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Why bother with uniform electron gas!?

* Solution of UEG serves as a proof of principle that tests the capability of a method to address
realistic materials with long range Coulomb repulsion (beyond simplified models).

* Such solution offers new insights into the ab-intion methods (DFTs and GWs), and more
understanding of screening in solids.

Variational Diagrammatic Monte Carlo (VDMC) [1,2] allows

* very precise determination of certain physical observables in electron gas: effective mass, landau-
liquid parameters, spin & charge susceptibilities.

* It also provides XC-kernel needed in TDDFT community [3].

* It settles the debate on bandwidth in electron gas, as relevant for Na metal.

* It is useful in other fields, i.e., warm dense matter field uses the same model at higher
temperature, where VDMC performs even better.

* VDMC should be developed into electronic structure method for high-throughput calculation
(like achieved in DFT community, as well as recently by DFT+eDMFT method [4]).

VDMC: Y Build d‘atabas’e/f.
[1] Kun Chen, K. Haule, Nature Communications 10, 3725 (2019) aC.C_Ul"a’te ele(ﬁ%C
[2] K. Haule, K. Chen, Scientific Reports 12,2294 (2022) : it

[3] J. P. F. LeBlanc, K. Chen, N.V. Prokof’ev, K.H., Igor S.Tupitsyn, in preparation
[4]Kamal Choudhary et.al.,, npj Computational Materials 6, | (2020).
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History : Uniform electron gas v X
— _—g) - —:@—<
Is at the heart of the DFT success for materials property prediction.
oL ,.[n OVic[nl(r, w)
E..[n] V.. = el ] frelnl(r,r', w) = —
XC XC 5]/1 [ 5n(r w)
Remains essentially unknown to this day
Dirac’s relativistic theory of the electron Needed in TDDFT
1928 |Bloch’s theory of electrons in solids
Pauli-Sommerfeld free electron theory of metals Very little is known: spin susceptibility, Landau parameters,
1934 |Wigner’s proposal of the Wigner crystal high temperature at warm deHée matter (plasma) conditions
1956 |Landau’s theory of Fermi liquids
1957 |BCS theory of superconductivity
1964 |Hohenberg-Kohn-Sham DFT
1980 |Ceperley-Alder QMC prediction of Exc

many properties of UEG remain unknown

Diffusion MC simulation of UEG (trajectories in imaginary time)
J. Chem. Phys. 151,014108 (2019)



The Uniform Electron Gas Problem

2
H = Z f d3wz<r>[_2V_m + Veon(@(r) + %Z f Srd* vyl ! (0 )WVe(e = v (W) + H,,

Vs electron-nuclei interaction
H,_, nuclei-nuclei interaction
Ve( ") :
r-r)=——————
¢ dreplr — 1’|

neglecting spin-orbit coupling

Born-Oppenheimer: H,_, and V,_, justa classical potentials

Uniform electron gas:  V,_,(r) = - fd3l"Vc(l’ —1’)ny where ny is constant neutralizing density
e-n and n-n terms diverge, but they cancel out exactly, so that the final Hamiltonian is simplified to

k> ¥ 1 T T
= kZ %wk,swk’s + ﬁ Z ¢k+q,swk’—q,8’ VC(q)’ﬁk’S’ Wk’s

q#0.kK’,ss’

notice the absence of q=0 term, which is diverging and cancels out.



Significance of Uniform electron gas for DFT

E = <(DO|H|(DO> — <(D0|T +H,_, + Ve—nlq)0> — <(DO|T + He—elq)0> + fd3rve—n(r) n(r)

Hohenberg-Kohn theorem: Ground state electron density n(r) is V-representable.

The knowledge of n(r) alone gives knowledge of the external potential and hence the Hamiltonian H.
If the Hamiltonian is uniquely determined from density, then the ground state is also a functional of the
density only. (The ground state might be degenerate, but the universality of the functional can still be proven.)

Hohenberg-Kohn theorem: (®y|T + H,_.|Dy) is universal functional of the density n(r),i.e.,

Flin}] = (@)"|T + H,|®)")

]—<<I>”<”|Z f Pryi(r)[- ]ws<r>+ Z f &rd’ v YL, (Ve — 1) () (0|05 )

Universal functional can be computed from the simplest possible interacting model, i.e., the
uniform electron gas model???



