuum.
Finally we give the closure relation

I =
1

�

Z
dzdz� jzi hzj (78.7)
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that can be proven by taking matrix elements with states with arbitrary number
of bosons jni =

�
ay
�n j0i =pn! and doing the integral in polar coordinates. More

speci�cally, we prove that

hn jmi = 1

�

Z
dzdz� hn jzi hzj mi = �n;m (78.8)

Proof: First, note that

hn jzi = 1p
n!
h0j (a)n jzi = znp

n!
h0 jzi = znp

n!
e�jzj

2=2: (78.9)

Hence, going to polar coordinates

1

�

Z
dzdz� hn jzi hzj mi =

1

�

Z
dzdz�

znp
n!

z�mp
m!
e�jzj

2

=
1

�

Z
d�

Z 1

0

rdre�r
2 r(n+m)p

n!
p
m!
ei(n�m)�

=

Z 1

0

dr2e�r
2 r2n

n!
�n;m = �n;m:

The derivation of the coherent state path integral for bosons is left as an
exerice that should not be too di¢ cult after we see the procedure for fermions in
the following sections.
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79. COHERENT STATES FOR
FERMIONS

Let us go back momentarily to �rst quantization: the Feynman path integral is
an integral over all coordinates. The coordinates are operators in the Hamiltonian
formalism. In the path integral case, the argument of the exponential is the action
in units of ~:
By analogy, in second quantization, we want a path integral where the argu-

ment of the exponential is the action and the integrals are over �elds. For bosons,
it su¢ ces to work in the coherent state basis. Coherent states for bosons are
the analogs of classical �elds. What are coherent states for fermions? This is
what we set to do �rst. Then the functional integral follows naturally. An excel-
lent reference is J.W. Negele and H. Orland, "Quantum Many-Particle Systems"
(Addison-Wesley, Redwood city, 1988).

79.1 Grassmann variables for fermions

We wish to compute the partition function for time-ordered products with imaginary-
time dependent Hamiltonians. This situation occurs for example when one does
perturbation theory, obtains an e¤ective Hamiltonian, or with source �elds. Fermion
coherent states are de�ned by analogy with the bosonic case. For simplicity, we
work with spinless fermions. It is easy to introduce spins afterwards.
Let c be a fermion destruction operator, then c j0i = 0 while the fermion

coherent state j�i is an eigenstate of the destruction operator, by analogy with
bosons.

c j�i = � j�i : (79.1)

Since c1c2 j�1; �2i = �c2c1 j�1; �2i the eigenvalues � must be numbers that anti-
commute. Namely,

f�1; �2g = 0: (79.2)

Since Grassmann numbers occur only inside time-ordered products, it turns out
that it su¢ ces to de�ne the adjoint in such a way that it also anticommutes, there
is no delta function: �

�; �y
	
= 0: (79.3)

Given the de�nition of Grassmann numbers, one can write an explicit de�nition of
fermion coherent states in the Fock basis if we add the de�nition that Grassmann
numbers and fermion operators also anticommute:

j�i =
�
1� �cy

�
j0i (79.4)

Given that �2 = 0, one can verify the de�ning property c j�i = � j�i Eq.(79.1):

c j�i = c j0i+ �ccy j0i = � j0i = �
�
1� �cy

�
j0i = � j�i : (79.5)

Also, again since �2 = 0; we can use the de�nition

j�i = e��c
y
j0i (79.6)
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that has the same structure as a boson coherent state.
Note that while � and �y must be considered independent, the same way that

z and z� must be considered independent, they are nevertheless adjoint from each
other. Namely, we have that

h�j = h0j
�
1� c�y

�
: (79.7)

79.2 Grassmann integrals

In the case of bosons, the amplitude of a coherent state is arbitrary. For fermions,
we imagine something analog. We must de�ne then Grassmann integrals. To have
meaning as integrals, these must satisfy properties such asZ

d�f (� + �) =

Z
d�f (�) (79.8)

where � is another Grassmann number. The most general function of a Grassmann
variable is f (�) = a + b� since �2 = 0: Hence, the above property is satis�ed ifR
d�b� = 0; which implies R

d� = 0: (79.9)

For derivatives and integrals to be consistent, the formula for integration by
parts is also satis�ed with the above de�nition (as if f vanished at in�nity) because
df
d� can only be an ordinary number (f (�) can only be linear in �).Z

d�
df

d�
= 0: (79.10)

This de�nition is thus consistent with the natural de�nition of a derivative

df
d� =

d(a+b�)
d� = b (79.11)

with a and b ordinary C numbers.
Linearity Z

d� (af (�) + bg (�)) =

Z
d�af (�) +

Z
d�bg (�) (79.12)

will be satis�ed as long as
R
d�� is a number. The choiceR

d�� = 1 (79.13)

is convenient. The last property is consistent with the fact that the product of
two Grassmann numbers is an ordinary number.
In the end, note that the formula for integration looks the same as the formula

for di¤erentiation. The two rules Eqs.79.9 and 79.13 are all we need to remember.
Grassmann calculus is much easier than ordinary calculus. Not many things to
remember!
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79.3 Change of variables in Grassmann integrals

The changes of variables we will need will usually be unitary. Consider for example
the following change of variable

 i =
NX
j=1

Uij�j (79.14)

Then
NY
i=1

Z
d i =

NY
i=1

NX
ji=1

Uiji

Z
d�ji : (79.15)

All the ji indices need to be di¤erent because of the properties of the Grassmann
numbers. In addition, if you rearrange all the d�ji in increasing order of index, j1 =
1; j2 = 2 etc, the signature of the permutation appears. This can be summarized
with the help of the completely antisymmetric (Levi-Civita) tensor "j1j2���jN ;

NY
i=1

NX
ji=1

Uiji

Z
d�ji =

NX
j1=1

NX
j2=1

� � �
NX

jN=1

U1j1U2j2 � � �UNjN
Z
d�j1

Z
d�j2 � � �

Z
d�jN

=

NX
j1=1

NX
j2=1

� � �
NX

jN=1

U1j1U2j2 � � �UNjN "j1j2���jN
Z
d�1

Z
d�2 � � �

Z
d�N

= det [U ]

NY
k=1

Z
d�k (79.16)

Note that the change of variables between imaginary time and Matsubara
frequencies is almost unitary, but not quite since

G (�) = T
X
n

e�ikn�G (ikn) (79.17)

G (ikn) =

Z �

0

d�eikn�G (�) (79.18)

gives a transformation matrix Te�ikn� whose inverse is d�eikn� is not just the
complex conjugate of the transpose. There is a numerical factor that comes in.
This will lead to subtleties in the expression for the partition function below.
Contrast this with the unitary transformation 1p

N
eik�ri that allows one to go from

discrete momentum space to discrete lattice sites.

79.4 Grassmann Gaussian integrals

Let us practice with the integral we will meet all the time, the analog of the
Gaussian integral. With the above rules for integration, and e��

y� = 1� �y� that
follows from �2 = 0; we �ndZ

d�y
Z
d�e��

ya� =

Z
d�y

Z
d�
�
1� �ya�

�
= a = exp (log (a)) (79.19)
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where a is an ordinary number. We used,Z
d�y

Z
d�
�
��ya�

�
=

Z
d�y�y

Z
d��a = a:

Note the order of
R
d�y

R
d�. We have to keep this order for the rest of our calcu-

lations. This is a mere convention, but since Grassmann variables anticommute,
we should stick with one convention.
If we have two Grassman variables,Z

d�y1

Z
d�1e

��y1a1�1
Z
d�y2

Z
d�2e

��y2a2�2 =Z
d�y1

Z
d�1

Z
d�y2

Z
d�2e

��y1a1�1e��
y
2a2�2 = a1a2 (79.20)

= exp [ln a1 + ln a2] (79.21)

The quantity a1a2 is the determinant of the diagonal matrix with a1 and a2 on
the diagonal. Since it can easily be proven by power series expansion (or from
the fact that �y1�1 commutes with �

y
2�2) that exponentials of sums of quadratic

Grassmann expressions behave as classical objects, namely

e��
y
1a1�1e��

y
2a2�2 = e��

y
1a1�1��

y
2a2�2 ; (79.22)

we can write in matrix notation for a general basisY
i

R
d�yi

R
d�ie

��yA� = det (A) = exp [Tr ln (A)].
(79.23)

The last equalities follow by using the fact that the determinant and the trace are
both basis independent. We abbreviate further the notation with the de�nition of
the integration measureR

D�y
R
D�e��yA� �

Y
i

R
d�yi

R
d�ie

��yA�.
(79.24)

There is another gaussian integral to do that is simple and that will allow us
to use source �elds to our bene�t. De�ning the Grassman source �elds J and Jy;
we can use what we know about shifting the origin of integration, Eq.(79.8), and
obtainZ

d�y
Z
d�e��

ya���yJ�Jy� =

Z
d�

Z
d�ye�(�

y+Jya�1)a(�+a�1J)+Jya�1J(79.25)

= a exp
�
Jya�1J

�
: (79.26)

The generalization to integrals over many Grassmann variables givesZ
D�y

Z
D�e��

yA���yJ�Jy� =

Z
D�y

Z
D�e�(�

y+JyA�1)A(�+A�1J)+(JyA�1J)

R
D�y

R
D�e��yA���yJ�Jy� = det (A) exp

�
JyA�1J

�
(79.27)

We will be able to use this result to obtain Green�s functions or multipoint func-
tions from functional derivatives with respect to J .
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79.5 Closure, overcompleteness and trace formula

To �nd the expression for the partition function, we will need the completeness
relation. From the last result of the previous section, you can verify the following
closure formula by applying it successively on j0i and on cy j0i :R

d�y
R
d�e��

y� j�i h�j =
R
d�y

R
d�
�
1� �y�

�
j�i h�j = I: (79.28)

Indeed, recalling that only terms of the form
R
d�y

R
d��y� = �1 survive, we are

left with Z
d�y

Z
d�
�
1� �y�

� �
1� �cy

�
j0i h0j

�
1� c�y

�
=

Z
d�y

Z
d�
��
��y�

�
j0i h0j+ �cy j0i h0j c�y

�
= j0i h0j+ j1i h1j

Take a single state that can be empty or occupied, as above. The trace of an
operator O can be written as follows,

Tr[O] =
R
d�y

R
d�e��

y� h��jO j�i. (79.29)

The minus sign re�ects the antiperiodicity that we encounter with fermions. To
prove the above formula, it su¢ ces to use the de�nition of the fermionic coherent
state Eq.(92.4). Indeed,Z

d�y
Z
d�e��

y� h��jO j�i =

Z
d�y

Z
d�e��

y� h0j
�
1 + c�y

�
O
�
1� �cy

�
j0i

=

Z
d�y

Z
d�
�
1� �y�

�
h0j
�
1 + c�y

�
O
�
1� �cy

�
j0i

=

Z
d�y

Z
d�
�
1� �y�

� �
h0jO j0i � h0j c�yO�cy j0i

�
=

Z
d�y

Z
d�
�
1� �y�

� �
h0jO j0i � �y� h0j cOcy j0i

�
= h0jO j0i+ h1jO j1i : (79.30)

In the next to last equation, we assumed that O contains an even number of
fermion operators so that

�O = O�: (79.31)

The set is overcomplete since using the de�nition in terms of Fock states Eq.(92.4),
one �nds

h�1 j�2i = h�j
�
1� c�y1

� �
1� �2cy

�
j0i = 1 + �y1�2 = e�

y
1�2 .

(79.32)
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80. THECOHERENTSTATEFUNC-
TIONAL INTEGRAL FOR FERMI-
ONS

The coherent state functional integral is obtained by using the Trotter decom-
position Eq.(80.3) and inserting complete sets of variables everywhere. We �rst
perform this task with non-interacting spinless fermions, keeping the discreteness
explicit. When you move to the continuum limit, everything becomes elegant look-
ing, but there are some hidden subtelties to take care of. We apply the formalism
to quantum impurities and establish Wick�s theorem.

80.1 A simple example for a single fermion without
interactions

For spinless fermions whose Hamiltonian is given by H =
P
i "ic

y
i ci, the partition

function is

Z = Tr (exp (��H)) =
Y
i

�
1 + e��"i

�
= det

�
1 + e��"

�
(80.1)

where " is the diagonal matrix. The expression remains valid in an arbitrary
basis. What is the generalization of this result when H depends on � and we want
a time-ordered product

Z = Tr

 
T� exp

 
�
Z �

0

d�H (�)

!!
? (80.2)

We can work this out in the usual operator formalism. With Grassmann variables,
we need to su¤er �rst, but then the calculations are easy and formally very close
to those for bosons.
Let us start with a single fermion state, so that

H = "cyc:

Then, we express the trace in the coherent fermion basis. In that basis, we do
not know how to compute e��H j�i since the expansion of the exponential gives
an in�nite number of terms. We can however use the Trotter decomposition to do
a Taylor expansion that will be easy to evaluate in the coherent state basis. The
Trotter decomposition is given by

e��H = lim
N�!1

N�Y
i=1

e��� iH = lim
N�!1

N�Y
i=1

(1��� iH) : (80.3)

with �� = �=N� : The index i on �� is just to allow us to keep track of the
di¤erent terms. Even if H was time dependent, we could use this approximation
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in the limit �� ! 0 because [��H (�1) ;��H (�2)] = O (��)2 and we will neglect
terms of that order. In other words, for �� ! 0 we can assume that exponentials
of sums of operators can be rewritten as a product of exponentials.1 To linear
order in �� then, we have that

h�2j e��� iH[c
y;c] j�1i = e��� iH[�

y;�] h�2 j�1i (80.4)

In this expression, we have assumed that all destruction operators were on the
right and all creation operators on the left so that they can be replaced by the
corresponding Grassmann variable when acting on coherent states.
Back to our task. Using the trace formula in the coherent state basis Eq.(79.29)

and inserting the completeness relation Eq.(79.28) between each term of the prod-
uct, we can evaluate the exponential in the coherent-state basis. We �nd, with
the de�nitions �� = �N�

= ��0 andZ
D�y

Z
D� =

Z
d�y0

Z
d�0

N�Y
i=1

Z
d�yi

Z
d�i

that

Z = lim
N�!1

Z
D�y

Z
D�e��

y
���



��
�� e���N� "�y��N��1 ���N��1

�
e
��y

N��1
�
N��1



�N��1

��
: : : j�1i e��

y
1�1 h�1j e���1"�

y
1�0 j�0i (80.5)

= lim
N�!1

Z
D�y

Z
D�e��

y
���



��
���N��1

�
e�"�

y
��N��1�� e��

y
N��1�N��1



�N��1

��
: : : j�1i e��

y
1�1e�

y
1�0e�"�

y
1�0�� : (80.6)

which is a time-ordered product. We have used, e��
y
1�1 h�1 j�0i = e��

y
1�1+�

y
1�0 :

The above formula is obviously generalizable to a time-dependent Hamiltonian
that appears in a time-ordered product. To evaluate this quantity on a computer,
we need to �rst do the integrals over Grassmann variables and express the result
in terms of matrices, remembering that the de�nition of the matrices must be read
o¤ the above formula. There is no ambiguity. The matrix A that appeared in the
Gaussian Grassmann integral Eq.(79.23) can thus be written as

A =

26666664
1 0 0 : : : 0 (1� "��)

� (1� "��) 1 0 : : : 0 0
0 � (1� "��) 1 : : : 0 0
0 0 � (1� "��) : : : 0 0
0 0 0 : : : 1 0
0 0 0 : : : � (1� "��) 1

37777775 � �G
�1.

(80.7)
The above matrix has dimension N� �N� : Labels 0 to N� � 1 or 1 to N� can be
used. In other words, either time � = 0 or � = � can be present as independent
labels, but not both. They are related by antiperiodicity. The matrix element in
the upper right corner comes from


��
���N��1

�
e�"�

y
��N��1�� = h��0

���N��1
�
e"�

y
0�N��1�� = e(�1+"��)�

y
0�N��1 :

(80.8)

1There is one subtlety. We have many time-slices. Since N� (��)2 = ���; it looks as if
the error is of order �� , not (��)2 : Fye has shown that the prefactor of ��� vanishes when
one is interested in expectation values of certain kinds of operators. This is basically because
the operator in front of �� is a commutator and is thus anti-Hermitian. The trace of that
anti-hermitian operator vanishes.
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Note that in actual computations, it is more accurate to replace �1 + "�� by
�e"�� : If " is time dependent, it su¢ ces to replace its value at the appropriate
time slice. If " is time independent, the determinant of the matrix A is equal, when

N� tends to in�nity, to
�
1 + (1� "��)N�

�
=
�
1 + e��"

�
; as we would expect from

the free fermion formula Eq.(80.1) when there is a single fermion state.

80.2 Generalization to a continuum and to a time
dependent one-body Hamiltonian

The continuum limit can also be taken formally. We can combine the exponentials
coming from the completeness relation and from the overlap of fermion coherent
states as follows

e��
y
1�1 h�1 j�0i = e��

y
1�1+�

y
1�0 = e��

y
1(�1��0) = e��

y
1
@
@� �1�� : (80.9)

Also, to leading order in �� ; we approximate terms such as �y1�0�� by �
y
0�0�� :

If we take the limit and impose the �� = ��0 on the last matrix element to the
left, we can rewrite the partition function as

Z =

Z
D�y

Z
D� exp (�S) (80.10)

where, by analogy with the Lagrangian formalism, we de�ne the following quantity

S =

Z �

0

d�

�
�y (�)

@

@�
� (�) + " (�) �y (�) � (�)

�
(80.11)

as the action S: In writing this, the " (�) shows that we have generalized also to a
time-dependent Hamiltonian. The integrand is like a Lagrangian when �y (�) and
� (�) are taken as conjugate variables.
Thinking of the � at di¤erent times as di¤erent variables, we can use our

formula for Gaussian integrals over Grassmann variables Eq.(79.23) the partition
funciton can be written as

Z = det

�
@

@�
+ " (�)

�
= exp

�
Tr log

�
@

@�
+ " (�)

��
: (80.12)

The matrix entering determinant and trace above is de�ned by returning to the
discrete representation.
In the case of a time-independent Hamiltonian, the determinant can be formally

evaluated as follows. Go to the basis where the time derivative is diagonal, namely
the Matsubara-frequency basis. Then, we obtain

Z = exp [Tr log (�ikn + ")] = exp
"X

n

log (�ikn + ") e�ikn0
�

#
(80.13)

= exp

"X
n

log
�
�G�1 (ikn)

�
e�ikn0

�

#
: (80.14)

The factor e�ikn0
�
is made necessary to have a unique result. Read the important

remark below to understand the di¢ culties of interpretation of the above formula.
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Remark 368 You will see this formula very often in the literature, but it is in fact
not quite correct because the sum over Matsubara frequencies does not converge.
Proofs that use integrals in the complex plane neglect a contribution from a contour
at in�nity that itself gives an in�nite contribution. The derivatives of this formula,
nevertheless, give correct results if we proceed without asking questions. To verify
this, look at the expression for the occupation number

n =
Tr
�
exp (��H) cyc

�
Tr (exp (��H)) = � @ lnZ

@ (�")

= �
@
X
n

log (�ikn + ") e�ikn0
�

@ (�")
= T

X
n

e�ikn0
�

(ikn � ")
=

1

1 + e��
:(80.15)

In this expression, we have assumed that the sum converged to invert the sum
and the derivative. This is not quite legal but it works. To understand how to
obtain expressions that are more meaningful and recover the formula obtained in
the canonical formalism Eq.(80.1) consider the following integralZ "

1
d"0

@ lnZ

@"0
= lnZ (")� lnZ (" =1) = ��

Z "

1
d"0

1

1 + e��0

= ��
Z "

1
d"0

e���
0

e���0 + 1
= ln

�
1 + e���

0
����"
1
; (80.16)

Hence, if you notice that lnZ (" =1) = ln(1) = 0 we can make sense of the
trace-log formula Eq.(80.14) by rewriting it in the form

�T lnZ = ln
�
1 + e���

0
����"
1
= �

"
T
X
n

log
�
�G�1(ikn)
�G�11 (ikn)

�
e�ikn0

�

#
(80.17)

where
G�11 (ikn) = lim

E!1
(ikn � E) : (80.18)

For a numerical calculation the choice of E is important (see more below). The
di¢ culties outlined here seem to originate from the fact that the transformation
between imaginary time and Matsubara frequency is not unitary. It involves con-
stant factors, as discussed in Sec.79.3. Note that it is also possible to use the
following formula

�T lnZ + T ln 2 = ln
�
1 + e���

0
����"
0
= �

"
T
X
n

log

�
�G�1 (ikn)
�G�1"=0 (ikn)

�
e�ikn0

�

#

where
G�1"=0 (ikn) = ikn: (80.19)

With either formula, the sum can be computed by a contour integral that does
not neglect an in�nite contribution. However, in the general case where G�1 (ikn)
contains a self-energy, in which case T

X
n

log
�
�G�1(ikn)
�G�1"=0(ikn)

�
e�ikn0

�
is just one

of the contributions to Z; the quantity log
�
�G�1(ikn)
�G�1"=0(ikn)

�
e�ikn0

�
behaves at in�nity

like Ae�ikn0
�
=ikn, where A is a constant. This series is not so well behaved

numerically. So, ideally one must be careful to choose the denominator in such as
way that the coe¢ cient A in the asymptotic behavior vanishes. .
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80.3 Wick�s theorem

To �nd the Green function, we can �rst assume again that we work in the diagonal
basis. Then, in this diagonal basis, we expand the exponential to �nd

�
R
D�y

R
D�e��

y(�G�1)��1�
y
1R

D�y
R
D�e��y(�G�1)�

=
�
R
d�y1

R
d�1

�
1 + G�111 �

y
1�1

�
�1�

y
1R

d�y1
R
d�1

�
1 + G�111 �

y
1�1

�
= �

R
d�y1

R
d�1�1�

y
1R

d�y1
R
d�1

�
1 + G�111 �

y
1�1

�
= G11 (80.20)

To compute higher order correlation functions, notice thatR
D�y

R
D�e��
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y
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R
d�1e

��y1(�G
�1
11 )�1

R
d�y2

R
d�2e

��y2(�G
�1
22 )�2

= � 1R
d�y1

R
d�1e

��y1(�G
�1
11 )�1

R
d�y2

R
d�2e

��y2(�G
�1
22 )�2

= G11G22: (80.21)

In this diagonal basis, this is the determinant of the G matrix. This result thus
clearly generalizes, for imaginary time labels, to

(�1)n


T� c (�n) c

y (� 0n) � � � c (�2) cy (� 02) c (�1) cy (� 01)
�

(80.22)

= (�1)n 1
Z

Z
D�y

Z
D�e��

y(�G�1)�� (�n) �
y (� 0n) � � � � (�2) �y (� 02) � (�1) �y (� 01)

= det

2664
G (�1; � 01) G (�1; � 02) � � � G (�1; � 0n)
G (�2; � 01) G (�2; � 02) � � � G (�2; � 0n)
� � � � � � � � � � � �
G (�n; � 01) G (�n; � 02) � � � G (�n; � 0n)

3775 : (80.23)

This is Wick�s theorem. We have the product of all contractions with appropriate
sign for the permutations.

80.4 *Source �elds and Wick�s theorem

We can also �nd this result the hard way by adding source �elds and using deriv-
atives. The following lemma will be useful:

Lemma: Grassmann derivatives of e��
y(�G�1)���yJ�Jy� behave as derivatives of

ordinary exponentials. Indeed, consider

@

@Ji

�
e��

y(�G�1)���yJ�Jy�
�
=

@

@Ji

1X
n=0

1

n!

�
��y

�
�G�1

�
� � �yJ� Jy�

�n
:

(80.24)
When we di¤erentiate the term of order n; we use the rules fo di¤erentiating
a product. So each of the n factors must be di¤erentiated. But the derivative
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commutes with each of the factors separately since they each have an even
number of Grassmann variables. This means for example that

@

@Ji

�
1

n!

�
��y

�
�G�1

�
� � �yJ� Jy�

�n�
=

1

(n� 1)!

�
��y

�
�G�1

�
� � �yJ� Jy�

�n�1
� @

@Ji

�
��y

�
�G�1

�
� � �yJ� Jy�

�
:(80.25)

In the end, the derivative of @
@Ji

�
��y

�
�G�1

�
� � �yJ� Jy�

�
can be to the

left or the right of the exponential.

To see how derivatives with respect to Grassmann source �elds work, let us
�rst look at the level of the Green function by starting from our previous result
for Gaussian Grassmann integrals with sources, Eq.(79.27). We just rename the
matrix A as �G�1 and check that this is consistent with the de�nition of the
Green function

Z =

Z
D�y

Z
D�e��

y(�G�1)���yJ�Jy�

G (ikn) = � 1
Z

Z
D�y

Z
D�e��

y(�G�1)���yJ�Jy��ikn�
y
ikn

=
1

det [�G�1]
@2
h
det
�
�G�1

�
exp

�
Jy
�
�G�1

��1
J
�i

@Jy (ikn) @J (ikn)

������
J;Jy=0

The det
�
�G�1

�
simpli�es and I have used the fact that an odd number of inter-

changes is needed when di¤erentiating with respect to J (not Jy). Also, �; �y; J
and Jy commute with terms in the exponential since there are an even number of
them. Expanding the exponential to linear order, we �nd

G (ikn) =
@2
�
Jy
�
�G�1

��1
J
�

@Jy (ikn) @J (ikn)

������
J;Jy=0

= �
@2
�P

n0 J
y (ikn)G (ikn) J (ikn)

�
@Jy (ikn) @J (ikn)

�����
J;Jy=0

=
@
�
Jy (ikn)G (ikn)

�
@Jy (ikn)

�����
J;Jy=0

:

Remark 369 This works in imaginary-time as well if we interpret the derivatives
with respect to J as functional derivatives. Just to change the perspective, we
evaluate G (�) as a cumulant, i.e. as a derivative of lnZ. This does not change
anything for that correlation function since the cumulant in that case is the same
as the moment.

G (�) = � 1
Z

Z
D�y

Z
D�e��

y(�G�1)���yJ�Jy�� (�) �y (0) (80.26)

=
�2 lnZ

�Jy (�) �J (0)

����
J;Jy=0

=
�2 ln

h
det
�
�G�1

�
exp

�
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�
�G�1

��1
J
�i

�Jy (�) �J (0)

������
J;Jy=0

(80.27)

=
�2
�R

d�
R
d� 0Jy (�)

�
�G�1

��1
(� ; � 0) J (� 0)

�
�Jy (�) �J (0)

������
J;Jy=0

=
�
�R
d� 0�Jy (�)G (� ; � 0)

�
�Jy (�)

�����
J;Jy=0

Note that, given the way we have derived the functional integral, expectation values
of observables means time ordered quantities. It is trivial to include spatial indices
in the above result.
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To derive Wick�s theorem, we follow Negele and Orland2 and notice that,
returning to our convention that overbar means integration

1

Z

Z
D�y

Z
D�e��

y(�G�1)���yJ�Jy�� (�1) � (�2) � � � � (�n) �y (� 0n) � � � �y (� 02) �y (� 01)(80.28)

= (�1)n 1
Z

�2n
R
D�y

R
D� exp

�
�y (��)G�1 (�� ; �� 0) � (�� 0)� �y (��) J (��)� Jy (��) � (��)

�
�Jy (�1) �Jy (�2) � � � �Jy (�n) �J (� 0n) � � � �J (� 02) �J (� 01)

�����
J;Jy=0

= (�1)n
�2n exp

�
Jy (��) (�G (�� ; �� 0)) J (�� 0)

�
�Jy (�1) �Jy (�2) � � � �Jy (�n) �J (� 0n) � � � �J (� 02) �J (� 01)

�����
J;Jy=0

: (80.29)

The (�1)n above is generated by the derivatives with respect to J and Jy since
a derivative with respect to J has to pass one more �y than a derivative with
respect to Jy: The determinant obtained from Z cancels in the numerator and
the denominator, as in the �rst example of this section. To evaluate the last line
above, we use the lemma to �nd

(�1)n
�2n exp

�
Jy (��) (�G (�� ; �� 0)) J (�� 0)

�
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�
Jy (��)G (�� ; � 01)

�
exp

��
Jy (��)G (�� ; �� 0) J (�� 0)

������
J;Jy=0

where again an additional factor (�1)n comes from the fact that each time we
di¤erentiate with respect to J; there is one Jy we must go through that is not
multiplied by another Grassmann variable. There is another (�1)n that comes
from all the (�1)multiplying each of the G. The above expression can be evaluated
at J = 0 so that we are left with

(�1)n �n

�Jy (�1) � � � �Jy (�n)
�
Jy (��n)G (��n; � 0n)

�
� � �
�
Jy (��)G (�� ; � 01)

�
= (�1)n [G (�n; � 0n) � � � G (�2; � 02)G (�1; � 01) (80.30)

�G (�n; � 0n) � � � G (�1; � 02)G (�2; � 01)
+ � � � ] (80.31)

In the second term there is a sign because �=�Jy (�1) has to pass a �Jy (�2) : The
order of the � 0i indices of all the G above is �xed. The �n by contrast will be
found in any order and the overall sign will be determined by the spign of the
permutation. Recalling the de�nition of the determinant, the �nal result may be
written as

1

Z

Z
D�y

Z
D�e��

y(�G�1)���yJ�Jy�� (�1) � (�2) � � � � (�n) �y (� 0n) � � � �y (� 02) �y (� 01)

= (�1)n det

2664
G (�1; � 01) G (�1; � 02) � � � G (�1; � 0n)
G (�2; � 01) G (�2; � 02) � � � G (�2; � 0n)
� � � � � � � � � � � �
G (�n; � 01) G (�n; � 02) � � � G (�n; � 0n)

3775 : (80.32)

Again, it is easy to add spatial indices.
This result is equivalent to the statement that one must pair all destruction

operator with each of the creation operators, associating a G
�
� i; �

0
j

�
with each

of the pairings. This is called a contraction. The overall sign of the product
of contractions follows from the signature of the permutation. This is the usual
statement of Wick�s theorem.

2Note the sign di¤erence in the de�nition of the Green function in that reference.
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80.5 Interactions and quantum impurities as an ex-
ample

Assume I have a single level with some Hubbad interaction and hybridization to
a bath of non-interacting electrons. This time we restore spins. Let  � be the
Grassman variables associated with the impurity, and �� (k) those associated with
the bath. The levels in the bath are labeled by k . You have considered such a
problem in exercise 62.0.3.
The interaction is easy to add to the action. It su¢ ces to return to the deriva-

tion above to realize that all exponentials can be evaluated to leading order in ��
so that a term


 " (�) # (�)
��Ucy" (�) cy# (�) c# (�) c" (�)�� �� " (�) # (�)�

in the Trotter-decomposed partition function simply becomes

U y" (�) 
y
# (�) # (�) " (�)�� :

The partition function then is

Z =

Z
D y

Z
D 

Z
D�y

Z
D� exp [�S] (80.33)

with
S = SI + SIb + Sb (80.34)

where the impurity action is
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(80.35)

with the bath

Sb =

Z �

0
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X
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(80.36)
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X
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�
�� (k; �) (80.37)

and the hybridization between impurity and bath

SIb =

Z �

0

d�
X
k

X
�

h
V �ik 

y
� (�) �� (k; �) + �

y
� (k; �)Vki � (�)

i
: (80.38)

Remark 370 In general, we change from the Hamiltonian to the above action
formalism, simply by using the recipe

SI =

Z �

0

d�

" X
�

 y� (�)
@

@�
 � (�)

!
+H

�
 y� (�) ;  � (�)

�#
(80.39)

where we simply replace the creation operators in the original H by  y� (�) and the
destruction operators by  � (�) : In the classical formalism, L = p _q �H with

p =
@L

@ _q
: (80.40)
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For the corresponding quantum �elds then,  y� (�) is the conjugate �eld and

 y� (�) =
@L

@ _ � (�)
: (80.41)

Since  and  yobey
n
 (r) ;  y (r0)

o
= � (r� r0) it is natural to expect that they are

conjugate variables and that they should appear in the combination  y� (�)
@
@�  � (�)

when changing from Hamiltonian to Lagrangian.

Remark 371 It is now clear that �G�10 instead of H0 is now the basic object
since it appears in the quadratic term of the action. In addition to @=@� , other
imaginary-time dependent single-particle quantities can appear in G�10 :

The functional integral over the bath degrees of freedom �y� (k; �) ; �� (k; �) can
be done easily if we identify the source �elds in the Gaussian Grassmann integral
Eq.(79.27) as

J� (k; �) = Vki � (�) : (80.42)

The integral over the bath degrees of freedom leaves us with

Z = exp
�
Tr ln

�
�G�1b

�� Z
D y

Z
D exp

h
�SI + Jy

�
�G�1b

��1
J
i
: (80.43)

The prefator is the determinant associated with the bath. It will drop out from
observables associated only with the impurity. In Matsubara frequencies the bath
Green�s function is diagonal so it is easy to rewrite the term involving the source
as

Jy (�Gb)J =
X
n

X
�

 y� (ikn)

 X
k

V �ik
�1

ikn � " (k)
Vki

!
 � (ikn) : (80.44)

This term thus just modi�es G�10 in the impurity action. We de�ne the hybridiza-
tion function by

�(ikn) �
X
k

V �ik
1

ikn � " (k)
Vki: (80.45)
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Part IX

Many-body in a nutshell

645





These are some of the most widely used results in many-body theory. This is
an extremely succinct presentation, not to say just a cookbook, that refers to the
main text if you really want to learn the subject. Much of the text here repeats
word for word what is in the main text, but keeping only the main points.
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81. HANDELINGMANY-INTERACTING
PARTICLES: SECOND QUANTI-
ZATION

A detailed explanation of the concepts of this Chapter can be found in Chapter
24.
When there is more than one particle and they are identical, the wave function

say  (x1; x2; x3) is not arbitrary. If we want particles to be indistinguishable, all
coordinates should be equivalent. This means in particular that if x1 takes any
particular value, say a and x2 takes another value, say b, then we expect that
 (a; b; x3) =  (b; a; x3) : But that is not the only possibility since the only thing
we know for sure is that if we exchange twice the coordinates of two particles
then we should return to the same wave function. This means that under one
permutation of two coordinates (exchange), the wave function can not only stay
invariant, or have an eigenvalue of +1 as in the example we just gave, it can also
have an eigenvalue of �1. These two cases are clearly the only possibilities and
they correspond respectively to bosons and fermions. There are more possibilities
in two dimensions, but that is beyond the scope of this chapter.
Second quantization allows us to take into account these symmetry or antisym-

metry properties in a straightforward fashion. To take matrix elements directly
between wave functions would be very cumbersome. In second quantization, both
states and operators are written in terms of the same set of creation-annihilation
operators that obey simple commutation or anticommutation relations for bosons
and fermions respectively. We will focus on fermions.

Remark 372 Second quantization for us is just a trick to work with many par-
ticles. Formally, it is called second quantization because in �rst quantization we
start with particles, set up commutation relations between position and momen-
tum, and end up with a wave function. Second quantization can be seen as starting
from a wave function, or �eld,  , setting up commutation relations with the con-
jugate �eld and ending up with particles, or excitations of that �eld. With the
electromagnetic �eld in a sense we do not have the choice to do this.

81.1 Fock space, creation and annihilation opera-
tors

Here we are interested most of the time in Hamiltonians that conserve the number
of particles. Nevertheless, it is easier to work in a space that contains an arbitrary
number of particles. That is Fock space. Annihilation and creation operators
allow us to change the number of particles while preserving indistinguishability
and antisymmetry. In this representation, a three-electron state comes out as three
excitations of the same vacuum state j0i ; a rather satisfactory state of a¤airs:
It will be very helpful if you review creation-annihilation operators, also called

ladder operators, in the context of the harmonic oscillator.
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For the time being our fermions are spinless, it will be easy to add spin later
on. We assume that the one-particle states j�ii form an orthonormal basis for one
particle, namely h�ij �ji = �i;j : The state j�1�2i is antisymmetrized, namely

j�1�2i =
1p
2
(j�1i 
 j�2i � j�2i 
 j�1i) :

The �rst Hilbert space on the right of the above expression can be either in state
�1 or �2: Antisymmetry means that j�1�2i = � j�2�1i :
We de�ne a vaccum j0i that contains no particle. Then, we de�ne ay�1 that

creates a particle from the vacuum to put it in state j�1i and for fermions it
antisymmetrizes that state will all others. In other words, ay�1 j0i = j�1i : Up to
now, there is nothing to antisymmetrize with, but if we add another particle,

ay�1a
y
�2 j0i = j�1�2i

then that state has to be antisymmetric. In other words, we need to have j�2�1i =
� j�1�2i ; or

j�2�1i = ay�2a
y
�1 j0i = � j�1�2i = �a

y
�1a

y
�2 j0i :

Clearly this will automatically be the case if we impose that the creation operators
anticommute, i.e. ay�ia

y
�j = �a

y
�ja

y
�i orn

ay�i ; a
y
�j

o
� ay�ia

y
�j + a

y
�ja

y
�i = 0: (81.1)

This property is a property of the operators, independently of the speci�c state
they act on. The anticommutation property garantees the Pauli principle as we
know it, since if i = j then the above leads to

ay�ia
y
�i = �a

y
�ia

y
�i : (81.2)

The only operator that is equal to minus itself is zero. Hence we cannot create
two particles in the same state.
If we want the whole formalism to make sense, we want to have a change sign

to occur whenever we interchange two fermions, wherever they are in the list.You
can check that his works with our formalism.
Note that with fermions we need to determine an initial order of operators for

the states. That is totally arbitrary because of the phase arbitrariness of quantum
mechanics. But then, during the calculations we need to keep track of the minus
signs.
Now that we know how to create, let us move to destruction. The destruction

operators are the adjoints of ay�i . Their anticommutation property will follows by

taking the adjoint of
n
ay�i ; a

y
�j

o
= 0 :�

a�i ; a�j
	
� a�ia�j + a�ja�i = 0: (81.3)

These adjoint operators are de�ned as follows

h�1j = h0j a�1 : (81.4)

They create and antisymmetrize in bras instead of kets. When they act on kets
instead of bras, they remove a particle instead of adding it. In particular,

a�1 j0i = 0: (81.5)

This is consistent with h�1j 0i = 0 = h0j a�1 j0i.
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Since we also want states to be normalized, we need

h�ij �ji = h0j a�iay�j j0i = �i;j : (81.6)

Since we already know that a�1 j0i = 0; that will automatically be satis�ed if we
write the following anticommutation realtion between creation and annihilation
operators n

a�i ; a
y
�j

o
� a�iay�j + a

y
�ja�i = �i;j (81.7)

because then h0j a�iay�j j0i = �h0j a
y
�ja�i j0i + h0j �i;j j0i = 0 + �i;j : The above

three sets of anticommutation relations are called canonical.
At this point one may ask why anticommutation instead of commutation, which

would also have satis�ed h0j a�iay�j j0i = �i;j . Well, two reasons. The �rst one
is that given the previous anticommutation rules, this one seems elegant. The
second one is that with this rule, we can de�ne the very useful operator, the
number operator bn�i = ay�ia�i : (81.8)

That operator just counts the number of particles in state �i. To see that this is
so and that anticommutation is needed for this to work, we look at a few simple
cases. First note that if bn�i acts on a state where �i is not occupied, thenbn�i j�ji = bn�iay�j j0i = ay�ia�ia

y
�j j0i = �a

y
�ia

y
�ja�i j0i = 0: (81.9)

If I build an arbitrary many-particle state j�j ; �k; : : :i ; if the state �i does not
appear in the list, then when I compute bn�i j�j ; �k; : : :i ; I will be able to anticom-
mute the destruction operator all the way to the vacuum and obtain zero. On the
other hand, if �i appears in the list then

bn�i �ay�jay�k : : : ay�i : : : ay�l j0i� = ay�ja
y
�k
: : : bn�iay�i : : : ay�l j0i : (81.10)

I have been able to move the operator all the way to the indicated position without
any additional minus sign because both the destruction and the annihilation oper-
ators anticommute with the creation operators that do not have the same labels.
The minus signs from the creation and from the annihilation operators in ay�ia�i
cancel each other. This would not have occured if a�i and a

y
�j had commuted

instead of anticommuted. Now, let us focus on bn�iay�i in the last equation. Using
our anticommutation properties, one can check that

bn�iay�i = ay�ia�ia
y
�i = ay�i

�
1� ay�ia�i

�
: (81.11)

Since there are never two fermions in the same state, now the destruction operator
in the above equation is free to move and annihilate the vacuum state, and

bn�i �ay�jay�k : : : ay�i : : : ay�l j0i� = �ay�jay�k : : : ay�i : : : ay�l j0i� : (81.12)

This means that bn�i does simply count the number of particles. It gives one or
zero depending on whether the state is occupied or not.

81.2 Change of basis

Creation-annihilation operators change basis in a way that is completely deter-
mined by the way one changes basis in single-particle states. Suppose one wants
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to change from the � basis to the � basis, namely

j�mi =
X
i

j�ii h�ij �mi (81.13)

which is found by inserting the completeness relation. Let creation operator ay�i
create single particle state j�ii and antisymmetrize while creation operator cy�m
creates single particle state j�mi and antisymmetrize. Then the correspondance
between both sets of operators is clearly

cy�m =
X
i

ay�i h�ij �mi (81.14)

with the adjoint
c�m =

X
i

h�mj �ii a�i (81.15)

given as usual that h�ij �mi = h�mj �ii
�
: Physically then, creating a particle in a

state j�mi is like creating it in a linear combination of states j�ii : We can do the
change of basis in the other direction as well.
If the transformation between basis is unitary, the new operators, obey canon-

ical anticommutation relations, namelyn
c�m ; c

y
�n

o
= �m;n: (81.16)

When the change of basis is unitary, we say that we have made a canonical trans-
formation. The same steps show that a unitary basis change also preserves the
canonical commutation relations for bosons.

81.2.1 The position and momentum space basis

On can use a basis where we take continuum notation for space and discrete
notation for momentum. This is described in more details in Sec.18.2.1. In this
basis, n

ck; c
y
k0

o
= �k;k0 ; fck; ck0g =

n
cyk; c

y
k0

o
= 0 (81.17)

while the position space creation-annihilation operators obey

f (r) ;  (r0)g =
n
 y (r) ;  y (r0)

o
= 0 (81.18a)

n
 (r) ;  y (r0)

o
=
P

k

P
k0 hr jki

n
ck; c

y
k0

o
hk0 jr0i =

P
k hr jki hk jr0i = hr jr0i = � (r� r0)

(81.19)
which is precisely what we expect from the continuum normalization of the one-
body states, namely

h0j
n
 (r) ;  y (r0)

o
j0i = h0j (r) y (r0) j0i = hr jr0i = � (r� r0) (81.20)

Remark 373 We de�ne the bra h�1�2j by

h�1�2j = (j�1�2i)y =
�
ay�1a

y
�2 j0i

�y
= h0j a�2a�1 : (81.21)

Notice the change in the order of labels between h�1�2j and h0j a�2a�1 :
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81.2.2 Wave function

With N -particles, the wave function is obtained by projection on a position basis.
If we have a single many-body state, ay�1a

y
�2 : : : a

y
�i : : : a

y
�N j0i then the corrre-

sponding wave function

hr1r2:::rN j �1�2:::�N i = h0j (rN ) : : :  (r2) (r1) ay�1a
y
�2 : : : a

y
�i : : : a

y
�N j0i

is proportional to a so-called Slater determinant if we have fermions. Indeed, using
our change of basis formula,

 (r) =
X
i

hr j�ii a�i =
X
i

��i (r) a�i (81.22)

any of the positions r can be in a state �i; or vice versa the position r has ampli-
tudes on all states, so you can check that the wave function is equal to

X
p

"p��p(1) (r1)��p(2) (r2) :::��p(N)
(rN ) = Det

2664
��1 (r1) ��1 (r2) ::: ��1 (rN )
��2 (r1) ��2 (r2) ::: ��2 (rN )
::: ::: :::

��N (r1) ��N (r2) ��N (rN )

3775
(81.23)

where the sum is over all permutations p (i) of the set i and "p is the signature
of the permutation, given by +1 if the number of transpositions (interchanges) of
pairs of creation operators to get back to the original order is even and �1 if the
number of transpositions is odd.

81.3 One-body operators

The matrix elements of an arbitrary one-body operator bU (in the N�particle
case) may be computed in the many-body basis made of one-body states wherebU is diagonal. As an example of one-body operator, the operator bU could be an
external potential so that the diagonal basis is position space. In the diagonal
basis, bU j�ii = U�i j�ii = h�ij bU j�ii j�ii (81.24)

where U�i is the eigenvalue. In this basis, one sees that the e¤ect of the one-body
operator is to produce the same eigenvalue, whatever the particular order of the
states on which the �rst-quantized operator acts. For example, suppose we have
three particles in an external potential, then the potential-energy operator is

V (R1) + V (R2) + V (R3) (81.25)

where Ri acts on the ith position of the many body state. If we act on a sym-
metrized or antisymmetrized version of that state, then

(V (R1) + V (R2) + V (R3)) jr0; r; r00i = (V (r0) + V (r) + V (r00)) jr0; r; r00i
(81.26)

since the eigenvalue is V (r0)+V (r)+V (r00) ; whatever the order in which r0; r; r00

appear. In general then when we have N particles in a many-body state, the
action of the one-body operator is

NX
�=1

bU� j�i; �j ; �k : : :i = �U�i + U�j + U�k + : : :� j�i; �j ; �k : : :i (81.27)
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Knowing the action of the number operator, we can write the same result di¤er-
ently

NX
�=1

bU� j�i; �j ; �k : : :i =X
m

U�mbn�m j�i; �j ; �k : : :i (81.28)

in other words, there will be a contribution as long as �i appears in the state.
And if �i occurs more than once, the corresponding eigenvalue U�i will appear
more than once.
We hold a very elegant result. The one-body operator

P
m U�mbn�m in second

quantized notation makes no reference to the total number of particles nor to
whether we are dealing with bosons of fermions. Note that in �rst quantization
the sum extends over all particle coordinates whereas in second quantization the
sum over m extends over all states.
Using the change of basis formula explained above, we have thatX
i

h�ij bU j�ii ay�ia�i =X
i

X
m

X
n

cy�m h�m j�ii h�ij bU j�ii h�i j�ni c�n : (81.29)
Since U is diagonal, we can add a sum over �j and use the closure relation to
arrive at the �nal resultP

i U�ibn�i =Pm

P
n c

y
�m
h�mj bU j�ni c�n : (81.30)

Let us give examples in the position and momentum representation. A one-
body scattering potential in the continuum would be represented in second quan-
tized version1 by bU = R drU (r) y (r) (r) (81.31)

which looks similar to the usual Schrödinger average. Similarly, the kinetic energy
operator in the momentum representation is diagonal and it can be rewritten in
the position basis using the change of variables of the previous section:

bT =X
k

hkj ~
2k2

2m
jki cykck =

X
k

Z
dr

Z
dr0 y (r) hr jki hkj ~

2k2

2m
jki hk jr0i (r0)

(81.32)

=
1

V
X
k

Z
dr

Z
dr0 y (r) eik�(r�r

0) ~
2k2

2m
 (r0) (81.33)

=

Z
d3k

(2�)
3

Z
dr

Z
dr0 y (r)

�
� ~

2

2m
r2r0eik�(r�r

0)
�
 (r0) (81.34)

=

Z
dr

Z
dr0 y (r)

�
� ~

2

2m
r2r0� (r� r0)

�
 (r0) (81.35)

Using partial integration and assuming that everything vanishes at in�nity or is
periodic, we obtain,

bT = �� ~2
2m

� R
dr y (r)

�
r2 (r)

�
= ~2

2m

R
drr y (r) � r (r) : (81.36)

Again notice that second-quantized operators look like simple Schrödinger av-
erages over wave functions.

1We have denoted by bU the operator in both �rst and second quantization. Strictly speaking
the operators are di¤erent. One needs to specify which representation one is working in.
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81.4 Two-body operators.