Significance of Uniform electron gas for DFT

It is unlikely that we will ever be able to compute functional F[{n}] exactly even for the uniform electron gas.
The functional is non-local even in UEG:  F[{n}] = <q)g(r)|T + He—e|q)8(r)>

We want to find a part of the functional for which a local-type approximation is good.

E = f &rV,_,(n(r) + Eg[{n}] + Tol{n}] + E[{n}]
Exl{n}] = %fd3rd3r’n(r)vc(r —r)n(’")

TQ[{n}] is not the exact kinetic energy, but just the kinetic energy of
the corresponding non-interacting system.
We do not even know how to express the total kinetic energy
or the exchange energy as a functional of density.
They can be expressed exactly with the density matrix.

E ..[{n}] turns out to be a piece that is amenable to local approximation.

E.~ f d’r n(r)eYEC [n(r)]
map solid point by point to UEG

©,
©

o
) to compute XC energy and XC potential

LDA:

©

'© © ©
©



Time dependent DFT=TDDFT

DFT is pretty good for ground state properties (exact DFT is exact)
But DFT has well known “gap problem” when trying to interpret KS spectra as physical excitations

—
8 (%] z -
T w =
o) ;.Z N gé © ]
< % o ‘947 from Richard Martin etal., Interacting electrons
o B = é ]
s | Q5 o O e |
% 0G 8N n
Gaps in semiconductors: Sar B9 gl mm b4
B Zzmspe Ui E
% 2k %é_&% g % .
87 eEry °
o ¥ ﬁ. GW=0 o
o LDA=m
om0 ]
0 2 4 6 8

experimental gap (eV)

The same idea was extended by Gross&Kohn in 1985 to compute the excited state properties (PRL 55, 2850):
-1 ’. R | /. ’ ’
X (raraw)_XKS(rar’w)_VC(r_r)_fxc(r’raw)

density time response: x(r, v, 7) = — ' (v, DY, DY @, T, 7))y reo-<

Kohn-Sham non-interacting response (RPA bubble): <>



Time dependent DFT=TDDFT

Hohenberg-Kohn for GS DFT: One can not find two different V,_, potentials that give
rise to the same electron density 71(1) in the ground state.

Ht)y=T+ H,_, +V,_,(t) addtime-dependence to external potential

Runge-Gross theorem (PRL 52, 997, (1984)):

One can not find two different V,_,(1) V,_ () potentials that give rise to the same
electron density n(r, t), if n(r, t) is time evolved by H(t) from the ground state.

Caveat: Ven(t) has to be expandable in Taylor series (analytic in time) and Ve-n(t) and V’e-n(t) differ for more than c(t)

Gross&Kohn (PRL 55, 2850, (1985)):
using time-dependent Schroedinger Eq. the response of the interacting electrons is

X w) =y (5,1 0) = Ve = 1) = folr, v, w)

where  fuelln)l(r, s w) = Wg,ﬁﬁf,”ﬁj;‘“) put whatis  frc[{n}] 2




Time dependent DFT=TDDFT

Original idea was to take the unknown fy.[{n}] from the uniform electron gas.

But we do not know f,.[{n}] in UEG.

If we assume f,.[{n}] is local to a point in 3D space and local in time (constant in frequency) than:

Considerably improves (compared to LDA) the
excitation energies of molecules

Jrelin}(r, r';w=0)=

OV [{n}(r,w = 0) _ 52Exc[{n}]

on(r’, w = 0) on?

'S — 1P excitation energies in two-valence-electron atoms.

(0)

60

Atom Wexp WALDA Wrpa
He 1.56 Ry 1.552 -

Be 0.388 0.399 0.257
Mg 0.319 0.351 0.249
Ca 0.216 0.263 0.176
Zn 0.426 0.477 0.352
Sr 0.198 0.241 0.163
Cd 0.398 0.427 0.303
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n=ny

or—-r)

Adiabatic LDA

Not much better gaps or optical excitations in

semiconductors.

Si optics

LDA
ALDA

Experiment

Frequency [eV]



Time dependent DFT=TDDFT

Optics is g->0 charge response, which is in TDDFT:

x(q,w) =

Xks(q, w)

I = xks (@ )25 + fi(q, )]

a(w)

If we want a substantial change of optics in semiconductors, than we require the form: }113% Jre(q, w) = 2
Should be singular in semiconductors at zero frequency, but not in metals, like UEG.