A two-body operator involves the coordinates of two particles. An example is the
Coulomb potential with position basis where bV1;2 = bV (R1;R2) which is diagonal
in position space, namely bV (R1;R2) jr0i 
 jri = V (r0; r) jr0i 
 jri :
Let us return to the general discussion. If we let the indices in bV1;2 refer to the

potential energy between the �rst and second particles in the direct product, and
if we are in the diagonal basis, we have in �rst quantization thatbV1;2 j�ii 
 j�ji = V�i�j j�ii 
 j�ji (81.37)bV1;3 j�ii 
 j�ji 
 j�ki = V�i�k j�ii 
 j�ji 
 j�ki (81.38)

In this basis, one sees that again the eigenvalue does not depend on the order in
which the states are when the �rst-quantized operator acts. This means that

1

2

NX
�=1

NX
�=1
� 6=�

bV�;� j�i; �j ; �k : : :i = �V�i�j + V�i�k + V�j�k + : : :� j�i; �j ; �k : : :i
(81.39)

where now on the right-hand side every interaction is counted only once. As above,bV�;� refers to the potential energy between the � and � particles. If j�ii 6= j�ji,
then the number of times that V�i�j occurs in the double sum is equal to n�in�j .
However, when j�ii = j�ji, then the number of times that V�i�j occurs is equal
to n�i(n�i � 1) because we are not counting the interaction of the particle with
itself, as speci�ed by � 6= � in the sum. In general then,

1

2

NX
�=1

NX
�=1
� 6=�

bV�;� j�i; �j ; �k : : :i = 1

2

1X
m=1

1X
n=1

V�m�n (bn�mbn�n � �m;nbn�n) j�i; �j ; �k : : :i :
(81.40)

Again the expression for the operator to the right is independent of the state it
acts on. It is valid in general. I assumed that the basis � has an in�nite number
of states.
We can simplify the expression further. De�ning

� = �1 for fermions (81.41)

� = 1 for bosons (81.42)

we can rewrite bn�ibn�j � �i;jbn�i in terms of creation and annihilation operators in
such a way that the form is valid for both fermions and bosons

bn�ibn�j � �i;jbn�i = ay�ia�ia
y
�ja�j � �i;ja

y
�ia�i = ay�i�a

y
�ja�ia�j = ay�ia

y
�ja�ja�i :
(81.43)

Second quantized operators are thus written in the simple form

1
2

P
i

P
j V�i�j

�bn�ibn�j � �i;jbn�i� � 1
2

P
i

P
j (�i�j jV j�i�j) ay�ia

y
�ja�ja�i

(81.44)
where

j�i�j) � j�ii 
 j�ji : (81.45)

Under unitary transformation to an arbitrary basis we have

bV = 1
2

P
m

P
n

P
p

P
q (�m�njV

���p�q� cy�mcy�nc�qc�p : (81.46)
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De�nition 36 When a series of creation and annihilation operators are placed
in such an order where all destruction operators are to the right, one calls this
�normal order�.

Remark 374 Note the inversion in the order of �p and �q in the annihilation
operators compared with the order in the matrix elements (This could have been
for the creation operator instead).

Remark 375 The notation (�m�njV
���p�q� for the two-body matrix element means,

in the coordinate representation for example,Z
dr1dr2�

�
�m
(r1)�

�
�n
(r2)V (r1 � r2)��p (r1)��q (r2) : (81.47)

Example 37 In the case of a potential, such as the Coulomb potential, which acts
on the densities, we have

bV = 1
2

R
dx
R
dyv (x� y) y (x) y (y) (y) (x) : (81.48)
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82. THE HUBBARD MODEL TO
ILLUSTRATE SOMEOFTHECON-
CEPTS

A general Hamiltonian of the form described above can be solved in the Hartree-
Fock approximation. This approximation, discussed in Appendix C, consists in
using the variational principle for the most general wave function that can be writ-
ten as a single Slater determinant, i.e. as j HF i = cy1"c

y
1#c

y
2"c

y
2# : : : c

y
N=2"c

y
N=2# j0i

where indices such as 1 etc can denote momentum eigenstates or other types of
one-body states. This is very important for density-functional based approaches
that are discussed in Chapter 53. We consider here a simpli�cation of the full
many-body problem to illustrate the most general form that the many-body wave-
function can take.
Suppose we have one-body states, obtained either from Hartree-Fock or from

Density Functional Theory (DFT). The latter is a much better approach than
Hartree-Fock. Nevertheless, it does not diagonalize the Hamiltonian. If the prob-
lem has been solved for a translationally invariant lattice, the one-particle states
will be Bloch states indexed by crystal momentum k and band index n: If we ex-
pand the creation-annihilation operators in that basis using the general formulas
for one-particle Eq.(B.16) and two-particle Eq.(B.24) parts of the Hamiltonian,
clearly it will not be diagonal. Suppose that a material has s and p electrons,
for which DFT does a good job. In addition, suppose that there are only a few
bands of d character near the Fermi surface. Assuming that the only part of the
Hamiltonian that is not diagonal in the DFT basis concerns the states in those d
band, it is possible to write a much simpler form of the Hamiltonian. We will see
that nevertheless, solving such �model�Hamiltonians is non-trivial, despite their
simple-looking form.
Model Hamiltonians can now explicitly be constructed using cold atoms in

optical traps. A laser interference pattern can be used to create an optical lattice
potential using the AC Stark e¤ect. One can control tunneling between potential
minima as well as the interaction of atoms between them.

82.1 The Hubbard model

Restricting ourselves to a single band and expanding the  y (y) and  (y) in the
Wannier basis associated with the Bloch states, our change of basis formula leads
to the Hamiltonian

H =
X
�

X
i;j

cyi� hij T̂ 0 jji cj� +
1

2

X
�;�0

X
ijkl

hij hjj V̂c jki jli cyi�c
y
j�0cl�0ck�: (82.1)

where T̂ 0 = T̂ + V̂ contains all the one-body parts of the Hamiltonin, namely
kinetic energy and lattice potential energy. The operator c(y)i� annihilate (create) a
particle in a Wannier state centered at lattice site i and with spin �: The one-body
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part by itself is essentially the DFT band structure. In 1964, Hubbard, Kanamori
and Gutzwiller did the most dramatic of approximations, hoping to have a model
simple enough to solve. They assumed that hij hjj V̂c jki jli would be much larger
than all other interaction matrix elements when all lattice sites are equal. De�ning
tij � hij K̂ jji and U � hij hij V̂c jii jii ; and using ci�ci� = 0 they were left with

H =
X
�

X
i;j

tijc
y
i�cj� +

1

2

X
�;�0

X
i

Ucyi�c
y
i�0ci�0ci�

=
X
�

X
i;j

tijc
y
i�cj� +

X
i

Ucyi"c
y
i#ci#ci" (82.2)

=
X
�

X
i;j

tijc
y
i�cj� +

X
i

Uni#ni": (82.3)

Most of the time, one considers hopping only to nearest neighbors. The model can
be solved exactly only in one dimension using the Bethe ansatz, and in in�nite
dimension. The latter solution is the basis for Dynamical Mean Field Theory
(DMFT) that is discussed in these notes. Despite the fact that the Hubbard
model is the simplest model of interacting electrons, it is far from simple to solve.
The size of the Hilbert space is huge. There are four states per lattice site (up,
down, empty and doubly occupied), so in the grand canonical ensemble, the size
of the Hilbert space is 4N ; i.e. exponentially large with the number of lattice sites
N:
Atoms in optical lattices can be used to arti�cially create a system described

by the Hubbard model with parameters that are tunable. The laser intensity of
the trapping potential and the magnetic �eld are the control parameters. The
derivation given in the case of solids is phenomenological and the parameters
entering the Hamiltonian are not known precisely. In the case of cold atoms, one
can �nd conditions where the Hubbard model description is very accurate. By
the way, interesting physics occurs only in the nano Kelvin range. Discussing how
such low temperatures are achieved would distract us to much.
Important physics is contained in the Hubbard model. For example, the in-

teraction piece is diagonal in the localized Wannier basis, while the kinetic energy
is diagonal in the momentum basis. More speci�cally, if U = 0; then the ground
state can be written as in elementary statistical mechanics, by �lling a Fermi sea,
namely

j iU=0 = cyk0"c
y
k0#c

y
k1"c

y
k1# : : : c

y
kN=2"c

y
kN=2# j0i : (82.4)

However, if we have only the interaction U; namely tij = 0; the ground state can
simply be written in the Wannier basis (think of states localized around each atom
if you are not familiar with this notion). For example, at half-�lling the ground
state consists of a single electron per site:

j itij=0 = cyRo"c
y
R1#c

y
R2# : : : c

y
RN" j0i : (82.5)

The spin at each site is arbitrary, so there is a massive degeneracy of 2N :
What happens in the general case, where U and tij are both non-zero? Ap-

plying H on the last wave function above, j itij=0 ; we see that tij will move
electrons around. This means that the true eigenstate can only be a linear com-
bination of states that involve electrons on di¤erent sites. In other words, the full
many-body wave function is a linear combination of Slater derterminants. This
is a very important lesson that is also reached if we apply H on j iU=0 where
the kinetic energy term is diagonal since the interaction U written in momentum
space removes particles from two momentum states and puts them in momentum
states that are in general di¤erent from the original ones. Clearly then, when
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both kinetic and potential energy are equally important, neither the momentum
nor the position state basis su¢ ce to build a many-body eigenstate with a single
Slater determinant. Instead, we need a large fraction of the full, exponentially
large Hilbert space to faithfully represent the many-body wave function. That is
what we mean by correlations. Note that the coe¢ cients of the linear combination
that is the true eigenstate will in general be complex, unless the Hamiltonian is
real.
A bit of jargon: When a single Slater determinant dominates in the wave

function, we call the other components of the wave function quantum �uctuations.
Depending on �lling and on the strength of U compared with band parameters,

the true eigenstates will be localized or extended. The localized solution is called
a Mott insulator and the extended one a metal.
The Hubbard model can describe ferromagnetism, antiferromagnetism (com-

mensurate and incommensurate) and it is also believed to describe high-temperature
superconductivity, depending on lattice and range of interaction parameters.
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83. PERTURBATION THEORY
ANDTIME-ORDEREDPRODUCTS

In the grand canonical ensemble, we want to evaluate

e��(
bH�� bN) (83.1)

where H is the Hamiltonian, N the number of particles and � the chemical po-
tential. For convenience, de�ne

bK = bH � � bN: (83.2)

In general you will be facing a situation where

bK = bH0 + bH1 � � bN � bK0 + bK1 (83.3)

where bK0 = H0 � �N can easily be diagonalized but not bK because bK0 and bK1

do not commute. In that case, perturbation theory can help. We now prove

e��
bK = e��

bK0 bU (�) (83.4)

bU (�) � T� he� R �0 bK1(�)d�
i

(83.5)bK1 (�) � e bK0� bK1e
� bK0�

: (83.6)

In the above expression, T� is the so-called time-ordering operator. It orders
operators from left to right in increasing order of � : Note that if bK0 and bK1

commute, then bK1 is independent of � ; bU (�) = e��
bK1 and e�� bK = e��

bK0e��
bK1

as expected.

Remark 376 Imaginary time: The quantity, � ; is called imaginary time because
the ordinary time evolution operator is e�iHt and in the Heisenberg representation,
operators evolve as follows: bK1 (t) = ei

bK0t=~ bK1e
�i bK0t=~:

To prove the above very important result is not di¢ cult. It su¢ ces to �nd a
di¤erential equation for bU: Start from

@

@�
e�

bK� =
�
� bK0 � bK1

�
e�

bK�
@

@�

�bU (�)� =
@

@�

�
e
bK0�e�

bK�� (83.7)

= e
bK0�
� bK0 � ( bK0 +K1)

�
e�

bK� (83.8)

where in the second equation, we have used the de�nition of bU; Eq.(83.4) and the
chain rule. We are left with

@

@�
bU (�) = �

�
e
bK0� bK1e

� bK0�
� bU (�) (83.9)

= � bK1 (�) bU (�) (83.10)

where bK1 (�) takes the form advertized in Eq.(83.6).
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To �nd bU (�) ; integrate both sides of the equation, remembering that bU (0) =
1: Then bU (�) = 1� Z �

0

bK1 (�) bU (�) d� : (83.11)

To solve in powers of bK1; which is the whole idea behind perturbation theory after
all, we just iterate the above equation

bU (�) = 1�
Z �

0

d� bK1 (�) + (�1)2
Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

+ (�1)3
Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

Z � 0

0

d� 00 bK1 (�
00) + � � �(83.12)

Note that the operators are always ordered from right to left in increasing order
of � : This means that with the help of the time-ordering operator T� ; the above
equation can be rearranged in the form

bU (�) = 1�
Z �

0

d� bK1 (�) +
(�1)2

2!
T�

"Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

#

+
(�1)3

3!
T�

"Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

Z �

0

d� 00 bK1 (�
00)

#
+ � � �(83.13)

where the factorial takes care of the fact that by completing all the integrals so
that the upper bound is � for all of them, operators will come in all possible orders
in � so they will need to be rearranged in the proper order bK! times for the term
of order bK: The series can now be resummed in an exponential, as written in
Eq.(83.5).
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84. GREEN FUNCTIONS CON-
TAIN USEFUL INFORMATION

In many-body theory, it is often very convenient to focus on correlation functions
instead of the full wave function because correlation functions are directly related
to experiments. I begin with using the Golden rule to interpret angle-resolved
photoemission experiment and then de�ne a funny looking correlation function,
the imaginary-time Green function, and show that if we can calculate it, then
we have a calculation for the photoemission experiment. After you have seen the
Green function for a few simple Hamiltonian, you will appreciate the notions of
self-energy, spectral weight, Wick�s theorem. We will be ready to set up (not
to solve) the quantum impurity problem, which is fundamental to an important
approach to the Many-body problem, Dynamical Mean-Field Theory.
We drop the spin index for many parts of the following discussion to unclutter

the notation. In general, cp for example should be written cp� since the spin is
necessary to characterize the state. I hope this will not lead to confusion.

84.1 Photoemission experiments and fermion corre-
lation functions

Photoemission experiments can be represented schematically as in Fig.26-1. Given
the fom of the interaction beween matter and electromagnetic �eld, Fermi�s Golden
Rule tells us that the cross section is proportional to

X
mn

e��
bKm

Z

2�

~

�����hnj 
 hkj 
 h0jem
 
�
X
k0

jk0 �A�k0

!
jmi 
 j0i 
 j1qiem

�����
2

� (~! + �� (Em � En))

where jmi and hnj denote many-body eigenstates of the system, hkj is the momen-
tum eigenstate of the outgoing single electron with j0i the corresponding vacuum
while j1qiem is the one-photon eigenstate of the electromagnetic �eld with h0jem
the correponding vacuum. Note that we need to sum over all �nal states of the
system hnj since they are not measured. All we know about the initial state is
that it is in a mixture described by the canonical ensemble.
The matrix element can be rearranged as follows

�hnj 
 hkj 
 h0jem

 X
k0

jk0 �A�k0

!
jmi 
 j0i 
 j1qiem : (84.1)

= �
X
k0

hnj 
 hkj jk0 jmi 
 j0i � h0jemA�k0 j1qiem : (84.2)

The vector potential is the analog of the position operator for harmonic vibration
of the electromagnetic �eld. Hence, it is proportionnal to ay�k0 + ak0 and k0 = q
with the destruction operator will lead to a non-zero value of h0jemA�k0 j1qi : For
the range of energies of interest, the wave vector of the photon k0 = q can be
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considered in the center of the Brillouin zone, k0 � 0. The current operator is a
one-body operator. In the continuum, it is then given by

jk0=0 = e
X
p

p

m
cypcp: (84.3)

The value p = kjj will lead to a non-zero matrix element. Overall then, the matrix
element is

� hnj ckjj jmi
�
hkj cykjj j0i e

kjj

m
� h0jemAk0=q�0 j1qiem

�
: (84.4)

The term in large parenthesis is a matrix element that does not depend on the
state of the system. Without going into more details of the assumptions going
into the derivation then, Fermi�s golden rule suggests, (see �rst section of Chapter
2) that the di¤erential cross section for ejecting an electron of momentum kjj and
energy ! (measured with respect to �) is proportional to

@2�

@
@!
/

X
mn

e��Km
��hnj ckjj jmi��2 � (! + �� (Em � En)) (84.5)

@2�

@
@!
/

X
mn

e��Km hmj cykjj jni hnj ckjj jmi � (! � (Km �Kn)) : (84.6)

Even if you miss some of the details, it is not important. We just want to suggest
that it is important to compute correlation functions involving fermion creation
and annihilation operators.

84.2 De�nition of the Matsubara Green function

The most useful fermion correlation function, which can be used to obtain directly
the above cross section as you will see, is the Matsubara Green function

G�� (�) = �
D
T� c� (�) c

y
� (0)

E
(84.7)

= �
D
c� (�) c

y
� (0)

E
� (�) +

D
cy� (0) c� (�)

E
� (��) : (84.8)

The last equation above de�nes the time ordering operator for fermions. It is very
important to notice the minus sign associated with interchanging two fermion
operators. This time-ordering operator is thus a slight generalization of the time-
ordering operator we encountered before. One of the motivations for de�ning
the Green function with a time-ordering operator is that T� appears naturally in
perturbation theory as we have seen above. The time-ordering operator makes the
perturbative evaluation of G�� natural.

Remark 377 The time-ordering operator for quantities that are quadratic in fermi-
ons, i.e. bosonic quantities, such as bK1 that appeared in the perturbation expan-
sion, never have a minus sign associated with the exchange of bosonic operators.

Remark 378 Physically, G�� (�) represents the amplitude that an excitation in
a state � shows up as an excitation in state � after a �time� � :
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We still need to specify a few things. First, the thermodynamic average is in
the grand-canonical ensemble

hOi �
Tr
h
e��

bKOi
Tr
h
e�� bKi (84.9)

while the time evolution of the operators is de�ned by

c� (�) � e bK� c�e� bK� (84.10)

cy� (�) � e
bK� cy�e� bK� (84.11)

Remark 379 Note that cy� (�) is not the Hermitian conjugate of c� (�) : The no-
tation is somewhat abusive, but justi�ed by the fact that if you replace immaginary
time by real time, � ! it=~, then we recover the usual case.

Remark 380 From now on, I set ~ = 1: Sorry for the lazyness.

84.3 TheMatsubara frequency representation is con-
venient

Since we are working in time-translationally invariant systems, it is natural to
think for Fourier transforms and enquire about a frequency representation. Since
we work on a �nite imaginary-time interval contained between �� and �; it is in
fact Fourier series that will come to the rescue.
The �rst thing to notice are the Kubo-Martin-Schwinger boundary conditions

that tell us that G�� (�) is antiperiodic in imaginary time. What this means is the
following.

G�� (�) = �G�� (� � �) : (84.12)

Proof: Take � > 0 for example.

G�� (�) = �
1

Z
Tr
h
e��

bKe bK� c�e� bK� cy�
i

(84.13)

The cyclic property of the trace then tells us that

G�� (�) = � 1
Z
Tr
h
cy�e

�� bKe bK� c�e� bK�i (84.14)

= � 1
Z
Tr
h
e��

bKcy�e�� bKe bK� c�e� bK�e� bKi
= � 1

Z
Tr
h
e��

bKcy�c� (� � �)
i

= �G�� (� � �) : (84.15)

where we have used � � � < 0 and the de�nition of the Green function.

The antiperiodicity that we just proved can be used in conjunction with the
theorems on Fourier series to arrive to the useful representation

G�� (�) = 1
�

P1
n=�1 e�ikn�G�� (ikn) (84.16)
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where the so-called Matsubara frequencies for fermions are odd, namely

kn = (2n+ 1)�T =
(2n+1)�

� ; n integer (84.17)

The antiperiodicity property will be automatically ful�lled because e�ikn� =
e�i(2n+1)� = �1.

Choice of units Here and from now on, we have taken Boltzmann�s constant kB
to be equal to unity.

The expansion coe¢ cients are obtained as usual for Fourier series of antiperi-
odic functions from

G�� (ikn) =
R �
0
d�eikn�G�� (�) (84.18)

84.4 Spectral weight and how it is related to Gk (ikn)
and to photoemission

The quantity �2 ImGR (!) is called the spectral weight. To understand its general
meaning, it su¢ ces to start from the de�nition of the Matsubara Green function
and to use a complete sets of states. More speci�cally,

Gk (ikn) = �
Z �

0

d�eikn�
D
ck (�) c

y
k (0)

E
(84.19)

= �
Z �

0

d�eikn�
X
n;m

e��Kn

Z
hnj eKn� cke

�Km� jmi hmj cyk jni :(84.20)

The integral over imaginary time is now easy to do,

Gk (ikn) =
P
n;m

e��Kn

Z
e�(Kn�Km)+1
ikn+Kn�Km

hnj ck jmi hmj cyk jni. (84.21)

We have used eikn� = �1: This is the so-called Lehmann representation of Gk (ikn) :
This last result may be written in the so-called spectral representation

Gk (ikn) =
R
d!
2�

Ak(!)
ikn�! (84.22)

if we de�ne the spectral weight by

Ak (!) �
X
n;m

1

Z

�
e��Km + e��Kn

�
hnj ck jmi hmj cyk jni (84.23)

�2�� (! � (Km �Kn)) (84.24)

=
X
n;m

e��Km

Z

�
1 + e�!

�
hnj ck jmi hmj cyk jni 2�� (! � (Km �Kn)) :

Given this result, the di¤erential photoemission cross section Eq.(84.6) may thus
be obtained from

@2�

@
@!
/ Ak (!) f (!) (84.25)

with f (!) =
�
1 + e�!

��1
the Fermi function.
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To �nd the physical meaning of the spectral weight, exchange the dummy
summation indices m;n in the �rst term of Eq.(84.23) and you �nd

Ak (!) �
X
n;m

1

Z
e��Kn hnj cyk jmi hmj ck jni 2�� (! � (Kn �Km))

+
1

Z
e��Kn hnj ck jmi hmj cyk jni 2�� (! � (Km �Kn)) (84.26)

This quantity is normalized sinceZ
d!

2�
Ak (!) =

X
n;m

1

Z
e��Kn

�
hnj cyk jmi hmj ck jni+ hnj ck jmi hmj c

y
k jni

�
=

Dn
cyk (0) ; ck (0)

oE
= 1: (84.27)

Clearly then, Ak (!) = (2�) can be interpreted as the probability that the state
formed by adding to an eigenstate jni a particle of momentum k, i.e. cyk jni or
a hole ck jni ; yields an eigenstate hmj whose grand potential K has an energy !
compared with the original state jni : In the non-interacting case, for any given
k there is only one frequency ! where there will be a non-zero contribution since
cyk jni or ck jni are eigenstates. This is no-longer the case when there are inter-
actions. Then, cyk jni or ck jni are not eigenstates and there are many states hmj
with di¤erent excitation energies ! whose overlap with cyk jni or with ck jni is non-
vanishing (in other words where the quantum mechanical probability jhmj ck jnij2
is non-vanishing). This is equivalent to saying that in the presence of interac-
tions, the momentum k of a single particle is not conserved (or no-longer a good
quantum number).

Remark 381 It is important to recall once again that all the physical information
is in the spectral weight Ak (!) :

84.5 Gk (ikn) for the non-interacting case U = 0

Before we see how the Green function is related to the photoemission cross section
in general, it is useful to have a look at the non-interacting case to develop some
intuition. This is our �rst occasion to write down the equation of motion for G�� :
You will notice that it is the kind of equation that one encounters with Green
functions in general. Since we are considering the non-interacting case, take

bK0 =
X
p

�pc
y
pcp (84.28)

where �p = "p � �: Using the de�nition

Gk (�) = �
D
T� ck (�) c

y
k (0)

E
(84.29)

then
@Gk (�)
@�

= �� (�)
Dn
ck; c

y
k

oE
�
�
T�
@ck (�)

@�
cyk (0)

�
: (84.30)
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Since
n
ck; c

y
k

o
= 1 and using

[AB;C] = ABC � CAB = ABC + (ACB �ACB)� CAB
= A fB;Cg � fA;CgB

which yields

@ck (�)

@�
=

h bK0; ck (�)
i

(84.31)

= ��kck (�) (84.32)

we are left with
@Gk (�)
@�

= �� (�)� �kGk (�) : (84.33)

Using Matsubara frequencies, as in Eq.(84.16) you �nd

(�ikn + �k)Gk (ikn) = �1 (84.34)

so that
Gk (ikn) =

1

ikn � �k
: (84.35)

The replacement
ikn ! ! + i� (84.36)

where ! is a real frequency and � is a positive in�nitesimal, is called analytic
continuation. We are about to see why we do this and why this is useful. But for
now, let us just look at the result. Upon analytic continuation, Gk (ikn) becomes
the so-called retarded Green function

GR (!) = 1
!+i���k

: (84.37)

Using the identity

lim
�!0

1

x+ i�
= lim
�!0

x� i�
x2 + �2

= P
1

x
� i�� (x) (84.38)

with P the principal part, we �nd

� 2 ImGR (!) = 2�� (! � �k) ; (84.39)

which tells us that in a non-interacting system, in an eigenstate of momentum k;
the energy ! is �k:

Remark 382 When bands are calculated within DFT, one obtains �k;n for each
of the Bloch bands labeled by �: In that case we have a band index so states must
be labeled by both quantum numbers and

Ak;� (!) = 2��
�
! � �k;�

�
: (84.40)

84.6 Obtaining the spectral weight from Gk (ikn):
the problem of analytic continuation

If we can compute Gk (ikn) by any means, we can obtain the spectral weight
from its analytic continuation since, using the spectral representation Eq.(84.22)
of Gk (ikn) we can simply do the analytic continuation ikn ! ! + i� and �nd

GRk (!) =
R
d!0

2�

Ak(!0)
!+i��!0 : (84.41)
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From this, the spectral weight Ak (!0) is easy to �nd from

Ak (!) = �2 ImGRk (!) : (84.42)

All this is very easy analytically, but with numerical data it turns into a nightmare.
There are two methods that are widely used, Padé approximants and Maximum
Entropy analytic continuation. These are whole subjects in themselves.

Remark 383 We already mentioned that the physical information is in Ak (!) :
An equivalent way of saying this is that it is in the poles of GRk (!) :

OBTAINING THE SPECTRAL WEIGHT FROM GK (IKN ): THE PROBLEM OF ANA-
LYTIC CONTINUATION 669
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85. SELF-ENERGY AND THE EF-
FECT OF INTERACTIONS

I begin by solving the Hubbard Hamiltonian when there are only interactions, no
hopping. This is the so-called atomic limit. You will see that in this case the Green
function takes a structure very di¤erent from the non-interacting case. This will
be a natural occasion to introduce the notion of self-energy as a representation of
the e¤ect of interactions and to show that the self-energy is singular in the atomic
limit, and more generally for Mott insulators. Also, we will see that in the case of
a single interacting site in a sea of non-interacting electrons, the self-energy comes
only from the interacting site. This is the Anderson impurity model, that happens
to be very important in the context of Dynamical Mean-Field Theory. We will see
Dyson�s equation and a few general properties of the self-energy.

85.1 The atomic limit, t = 0

To see an extreme form of the e¤ect of interactions, it su¢ ces to consider the
Hubbard model in the atomic limit, namely keeping only the interaction term:

K̂ =
X
i

(Uni#ni" � �ni" � �ni#) : (85.1)

In this problem, each site is independent and the Green relevant for photoemission
becomes, restoring spin indexD

ck� (�) c
y
k� (0)

E
=

1

N

X
i;j

D
cRi� (�) c

y
Rj�

(0)
E
e�ik�(Ri�Rj) (85.2)

=
D
cRi� (�) c

y
Ri�

(0)
E

(85.3)

because
D
cRi� (�) c

y
Rj�

(0)
E
=
D
cRi� (�) c

y
Ri�

(0)
E
�i;j . Indeed, even if the grand-

canonical ensemble means that four possible states on each site will be considered,
for a given number of particles on a site, the matrix element hnij hnj j e�KcRi� (�) c

y
Rj�

(0) jnii jnji
vanishes if i and j are di¤erent because if I create an electron at site j with cyRj�

(0),

the time evolution operator eK� cannot remove the electron from that site to make
sure that the diagonal matrix elements of cyRj�

(0) do not vanish. Another way

to say that is that hnij hnj j e�KcRi� (�) c
y
Rj�

(0) jnii jnji vanishes in the trace for
a given jnii jnji if i is di¤erent from j, otherwise the number of electrons on a
given site is not conserved despite the fact that K̂ commutes with the number
operator: The �nal result for Gk (ikn) will be momentum independent, as expected
for a local problem.
Here I take an unusual approach for the analytical solution of this model. This

method is however very close to that used by some of the numerical approaches.
Drop the site label for simpli�cation and consider the correlation function for
up spins only. I proceed by analogy with the steps used to derive the Lehmann
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representation Eq.(84.21) for Gk (ikn) : Taking into account the Pauli principle,
only two terms survive in the trace and, similarly, for each of the states in the
trace only one intermediate state gives a non-zero matrix elementD
c" (�) c

y
" (0)

E
=

1

Z
h0j eK̂� c"e�K̂� j"i h"j cy" j0i

+
e��

Z
h#j eK̂� c"e�K̂� j"#i h"#j cy" j#i (85.4)

=
1

Z
h0j c"e�(��)� j"i h"j cy" j0i+

e��

Z
h#j e��� c"e�(U�2�)� j"#i h"#j cy" j#i

=
1

Z
e�� +

e��

Z
e�(U��)� : (85.5)

We are now ready to compute the Matsubara Green function appropriate for
photoemission using as usual eikn� = �1

Gk� (ikn) = �
Z �

0

d�eikn�
D
ck� (�) c

y
k� (0)

E
= �

Z �

0

d�eikn�
D
c" (�) c

y
" (0)

E
= �

Z �

0

d�eikn�
�
1

Z
e�� +

e��

Z
e�(U��)�

�
= � 1

Z

�
�e�� � 1
ikn + �

+
�e��(U��) � 1
ikn + �� U

�
: (85.6)

The partition function is easy to evaluate but to go directly to the point, take
� = U=2: Then

Gk� (ikn) =
e��U=2 + 1

Z

"
1

ikn +
U
2

+
1

ikn � U
2

#
:

The spectral weight Ak (!) is easily obtained from Ak� (!) = �2 ImGRk� (!) by
following the procedure outlined in the analytic continuation section 84.6:

GRk� (!) =
e��U=2 + 1

Z

"
1

! + i� + U
2

+
1

! + i� � U
2

#

Because of the normalization condition, the prefactor can only be 1=2 since

Ak� (!) =
1

2

�
2��

�
! +

U

2

�
+ 2��

�
! � U

2

��
(85.7)

Even though there would be a single band and correpondingly a single delta
function in the non-interacting case, here you �nd two. In addition we realize that
we have an interaction-induced insulator (Mott insulator) since there are no states
at ! = 0:

Remark 384 The thermodynamics is easy to do. One �nds Z = 1 + 2e�� +

e��(U�2�): Similarly, one can compute
D
c# (�) c

y
# (0)

E
= hn#i and discover that in

general,

GRk" (!) =

�
1� hn#i
! + i� + �

+
hn#i

! + i� + �� U

�
: (85.8)

The weight of the pole that is at U depends clearly depends on the number of states
already occupied by down spins. Given that 1 � hn#i = hn"i ; the �rst term can
similarly be understood.
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85.2 The self-energy and the atomic limit example
(Mott insulators)

It follows from the spectral representation Eq.(84.41) for the retarded Green func-
tion that the e¤ect of interactions is to introduce new poles or at least to shift
them with respect to the non-interacting case. Hence, it is convenient to de�ne
the self-energy �Rk� (!) by

GRk� (!) =
1

! + i� � �k� � �Rk� (!)
(85.9)

=
1�

G0Rk� (!)
��1 � �Rk� (!) ; (85.10)

where G0Rk� (!) is the non-interacting Green function. The corresponding expres-
sion for the Matsubara Green function is

Gk� (ikn) =
1

ikn � �k� � �k� (ikn)
(85.11)

=
1

(G0k� (ikn))
�1 � �k� (ikn)

: (85.12)

Simple algebra shows that the last form is equivalent to

Gk� (ikn) = G0k� (ikn) + G0k� (ikn) �k� (ikn)Gk� (ikn) ; (85.13)

the so-called Dyson equation. Alternatively, the form that we generally obtain
from the equations of motion is�

G0k� (ikn)
��1 Gk� (ikn) = 1 + �k� (ikn)Gk� (ikn) : (85.14)

The above de�nition of the self-energy is natural for several reasons. Perhaps
the most compelling follows once we consider the expression for the spectral weight,

1

2�
Ak� (!) = �

1

�
ImGRk� (!) =

1

�

� Im�Rk� (!)�
! � �k� � Re�Rk� (!)

�2
+
�
Im�Rk� (!)

�2 :
(85.15)

It reduces to a Lorentzian if both Im�Rk� (!) and Re�
R
k� (!) are small constants.

In general it is not a Lorentzian but it describes well the situation where an
otherwise single delta function is replaced by a peak that has a width and is shifted
from the position where the delta function would be if there were no interaction.
All the e¤ects of interactions are contained in �Rk� (!) :
In the case where we have only weak electron-electron interactions, in other

words for a Fermi liquid, we have that Im�Rk� (!) /
�
!2 + (�T )

2
�
: In the atomic

limit,

GR� (!) =
1

2

�
1

! + i� + U=2
+

1

! + i� � U=2

�
=

(! + i�)

(! + i�)
2 �

�
U2

4

�(85.16)
=

1

(! + i�)� U2

4(!+i�)

(85.17)

so that clearly, the retarded self-energy �R (!) = U2

4(!+i�) is singular at low fre-
quency, not good news for perturbation theory. It gets rid of the pole that is at
! = 0 when there is no interaction. Singular self-energies are a hallmark of Mott
insulators.
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85.3 A few properties of the self-energy

Given the spectral representation Eq.(84.41)

GRk� (!) =

Z
d!0

2�

Ak� (!
0)

! + i� � !0 (85.18)

and the positivity of Ak�; which can easily be seen from Eq.(84.23), it is clear that
GRk� (!) has poles only in the lower-half complex plane. It can be shown that this
is a general consequence of causality. This implies that Im�Rk� (!) is negative; as
follows also from the positivity of Ak� and its representation Eq.(85.15) in terms
of the self-energy.
Also, the self-energy cannot grow with frequency since

lim
!!1

!GRk� (!) = !

Z
d!0

2�

Ak� (!
0)

!
=

Z
d!0

2�
Ak� (!

0) = 1: (85.19)

We have used the fact that Ak� has to vanish at large frequency, as follows from
Eq.(84.23) and the fact that the matrix elements between a true eigenstate and an
eigenstate obtained from adding one excitation in a low energy state must vanish.
In practice, the real part of the self-energy can at most be a constant at in�nite
frequency (This is the Hartree-Fock result).

85.4 Integrating out the bath in the quantum-impurity
problem: The Anderson impurity model

Consider a single site with a Hubbard interaction U , connected to a bath of non-
interacting electrons. This is the so-called Anderson impurity model. This prob-
lem plays a key role in the Dynamical Mean-Field Theory approach to correlated
electrons. We will only set up the problem of quantum impurities without solv-
ing it. The Numerical Renormalization Group approach (NRG), Density Matrix
Renormalization Group and, most prominently, Continuous Time QuantumMonte
Carlo provide examples of methods that can be used to solve this problem.
We begin with the Anderson impurity problem. Including the chemical poten-

tial, the model is de�ned by

KI = Hf +Hc +Hfc � �N (85.20)

Kf �
X
�

("� �) fyi�fi� + U
�
fyi"fi"

��
fyi#fi#

�
(85.21)

Kc �
X
�

X
k

("k � �) cyk�ck� (85.22)

Hfc �
X
�

X
k

�
Vkic

y
k�fi� + V

�
ikf

y
i�ck�

�
(85.23)

To physically motivate this model, think of a single f level on an atom where
the on-site interaction is very large. That site is hybridized through Vik with
conduction electrons around it. The sum over k in the hybridization part of the
Hamiltonian Hfc basically tells us that it is the local overlap of the conduction
band with the impurity that produces the coupling.
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Suppose we want to know the properties of the impurity, such as the local
density of states. It can be obtained from the Green function

Gff (�) = �
D
T�fi� (�) f

y
i�

E
: (85.24)

Let us proceed with the equation of motion method. We �rst write the equations
of motion for ck� and fi�

@

@�
ck� = [KI ; ck�] (85.25)

= � ("k � �) ck� � Vkifi� (85.26)
@

@�
fi� = [KI ; fi�] (85.27)

= � ("� �) fi� � Ufyi��fi��fi� �
X
k

V �ikck� (85.28)

Proceeding like our in our earlier derivation of the equations of motion we have

@

@�
Gff (�) = �� (�)

Dn
fi� (�) ; f

y
i�

oE
�
D
T�

�
� ("� �) fi� (�)� Ufyi�� (�) fi�� (�) fi� (�)� V �kick�

�
fyi�

E
(85.29)

= �� (�)� ("� �)Gff (�) + U
D
T�f

y
i�� (�) fi�� (�) fi� (�) f

y
i�

E
�
X
k

V �ikGcf (k; i; �)

where we de�ned
Gcf (k; i; �) = �

D
T� ck� (�) f

y
i�

E
: (85.30)

To eliminate this quantity, we write its equations of motion

@

@�
Gcf (k; i; �) = �� (�)

Dn
ck� (�) ; f

y
i�

oE
�
D
T� (� ("k � �) ck� (�)� Vkifi� (�)) fyi�

E
= � ("k � �)Gcf (k; i; �)� VkiGff (�) (85.31)

that follows because
n
ck�; f

y
i�

o
= 0: It can be solved by going to Matsubara

frequencies

Gcf (k; i; ikn) =
1

ikn � ("k � �)
VkiGff (ikn) : (85.32)

Substituting in the equation for Gff (ikn) we obtain"
ikn � ("� �)�

X
k

V �ik
1

ikn � ("k � �)
Vki

#
Gff (ikn)

= 1� U
Z �

0

d�eikn�
D
T�f

y
i�� (�) fi�� (�) fi� (�) f

y
i�

E
: (85.33)

The last term on the right-hand side is related to the self-energy as usual by

�ff (ikn)Gff (ikn) � �U
Z �

0

d�eikn�
D
T�f

y
i�� (�) fi�� (�) fi� (�) f

y
i�

E
(85.34)

The equation to be solved has exactly the same Dyson equation structure as that
which we would �nd for a single impurity

G0ff (ikn)
�1 Gff (ikn) = 1 + �ff (ikn)Gff (ikn) (85.35)

Gff (ikn) = G0ff (ikn) + G0ff (ikn) �ff (ikn)Gff (ikn) ;(85.36)
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except that now the �non-interacting�Green function is

G0ff (ikn)
�1
= ikn � ("� �)�

X
k

V �ik
1

ikn � ("k � �)
Vki: (85.37)

This is in fact exactly the non-interacting Green function that we would �nd with
U = 0: The last term re�ects the fact that one can propagate from the impurity
site back to the impurity site by going through the bath. One often de�nes the
hybridization function �ff (ikn) by

�ff (ikn) =
X
k

V �ik
1

ikn � ("k � �)
Vki: (85.38)

What is important to remember is that the self-energy a¤ects only the site
where there is an interaction U: Equations (85.29) and (85.31) for the Green�s
functions, written in Matsubara frequency, read:�

ikn � ("� �)� �ff (ikn) �V �ik
�Vki ikn � ("k � �)

��
Gff (ikn)
Gcf (k; ikn)

�
=

�
1
0

�
:

In this equation, we imply the sum over k: The structure of this equation is easy to
remember and has a quite transparent meaning. What we have done, is used the
second line of this equation to eliminate Gcf (k; i; ikn) ; i.e. the bath, completely.
We are left with a single-site problem where the bath is replaced by a hybridization
function. We are left with Dyson�s equation for Gff and and a new G0ff (ikn)

�1

which contains the bath as a hybridization function Eq.(85.37).
The solution to this impurity problem is complicated. The structure in imag-

inary time is highly non-trivial. Contrary to the atomic limit, the number of
electrons on a site is not conserved, i.e. it is time-dependent, and the simplicity
of the problem is lost. There is a complicated dynamics where electrons move in
and out of the impurity site and what happens at a given time depends on what
happened at earlier ones. For example, if there is a down electron on the impurity
site, another down electron will not be able to come on the site unless the previous
one comes out. The problem contains the rich Physics that goes under the name
of Kondo and could be the subject of many chapters. It has been the focus of
much attention in Condensed Matter Physics for decades. We will not, for now,
expand further on this now.

Remark 385 The self-energy will in�uence the value of Gcf (k; ikn) ; as we can
see by inverting the matrix in the last equation. Nevertheless, the self-energy comes
only from the site that has interactions. When particles propagate in the bath, they
can step on the interacting site and that is where the e¤ect of interactions show
up.
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86. MANY-PARTICLE CORRELA-
TION FUNCTIONS AND WICK�S
THEOREM

To compute the many-particle correlation functions that arise directly in a non-
interacting system or as intermediate steps in the perturbative calculations about
a non-interacting (quadratic) Hamiltonian, Wick�s theorem is extremely helpful.
You can �nd a simple special case in Sec. C.3, a general proof in Sec. 33.1 that uses
only the canonical formalism and �nally a proof using coherent-state functional
integrals in Sec. 80.4. There is also a simpler coherent-state functional integral
proof that uses the diagonal basis in Sec. 80.3.
Wick�s theorem takes the following form in the special case of spinless fermions:D

T� (�1) (�2) � � � (�n) y (� 0n) � � � y (� 02) y (� 01)
E

= (�1)n det

2664
G (�1; � 01) G (�1; � 02) � � � G (�1; � 0n)
G (�2; � 01) G (�2; � 02) � � � G (�2; � 0n)
� � � � � � � � � � � �
G (�n; � 01) G (�n; � 02) � � � G (�n; � 0n)

3775 : (86.1)

Spatial indices and spin labels can easily be added. The antisymmetry of the
time-ordered product under interchange of creation operators translates into the
antisymmetry of the determinant under the interchange of columns. And simi-
larly, the antisymmetry under interchange of destruction operators translates into
antisymmetry under interchange of lines.
Another way to state the result is to say that

(�1)n
D
T� (�1) (�2) � � � (�n) y (� 0n) � � � y (� 02) y (� 01)

E
is equal to the sum over of all complete sets of contractions, where a complete con-
traction is a con�guration in which each  is contracted (paired) with a  y: A con-

traction of  (�1) with  
y (� 01) is de�ned by (�1)

D
T� (�1) 

y (� 01)
E
= G (�1; � 01) :

Each complete contraction has a sign that is determined by the signature of the
permutation with respect to the original order. For example,

(�1)2
D
T� (�1) (�2) 

y (� 02) 
y (� 01)

E
= (�1)2

D
T� (�1) 

y (� 01)
ED

T� (�2) 
y (� 02)

E
� (�1)2

D
T� (�1) 

y (� 02)
ED

T� (�2) 
y (� 01)

E
= G (�1; � 01)G (�2; � 02)� G (�2; � 01)G (�1; � 02)(86.2)

Remark 386 To gain some insight into why correlation functions may factor for
non interacting systems, consider the simple case where there are only two fermion
states. In other words

K̂0 = �1c
y
1c1 + �2c

y
2c2: (86.3)

Then
e��K̂0 = e��(�1c

y
1c1)e��(�2c

y
2c2) (86.4)
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and the partition function factors, i.e. in the occupation-number representation

Z =
1X

n1=0

1X
n2=0

hn1n2j e��K̂0 jn1n2i =
1X

n1=0

1X
n2=0

hn1n2j e��(�1c
y
1c1)e��(�2c

y
2c2) jn1n2i :

(86.5)
Inserting a complete set of states in between the exponentials and using the fact
that e��(�1c

y
1c1) is diagonal in the occupation number basis, we are left with

Z =
1X

n1=0

1X
n2=0

hn1n2j e��K̂0 jn1n2i =
1X

n1=0

1X
n2=0

hn1n2j e��(�1c
y
1c1) jn1n2i hn1n2j e��(�2c

y
2c2) jn1n2i

=
1X

n1=0

1X
n2=0

hn1j e��(�1c
y
1c1) jn1i hn2j e��(�2c

y
2c2) jn2i = Z1Z2: (86.6)

Similarly, for any diagonal operator Oi acting on state i; we have

hO1O2i =
1X

n1=0

1X
n2=0

hn1j e��(�1c
y
1c1)O1 jn1i

Z1

hn2j e��(�2c
y
2c2)O2 jn2i

Z2
(86.7)

= hO1i1 hO2i2 : (86.8)

Example 38 The theorem is easy to understand in the diagonal basis for a given
time order. In the end, this is the approach used to prove it.. Let us try to
understand why the following equation is true:D

c�c�c
y
c
y
�

E
=


c�c

y


� D
c�c

y
�

E
�


c�c

y


� D
c�c

y
�

E
: (86.9)

Both sides of the equation vanish if we do not have � =  and � = � OR � =  and
� = �:When either of these conditions is satis�ed and � 6= �; we can anticommute
the operators when necessary and obtain the above formula. When either of the
conditions is satis�ed and � = �; both sides of the equation vanish.
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87. SOURCE FIELDS TO CALCU-
LATEMANY-BODYGREENFUNC-
TIONS

In classical statistical mechanics, we are used to calculating observable quanti-
ties from derivatives of the free energy. There is an analogous procedure for the
many-body problem. In this section, I will �rst introduce the notion of functional
derivatives in the context of classical statistical mechanics and the proceed to show
how the same paradigm can be used to formulate the general many-body prob-
lem. We will then encounter the so-called GW approximation that is natural for
long-range Coulomb interactions and that is widely used to improve the results of
band structure calculations.

87.1 A simple example in classical statistical me-
chanics

In elementary statistical mechanics, we can obtain the magnetization by di¤eren-
tiating the free energy with respect to the magnetic �eld and we can also obtain
the magnetic susceptibility, related to the magnetization �uctuations, by di¤eren-
tiating once more. You can refresh your mind by checking Sec.35.1. Here I recall
the less familiar results of this section.
Consider directly the more general problem of computing hM (x1)M (x2)i �

hM (x1)i hM (x2)i in classical statistical mechanics. That can still be achieved if
we impose a position dependent-external �eld:

Z [h] = Tr
h
e��(K�

R
d3xh(x)M(x))

i
: (87.1)

It is as if at each position x; there were an independent variable h (x) : The position
is now just a label. The notation Z [h] means that Z is a functional of h (x) :It
takes a function and maps it into a scalar. To obtain the magnetization at a single
point, we introduce the notion of functional derivative, which is just a simple
generalization to the continuum of the idea of partial derivative. To be more
speci�c,

�

�h (x1)

Z
d3xh (x)M (x) =

Z
d3x

�h (x)

�h (x1)
M (x) (87.2)

=

Z
d3x� (x1 � x)M (x) =M (x1) : (87.3)

In other words, the partial derivative @y1=@y2 = �1;2 for two independent variables
y1 and y2 is replaced by

�h (x)

�h (x1)
= � (x1 � x) : (87.4)
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Very simple.
Armed with this notion of functional derivative, one �nds that

� lnZ [h]

��h (x1)
= hM (x1)ih (87.5)

and the quantity we want is obtained from one more functional derivative

�2 lnZ [h]

�2�h (x1) �h (x2)
= hM (x1)M (x2)ih � hM (x1)ih hM (x2)ih : (87.6)

The [h] near Z reminds us that Z is a functional of the function h (x) ; i.e. it maps
this function to a scalar, namely Z:We can then evaluate everything at h (x) = 0 is
that corresponds to the physical situation. The following generalization to Green
functions is essentially a faithful copy of the one appearing in the main text.

87.2 Green functions and higher order correlations
from source �elds

Again, we follow the main text. In our case, we are interested in correlation
functions that depend not only on space but also on real or imaginary time. In
addition, we know that time-ordered products are relevant. Hence, you will not
be surprized to learn that we use as our partition function with source �elds

Z [�] = Tr
h
e��KT� exp

�
� y

�
1
�
�
�
1; 2
�
 
�
2
��i

(87.7)

where we used the short-hand

(1) = (x1; �1;�1) (87.8)

with the overbar indicating integrals over space-time coordinates and spin sums.
More speci�cally,

 y
�
1
�
�
�
1; 2
�
 
�
2
�
=X

�1;�2

Z
d3x1

Z �

0

d�1

Z
d3x2

Z �

0

d�2 
y
�1 (x1; �1)��1;�2 (x1; �1;x2; �2) �2 (x2; �2) :

We can think of  y
�
1
�
�
�
1; 2
�
 
�
2
�
as vector-matrix-vector multiplication. Some

of the matrix or vector indices are continuous, but that should not confuse you I
think. All the operators above evolve in imaginary time with the same K̂ = Ĥ��N̂
that enters the Boltzmann weight e��K̂ :
With the de�nition,

S [�] = exp
�
� y

�
1
�
�
�
1; 2
�
 
�
2
��

(87.9)

we can write the Matsubara Green�s function as a functional derivative of the
generating function lnZ [�] ;

� � lnZ [�]

�� (2; 1)
= �

D
T�S [�] (1) y (2)

E
hT�S [�]i

� �
D
T� (1) 

y (2)
E
�
= G (1; 2)� : (87.10)

680 SOURCE FIELDS TO CALCULATE MANY-BODY GREEN FUNCTIONS



To obtain this result, we used the fact that the functional derivative with respect to
� does not in�uence at all the time order, so one can di¤erentiate the exponential
inside the time-ordered product. (See Sec. 29.2) The thermal average on the �rst

line is with respect to e��K̂ : In the average with a subscript,
D
T� (1) 

y (2)
E
�
;

one does not write S [�] explicitly. Note the reversal in the order of indices in G
and in �:We have also used the fact that in a time ordered product we can displace
operators as we wish, as long as we keep track of fermionic minus signs. Finally,
the functional derivative with respect to � is de�ned by

��
�
1; 2
�

�� (1; 2)
= �

�
1� 1

�
�
�
2� 2

�
(87.11)

where the delta function is a mixture of Dirac and Kronecker delta functions

�
�
1� 1

�
= �3 (r1 � r1) � (�1 � �1) ��1;�1 : (87.12)

Higher order correlation functions can be obtained by taking further functional
derivatives

�G (1; 2)�
�� (3; 4)

= � �

�� (3; 4)

D
T�S [�] (1) y (2)

E
hT�S [�]i

=

D
T�S [�] (1) y (2) y (3) (4)

E
hT�S [�]i

�

D
T�S [�] (1) y (2)

ED
T�S [�] y (3) (4)

E
hT�S [�]i2

=
D
T� (1) 

y (2) y (3) (4)
E
�
+ G (1; 2)� G (4; 3)� : (87.13)

The �rst term is called a four-point correlation function. The last term comes
from di¤erentiating hT�S [�]i in the denominator. To �gure out the minus signs in
that last term note that there is one from �1=Z2, one from the derivative of the
argument of the exponential and one from ordering the �eld operators in the order
corresponding to the de�nition of G�: The latter is absorbed in the de�nition of
G�:

Remark 387 The results of this section are independent of the explicit form of
K̂ = Ĥ � �N̂:
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88. EQUATIONS OF MOTION TO
FIND G� AND ��

As we have seen before, if we have the equations of motion for  (1), those for G�
will follow. And it is from the equations of motion that we �nd the self-energy.