Phenomenological ansatz works really well:

0.2
fxc(ra l’/) - -

But each semiconductor needs different number

Conclusion: fxc is highly non-local

4rjr — 1’|

Im &(m)

L. Reining, V. Olevano, A. Rubio, G. Onida, PRL 88, 066404 (2002)
Exp ph§n. TDDFT
fr . T I T

5 6
dots: Exp

dot-dashed: ALDA
dashed: GW+Bethe-Salpeter
continuous: phenomenological TDDFT



Time dependent DFT=TDDFT

Nazarov&Vignale&Chang (PRL 102, 113001, (2009)):

Instead of TDDFT for density-density response function, we might use current-current response functions.

Time Dependent Current Density Functional Theory (TDCDFT):

- ) - ) A , drec éq®€
07@00) = 250 450) ~ £ue(0.4,0) — —bog =5

where X' is current-current response function.
fre = fL&fL has two components: longitunidal and transverse

Local approximation on longitudinal & transverse fi,c seems a much better a(w)
approximation as it leads to desired form for the charge fxc liﬁ(l) Jxe(q,0) =
q—>

q2

1
Nemely: i .e(0,) = 5 3 (G- e [£(G.w) = f(G. o = Olno(G)F
0 G+#0

fle(w) is not known in uniform electron gas, hence this was not evaluated yet.
Only phenomenological kernels are used in practice.



Bandwidth of alkali metals, correspond to rs~4

Bandwidth of Na metal is controversial for 35 years:

-ARPES bandwidth show reduction for 18-25% [1,2] (newer 2021 data 10%)

-some GW calculation reproduce reduction [3], most do not.

-DMC shows increased bandwidth, not reduced [5] because of fixed node approximation.

[1] E. Jensen & E.W. Plummer, PRL 55, 1912-1915, (1985).

[2] I.-W. Lyo & E.W. Plummer, PRL 60, 1558-1561, (1988).

[3] J.E. Northrup, M.S. Hybertsen, & S.G. Louie, PRL 59, 819 (1987).

[4] X. Zhu, & A.W. Overhauser, RPB 33, 925(1986).

[5] R. Maezono, M.D. Towler, Y Lee, & R.J. Needs, PRB 68, 165103, (2003).

[6] J. McClain, J. Lischner, T. Watson, D.A. Matthews, E. Ronca, S.G. Louie,
T.C. Berkelbach, G. K-L Chan, PRB 93, 235139 (2016)

Energy(eV)

LDA/mBJ

— YS-PBEO
— B3LYP

N r N

Expl: E. Jensen & E.W. Plummer, PRL 55, 1912-1915, (1985).
Exp2: D. V. Potorochin, B. Buechner et.al., arXiv:2112.00422




Variational Diagrammatic Monte Carlo

Diagrammatic MC: provided numerically exact solution by
summing sufficiently high-order Feynman diagrams*

* N. Prokof’ey, B. Svistunov, PRL 81,2514 (1998)
N. Prokof’ev. B. Svistunov, PRB 77,020408 (2008)

Variational Diag-MC:

* variational principle to determine best starting point (such as screening by
Yukawa form) to achieve fast convergent series.

* leverage sign blessing: exact summation of diagrams that largely cancel
optimizing internal variables (such as the conserving Baym-Kadanoff
group of Hugenholtz diagrams)

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



Variational Perturbation Theory

PHYSICAL REVIEW

Started with Kleinert & Feynman LETTERS
Later improved by Kleinert & Janke

Convergent Strong-Coupling Expansions from Divergent Weak-Coupling Perturbation Theory

W. Janke!? and H. Kleinert?
Vnstitut fiir Physik, Johannes Gutenberg-Universitit Mainz, Staudinger Weg 7, 55099 Mainz, Germany
2Institut fiir Theoretische Physik, Freie Universitit Berlin, Arnimallee 14, 14195 Berlin, Germany

. 1
Anharmonic oscillator:  V(z) = §w2x2 + gzt
. L . 3 21 333
Weak coupling series is diverging at small w:  F, = 2~ 2 3
Png 9ng 0= 51932 985 9 T6us T
. 1 1
Rearrange perturbation: V() = 5(2%2 + &(gat + §(w2 — Q?)2?)
() variational
counter-term
parameter

¢ = 1 setto unity at the end
Perform expansion in powers of £ :  EM[Q), E?)[Q], - - -

dE" 1) =0—= Q)

Principle of minimum sensitivity: '
dQ optimal

Final expansion: ~ E(D[Q} ], EA[Q? ], .-

optimal optimal



Variational Perturbation Theory

Check first order:

1
H = Ho + 5(9%4 + 5(&)2 — QQ)$2)

Expansion:

B = {yol Hlo) = 3 + &

3 +1w2—Q2) 5:1 QO 1w? 3
2 TSY02 T2 20

> 1710 i

perturbqtive Notice w = 0 is fine.
correction
. 1 2
Principle of minimum sensitivity: 42 _ 1 «? 3 0
g
ds} 4 4072 2023
0 —w?Q—6g=0
ALw=0 Q. = (69)"°
Final first order: EV[Q). 1= g1/3§61/3 ~ g'/%0.68142

Exact result: £t = ¢1/30.66798

Turned diverging series into fast converging series



Variational Perturbation Theory

1 v v v
: Accuracy: E-Eexact
Higher order terms are well behaved 10% | Y- Erfexac
and rapidly converging o0 |
10‘15 |
AN
10°%

o4

5
0% | 40 digits accuracy

10°% P —— 5 &
Even odd term optimization:
0.59
: 7
/S
=8 /
).58 /
0o \—4/\, 6 /
N=0/
E /N Newo
0.56 e
0.55¢
-
/ 1 1.5 2 2.5 3 3.5 1 1.5 2 25 3 15 |
. Q 0
stronger divergence larger plateau of ¢

at small w optimal value



Variational Diagrammatic Monte Carlo

Lagrangian + counter-terms:

L = Ly + AL(¢)

|) choose a good reference system (Lo), which allows for emergent property. We want
to leverage the locality of correlations (as known from success of LDA and DMFT) to

achieve fast convergence : screened short-range interaction in solids or
DFT+DMFT solution the problem.

2) Optimize parameters in AL with principal of the minimal sensitivity, or renormalized
condition. AL makes L exact, hence AL is not just the interaction, but more
complicated Lagrangian with counter-terms.

3) Use Diagrammatic Monte Carlo to evaluate Feynman expansion to high order until
convergence (use sign blessed groups to avoid sign problem)



Uniform Electron gas as testbed for method development

0 AV
E : T o
L - Yko (87 H 2m

r—r'| g2

1 8 2
)¢ka+ﬁzpq?0—q )
q70

Coulomb interaction long ranged
bad sign problem for diagMC

L_Z¢T <2_ _h2VQ)¢k _|_Z(I)Tq_ _|_sz + p_q®
~ ko 8 9 o — q8 q \/W = q-q —q-q
ng(r) wka (I‘)

boson that mediates the interaction electron operator



Uniform Electron gas, a testbed for method development

L = Lo+ AL(¢)
a h2v2 q2
_ T
LO_Zwk"(ﬁ_“_ om )wka+2¢g S
ko q#0
AL = !

.i.
Vav ;fq@q Tomata
¢Q(r) ¢ko (I‘)

boson that mediates the interaction electron operator



VDMC for electron gas

L = Lo+ AL(¢)

9, h2V?2 + Aq Kun Chen
Lo = Z%g(——u— o +vk(§_1)wkg+2¢’fq8ﬁ D,
q#O

—Z%L,Uk ¢ka—§Z@T q<I> + e Zp Ol 4+ p_q®
ko K v2Vq;£O 474 a-q

q70
original problem at

(q(r) Yo (r) =1

boson that mediates the interaction electron operator



VDMC for electron gas

L= Lo+ AL(¢)
0 h2V?2
LO—Z%T«,— (E‘ D) +Uk(§—1))
ko

original problem at

. ¢ =1

0 1
exp(—rvVA) /1 Gicliw) = iw+p— 2y
Coulomb interaction is static electron propagator is optimized
and short ranged (DFT KS-potential or DMFT self-energy, etc)
A
S =
AVA' )VAV

Counter terms make sure that we get the Counter-term makes sure that the exact
exact answer at large order for any A answer is obtained for any vy at large p.o.

Open question: How to determine parameters A and vi



Screening length

Possible choices for A:

A A
Average perturbation order: (V) = Tr(AWq) = — < —

q2/(87T> - Hq _Hq:O,w:O

1) )= ﬁ Makes sure that average p. order < |
— — 11q=0,w=0 renormalized condition,
borrowed from renormalized perturbation theory | 9
T
\ Screened interaction: Waw = ¢ ~ 7+
TN=1 . 3r ~ Hao

2) oy = —HqZO,UJIO Exact cancelation of bubbles+c.t. at low energy

s

i.e., self-consistent determination of screening

quwzo The principle of smallest sensitivity.
) — O — )\ (borrowed from variational perturbation theory)

dA

I) Poor convergence and rapid oscillations with orders (approx. 5-times too small)
2) To converge we need to go to order 25=8x ! (approx. 5 times too large)

3) The best choice is due to variational perturbation theory, i.e., still quite small
perturbation order, but quite monotonic convergence to exact answer.