88.1 Hamiltonian and equations of motion for  (1)

The Hamiltonian we consider contains the kinetic energy and the electron-electron
interaction. Note that we now introduce spin indices denoted by Greek indices:

K̂ = Ĥ � �N̂ = Ĥ0 + V̂ + V̂n � �N̂ (88.1)

Ĥ0 =
�1
2m

X
�1

Z
dx1 

y
�1 (x1)r

2 �1 (x1) (88.2)

V̂ =
1

2

X
�1;�2

Z
dx1

Z
dx2v (x1�x2) y�1 (x1) 

y
�2 (x2) �2 (x2) �1 (x1)

V̂n = �
X
�1

Z
dx1

Z
dx2v (x1�x2) y�1 (x2) �1 (x2)n0 (88.3)

In the jellium model, the last piece, Vn represents the interaction between a �neu-
tralizing background� of the same uniform density n0 as the electrons, or we
could use that actual attractive potential caused by the nuclei. The potential is
the Coulomb potential

v (x1�x2) =
e2

4�"0 jx1�x2j
(88.4)

The equations of motion are

@ � (x;�)

@�
=
h
K̂;  � (x;�)

i
; (88.5)

which yields

@ � (x;�)

@�
=
r2

2m
 � (x; �) + � � (x; �) (88.6)

�
X
�2

Z
dx2v (x� x2) y�2 (x2; �) �2 (x2; �) � (x; �)

The last term does not have the 1=2 factor that appeared in the Hamiltonian
because  � (x;�) can anticommute with one or the other  

y
�:

The equation of motion can be rewritten in the more matrix-like form

@ (1)

@�1
=
r21
2m

 (1) + � (1)�  y
�
2
�
 
�
2
�
V
�
2� 1

�
 (1) (88.7)
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if we de�ne a time and spin dependent potential

V (1; 2) = V�1;�2 (x1; �1;x2; �2) � e2

4�"0jx1�x2j� (�1 � �2) : (88.8)

In reality the potential is independent of spin and is instantaneous but introducing
these dependencies simpli�es the notation.

88.2 Equations of motion for G� and de�nition of
��

We expect that the equation for motion for G (1; 2)�

G (1; 2)� = �

D
T�S [�] (1) y (2)

E
hT�S [�]i

will have the following structure G�1 (1; 2)� = G
�1
0 (1; 2) � � (1; 2) � � (1; 2)� :

In detail, it is obtained by taking an imaginary-time derivative. There will be
three contributions. One from @ (1)

@�1
; that we found above, one from the time

derivative of the two Heaviside functions � (�1 � �2) and � (�2 � �1) entering the
de�nition of the time-ordered product (that gives the usual delta function), and
one from the fact that terms in S [�] have to be ordered with respect to �1: The
only unfamiliar contribution is the latter one. To understand how to compute it,
we write explicitely the time integral associated with the creation operator in the
exponential and order it properly:D

T�S [�] (1) y (2)
E

=

*
T� exp

 
�
Z �

�1

d�1 
y �1�� �1; 2� �2�!

 (1) exp

�
�
Z �1

0

d�1 
y �1�� �1; 2� �2�� y (2)�

Since we moved an even number of fermion operators, we do not need to worry
about sign. We do not need to worry about the destruction operator in the ex-
ponential either since it anticommutes with  (1) : The time-ordered product will
eventually take care of the proper order (see also the �rst remark below). We
thus have a contribution to the time derivative with respect to �1 that comes from
acting on the exponentials and reads*

T� exp

 
�
Z �

�1

d�1 
y �1�� �1; 2� �2�! Z d3x10

h
 y (x10 ; �1)�

�
x10 ; �1; 2

�
 
�
2
�
;  (x1; �1)

i
exp

�
�
Z �1

0

d�1 
y �1�� �1; 2� �2�� y (2)�

= ��
�
1; 2
� D
T�S [�] 

�
2
�
 y (2)

E
:

We had to take the derivative of the arguments of the exponentials and to be
careful about order of operators at equal time. Collecting all the contributions,
we can write�

@

@�1
� r

2
1

2m
� �

�
G (1; 2)� = �� (1� 2) +

D
T�

h
 y
�
2+
�
V
�
1� 2

�
 
�
2
�
 (1) y (2)

iE
�

��
�
1; 2
�
G
�
2; 2
�
�
: (88.9)
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Note that we had to specify  y
�
2+
�
in the term with the potential energy. The

superscrpt + speci�es that the time in that �eld operator is later than the time
in  

�
2
�
: In other words

2+ �
�
x2; �2 + 0

+;�2
�

Equal time does not mean anything in a time ordered product, we have to specify

the order. The choice to take  y
�
2+
�
keeps the �eld in the order it was in to

begin with.
The equations of motion can be written in a compact form if we de�ne

G�10
�
1; 2
�
� �

�
@
@�1
� r2

1

2m � �
�
�
�
1� 2

�
: (88.10)

With this de�nition, the equation of motion Eq.(36.10) takes the form�
G�10

�
1; 2
�
� �

�
1; 2
��
G
�
2; 2
�
�
= � (1� 2)�V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y (2)

iE
�
:

Comparing with Dyson�s equation, we have an explicit form for the self-energy,

�
�
1; 2
�
�
G
�
2; 2
�
�
= �V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y (2)

iE
�
. (88.11)

The equation of motion can then also be written as�
G�10

�
1; 2
�
� �

�
1; 2
�
� �

�
1; 2
�
�

�
G
�
2; 2
�
�
= � (1� 2)

which also reads

G�1 (1; 2)� = G
�1
0 (1; 2)� � (1; 2)� � (1; 2)� : (88.12)

Remark 388 You can work out a speci�ca example using the power series de�-
nition of the exponential to show that inside a time-ordered product, exponentials
behave as ordinary exponential, T�

�
eA+B

�
= T�

�
eAeB

�
even when A and B are

operators that do not commute, as long as A and B have bosonic commutation
relations.

Remark 389 The self-energy is related to a four-point function and we note in
passing that the trace of the de�ning equation 88.11 is related to the potential
energy.

�
�
1; 10

�
G
�
10; 1+

�
= 2 hV i� =

D
T�

h
 y
�
1+
�
 y
�
10+
�
V
�
10 � 1

�
 
�
10
�
 
�
1
�iE

(88.13)

Remark 390 The 1+ on the left-hand side is absolutely necessary for this expres-
sion to make sense. Indeed, taken from the point of view of Matsubara frequencies,
one knows that the self-energy goes to a constant at in�nite frequency while the
Green�s function does not decay fast enough to converge without ambiguity. On
the right-hand side of the above equation, all operators are at the same time, in
the order explicitly given.
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89. THE GENERAL MANY-BODY
PROBLEM

Since we need a four-point function to compute the self-energy and we know G�
if we know the self-energy, we can �nd a set of self-consistent equations if we can
express the four-point function in terms of the self-energy. We begin by �nding an
integral equation for the four-point function to achieve this and then we use the
result in the expression for the self-energy.

89.1 An integral equation for the four-point func-
tion

As we just saw in Eq.(87.13),

�G (1; 2)�
�� (3; 4)

=
D
T� (1) 

y (2) y (3) (4)
E
�
+ G (1; 2)� G (4; 3)� : (89.1)

The equation for the functional derivative is then easy to �nd using GG�1 = 1 and
our matrix notation,

�
�
GG�1

�
��

= 0 (89.2)

�G
��
G�1 + G �G

�1

��
= 0 (89.3)

�G
��

= �G �G
�1

��
G: (89.4)

With Dyson�s equation Eq. (88.12) for G�1 we �nd the right-hand side of that
equation

�G
��

= G ��
��
G + G ��

��
G: (89.5)

Just to make sure what we mean, let us restore indices. This then takes the form

�G (1; 2)�
�� (3; 4)

= G
�
1; 1
�
�

��
�
1; 2
�

�� (3; 4)
G
�
2; 2
�
�
+ G

�
1; 5
�
�

��
�
5; 6
�
�

�� (3; 4)
G
�
6; 2
�
�

= G (1; 3)� G (4; 2)� + G
�
1; 5
�
�

��
�
5; 6
�
�

�� (3; 4)
G
�
6; 2
�
�
: (89.6)

We will see that � depends on � only through its dependence on G so that this
last equation can also be written in the form

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)�

+G
�
1; 5
�
�

 
��
�
5; 6
�
�

�G
�
7; 8
�
�

�G
�
7; 8
�
�

�� (3; 4)

!
G
�
6; 2
�
�
: (89.7)
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This general equation can also be written in short-hand notation

�G
��

= G^G+ G
��
�G
�G
��

G ; (89.8)

where the caret ^ reminds us that the indices adjacent to it are the same as those
of � and where the two terms on top of one another are matrix multiplied top
down as well. Fig. 36-1 illustrates the equation with the indices. The diagrams go
from top to bottom to remind ourselves of where the indices are in the algebraic
equation, but we may rotate the diagrams in any direction we want.

89.2 Self-energy from functional derivatives

In short hand, what we want to achieve is the following. Starting from the general
reult Eq.(88.11) written in terms of the four-point function which itself can be
written as a functional derivative in Eq.(89.1), we have

� = �V
�
�G
�� � GG

�
G�1: (89.9)

Since the integral equation for �G�� requires that we know both G and
��
�G there will

be some iteration process involved.
One physical point that will become clearer when we put all indices back,

is that the self-energy contains information about the fact that the medium is
polarizable, i.e. it depends on the four-point correlation function �G

�� and hence on
the density-density correlation function, or equivalently the longitudinal dielectric
constant, as we shall verify.
We can also write an equation that looks as a closed functional equation for �

by using the expression Eq.(89.5) relating �G
�� and

��
�� :

� = �V
�
G ��
��
G + G ��

��
G � GG

�
G�1:

= �V
�
G ��
��
+G ��

��
� G

�
(89.10)

An alternate useful form that uses the fact that all the functional dependence of
� on � is implicit through its dependence on G is

� = �V
�
G ���� � G + G

��
�G

�G
��

�
(89.11)

Since � is already linear in V; it is tempting to use � = �V
�
G ���� � G

�
as a

�rst approximation. This is the Hartree-Fock approximation.

Remark 391 ��
�G in the equation for the functional derivative Eq.(89.7) is called

the irreducible vertex in the particle-hole channel. The reason for this will become
clear later. The term that contains this irreducible vertex is called a vertex correc-
tion. Note that G

�
��
�G
�
G plays the role of a self-energy for the four-point function

�G
�� : For the same reason that it was pro�table to resum in�nite series for G by
using the concept of a self-energy, it will be preferable to do the same here and use
G
�
��
�G
�
G as a self-energy instead of iterating the equation for �G

�� at some �nite
order.
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Let us do this restoring all indices. To compute the self-energy, according to
Eq.(88.11), what we need to obtain the self-energy is

� (1; 3)� = �V
�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y

�
4
�iE

�
G�1�

�
4; 3
�
: (89.12)

We write the four-point function with the help of the functional derivative Eq.(36.22)
by replacing in the latter equation 3! 2+; 4! 2; 1! 1; 2! 4 so that

� (1; 3)� = �V
�
1� 2

�24 �G �1; 4��
��
�
2+; 2

� � G �2; 2+�
�
G
�
1; 4
�
�

35G�1 �4; 3�
�

= �V
�
1� 2

�24�G �1; 4�
�

�G�1
�
4; 3
�
�

��
�
2+; 2

� � G �2; 2+�
�
� (1� 3)

35 :
where we used Eq.(36.24) �G

��G
�1 = �G �G�1�� :This is the general expression that

we need for �: Note that in ��
�
2+; 2

�
the spins are identical, in other words, in

spin space that matrix is diagonal. This is not the only possibility but that is the
only one that we need here as we can see from the four point correlation function
that we need. This is the so-called longitudinal particle-hole channel.

Remark 392 Mnemotechnic: The �rst index of the V
�
1� 2

�
is the same as the

�rst index of the upper line and is the same as the �rst index on the left-hand side
of the equation. The second index is summed over and is the same as the index

on the denominator of
�G(1;4)

�

��(2+;2)
. The two Green�s function in G

�
2; 2+

�
�
G
�
1; 4
�
�

can be arranged on top of one another so that this rule is preserved.

To begin to do approximations, we use the equation relating �G�1
�� Eq.(89.5) to

��
�� to obtain a closed set of equation for � that will lend itself to approximations
in power series of the potential

� (1; 3)� = �V
�
1� 2

�24G �1; 4�
�

��
�
4; 3
�
�

��
�
2+; 2

� + G �1; 4�
�

��
�
4; 3
�
�

��
�
2+; 2

�
�G

�
2; 2+

�
�
� (1� 3)

�
(89.13)

= �V (1� 3)G
�
1; 3+

�
�
+V

�
1� 2

�
G
�
2; 2+

�
�
� (1� 3)

�V
�
1� 2

�
G
�
1; 4
�
�

��
�
4; 3
�
�

��
�
2+; 2

� : (89.14)

The last term is the only one that will give a frequency dependence, and hence an
imaginary part, to the self-energy.
The �rst two terms in the above equation are the Hartree-Fock contribution,

that we will discuss in the next section and at length later on. By the way, you
may wonder about G (1; 3+)� : Where does the + come from? Well, note that

V
�
1� 2

�
G
�
1; 4
�
�

��
�
4; 3
�
�

��
�
2+; 2

� = V
�
1� 2

�
G
�
1; 4
�
�
�
�
3� 2

�
�
�
4� 2+

�
(89.15)

= V
�
1� 2

�
G
�
1; 2+

�
�
�
�
3� 2

�
(89.16)
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so that when we to the integrals over 2 and 4; the time that corresponds to 4
entering the Green�s function has to be later than the time 2 entering the potential.
That is relevant because V

�
1� 2

�
is instantaneous, i.e. there is a delta function

� (�1 � �2) so whether we have G
�
1; 2
�
or G

�
1; 2+

�
is relevant. The + re�ects the

fact that in the Hamiltonian, the creation operators are always to the left of the
annihilation operators.
In general, the functional dependence of � on � will be through the dependence

on G. Hence, using the chain rule, the above equation may be rewritten

� (1; 3)� = �V (1� 3)G
�
1; 3+

�
�
+V

�
1� 2

�
G
�
2; 2+

�
�
� (1� 3)

�V
�
1� 2

�
G
�
1; 4
�
�

��
�
4; 3
�
�

�G
�
5; 6
�
�

�G
�
5; 6
�
�

��
�
2+; 2

� : (89.17)

The equation for the self-energy is represented schematically in Fig. 36-2. Note
that the diagrams are one-particle irreducible, i.e. they cannot be cut in two
seperate pieces by cutting a single propagator.

Remark 393 Connection between indices in the Green�s function and the direc-
tion of the arrow in the diagram: We take the convention that for G (1; 2)� the
arrow begins at the annihilation operator 1 and ends at the creation operator 2: It
might have been natural to begin at the creation operator instead. In fact it does
not matter, as long as one is consistent. Both conventions can be found in the
literature.
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90. LONG-RANGE FORCES AND
THE GW APPROXIMATION

Up to now, I have derived everything with space-time indices. In the �rst sec-
tion below, we will see what happens if the irreducible vertex is evaluated in
the Hartree-Fock approximation, again in space-time. Moving to momentum and
frequency, an approximation known as the RPA approximation, or GW for the
self-energy, will become obvious.

90.1 Equations in space-time

Since � is already linear in external potential, it is tempting to drop the last term
of the last equation of the previous section since that will be of second order at
least. If we do this, we obtain

� (1; 3)� = V
�
1� 2

�
G
�
2; 2+

�
�
� (1� 3)�V (1� 3)G

�
1; 3+

�
�
: (90.1)

This is the Hartree-Fock approximation. This can be used to compute ��
�G that

appears both in the in the exact expression for the self-energy Eq.(89.17) and in
the exact expression for the four-point function Eq.(89.7) that also appears in the
self-energy. A look at the last two �gures that we drew is helpful.
Refering to the exact expression for the four-point function Eq.(89.7), what

we need is
��(5;6)�
�G(7;8)�

which we evaluate from the the Hartree-Fock approximation

Eq.(37.1),

�� (5; 6)�
�G (7; 8)�

= V
�
5� 9

�
�
�
9� 7

�
�
�
9� 8

�
� (5� 6)�V (5� 6) � (7� 5) � (8� 6)

= V (5� 7) � (7� 8) � (5� 6)�V (5� 6) � (7� 5) � (8� 6) :

It is easier to imagine the result by looking back at the illustration of the Hartree-
Fock term in Fig. 36-1. The result of the functional derivative is illustrated in
Fig. 37-3. When two coordinates are written on one end of the interaction line,
it is because there is a delta function. For example, there is a � (5� 6) for the
vertical line.
Substituting back in the equation for the exact found-point function �G�� Eq.(89.7);

we �nd

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)�

+G
�
1; 5
�
�

 
V
�
5� 7

� �G �7; 7��
�� (3; 4)

!
G
�
5; 2
�
�

(90.2)

�G
�
1; 5
�
�

 
V
�
5� 6

� �G �5; 6��
�� (3; 4)

!
G
�
6; 2
�
�
: (90.3)
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This expression is easy to deduce from the general diagrammatic representation of
the general integral equation Fig. 36-1 by replacing the irreducible vertex by that
in Fig. 37-3 that follows from the Hartree-Fock approximation. This is illustrated
in Fig. 37-4.
To compute a better approximation for the self-energy we will need �� (2+; 2)

instead of �� (3; 4) ; as can be seen from our exact result Eq.(89.17). Although
one might guess it from symmetry, we will also see that all that we will need is,
�G (1; 1+), although it is not obvious at this point. It is quite natural however that
the density-density correlation function plays an important role since it is related
to the dielectric constant. From the previous equation, that special case can be
written

�G (1; 1+)�
�� (2+; 2)

= G (1; 2)� G (2; 1)� (90.4)

+G
�
1; 5
�
�

 
V
�
5� 7

� �G �7; 7��
�� (2+; 2)

!
G
�
5; 1
�
�

(90.5)

�G
�
1; 5
�
�

 
V
�
5� 6

� �G �5; 6��
�� (2+; 2)

!
G
�
6; 1
�
�
: (90.6)

This equation is refered to as the generalized RPA. When the last term is neg-
elected, this is the RPA.

90.2 Equations in momentum space with � = 0

We are ready to set � = 0. Once this is done, we can use translational invariance
so that � (1; 2) = � (1� 2) and G (1; 2) = G (1� 2) : In addition, spin rotational
invariance implies that these objects are diagonal in spin space. We then Fourier
transform to take advantage of the translational invariance. In that case, restoring
spin indices we can de�ne

G� (k) =
Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�ik�(x1�x2)eikn(�1��2)G� (1� 2) (90.7)

In this expression, kn is a fermionic Matsubara frequency and the Green�s function
is diagonal in spin indices �1 and �2. For clarity then, we have explicitly written
a single spin label. We thus make the following rule:

� When in position space there is an arrow representing G (1� 2) in the trans-
lationally invariant case, in momentum space, you can think of this arrow
as carrying a momentum k:

For the potential we de�ne

V�;�0 (q) =

Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�iq�(x1�x2)eiqn(�1��2)V�;�0 (1� 2)
(90.8)

where qn is, this time, a bosonic Matsubara frequency, in other words

qn = 2n�T (90.9)

with n and integer. Again we have explicitly written the spin indices even if
V�;�0 (1� 2) is independent of spin.
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� An interaction in a diagram is represented by a dotted line. Note that
because V (1� 2) = V (2� 1) ; in momentum space we are free to choose
the direction of q on the dotted line at will. Once a convention is chosen,
we stick with it.

Remark 394 General spin-dependent interaction: In more general theories, there
are four spin labels attached to interaction vertices. These labels correspond to
those of the four fermion �elds. Here the situation is simpler because the interac-
tion not only conserves spin at each vertex but is also spin independent.

Whether we compute G (1� 2) or a susceptibility � (1� 2) ; when we go to
momentum space, it is as if we were injecting a momentum (frequency) in the
diagram. It is convenient to work completely in momentum space by starting from
the above position space expressions, and their diagrammatic equivalent, and now
write every G (1� 2) and V (1� 2) entering the internal lines of a diagram also in
terms of their Fourier-Matsubara transforms, Then we consider an internal vertex,
as illustrated in Fig.(37-5), where one has to do the integral over the space-time
position of the vertex, say 10 (in addition to the spin sum). Leaving aside the spin
coordinates, that behave just as in position space, the integral to perform isZ

dx01

Z �

0

d� 01e
�i(k1�k2+q)�x01ei(k1;n�k2;n+qn)�

0
1 (90.10)

= (2�)
3
� (k1 � k2 + q)��(k2;n�k1;n);qn (90.11)

= V�k1�k2;q��(k2;n�k1;n);qn (90.12)

�k1�k2;q�(k2;n�k1;n);qn are Kronecker delta functions. The last line is for the dis-
crete version of momentum. Note that the sum of two fermionic Matsubara fre-
quencies is a bosonic Matsubara frequency since the sum of two odd numbers is
necessarily even. This means that the integral over � 01 is equal to � if k1;n�k2;n+
qn = 0 while it is equal to zero otherwise because exp (i (k1;n � k2;n + qn) � 01)is
periodic in the interval 0 to �: The conclusion of this is that momentum and Mat-
subara frequencies are conserved at each interaction vertex. In other words, we
obtain the following rule:

� The sum of all wave vectors entering an interaction vertex vanishes. And
similarly for Matsubara frequencies.

This means that a lot of the momentum integrals and Matsubara frequency
sums that occur can be done by simply using conservation of momentum and of
Matsubara frequencies at each vertex. We are left with the following rules:

� One must integrate over the momenta and Matsubara frequencies that are
not determined by momentum conservation. In general, there are as many
integrals to perform as there are closed loops in a diagram.

� We must also sum over spins that appear in internal indices, conserving
spin at each interaction vertex when the interaction has this property. The
propagator G�will then be diagonal in spin index.

Suppose we have G� (1� 2) in terms of products of various G� and interactions.
We want to write the corresponding expression in momentum space. This means
that we take the Fourier-Matsubara transform of G� (1� 2) to obtain G� (k) : As
mentioned above, a momentum k must �ow in and out.

Example 39 Writing
k = (k; ikn) ; (90.13)
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the Hartree-Fock approximation for the self-energy Eq.(37.1) is

� (k) = � 1
V

X
q

T
1X

n=�1
V (q)G (k + q) eikn0

+

+V (q = 0)
1

V

X
k

T
1X

n=�1
eikn0

+

G (k)

(90.14)
The sign of the wave vector q; or direction of the arrow in the diagram, must be
decided once for each diagram but this choice is arbitrary since the potential is
invariant under the interchange of coordinates, as mentioned above. This is illus-
trated in Fig. 37-6Note that here the q = 0 contribution in the Hartree (so-called

tadpole diagram) is cancelled by the positive ion background since G
�
2; 2+

�
is just

the electron density, which is the same as the ion density. You can convince your-

self that G
�
2; 2+

�
= 1

V

P
k T

P1
n=�1 eikn0

+G (k) : The same convergence factor
appears in the Fock term. You can understand where it comes from by retuning to
the discussion that surrounds Eq. (??) above.

Example 40 For the four-point function, there are four outside coordinates so we
would need three independent outside momenta. However, all that we will need, as
we shall see, are the density-density �uctuations. In other words, as we can see
from the general expression for the self-energy in Fig. 36-2, we can identify two
of the space-time points at the bottom of the graph. We have already written the
expression in coordinates in Eq.(37.11). Writing the diagrams for that expression
and using our rules for momentum conservation with a four-momentum q �owing
top down, the four-point function in Fig. 37-4 becomes as illustrated in Fig. 37-7.

90.3 Density response in the RPA

We keep following our �rst step approach that gave us the Hartree-Fock approx-
imation and corresponding susceptibility. Returning to our expression for the
susceptibility in terms a functional derivative

�
X
�1;�2

�G (1; 1+)
�� (2+; 2)

=
X
�1;�2

D
T� 

y �1+� (1) y �2+� (2)E� n2 (90.15)
= hT�n (1)n (2)i � n2 (90.16)

= hT� (n (1)� n) (n (2)� n)i
= �nn(1� 2): (90.17)

and Fourier transforming, we obtain in the case where the irreducible vertex is
obtained from functional derivatives of the Hartree-Fock self-energy the set of
diagrams in Fig. 37-7. In the middle diagram on the right-hand side of the equality,
there is a sum over wave vectors k0 because three of the original coordinates of the
functional derivative at the bottom of the diagram were di¤erent. This means there
are two independent momenta, contrary to the last diagram in the �gure. One
of the independent momenta can be taken as q by momentum conservation while
the other one, k0; must be integrated over. The contribution from that middle
diagram is not singular at small wave vector because the Coulomb potential is
integrated over. By contrast, the last diagram has a 1=q2 from the interaction
potential, which is divergent. We thus keep only that last term. The integral
equation, illustrated in Fig. 41-3, then takes an algebraic form

�nn(q) = �0nn(q)� �0nn(q)Vq�nn(q): (90.18)
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To �gure out the sign from the �gure, recall that the green triangle stands for
�G(1;1+)
��(2+;2) ; while there is a minus sign in the equation for the susceptibility Eq.
(90.17). Since the integral equation (90.18) for �nn(q) has become an algebraic
equation in Fourier-Matsubara space, it is easy to solve. We �nd,

�nn(q) =
�0nn(q)

1 + Vq�0nn(q)
=

1

�0nn(q)
�1 + Vq

: (90.19)

This is the so-called Random Phase Approximation, or RPA. The last form of the
equality highlights the fact that the irreducible vertex, here Vq, plays the role of
an irreducible self-energy in the particle-hole channel. The analytic continuation
will be trivial.
Note that we have written �0nn(q) for the bubble diagram, i.e. the �rst term

on the right-hand side of the equation in Fig. 37-7 even though everything we
have up to now in the Schwinger formalism are dressed Green�s functions. The
reason is that neglecting the middle diagram on the right-hand side of the equality
is like neglecting the contribution from the Fock, or exchange self-energy in Fig.
37-6. The only term left then is is the Hartree term that we argued should vanish
because of the neutralizing background. Hence, the Green�s functions are bare
ones and the corresponding susceptibility is the Linhard function.

Remark 395 Equivalence to an in�nite set of bubble diagrams: The integral equa-
tion for the susceptibility has turned into an algebraic equation in 90.18. By re-
cursively replacing �nn(q) on the right-hand side of that equation by higher and
higher order approximations in powers of Vq we obtain

�(1)nn(q) = �0nn(q)� �0nn(q)Vq�0nn(q)
�(2)nn(q) = �0nn(q)� �0nn(q)Vq�0nn(q) + �0nn(q)Vq�0nn(q)Vq�0nn(q) (90.20)

etc. By solving the algebraic equation then, it is as if we had summed an in�nite
series which diagrammatically would look, if we turn it sideways, like Fig. 41-2.The
analogy with the self-energy in the case of the Green�s function is again clear.

90.4 Self-energy and screening in the GW approx-
imation

We have derived in Eq.(36.13) an expression for the product �G:When � = 0 and
2 = 1+; this equation reduces to

�
�
1; 2
�
�
G
�
2; 1+

�
�
= V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 y (1+) (1)

iE
. (90.21)

It shows that we should have an approximation for the self-energy that, when
multiplied by G, gives the density-density correlation function. That is a very
general result, or sum-rule, is a sort of consistency relation between one- and
two-particle properties. It is equivalent to Eq.(43.23). This is a very important
property that we will use also later in the context of non-perturbative treatments
of the Hubbard model.
To obtain an approximation for the self-energy � that is consistent with the

density-density correlation function that we just evaluated in the RPA approxi-
mation, we return to the general expression for the self-energy Eq.(89.17) and the
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corresponding pictorial representation Eq.(36-2). We replace the irreducible vertex
��=�G by the one shown in Fig. 41-3 that we used to compute the density-density
correlation function illustrated in Fig. 37-7. Note however that, as we did before,
we keep only the terms where Vq carries a momentum q: We neglect the next to
last diagram in Fig.37-7. The other way to justify why we keep only these terms
is that they are the most divergent diagrams. Their sum to in�nity is however
�nite. We also know that by summing all diagrams to in�nity, we are calculating
the two-particle equivalent of a self-energy, shifting poles of the non-interacting
density-density correlation function, as we should.
The �nal result is illustrated in Fig. 44-5. We just need to replace the functional

derivative of the Green function appearing at the bottom right by the RPA series
illustrated in Fig. 41-3. Recalling that the Hartree term vanishes, the �nal result
is equivalent, when looked at sideways, to the series of bubble diagrams illustrated
in Fig. 44-2.
The algebraic expression for this second level of approximation for the self-

energy can be read o¤ the �gure. It takes the explicit form

�RPA (k;ikn) = �(2) (k;ikn) (90.22)

= �
Z

d3q

(2�)
3T
X
iqn

Vq

�
1� Vq�

0
nn (q;iqn)

1 + Vq�0nn (q;iqn)

�
G0 (k+ q; ikn + iqn)

where the �rst term comes from the Fock contribution. The two terms can be
combined into the single expression

�(2) (k;ikn) = �
Z

d3q

(2�)
3T
X
iqn

Vq
1 + Vq�0nn (q;iqn)

G0 (k+ q; ikn + iqn) : (90.23)

Using our result for the longitudinal dielectric constant that follows from the
density �uctuations in the RPA approximation Eq. (41.9), the last result can be
written as

�(2) (k;ikn) = �
Z

d3q

(2�)
3T
X
iqn

Vq
"L (q;iqn) ="0

G0 (k+ q; ikn + iqn) (90.24)

which has the very interesting interpretation that the e¤ective interaction enter-
ing the Fock term should be the screened one instead of the bare one. The two
are equal only at very high frequency. The screened potential Vq

"L(q;iqn)="0
is of-

ten denoted W which means that the integrand is WG0, hence the name GW
approximation. We discuss this further below.

Remark 396 To see that this deminition makes sense, we rederive the expres-
sion for the longitudinal dielectric constant. The electric �eld depends on the total
charge, including the induced one

iq �E =(�e + � h�i)
"0

: (90.25)

The longitudinal dielectric constant is de�ned by

iq�
 !
�L �E =�e: (90.26)

 !
�L depends on q and !; it is a retarded response function. With a longitudinal
applied �eld, the previous two equations lead to�

�L
��1

=
�e + � h�i
"0�e

: (90.27)
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The linear response to an external charge can be computed from the response to
the scalar potential �e(q; !) = �e=

�
q2"0

�
it induces

� h�(q; !)i = ��R��(q; !)�e(q; !) (90.28)

so that simple substitution in the equation for
�
�L
��1

gives,

1
�L(q;!)

= 1
"0

�
1� 1

q2"0
�R��(q; !)

�
: (90.29)

The above results are recovered with �R��(q) = e2�nn(q) and Eq.(90.19).

90.5 Hedin�s equations

How do we keep the structure of the �nal formula that we obtained for the self-
energy, that contains an e¤ective interaction and the dielectric constant? It is
posible to formulate the general many-body problem in such a way that an e¤ec-
tive interaction appears. The �nal result is the Hedin formulation. One simply
separates the Irreducible vertex into a part that comes from the Hartree term, and
gave RPA, and the rest. The �nal equations are presented pictorially in Fig.51-3
and derived in Chapter 51. The self-energy takes the general form

� (1; 3) = �G
�
1; 4
�
W
�
1; 2
�
�
�
2
+
; 2; 4; 3

�
(90.30)

where W is the e¤ective interaction and � contains vertex corrections. These
vertex corrections appear also in the expression for W: The GW approximation
discussed above corresponds to approximating � by unity.
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91. LUTTINGER-WARD FUNC-
TIONAL AND RELATED FUNC-
TIONALS

There is a very elegant formulation of the Many-Body problem that focuses on a
functional of the interacting Green function instead of on a functional of source
�elds. The two approaches are related by a Legendre transform. This is where one
encounters the so-called Luttinger-Ward functional, that plays a prominent role in
de�ning approximations that satisfy conservation laws and in deriving Dynamical
Mean-Field Theory.
The free energy as a functional of the source �eld � is given by

F [�] = �T lnZ [�] = �T lnTr
h
e��KT� exp

�
� y

�
1
�
�
�
1; 2
�
 
�
2
��i

: (91.1)

The physical free energy is F [� = 0] : The derivative with respect to the source
�eld is simply related to the Green function

1

T

�F [�]

�� (1; 2)
= G (2; 1) : (91.2)

The last two equations can be used to de�ne a Legendre transform where G is the
natural variable:


[G] = F [�]� Tr [�G] : (91.3)

The trace contains a factor of temperature. More speci�cally, when there is time
and space translational invariance,

Tr [� � � ] = T
X
ikn

X
k

[� � � ] (91.4)

while in general,
Tr [�G] = T�

�
1; 2
�
G
�
2; 1
�
: (91.5)

Remark 397 Legendre transform are usually de�ned between convex functions.
We cannot prove continuty in our case. The best we can hope is that the Legendre
transform is de�ned locally and check that the results make sense.

The functional 
[G] is the so-called Kadano¤-Baym functional. As expected
for Legendre transforms

1

T

�
 [G]
�G (1; 2) = �� (2; 1) : (91.6)

The proof is easy and can be found in Chapter 72.3.
Using the equations of motion, we have that the relation between � and G is

given by
G�1 (1; 2)� = G

�1
0 (1; 2)� � (1; 2)� � (1; 2)� (91.7)

which means that

1

T

�
 [G]
�G (1; 2) = �� (2; 1) = G

�1 (2; 1)� � G
�1
0 (2; 1) + � (2; 1)� (91.8)
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and Dyson�s equation in its usual form is satis�ed only for � = 0 where the
extremum principle

1

T

�
 [G]
�G (1; 2)

= 0 (91.9)

is satis�ed and where the functional 
[G] is simply equal to the free energy as
follows from the de�nition Eq.(91.3) with � = 0:
We can guess an explicit expression for 
 [G] by starting from its derivative

Eq.(91.8). We obtain the so-called Baym-Kadano¤ functional,


 [G] = � [G]� Tr
��
G�10 � G�1

�
G
�
+ Tr

�
ln

�
�G
�G1

��
(91.10)

which gives the correct result in the non-interacting case (for the de�nition of G1
see Eq.(80.18)) and reduces to Eq.(91.8) when functionally di¤erentiated, as long
as

1

T

�� [G]
�G (1; 2) = � (2; 1) : (91.11)

We also need to prove that 1
T

�
�G(1;2)Tr

h
ln
�

�G
�G1

�i
= G�1 (2; 1) : The proof evalu-

ates the logarithm in the diagonal basis as you can see in Chapter ??.
The functional � [G] is the so-called Luttinger-Ward functional. We can obtain

an explicit form for it by using the basic property of Legendre transforms exem-
pli�ed by our example with pressure in ordinary statistical mechanics, Eq.(A.17).
More speci�cally, multiply the potential energy term in the Hamiltonian by �;
then the physical case corresponds to � = 1 and the general properties of Legen-
dre transforms tell us that

@
� [G]
@�

����
G
=
@F� [�]

@�

����
�

: (91.12)

But the explicit form of the Baym-Kadano¤ functional Eq.(91.10) tells us that

@
� [G]
@�

����
G
=
@�� [G]
@�

����
G

(91.13)

while the derivative of the free energy is

@F� [�]

@�

����
�

=
1

�

D
�V̂
E
�
: (91.14)

The average hi� means that the potential energy is averaged with the Hamiltonian
where the coupling constant is multiplied by � so that V̂ ! �V̂ : Hence, we can
obtain the Luttinger-Ward functional by a coupling constant integration

�� [G] =
Z 1

0

d�
1

�

D
�V̂
E
�
: (91.15)

Note that since the equality of the two potentials with respect to �; Eq.(91.12), is
valid for any G and the corresponding �; the coupling constant integration for the
Luttinger-Ward functional may be evaluated for � = 0 and for G that satis�es the
usual Dyson equation or for any G we wish. The average of the potential energy
in the last equation is related to the density-density correlation function. The
resulting integral over coupling constant gives for �� [G] the same result that we
would have obtained from the linked cluster theorem. There is a 1=n factor for a
term of order n:
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Remark 398 Since 1
T

��[G]
�G(1;2) = �(2; 1) with � the sum of all one-particle ir-

reducible skeleton diagrams, � [G] is the sum of two-particle irreducible skeleton
diagrams.

For more on functionals and their relation to dynamical mean-�eld theory, see
Chapter 77.
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92. A GLANCE AT COHERENT
STATE FUNCTIONAL INTEGRALS

In modern treatments of the many-body problem, one often writes an action in-
stead of a Hamiltonian. To understand this, one �rst need to grasp the general
idea of path integral. This is discussed in the one-particle context in Chapter 22.
In this approach, one divides the time-evolution operator e�iHt into in�nitesimal
time steps. This allows to write e�iT�t�iV�t ' e�iT�te�iV�t with T and V the
kinetic and potential energies respectively. Then, the amplitude to go between
initial and �nal space-time points is proportional to the exponential of the action.
Recall that the action is the time-integral of the Lagrangian.
One can do something analogous in second quantization. First, fermion co-

herent states are introduced in Chapter 79. To de�ne these states, one needs the
notion of anticommuting numbers, known as Grassmann numbers. Integrals and
derivatives over these numbers can also be de�ned and all the results that involve
quadratic Hamiltonians can be obtained from Gaussian integrals and derivatives
over Grassmann numbers. Then in Chapter 80 you will �nd functional integrals
where the action appears. Below, only some of the main results are mentioned.

92.1 Fermion coherent states

Let c be a fermion destruction operator, then c j0i = 0 while the fermion coherent
state j�i is de�ned as an eigenstate of the destruction operator,

c j�i = � j�i : (92.1)

Since c1c2 j�1; �2i = �c2c1 j�1; �2i the eigenvalues � must be numbers that anti-
commute. Namely,

f�1; �2g = 0: (92.2)

Since Grassmann numbers occur only inside time-ordered products, it turns out
that it su¢ ces to de�ne the adjoint in such a way that it also anticommutes, there
is no delta function: �

�; �y
	
= 0: (92.3)

Given the de�nition of Grassmann numbers, one can write an explicit de�nition of
fermion coherent states in the Fock basis if we add the de�nition that Grassmann
numbers and fermion operators also anticommute:

j�i =
�
1� �cy

�
j0i (92.4)

Given that �2 = 0, one can verify the de�ning property c j�i = � j�i Eq.(92.1):

c j�i = c j0i+ �ccy j0i = � j0i = �
�
1� �cy

�
j0i = � j�i : (92.5)

Also, again since �2 = 0; we can use the de�nition

j�i = e��c
y
j0i (92.6)
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that has the same structure as a boson coherent state.
Note that while � and �y must be considered independent, they are nevertheless

adjoint from each other. Namely, we have that

h�j = h0j
�
1� c�y

�
: (92.7)

92.2 Grassmann calculus

All functions can only be linear in Grassmann variables. The integral over Grass-
mann variables resembles derivatives, namelyR

d� = 0: (92.8)

R
d�� = 1: (92.9)

The most important identity isZ
D�y

Z
D�e��

yA���yJ�Jy� =

Z
D�y

Z
D�e�(�

y+JyA�1)A(�+A�1J)+(JyA�1J)

R
D�y

R
D�e��yA���yJ�Jy� = det (A) exp

�
JyA�1J

�
(92.10)

where A is an invertible matrix while � and J are vectors of Grassmann numbers
and the measure is R

D�y
R
D� �

Y
i

R
d�yi

R
d�i.

(92.11)

Each space and imaginary-time slice has a Grassmann number associated with it.
Wick�s theorem can be derived rather systematically with this approach.

92.3 Recognizing the Hamiltonian in the action

As an example, let us seem how the Anderson impurity problem looks like in
action formalism. We need to evaluateZ

D�y
Z
D�e�S

where the total action is
S = SI + SIb + Sb (92.12)

with the impurity action

SI =

Z �

0

d�

"X
�

�
 y� (�)

@

@�
 � (�) + "I 

y
� (�) � (�)

�
+ U y" (�) 

y
# (�) # (�) " (�)

#

=

Z �

0

d�

"X
�

�
 y� (�)

�
�G�10

�
 � (�)

�
+ U y" (�) 

y
# (�) # (�) " (�)

#
(92.13)
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and the action of the bath

Sb =

Z �

0

d�
X
k

X
�

�
�y� (k; �)

@

@�
�� (k; �) + " (k) �

y
� (k; �) �� (k; �)

�
(92.14)

=

Z �

0

d�
X
k

X
�

�y� (k; �)
�
�G�1b (k; �)

�
�� (k; �) (92.15)

and the contribution to the action coming from the hybridization between impurity
and bath

SIb =

Z �

0

d�
X
k

X
�

h
V� (k) 

y
� (�) �� (k; �) + V

�
� (k) �

y
� (k; �) � (�)

i
: (92.16)

Remark 399 In general, we change from the Hamiltonian to the above action
formalism, simply by using the recipe

SI =

Z �

0

d�

" X
�

 y� (�)
@

@�
 � (�)

!
+H

�
 y� (�) ;  � (�)

�#
(92.17)

where we simply replace the creation operators in the original H by  y� (�) and the
destruction operators by  � (�) : In the classical formalism, L = p _q �H with

p =
@L

@ _q
: (92.18)

For the corresponding quantum �elds then,  y� (�) is the conjugate �eld and

 y� (�) =
@L

@ _ � (�)
: (92.19)

Since  and  yobey
n
 (r) ;  y (r0)

o
= � (r� r0) it is natural to expect that they are

conjugate variables and that they should appear in the combination  y� (�)
@
@�  � (�)

when changinf from Hamiltonian to Lagrangian.

Remark 400 It is now clear that �G�10 instead of H0 is now the basic object
since it appears in the quadratic term of the action. In addition to @=@� , other
imaginary-time dependent single-particle quantities can appear in G�10 :
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A. STATISTICAL PHYSICS AND
DENSITY MATRIX

A.1 Density matrix in ordinary quantum mechanics

Quantum mechanics tells us that the expectation value of an observable O in a
normalized state j i is given by h jO j i . Expanding over complete sets of states,
we obtain

h jO j i =
X
i;j

h j ii hijO jji hj j i (A.1)

=
X
i;j

hj j i h j ii hijO jji (A.2)

=
X
i;j

hjj � jii hijO jji (A.3)

= Tr [�O] (A.4)

where the Density Matrix � is de�ned, as an operator, by

� � j i h j : (A.5)

This is when we have a pure state. If the state is prepared in a statistical
superposition, in other words, if we have a certain probability pn that the state
that is prepared is j ni ; then the expectation value of an observable will be given
by the weighted sum of the results in each state, in other words, in the above
formula for the average we should use

� �
X
n

pn j ni h nj : (A.6)

This is the density matrix for a mixed state. Note that

�2 =
X
n;m

pnpm j ni h nj  mi h mj : (A.7)

We have the property �2 = � only for a pure state.
When a system of interest is in contact with an environment, it is very useful

to work with an e¤ective density matrix obtained by taking the trace �rst over
the degrees of freedom of the environment. This idea is common in particular in
the �eld of quantum information. By considering part of a large system as the
environment, we can greatly reduce the size of the Hilbert space that needs to
be considered to diagonalize a Hamiltonian, especially in one dimension. The
optimal way of doing this was found by Steve White and is discussed in the
context of the "Density Matrix Renormalization Group". Not so surprisingly,
quantum information theory has helped to improve even further this approach.
Uli Schollwöck will explain this.
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A.2 Density Matrix in Statistical Physics

Statistical Physics tells us that conserved quantities play a special role. Indeed,
at equilibrium, the density matrix cannot depend on time, so it depends only on
conserved quantities. This means that generally, the density matrix is diagonal in
the energy and number basis for example. All that is left to do is to specify pn: The
basic postulate of statistical physics is that in an isolated system, all microscopic
states consistent with the value of the conserved quantities are equiprobable. This
is the microcanonical ensemble where pn is identical for all energy eigenstates
j ni : The other ensembles are derived in the usual way by considering the micro-
canonical system as including the system of interest and various reservoirs. In the
canonical ensemble for example, pn = e��En=Z where Z is the partition functionP
n e

��En and � = (kBT )
�1
:

Alternatively, the various ensembles are obtained by maximizing the entropy

S � �kBTr [� ln �] (A.8)

subject to constraints such as �xed average energy and normalization in the case
of the canonical ensemble. Important properties of the entropy include extensivity
and concavity. The entropy also plays a major role in quantum information.

A.3 Legendre transforms

Legendre transforms are encountered in mechanics when going from a Lagrangian
to a Hamiltonian formulation. That transformation is extremely useful in sta-
tistical physics as well and it will be used for example by Gabi Kotliar at this
School.
The important idea of statistical physics that we start with is that of potentials.

If you know the entropy as a function of mechanical quantities, like energy volume
and number of particles for example, then you know all the thermodynamics.
Indeed,

dE = TdS � pdV + �dN (A.9)

dS =
1

T
dE +

p

T
dV � �

T
dN (A.10)

so you can obtain temperature T; pressure p and chemical potential � simply by
taking partial derivatives of the entropy. (1=T; S) (p=T; V ) (��=T;N) are pairs of
conjugate variables. Instead of using E; V;N as independent variables, given the
concavity of the entropy and the uniqueness of the equilibrium state, you can write
S as a function of any three other variables. Nevertheless, the purely mechanical
variables E; V;N are the most natural ones for the entropy. The entropy plays the
role of a thermodynamic potential. As a function of all microscopic variables not
�xed by E; V;N; it is maximum at equilibrium.

Remark 401 When there are broken symmetries, additional variables must be
added. For example, for a ferromagnet with magnetization M in a magnetic �eld
H;

dE = TdS � pdV + �dN +M�dH (A.11)
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There are other potentials. For example, if a system is in contact with a heat
reservoir, the work that will be done at constant temperature will be modi�ed
by the presence of the reservoir that can absorb and give internal energy through
thermal contact, i.e. in the form of heat. It is thus physically motivated to de�ne
for example the Helmholtz free energy

F = E � TS (A.12)

T =

�
@E

@S

�
V;N

(A.13)

In this case
dF = dE � SdT � TdS = �SdT � pdV + �dN: (A.14)

The Helmholtz free energy F can be written in terms of any three thermodynamical
variables, but T; V;N are the most natural ones. At �xed T; V;N it is the free
energy that is a minimum instead of the energy because we have to take into
account the reservoir. The change from S to T as a natural variable has been
done through the pair of equations (A.12,A.13). This is the general structure of a
Legendre transform. F and E are potentials, and the subtraction of the product of
the conjugate variables �

�
@E
@S

�
V;N

S does the trick of relating the two potentials

Remark 402 Note that
�
@2E=@S2

�
= (@T=@S) = 1= (@S=@T ) = �1=

�
@2F=@T 2

�
:

There is another useful de�nition of Legendre transform. Omitting the vari-
ables N and V that appear on both sides of the equation, we have the Legendre-
Fenchel transform

F (T ) = min
S

eF (E;S) � min
S
(E (S)� TS) : (A.15)

This de�nition is valid even in the context of phase transitions where
�
@E
@S

�
V;N

might not be well de�ned. Its equivalent is used also in the context of Luttinger-
Ward and other functionals.
One of the main motivations for the de�nition of Legendre transforms is to

�nd various thermodynamic quantity from a potential that re�ects the actual
physical situation. For example, mechanically pressure is a derivative with respect
to volume. If one wants to �nd the pressure from the internal energy E then one
needs to �x the entropy since

p = �
�
@E

@V

�
S;N

: (A.16)

But if the system is not thermally isolated to keep S �xed, but is instead in
contact with a heat reservoir that �xes the temperature, then the pressure must
be also be computed from a derivative with respect to volume but of a di¤erent
thermodynamic potential, namely

p = �
�
@F

@V

�
T;N

= �
�
@E

@V

�
S;N

: (A.17)

Analogous results hold for the chemical potential and any other thermodynamic
quantity that is a derivative with respect to entropy or temperature.