Example: expansion for polarization

First order is the standard RPA:

2
_ _ q°+ A
Hq:(vql_HQ) 1:(

8

p=< > _ s<> S Vo Screened RPA

+§z(<§> +® +<> ) 2n order correction
+E3(@ ¥ @ ¥ @ y+.. 3rd order correction

A -1
‘587‘5133‘0(52)"‘)

/(% + ) A
3 € ¢ 8m
AVA( YVAV:
—- _ ‘
G (iw) = L

W — e — ve(§) = &5k — 55, )+ Es2+ sz + -



From sign problem to sign blessing

We want to calculate /[daz]N Z Waiag <K /[da:]N Z (Wiiag|

diag

diag

sign problem in diag-MC!

Physical weight:  [Pw/| = ‘ / (AN Y~ Waiag

diag

Weight in diagMC:  Pivc = /[dﬂi]N > Waiag|

diag

Weight inVDMC: Pypuec = /[diC]N| Z Wiag|

diag

Monte Carlo Cost

Upper bound ~ Pavic

~ Diagram Num (e.g. ~n! 2™n3/2)

N

Pvome

Lower bound |Py/|

Order N



From sign problem to sign blessing

How to group diagrams to sign-blessed groups!?

Symmetry preserved in each group:

Crossing symmetry, spin rotational symmetry,. ..
At the lowest order leads to “Hugenholtz diagrams”

ki—q  kitq ki=q kotq kimq ko4 r
'Jo 4 o
—- ki-ka+q + q - i N
k ky ky ky ky k, —DOV(‘(/I(—;()“) sum= D (1 V(q+q1))
0 = 0 Y72V

d identi h M i ing):
Ward identity (each MC step is conserving) Sipt, ;U] = S[yT, ¢] — /d1d2 ST, 2)9(2)

Baym-Kadanoff algorithm is used to construct

groups of diagrams with consistent internal Z[U) = | 2y Ppe ST

variables (preserve particle number, energy, . dInZ[U]
. G(LT) = ===
momentum in each MC step). U1, 1) |0
8G(2,2+;U)

Vertex renormalization:

Make sure to combine diagram with the corresponding . “b
counter-term that cancels the high-energy contributions s T



Example of 3rd order polarization diagrams

Step | Step 3:

Expand each vertex in Hugenholtz
diagrams, to generate normal
Feynman diagrams. Keep all momenta
, and time indices equal to those in

N diagram.log Z
»
.© 0 0 Y 0

1

Start with Hugenholtz diagram for the free
energy functional log Z. Choose momentum
loops (shortest path) and time indices.

Step 2:

1’ 1

2 ) U
Attach two external vertices in all possible ways . 2
5U2 1 1’

<

t Baym-Kadanoff '
(creates a Baym-Kadanoff conserving group) Notice that 2N diagrams are

evaluated at once by Hugenholtz
trick : GGG (Vi-V2) (Vi-V2)...

ki—q ki+q ki—q ki+q kirq kitgq
Kun Chen and K. Haule, Nature Communications 10, 3725 (2019). s ko Ky ky kJW’kz




dielectric constant-direct comparison to DMC

Momentum
dependence
challenging for DMC
because they treat
finite system.

New method
beats DMC in
precision.

DMC: BJ.Alder, PRB 50,
14838 (1994)

q/kr q/kr
2 1

q/kr q/kr

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



Spin-susceptibility at re=4 ( L -

n 3
spin susceptibility at q=0, W=0 see: Feynman & Kleinert, PRA 34, 5080 (1986)
AJEE
0.5 1.0 1.5 2.0
2.0 + + + +

& a r« =4 CFS Scan in A reveals the speed of convergence.
S~

< 15 ""'f."#* — | .

S e —e broad plateau in A at large order =>

I —_ t o converged value in the plateau.