Remark 403 Connection with classical statistical mechanics: Legendre trans-
forms are always de�ned between pairs of thermodynamically conjugate variables.
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In ordinary classical mechanics, let p be momentum and q be position. Then with
L the Lagrangian, function of q and _q the Euler Lagrange equations yield�

@L

@ _q

�
q

= p (A.18)�
@L

@q

�
_q

= _p (A.19)

so that p is conjugate to _q and _p is conjugate to q; namely

dL = pd _q + _pdq: (A.20)

A Legendre transform allows us to de�ne a function of p and q instead of _q and
q, namely the Hamiltonian.

H = p _q � L (A.21)

Note that derivatives with respect to the variable that is not involved in the trans-
formation, namely q, allow us to �nd _p from a derivative with respect to q but
with di¤erent potentials and variables held constant, just as in thermodynamics,
namely

_p =

�
@L

@q

�
_q

= �
�
@H

@q

�
p

: (A.22)

A.4 Legendre transform from the statistical mechan-
ics point of view

Note that since

� F

T
= S � E

T
(A.23)

= S �
�
@S

@E

�
V;N

E (A.24)

the quantity �F=T can be seen as the Legendre transform of the microcanonical
entropy. From the point of view of statistical mechanics, if we de�ne 
 (E) as the
number of microstate n corresponding to a given energy, then pn = 1=
 (E) for
every microstate and

S (E) = �kBTr [� ln �] = �kB
X
n

1


 (E)
ln

1


 (E)
(A.25)

= kB ln
 (E) (A.26)

So, from the point of view of statistical mechanics, the Legendre transform of the
entropy is obtained from

� F

T
= kB lnZ = kB ln

X
n

e��En (A.27)

= kB ln
X
E


 (E) e��E (A.28)

= kB ln
X
E

eln 
(E)e��E (A.29)

= kB ln
X
E

e(S(E)�E=T )=kB (A.30)
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Whereas the microcanonical entropy is a function of the energy of microstates, its
Legendre transform is summed over energy and is a function of 1=T; the coe¢ cient
of E in both the thermodynamical expression of the Legendre transform Eq.(A.25)
and the statistical one Eq.(A.30).
We know that

hEi = �@ lnZ
@�

= �@ (�F=T )
@ (1=T )

(A.31)

which clari�es the connection between the statistical mechanical and thermody-
namical de�nitions of Legendre transform. E in the case of thermodynamics is
really the average energy from the statistical mechanical point of view. The last
equation could have been written down directly from the statistical expression for
�F=T:
Finally, note that a saddle point evaluation of the sum over energy appearing

in the partition function Eq.(A.30) leads to

�F (T )
T

= sup
E

�
S (E)� E

T

�
(A.32)

which is another version of Eq.(A.15).
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B. SECOND QUANTIZATION

B.1 Describing symmetrized or antisymmetrized states

States that describe identical particles must be either symmetrized, for bosons,
or antisymmetrized, for fermions. To simplify the calculations, it is useful to
use second quantization. As its name suggest, there is also an axiomatic way to
introduce this method as a quantization of �elds but here we will just introduce it
as a calculational tool. The approach will be familiar already if you master ladder
operators for the harmonic oscillator.
For de�niteness, let us concentrate on fermions. This can be translated for

bosons. De�ne the operator  y (r) that creates a particle in a position eigenstate
jri and antisymmetrizes the resulting wave function. De�ne also the vacuum state
j0i that is destroyed by the adjoint, namely  (r) j0i = 0: In this language

 y (r) y (r0) j0i =
1p
2
(jri jr0i � jr0i jri) (B.1)

� jr; r0i = � jr0; ri : (B.2)

The state to the right is clearly normalized and antisymmetric. There are two
copies of the one-particle Hilbert space. In one component of the wave function,
the particle in the �rst copy is at jri ; in the other component the particle in the
�rst copy is at jr0i : Clearly, that can become quite complicated. The two body-
wave function hr; r0 j'i is antisymmetric and in the case where there are only two
one-particle states occupied it is a Slater determinant. Clearly, that becomes a
mess. In terms of the creation-annihilation operators however, all we need to know
is that by de�nition of these operators,

 y (r) y (r0) +  y (r0) y (r) = 0: (B.3)

We use the short-hand for anticommutationn
 y (r) ;  y (r0)

o
= 0: (B.4)

Taking the adjoint,
f (r) ;  (r0)g = 0: (B.5)

The only thing missing is thatn
 (r) ;  y (r0)

o
= � (r� r0) : (B.6)

That is a bit more complicated to show, but let us take it for granted. It is clear
that if  y (r) creates a particle, then  (r) removes one (or destroys it). If the
particles are at di¤erent positions, that can be done in any order. If r = r0; then
it will matter if we create a particle before destroying it. If the creation occurs
before the destruction, there will be one more particle to destroy. The Dirac delta
function comes from normalization in the continuum. For discrete basis, we would
have unity on the right.
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B.2 Change of basis

A key formula for the ��eld� operators  y (r) is the formula for basis change.
Suppose that one has a new complete basis of one-particle states j�i. Then, we
can change basis as follows:

jri =
X
�

j�i h�j ri (B.7)

Given the de�nition of creation operators, the creation operator  y (r) for a par-
ticle in state jri is related to the creation operator cy� for a particle in state j�i by
the analogous formula, namely

 y (r) =
X
�

cy� h�j ri : (B.8a)

This formula is quite useful.

B.3 Second quantized version of operators

B.3.1 One-body operators

If we know the matrix elements of an operator in the one-particle basis, the cal-
culation of any observable can be reduced to some algebra with the creation-
annihilation operators. In other words, not only states, but also operators cor-
responding to observables can be written using creation-annihilation operators.
The expression for these operators is independent of the number of particles and
formally analogous to the calculation of averages of operators in �rst quantized
notation.
To be more speci�c, consider the operator for the density of particles at position

jri : It can be written as  y (r) (r) as we prove now. Since ABC � CAB =
ABC +ACB �ACB � CAB the commutator ot this operator with  y (r0) is,h

 y (r) (r) ;  y (r0)
i
=  y (r)

n
 (r) ;  y (r0)

o
�
n
 y (r) ;  y (r0)

o
 (r)(B.9)

= � (r� r0) y (r) (B.10)

We can now use the following little �theorem�on commutator of ladder operators:

Theorem 41 If [A;B] = �B and j�i is an eigenstate of A with eigenvalue �; then
B j�i is an eigenstate of A with eigenvalue �+�; as follows from AB j�i�BA j�i =
A (B j�i)� � (B j�i) = � (B j�i) :

Since  y (r) (r) j0i = 0; the above implies that  y (r) (r)
�
 y (r1) j0i

�
=

� (r� r1)
�
 y (r1) j0i

�
; and generally a state  y (r1) 

y (r2) : : : j0i is an eigenstate
of  y (r) (r) with eigenvalue � (r� r1) + � (r� r2) + : : : Clearly, the potential
energy of identical electrons in a potential V (r) can be writtenZ

 y (r)V (r) (r) d3r: (B.11)
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The same reasoning leads to the kinetic energy in the momentum basis, where it
is diagonal Z

cy (k)
~2k2

2m
c (k)

d3k

(2�)
3 : (B.12)

Returning to the position-space basis, we obtainZ
 y (r)

�
�~

2r2

2m

�
 (r) d3r: (B.13)

In other words, for any one-body operator, we can always obtain its second-
quantized form in the one-particle basis j�i where it is diagonal:X

�

cy� h�jO j�i c� =
X
�;�

cy� h�jO j�i c� : (B.14)

If we change to an arbitrary basis

j�i =
X
i

jii hij �i (B.15)

the operator takes the formX
�;�

cy� h�jO j�i c� =
X
�;i;j

cy� h�j ii hijO jji hjj �i c� =
X
i;j

cyi hijO jji cj : (B.16)

Example 42 Let  y� (r) be the creation operator for the position state jri with the
spin � ="; # . We know the matrix elements of all component of the spin operators
in the basis where Sz is diagonal. Thus, from the last formula, we see that the
three components of the spin operator areZ

 y� (r)

�
~
2
���

�
 � (r) d

3r (B.17)

where, as usual, the Pauli matrices are given by �z =
�
1 0
0 �1

�
; �y =

�
0 �i
i 0

�
; �x =�

0 1
1 0

�
:

B.3.2 Two-body operators

Let us now consider a two-body operator such as the potential energy. It is
diagonal in position-space. The Coulomb interaction

Vc (r� r0) =
e2

jr� r0j (B.18)

is an example. The second quantized Coulomb energy takes the formZ
Vc (r� r0)

1

2
(� (r) � (r0)� � (r� r0) � (r)) d3rd3r0 (B.19)

where the 1=2 comes from avoiding double-counting and � (r� r0) � (r) is necessary
not to count the interaction of an electron with itself. Including spin, the density
operator is

� (r) =
X
�

 y� (r) � (r) : (B.20)
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Substituting in the expression for the Coulomb interaction and using anti-commutation
relations, we obtain

1

2

X
�;�0

Z
Vc (r� r0) y� (r) 

y
�0 (r

0) �0 (r
0) � (r) d

3rd3r0: (B.21)

It is an interesting and not very long exercise to prove that formula (which happens
to have the same form for bosons and fermions).
Let us change to some arbitrary basis. First notice that in terms of the potential

energy operator V̂c
Vc (r� r0) = hrj hr0j V̂c jri jr0i : (B.22)

Then, the change of basis

 y� (r) =
X
i

cyi� hij ri : (B.23a)

leads to the following two-particle analog of the one-body operator Eq.(B.16) in
an arbitrary basis

1

2

X
�;�0

X
ijkl

hij hjj V̂c jki jli cyi�c
y
j�0cl�0ck�: (B.24)
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C. HARTREE-FOCK APPROXIMA-
TION

The Hartree-Fock approximation is the simplest approximation to the many-body
problem. It is a mean-�eld theory of the full Hamiltonian, that we will call �The
theory of everything�. We will begin by writing it explicitely then proceed with
two theorems that form the basis of this approximation.

C.1 The theory of everything

Gathering the results of the previous section, an electron gas interacting with a
static lattice takes the form

Htoe =
X
�

Z
 y� (r)

�
�~

2r2

2m
+ Vc;e�i (r)

�
 � (r) d

3r

+
1

2

X
�;�0

Z
Vc (r� r0) y� (r) 

y
�0 (r

0) �0 (r
0) � (r) d

3rd3r0 (C.1)

where Vc;e�i (r) is the electron-ion Coulomb potential. The dynamics of the ions
(phonons) can be added to this problem, but until the rest of these introductory
notes, we shall take the lattice as static. We need the to allow the lattice to move
and to include spin-orbit interactions to have the complete "theory of everything"
we want to solve. But the above is certainly a non-trivial start.

C.2 Variational theorem

The Ritz variational principle states that any normalized wave function satis�es

h jH j i � h 0jH j 0i (C.2)

where j 0i is the ground state wave function.
Proof. That follows easily by expanding j i =

P
i ai j ii ; where H j ii =

Ei j ii ; and using E0 � Ei :

h jH j i =
X
i;j

a�jai


 j
��H j ii =X

i

jaij2Ei

� E0
X
i

jaij2 = h 0jH j 0i (C.3)

In the Hartree Fock approximation, we use the variational principle to look for
the best one-body Green function for Htoe. In other words, we use our formula

HARTREE-FOCK APPROXIMATION 719



for a change of basis (there is no sum on repeated spin index here)

 y� (r) =
X
i

cyi� hi; �j r; �i =
X
i

cyi��
�
i� (r) (C.4)

cyi� =

Z
d3r y� (r) hr;�j i; �i =

Z
d3r y� (r)�i� (r) (C.5)

and write our ground state wave function as

j HF i = cy1"c
y
1#c

y
2"c

y
2# : : : c

y
N=2"c

y
N=2# j0i : (C.6)

Our variational parameters are the one-particle Green functions ��� (r) : Note that
the most general wave function would be a linear combination of wave functions
of the type j HF i ; each with di¤erent one-particle states occupied.

C.3 Wick�s theorem

To compute h HF jH j HF i ; we expand each of the creation-annihilation opera-
tors in the Hamiltonian Eq.(C.1) in the basis we are looking for, using the change
of basis formula Eq.(C.4). Consider �rst the quadratic term and focus on the
second quantized operators. We need to know

h HF j c
y
i"cj" j HF i (C.7)

The key to compute such matrix elements is to simply use the anticommutation
relations for the creation-annihilation operators and the fact that annihilation
operators acting on the vacuum give zero. Let us do this slowly.
The anticommutation relations for the operators c(y)i� are as follows:n

ci�; c
y
j�0

o
=

Z
d3r

Z
d3r0��i� (r)

n
 � (r) ;  

y
�0 (r

0)
o
�j�0 (r

0) (C.8)

=

Z
d3r��i� (r)�j�0 (r) = �i;j��;�0 (C.9)

so
h0j ci"cyi" j0i = 1� h0j c

y
i"ci" j0i = 1: (C.10)

Generalizing this reasoning, we see that h HF j  HF i = 1:Now, h HF j c
y
i"cj" j HF i

will vanish if either i or j are not in the list of occupied states in j HF i since c
y
i"

also annihilates the vacuum in the bra. If i and j are both in the list of occupied
states, h HF j c

y
i"cj" j HF i = �i;j since cj" will remove a particle in state j in j HF i

while cyi" will remove a particle in state i in h HF j : If the list of particles is not the
same in the bra and in the ket, the annihilation operators can be anticommuted
directly to the vacuum and will destroy it. With this, we have that

h HF j
X
�

Z
 y� (r)

�
�~

2r2

2m
+ Vc;e�i (r)

�
 � (r) d

3r j HF i (C.11)

=
X
�

N=2X
i=1

Z
��i� (r)

�
�~

2r2

2m
+ Vc;e�i (r)

�
�i� (r) d

3r: (C.12)

To compute the expectation value of the interacting part of Htoe we need

h HF j c
y
i�c

y
j�0ck�0cl� j HF i : (C.13)
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Since j HF i is a direct product of wave functions for up and down spins, if the
spins are di¤erent, we obtain

h HF j c
y
i�c

y
j�0ck�0cl� j HF i = �i;l�j;k: (C.14)

If the spins are identical, something new happens. If the conditions k = l or
i = j are satis�ed, the expectation value vanishes because of the anticommutation
relations (Pauli principle). Consider k di¤erent from l: Since all we need is that
the list of states created be the same as the list of states destroyed there are two
possibilities

h HF j c
y
i�c

y
j�ck�cl� j HF i = �i;l�j;k � �i;k�j;l: (C.15)

The last contribution is known as the exchange contribution. The di¤erence in
sign comes from the anticommutation. All these results, including the cases k = l
or i = j for same spin, can be summarized by

h HF j c
y
i�c

y
j�0ck�0cl� j HF i = �i;l�j;k � �i;k�j;l��;�0 : (C.16)

The last result can be written as

h HF j c
y
i�c

y
j�0ck�0cl� j HF i = h HF j c

y
i�cl� j HF i h HF j c

y
j�0ck�0 j HF i(C.17)

�h HF j c
y
i�ck�0 j HF i h HF j c

y
j�0cl� j HF i :(C.18)

A four point correlation function has been factored into a product of two-point
correlation functions. For states such as j HF i that are single-particle states,
creation operators are �contracted� in all possible ways with the destruction op-
erators. This elegant form is a special case of Wick�s theorem. It applies to
expectation values of any number of creation and annihilation operators. The
signs follow from anticommutation.

C.4 Minimization and Hartree-Fock equations

Using Wick�s theorem Eq.(C.16) and proceeding with the Coulomb interaction be-
tween electrons as we did with the one-body part of the Hamiltonian in Eq.(C.12)
we obtain

h HF jHtoe j HF i =
X
�

N=2X
i=1

Z
��i� (r)

�
�~

2r2

2m
+ Vc;e�i (r)

�
�i� (r) d

3r

+
X
�;�0

N=2X
i=1

N=2X
j=1

1

2

Z
Vc (r� r0)

�
��i� (r)�i� (r)�

�
j�0 (r

0)�j�0 (r
0) (C.19)

� ��;�0�
�
i� (r)�i� (r

0)��j�0 (r
0)�j�0 (r)

�
d3rd3r0: (C.20)

To �nd our variational parameters, namely the functions �i� (r), we minimize
the above, subject to the constraint that the wave functions must be orthonor-
malized. This means that we take partial derivatives with respect to all variables
in the above expression. We satisfy the constraintsZ

��i� (r)�j�0 (r) d
3r��i;j��;�0 = 0 (C.21)

using Lagrange multipliers. We have to think of ��i� (r) and �i� (r) as independent
variables de�ned at each di¤erent position r and for each index i; �: To take the
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partial derivatives carefully, one should discretize space and take the limit but the
�nal result is pretty obvious. All we need to know is that what replaces the partial
derivative in the continuum version is the functional derivative

��i� (r)

��j�0 (r
0)

= � (r� r0) �i;j��;�0 (C.22)

���i� (r)

��j�0 (r
0)

= 0: (C.23)

The result of the minimization with respect of ��i� (r) is straightforward. One
obtains �

�~
2r2

2m
+ Vc;e�i (r)

�
�i� (r) + VH (r)�i� (r)�

Z
d3r0Vex (r; r

0)�i� (r
0)

=

N=2X
i=1

ij�j� (r) (C.24)

VH (r) =

Z
d3r0Vc (r� r0)

X
�0

N=2X
j=1

���j�0 (r)��2 (C.25)

Vex (r; r
0) = Vc (r� r0)

N=2X
j=1

��j� (r
0)�j� (r) : (C.26)

The matrix ij is a real symmetric matrix of Lagrange multipliers. Diagonalizing
ij and writing the eigenvalues "i, the above equation looks like a Schrödinger
equation. The Hartree contribution VH (r) has the physical interpretation that
each electron interacts with the average density of the other electrons

n (r) =
X
�0

N=2X
j=1

���j�0 (r)��2 : (C.27)

The exchange contribution Vex (r; r0) has no classical analog. It comes from the
anticommutation of indistinguishible particles. The "i can be interpreted as single-
particle excitation energies only if removing a particle does not modify too much
the e¤ective potentials.

722 HARTREE-FOCK APPROXIMATION



D. MODEL HAMILTONIANS

D.1 Heisenberg and t-J model

Consider the Hubbard Hamiltonian, supposing that we are in the limit where U
is much larger than the bandwidth. One expects that in low energy eigenstates,
single-particle Wannier states will be either empty or occupied by a spin up or a
spin down electron and that double occupation will be small. If we could write
an e¤ective Hamiltonian valid at low energy, that means that we would reduce
the size of the Hilbert space from roughly 4N to 3N for an N site lattice. This
is possible. The e¤ective Hamiltonian that one obtains in this case is the t � J
model, which becomes the Heisenberg model at half-�lling.
To obtain this model, one can use canonical transformations or equivalently

degenerate perturbation theory. Although both approches are equivalent, the one
that is most systematic is the canonical transformation approach. Nevertheless,
we will see a simpli�ed version of the degenerate perturbation theory approach
since it is su¢ cient for our purpose and simpler to use.
We start from the point of view that the unperturbed part of the Hamiltonian

is the potential energy. If there is no hopping, the ground state has no double
occupancy and it is highly degenerate since the spins can take any orientation.
Hopping will split this degeneracy. Let us write the eigenvalue problem for the
Hubbard Hamiltonian in the block form�

H11 H12

H21 H22

��
X
Y

�
= E

�
X
Y

�
(D.1)

where H11 contains only terms that stay within the singly occupied subspace, H12

and H21 contains hopping that links the singly occupied subspace with the other
ones and H22 contains terms that connect states where there is double occupancy.
Formally, this separation can be achieved using projection operators. To project
a state in the singly occupied subspace, one uses H11 = PHP where the projector
P is

P =
NY
i=1

(1� ni"ni#) : (D.2)

Returning to the block form of the Hamiltonian, we can solve for Y = (E �H22)
�1
H21X

and write �
H11 +H12 (E �H22)

�1
H21

�
X = EX: (D.3)

What save us here is that the eigenstates we are looking for are near E = 0 whereas
H22 will act on states where there is one singly occupied state since the hopping
term in H12 can at most create one doubly occupied state from a state with no
double occupation. The leading term in H22 will thus simbply give a contribution
U which is large compared to E: We are left with the eigenvalue problem�

H11 �
H12H21

U

�
X = EX: (D.4)

The �rst part of the Hamiltonian H11 contains only hopping between states
where no site is doubly occupied. The potential energy in those states vanishes.
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The quantityH12H21 can be computed as follows. The only term of the original
Hamiltonian that links singly and doubly occupied states is the hopping part. Let
us consider only nearest neighbor hopping with tij = �t: Then

H12H21 = t2
X
hiji�

X
hkli�0

�
cyi�cj� + h:c:

��
cyk�0cl�0 + h:c:

�
(D.5)

where each nearest-neighbor bond hiji is counted only once in the sum. Since
we leave from a state with singly occupied sites and return to a state with singly
occupied sites, hkli = hiji survives as well as cases such as hkli = hili if one of
the sites i is empty in the initial state. The latter contribution is called correlated
hopping. It describes second-neighbor hopping through a doubly occupied state.
In the t�J model, this term is often neglected on the grounds that it is proportional
to t2=U whereas H11 is of order t: That is not necessarily a good reason to neglect
this term.
Let us return to the contribution coming from hkli = hiji : Discarding terms

that destroy two particles on the same site, we are left with only

� H12H21

U
= � t

2

U

X
hiji��0

�
cyi�cj�Qc

y
j�0ci�0 + i$ j

�
(D.6)

where Q is the projection operator that makes sure that the intermediate state is
doubly occupied. We have to consider four spin con�gurations for the neighboring
sites i and j . The con�gurations ji "i jj "i and ji #i jj #i do not contribute
since the intermediate state is prohibited by the Pauli principle. The con�guration
ji "i jj #i when acted upon by the �rst term in the last equation Eq.(D.6) has non-
zero matrix elements with two possible �nite states, hi "j hj #j and hi #j hj "j : The
matrix element has the value�t2=U for the �rst case and t2=U for the con�guration
where the spins have been exchanged because of the fermionic nature of the states:
The con�guration ji #i jj "i has the corresponding possible �nal states. And
the i $ j term in Eq.(D.6) just doubles the previous results, in other words
the magnitude of the non-zero matrix elements is 2t2=U . Since only spins are
involved, all we need to do is to �nd spin operators that have exactly the same
matrix elements.
What we are looking for is

4t2

U~2
X
hiji

�
Si � Sj �

~2

4
ninj

�
= J

X
hiji

�
Szi S

z
j +

1

2

�
S+i S

�
j + S

�
i S

+
j

�
� ~

2

4
ninj

�
(D.7)

where J � 4t2=U~2: Indeed, if the neighboring spins are parallel, the quantity
S+i S

�
j + S

�
i S

+
j has zero expectation value while the expectation of S

z
i S

z
j , namely

~2=4; is cancelled by the expectation of �~2ninj=4. For antiparallel spins, Szi Szj �
~2ninj=4 has expectation value �~2=2 between con�gurations where the spins do
not �ip while 12

�
S+i S

�
j + S

�
i S

+
j

�
has vanishing matrix elements. In the case where

the spins �ip between the initial and �nal state, only 12
�
S+i S

�
j + S

�
i S

+
j

�
has non-

zero expectation value and it is equal to ~2=2:With the de�nition of J given, this
corresponds to the matrix elements we found above.
This is the form of the Heisenberg Hamiltonian. Including the correlated hop-

ping term, the t� J Hamiltonian takes the following form

H = P

24X
hiji�

tijc
y
i�cj� + J

X
hiji

�
Si � Sj �

~2

4
ninj

�35P (D.8)

+P

24�J
4

X
i;k 6=k0

�
cyi;��cj;��c

y
j+k;�cj+k0;� + c

y
j+k;��c

y
i;��cj;��cj+k0;�

�35P
724 MODEL HAMILTONIANS



where the last term is the three-site hopping term that is usually neglected.
It is remarkable, but expected, that at half-�lling the e¤ective Hamiltonian is

a spin-only Hamiltonian (The �rst term in the above equation does not contribute
when there is no hole because of the projection operators). From the point of
view of perturbation theory, the potential energy is the large term. We are in an
insulating phase and hopping has split the spin degeneracy.
Classically, the ground state on a hypercubic lattice would be an antiferromag-

net. This mechanism for antiferromagnetism is known as superexchange.
In closing, one should remember that to compute the expectation value of any

operator in the singly occupied space, one must �rst write it in block form, in other
words, one should not forget the contribution from the Y component of the wave
function. For example, the kinetic energy hKi of the Hubbard model calculated
in the low energy subspace will be equal to minus twice the potential energy hV i.
That can be seen from

hKi = (X Y )K

�
X
Y

�
= (XKY ) + (Y KX) = � 2

U
(X KK X) (D.9)

hV i = (X Y )V

�
X
Y

�
= (Y V Y ) = +

1

U
(X KK X) (D.10)

since in the intermediate state, V gives the eigenvalue U in all intermediate states.

D.2 Anderson lattice model

In the Anderson lattice model, on purely phenomenological grounds one considers

localized states
�
fyi�

�
with a Hubbard U , hybridized with a conduction band

�
cyk�

�
of non-interacting electrons. This model is particularly useful for heavy fermions,
for example, where one can think of the localized states as being f electrons:

HA = Hf +Hc +Hfc (D.11)

Hf �
X
�

X
i

"fyi�fi� +
X
i

U
�
fyi"fi"

��
fyi#fi#

�
(D.12)

Hc �
X
�

X
k

"kc
y
k�ck� (D.13)

Hfc �
X
�

X
i

Vic
y
i�fi� + h:c: (D.14)

In the case where there is only one site with f electrons, one speaks of the Anderson
impurity model. When U is large, one can proceed as for the t�J Hamiltonian and
obtain an e¤ective model where there is no double occupancy of the impurity and
where the spin of the conduction electrons interacts with the spin of the impurity.
The transformation is called the Schrie¤er-Wolf transformation and the e¤ective
Hamiltonian is the Kondo Hamiltonian.
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E. BROKEN SYMMETRY AND
CANONICALTRANSFORMATIONS

The occurence of broken symmetry can be obtained from mathematical arguments
only in very few situations, such as the Ising model in two dimensions. A simple
paramagnetic state and a state with broken symmetry are separated by a phase
transition, in other words by singularities in the free energy. Hence, the broken
symmetry state cannot be obtained perturbatively. One postulates a one-body
Hamiltonian where the symmetry is broken its stability veri�ed using variational
arguments. In this and many other contexts, canonical transformations are key
tools to understand and solve the problem. We have seen examples above. Basis
changes obtained from unitary transformations preserve the (anti)commutation
relations. Such transformations are called canonical. We will illustrate these
concepts with the example of superconductivity.

E.1 The BCS Hamiltonian

The general idea of Cooper pairs is that cyp"c
y
�p# almost plays the role of a boson

byp. Commutation relations are not the same, but we want to use the general
idea that superconductivity will be described by a non-zero expectation value of

byp by analogy to super�uidity. The expectation value
D
cyp"c

y
�p#

E
occurs in the

Ginzburg-Landau theory as a pair wave function. The mean-�eld state will be
described by a coherent state.
We �rst write the general Hamiltonian in momentum space and, in the spirit

of Weiss, the trial Hamiltonian for the mean-�eld takes the form

HE � �N = H0 � �N +
1

V

X
p;p0

U (p� p0)
D
cyp"c

y
�p#

E
c�p0#cp0"

+
1

V

X
p;p0

U (p� p0) cyp"c
y
�p# hc�p0#cp0"i

= H0 � �N +
X
p

�
��pc�p#cp" + c

y
p"c

y
�p#�p

�
(E.1)

where we de�ned
�p =

1

V

X
p0

U (p� p0) hc�p0#cp0"i : (E.2)

The potential U (p� p0) is an e¤ective attraction that comes from phonons in
standard BCS theory. We take this for granted. The states within an energy shell
of size ~!D around the Fermi level are those that are subject to that attraction.The
kinetic part of the Hamiltonian is given by

H0 � �N =
X
p;�

("p � �) cyp;�cp;� (E.3)

�
X
p;�

�pc
y
p;�cp;�: (E.4)
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In the so-called jellium model, "p = ~2p2=2me but one can take a more general
dispersion relation. In matrix form, the combination of all these terms gives,
within a constant

HE � �N =
X
p

�
cyp" c�p#

�� �p �p
��p ���p

��
cp"
cy�p#

�
: (E.5)

One is looking for a canonical transformation that diagonalize the Hamiltonian.
When this will be done, the c(y)�p# will be linear combinations of eigenoperators.
These linear combinations will involve �p: To �nd the value of �p; it will su¢ ce to
substitute the eigenoperator expression for cp� in the de�nition of �p; Eq.(E.2).
This will give a self-consistent expression for �p:
Let us de�ne the Nambu spinor

	p =

�
cp"
cy�p#

�
(E.6)

whose anticommutator is n
	p;i;	

y
p0:j

o
= �p;p0�i;j (E.7)

where i and j identiby the components of the Nambu spinor. Any unitary trans-
formation of the Nambu spinors will satisfy the anticommutation relations, as one
can easily check. Since the Hamiltonian matrix is Hermitian, it can be diagonalized
by a unitary transformation.
Eigenvalues Ep are obtained from the characteristic equation�

�p � �p
� �
�p + �p

�
� j�pj2 = 0 (E.8)

where one used �p = ��p valid for a lattice with inversion symmetry. The solutions
are

�p = �Ep = �
q
�2p + j�pj

2 (E.9)

and the eigenvectors obey�
�Ep � �p ��p
���p �Ep + �p

��
a1p
a2p

�
= 0: (E.10)

whose solution is �
�Ep � �p

�
a1p = �pa2p (E.11)

The constraint of normalization for a unitary transformation is

ja1pj2 + ja2pj2 = 1: (E.12)

The unitary transformation U

U =

�
up �vp
v�p u�p

�
(E.13)

Uy =

�
u�p vp
�v�p up

�
(E.14)

where �
up
v�p

�
=

1p
2

0B@
�
1 +

�p
Ep

�1=2
e�i�1p�

1� �p
Ep

�1=2
ei�2p

1CA
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diagonalizes the Hamiltonian�
Ep 0
0 �Ep

�
= Uy

�
�p �p
��p ��p

�
U:

Using this result, we can write

HE � �N =
X
p

�
cyp" c�p#

�
UUy

�
�p �p
��p ��p

�
UUy

�
cp"
cy�p#

�
(E.15)

=
X
p

�
�yp" ��p#

��
Ep 0
0 �Ep

��
�p"
�y�p#

�
(E.16)

=
X
p;�

Ep�
y
p;��p;� + cte: (E.17)

where the new operators are related to the old by the Bogoliubov-Valentin (1958)
transformation�

�p"
�y�p#

�
= Uy

�
cp"
cy�p#

�
=

�
u�p vp
�v�p up

��
cp"
cy�p#

�
: (E.18)

The ground state is the state that is annihilated by these new operators

�p� jBCSi = 0:

The new operators are linear combination of creation-annihilation operators since
the eigenstate is a linear combination of states having di¤erent numbers of parti-
cles. At zero temperature for example, one can check explicitely that the following
state is indeed annihilated by �p�

jBCSi =
Y
k

�
1 +

vk
u�k
cy�k#c

y
k"

�
j0i :

The value of the gap�p is obtained from the self-consistency equation Eq.(E.2).
It su¢ ces to write the cp" en as a function of the diagonal operators �p�: Inverting
the Bogoliubov transformation Eq.(E.18) gives

�
cp"
cy�p#

�
=

�
up �vp
v�p u�p

��
�p"
�y�p#

�
(E.19)

whose adjoint is

�
cyp" c�p#

�
=
�
�yp" ��p#

�� u�p vp
�v�p up

�
: (E.20)

We also note that

n (Ep) �
D
�yp"�p"

E
=

1

e�
0Ep + 1

: (E.21)

The Fermi-Dirac distribution arises from the fact the the Hamiltonian is diagonal
and quadratic when written as a function of fermionic operators �(y)p :We can now
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compute the mean value of the pair operator.

hc�p0#cp0"i =
D�
vp0�

y
p0" + up0��p0#

��
up0�p0" � vp0�y�p0#

�E
(E.22)

= vp0up0
D
�yp0"�p0" � ��p0#�

y
�p0#

E
(E.23)

= �vp0up0 (1� 2n (Ep0)) (E.24)

= �1
2

 
1�

�2p0

E2p0

!1=2
e�i�1p0�i�2p0 (1� 2n (Ep0)) (E.25)

= �1
2

j�p0 j
Ep0

e�i�1p0�i�2p0 (1� 2n (Ep0)) : (E.26)

= �1
2

�p0

Ep0
(1� 2n (Ep0)) (E.27)

Substituting in self-consistency equation, we Eq.(E.2) on obtain

�p = �
1

2V

X
p0

U (p� p0) �p
0

Ep0
(1� 2n (Ep0)) : (E.28)

where �p is in general complex. This is known as the BCS equation.

Remark 404 Even when the interaction depends on p� p0, the phase is neces-
sarily independent of p. Indeed, the gap equation can be rewritten in the form

[Cp�p] = �
1

2V

X
p0

CpU (p� p0)Cp0 [Cp0�p0 ] : (E.29)

where

Cp =

�
(1� 2n (Ep))

Ep

�1=2
: (E.30)

The gap equation can then be reinterpreted as an eigenvalue equation. The eigen-
vectors are in brackets and the eigenvalue is unity. Since the matrix �CpU (p� p0)Cp0= (2V )
whose eigenvalues we are looking for is real and symmetric, the eigenvector is real
within a global phase, i.e. a complex number ei� that multiplies all components
of the eigenvector. This independence of p of the phase is known as �phase co-
herence�. It is key to superconductivity, If the eigenvalue of the gap equation is
degenerate, something new can happen. One obvious degeneracy is associated with
time-reversal symmetry. When this symmetry is broken, there is still an overall
p independent phase, but the order parameter is complex in a way that does not
correspond to a global phase. This in general gives, for example, a non-trivial
value of the orbital angular momentum.

Remark 405 Coherence: Since �1p + �2p = � for all values of p; all the pairs
are added to the wave function with exactly the same phase. This can be seen from
the BCS wave function at zero temperatureY

k

�
1 +

vk
u�k
cy�k#c

y
k"

�
j0i :

It is the interactions that impose that phase coherence that is at the origin of the
phenomenon of superconductivity. Only the overall p independent phase of � is
arbitrary. The global gauge symmetry is broken by �xing the phase since phase
and number obey an uncertainty relation. Fixing the phase thus corresponds to
making the total number of particles uncertain.
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F. FEYNMAN�S DERIVATION OF
THE THERMODYNAMIC VARIA-
TIONAL PRINCIPLE FOR QUAN-
TUM SYSTEMS

For quantum systems, the general result Eq.(33.74) applies but it is more di¢ cult
to prove because there is in general no basis that diagonalizes simultaneously

each and every term in the expansion of T� exp
h
�
R �
0
d� eV (�)i : If eV was not time

dependent, as in the classical case, then matters would be di¤erent since eV n would
be diagonal in the same basis as eV and one could apply our inequality Eq.(33.75)
in this diagonal basis and prove the theorem. The proof of the variational principle
in the quantum case is thus more complicated because of the non-commutation
of operators. The proof given in Sec. 33.3.1 is simpler than this one. As far as I
know, the following proof is due to Feynman [12].

Proof: First, let

H (�) = eH0 + �
�
H � eH0

�
(F.1)

= eH0 + �eV (F.2)

then
H (0) = eH0 (F.3)

and
H (1) = H (F.4)

The exact free energy corresponding to H (�) is then written as F (�) : If
for any � we can prove that @2F (�) =@�2 � 0 then the function F (�) is
concave downward and we can write

F (1) � F (0) + @F (�)

@�

����
�=0

(F.5)

as illustrated in Fig.(F-1). Eq.(F.5) is the variational principle that we want
Eq.(33.74). Indeed, let us compute the �rst derivative of F (�) by going to
the interaction representation where eH0 plays the role of the unperturbed
Hamiltonian and use the result for F in terms of connected graphs Eq.(33.69)
to obtain

@F (�)

@�

����
�=0

=
@

@�

n
�T

hD
T�

h
e��

R �
0
d�( bH(�)� eH0)

iE
e0c � 1

io
�=0
(F.6)

= T

*Z �

0

d�
� bH (�)� eH0

�+
e0 (F.7)

=
D
H � eH0

E
e0 (F.8)

The second line follows simply by expanding the time-ordered product to
�rst order while the last line follows if we use the cyclic property of the trace
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0
α

1

F(α)
F(1)

F(0)

F(0) + ∂ α
∂ α

α
α

F( )

=0

Figure F-1 Geometrical signi�cance of the inequalities leading to the quantum
thermodynamic variational principle.

to eliminate the imaginary-time dependence of the Hamiltonian. All that we
have to do now is to evaluate the second derivative @2F (�) =@�2 � 0 for an
arbitrary value of �: This is more painful and will occupy us for the rest of
this proof. It is important to realize that this concavity property of the free-
energy is independent on the form of the Hamiltonian in general and of the
interactions in particular, as long as the Hamiltonian is time-independent.
The generalization to the time-dependent case is not obvious. The second
derivative may be evaluated by going to the interaction representation where

H (�) is the unperturbed Hamiltonian and 
�
H � eH0

�
is the perturbation.

Then,

F (�+ ) = �T
�D
T�

h
e�

R �
0
d�( bH(�)� eH0)

iE
�;c
� 1
�
� T lnZ (�) (F.9)

and the second derivative of F (�) may be obtained from the second-order
term in  in the above expression. Note that the average is taken with
the density matrix exp (H (�)� �N) =Z (�) : Expanding the exponential to
second order in  and returning to our de�nition of eV Eq.(F.2) we �nd

F (�+ ) = F (�) + 
DeV E

�
� 1
2
2

0@ 1
�

*
T�

"
�
Z �

0

d� eV (�)#2+
�;c

1A+ : : :
F (�+ ) = F (�) +

@F (�)

@�
+
1

2
2
@2F (�)

@�2
+ : : : (F.10)

so that the second derivative, using the expression we found above for the
second cumulant Eq.(33.67) is,

@2F (�)

@�2
= � 1

�

*
T�

24 �Z �

0

d� eV (�)!2
35+

�;c

(F.11)

= � 1
�

*
T�

24 �Z �

0

d� eV (�)!2
35+

�

+
1

�

*Z �

0

d� eV (�)+2
�
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This is where we need to roll up our sleeves and do a bit of algebra. Using
the cyclic property of the trace and the de�nition of time-ordered product,
we can rewrite the above result as follows,

@2F (�)

@�2
= �2 1

�

*Z �

0

d� eV (�)Z �

0

d� 0 eV (� 0)+
�

+ �
DeV E2

�
(F.12)

Let us work a bit on the �rst term by going to the basis where H (�) is
diagonal. We obtain, using also the cyclic property of the trace,*Z �

0

d� eV (�)Z �

0

d� 0 eV (� 0)+
�

(F.13)

=
1

Z (�)

X
m;n

e�Kn�

Z �

0

d�

Z �

0

d� 0eKn(��� 0)e�Km(��� 0)
���hnj eV jmi���2

=
1

Z (�)

X
m6=n

e�Kn�

Z �

0

d�e(Kn�Km)�
e(Km�Kn)�

0

Km �Kn

�����
�

0

���hnj eV jmi���2
+

1

Z (�)

X
n

e�Kn�

Z �

0

d��
���hnj eV jni���2 (F.14)

=
1

Z (�)

X
m6=n

e�Kn�

Z �

0

d�
1� e(Kn�Km)�

Km �Kn

���hnj eV jmi���2 (F.15)

+
�2

2Z (�)

X
n

e�Kn�
���hnj eV jni���2 (F.16)

The �rst term on the right-hand side is easily evaluated as follows

1

Z (�)

X
m6=n

e�Kn�

"
�

Km �Kn
+
e(Kn�Km)� � 1
(Km �Kn)

2

# ���hnj eV jmi���2

=
�

Z (�)

X
m6=n

e�Kn�

���hnj eV jmi���2
Km �Kn

(F.17)

where we have used the fact that the term with the denominator (Km �Kn)
2

goes into minus itself under a change of dummy summation variables m !
n: Substituting all we have done in the expression for the second derivative
Eq.(F.12) we �nally obtain

@2F (�)

@�2
= � 2

Z (�)

X
m6=n

e�Kn�

���hnj eV jmi���2
Km �Kn

(F.18)

��

0B@
P
n e

�Kn�
���hnj eV jni���2

Z (�)
�
 P

n e
�Kn� hnj eV jni
Z (�)

!21CA
The terms on the last line gives a negative contribution, as can be seen from
the Cauchy-Schwarz inequality"X

n

janj2
#"X

n

jbnj2
#
�
�����X
n

anbn

�����
2

(F.19)

FEYNMAN�S DERIVATION OF THE THERMODYNAMIC VARIATIONAL PRINCIPLE
FOR QUANTUM SYSTEMS 733



when we substitute

an =

s
e�Kn�

Z (�)
(F.20)

bn =

s
e�Kn�

Z (�)
hnj eV jni (F.21)

This allows us to prove that the sign of the second derivative is negative for
any �: It su¢ ces to rewrite the �rst term in Eq.(F.18) in the form

� 2

Z (�)

X
m6=n

e�Kn�

���hnj eV jmi���2
Km �Kn

= � 1

Z (�)

X
m6=n

e�Kn� � e�Km�

Km �Kn

���hnj eV jmi���2
(F.22)

and to use the Cauchy-Schwartz inequality to obtain

@2F (�)

@�2
� � 1

Z (�)

X
m6=n

e�Kn� � e�Km�

Km �Kn

���hnj eV jmi���2 � 0 (F.23)

QED
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G. DEFINITIONS

1. Dirac�s delta � (!) and Heaviside�s theta

� (!) =

8<: 1 if ! > 0
1
2 if ! = 0
0 if ! < 0

(G.1)

2. Grand-canonical averageP
i e
��(Ei��Ni) hij O jiiP
i e
��(Ei��Ni)

=

P
i hij e��(H��N)O jiiP

i e
��(Ei��Ni)

=
Tr
�
e��(H��N)O

�
Tr
�
e��(H��N)

� = hOi

(G.2)

3. We often de�ne the density matrix by

b% = e��H=Tr
�
e��H

�
: (G.3)

Then, we can write

hAs (t)Asi = Tr [b%As (t)As] (G.4)

4. Conductivity sum ruleZ 1

�1

d!

2�
Re [�xx(qx; !)] =

ne2

2m
=
!2p
8�

(G.5)

5. Dielectric constants

 !
�T (q; !) =

 
1�

!2p
(! + i�)2

!
 !
I +

4�

(! + i�)2

� !
�Rjj(q; !)

�T
: (G.6)

1

�L(q; !)
= 1� 4�

q2
�R��(q; !): (G.7)

6. Equalities.
� Asymptotically equal to (G.8)

� Scales as (G.9)

� Is equal by de�nition (G.10)

' Is approximately equal to (G.11)

7. f sum rule Z 1

�1

d!

�
!�"nn(k; !) =

nk2

m
: (G.12)

8. Fluctuation-dissipation theorem

SAiAj
(!) =

2~
1� e��~! �"AiAj

(!) (G.13)
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9. Fourier transforms

fk =

Z
d3r f(r)e

�ik�r

f(r) =

Z
d3k

(2�)
3 fke

ik�r

g! =

Z
dt g(t)ei!t

g(t) =

Z
d!

2�
g!e

�i!t

(note the di¤erence in sign in the exponent for space and time Fourier trans-
forms.)

Convolution theorem:Z
dtei!t

�Z
dt0a(t0)b(t� t0)

�
� a!b!

Parseval�s theorem is obtained by taking
R
d!
2� on both sides of the previous

equality Z
dt0a(t0)b(�t0) �

Z
d!

2�
a!b!

The above two theorems may also be written in a reciprocal mannerZ
d!

2�
e�i!t

�Z
d!0

2�
a!0b!�!0

�
= a(t)b(t)

Z
d!0

2�
a!0b�!0 =

Z
dtei!ta(t)b(t)

For a translationally invariant system, note that with V the volume,Z
d (r� r0) e�iq�(r�r

0)f(r� r0) = 1

V

Z
dre�iq�r

Z
dr0e�iq�r

0
f(r� r0)

(G.14)

10. Heisenberg representation

O(t) = eiHt=~Oe�iHt=~

11. Interaction representation

OI(t) = eiH0t=~OSe�iH0t=~

i~
@

@t
UI(t; t0) = HI(t)UI(t; t0) (G.15)

UI(t; 0) = Tce
�i
R t
0
HI(t

0)dt0

UI(t0; t0) = 1

1. Kramers-Krönig relations

Re
h
�RAiAj

(!)
i
= P

Z
d!0

�

Im
h
�RAiAj

(!0)
i

!0 � !

Im
h
�RAiAj

(!)
i
= �P

Z
d!0

�

Re
h
�RAiAj

(!0)
i

!0 � ! :
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2. Kubo formula for longitudinal conductivity

�xx(qx; !) =
1

i(! + i�)

�
�Rjxjx(qx; !)�

ne2

m

�
=

�
1

iqx
�Rj��(qx; !)

�
: (G.16)

for transverse conductivity

�yy(qx; !) =
1

i(! + i�)

�
�Rjyjy (qx; !)�

ne2

m

�
: (G.17)

3. Mathematical identities (Sokhatsky-Weierstrass formula)

lim
�!0

1

! + i�
= lim
�!0

! � i�
!2 + �2

= lim
�!0

�
!

!2 + �2
� i�

!2 + �2

�
= P 1

!
� i��(!)

lim
�!0

1

! � i� = lim
�!0

! + i�

!2 + �2
= lim
�!0

�
!

!2 + �2
+

i�

!2 + �2

�
= P 1

!
+ i��(!)

4. Normalization:

Continuum normalization for plane waves:

hR jkii =
1


1=2
eiki�R (G.18)Z

dk

(2�)
3 =

1

V
X
k

; V = LxLyLz ; kx =
�nx
Lx

::: ; nx = �
Lx
a
+1; :::;�1; 0; 1; :::; Lx

a

(G.19)
This is another consistent normalizationZ

dr jri hrj = 1 (G.20)

hr jr0i = � (r� r0) (G.21)

hr jki = eik�r (G.22)Z
dk

(2�)
3 jki hkj = 1 (G.23)

hk jk0i = (2�)3 �
�
k� k0

�
(G.24)

1. Plasma frequency

!2p =
4�ne2

m
(G.25)

2. Response function (Susceptibility)

�RAB(r; r
0; t; t0) =

i

~
h[A(r; t); B(r0; t0)]i �(t� t0)

or in short hand,

�"AiAj
(t� t0) = 1

2~
h[Ai(t); Aj(t0)]i :

�RAiAj
(t� t0) = 2i�"AiAj (t� t0)�(t� t0):

For operators with the same signature under time reversal,
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Im
h
�RAiAj

(!)
i
= �"AiAj

(!)

while two operators Ai; Aj with opposite signatures under time reversal

Re
h
�RAiAj

(!)
i
= �"AiAj (!):

Spectral representation

�AiAj
(z) =

Z
d!0

�

�"AiAj
(!0)

!0 � z (G.26)

3. Minimal coupling to the electromagnetic �eld. N.B. e is the charge of the
particle. It can be positive or negative

p� =
~
i
r� !

~
i
r� � eA(r�; t) (G.27)

i~
@

@t
! i~

@

@t
� e�(r�; t): (G.28)

4. Tensors. Multiplication by a vector� !
�T �A

�
�

=
X
�

�T��A� : (G.29)

Unit vector bq = q= jqj
Transverse part

 !
�T (q; !) =

� !
I �bqbq� �  !� (q; !) � � !I �bqbq� (G.30)

Dyadic product represention of a matrix

(bqbq)ab = bqabqb (G.31)

Longitudinal part  !
�L(q; !) = bqbq �  !� (q; !) � bqbq (G.32)

5. Thermal average (see canonical average)

6. Theta function (Heaviside function)

�(t) =
1 if t > 0
0 if t < 0

(G.33)

7. Kronecker delta function

�k;0 =
1 if k = 0
0 otherwise

(G.34)

8. Electromagnetic constants: "0 = 8:85�10�12 farad/meter is the permittivity
of vacuum and �0 = 4� � 10�7 henry/meter its permeability.

"0�0 =
1

c2
:
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