3 1.0 ]

A4 — — N=1 |

>g —e N=2

—e N=4

3 C

< 251 N=>
* —e N=6

= _

S 2.0

g Values at the optimum (principle of minimal
o 1.5 7 sensitivity) converge very fast

)

~1.0-

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



° ° of e _ 1
Spm-suscepiblllty at rs=4 | — ==

spin susceptibility at g=0, w=0

AIEF AJEF
0.5 1.0 15 2.0 0.5 1.0 15 2.0
2.0 + + + + S + + + 2.0
" a re=4 CFS rs=4 VCCFS | w
< <
2 157 : ﬁi —3 1 - - N "1.52
S D S S
I — 1 — . Ne3 I
3 1.07 . ) 41-- . N:4 1.0 3
051 | — N=2, | — N=6 {05
= —e— CFS 1 VCCEFS scheme, a different BK conserving scheme
—~ 2.5 1
<, onvergence to 1 _ . _
o 2.0 exactly the same Pvocrs= ( ”;Q: %9 +)
Il value, but oscillate
3 151 | 1>1’ 1) lzl X
E 3 = 3 + 3
N 104 2 2 2 2 ™y 2
1 2 3 4 5 6 Bethe-Salpeter ladders added
N

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



Spin-susceptibility of electron gas at r;=4 |

1
n

Calculated values at different densities.
VDMC get four significant digits at order N=6.
Consistent with literature, but significantly more precise.

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).

rs  Xs/Nr | literature
111.152(2) 1.15-1.16
2 1.296(6) 1.27-1.31
3 1.438(9) 1.39-1.46
4 11.576(9)  1.51-1.62 spin susceptibility for different momenta.
RPA 57% underestimates.
= C —e— CFS d
Il —®— VCCFS
~
S 2.0 T -
I
3 1.5 1 —— RPA
% —+— CFS
~104e¢ | | | | | | | | | |
1 2 3 4 5 60.0 05 10 15 20 25 3.0
N q/ke

4ar?
3




Spin-susceptibility & local field correction

1.6 o
© —
Il 1.0 1.00
3 O
S 0.8 0.75
>< 0.6 0.50
0.4 1 0.25
0.2 . . . . , , : : . 0.00
00 05 1.0 15 20 25 0.0 0.5 1.0 1.5 2.0

q/ke q/ke
Definition of local field correction: IIq = (Hg_1 + VgGq) ™!
—1 .
Spin/charge response with LDAis:  1lq = (Mg + fae) ™

f OB
where  Jae = =55

hence Gq= g_wf‘“

LDA excellent approximation up to k=kr. RPA much worse.



The single particle-quantities

¢ For single-particle quantities
we need to expand the three-
particle vertex (Hedin-type EQ).

e We need to optimized A/Er for
W, and separately for Z, and
find optimal A/Er of the order of

unity.

e Optimized 4 increases with

increasing order, hence higher
orders are even more local.

1.00

0.95 A

0.90 A

0.85 A

0.80 A

~-1 TN GOk Wq
>,(N)= S:V_VG 2 — W M(87) (87/(G2+A))2
QN

G,  Sa(qrh)
rin- %

—_— ANAN
2 =T50+ ﬁ:\l@
;0 =504+ T52 + m + % ;H\W?‘t\% +

A
-[\d) ® VDMC C) —— N=1 0.670
BF-RMC N=2
A SJ-VMC —— N=3
“ a < BF-VMC —— N=4 0.665
= > GOWO —— N=5 :
RN - 0.660
1Z agrees well with previous. 0-655
diffusion MC data by M. .
] > e A - 0.650
Holzmann et al. PRL 107,
1110402, (2011). ' rs=4 -
0 1 2 3 4 025 050 075 1.00 125 1.50 1.75 2.00
I's A

K. Haule and Kun Chen, Scientific Reports 12, 2294 (2022)



. m m d¥(kp,® =0) LA R
effective mass .=z (1 R T ) o
— Bk
* Over the last 50 years, the mass in electron gas was controversial, some theories o *

predicting monotonic behavior with density, and other with a turning point.

* Important for understanding which method predicts better Bloch bands and bandwidths

in moderately correlated systems.

1.05 4

1.00

0.95 A

g
g
0.90 |
= \/DMC
G.&G_ —charge+spin vertex correction
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Quasiparticle dispersion near the fermi level is
defined by effective mass m*/m.

DFT assumes m*/m=1 (non-interacting Kohn-
Sham ansatz)

Exact solution (VDMC) remarkably close to
m*/m~1. Bounded by vertex corrected
perturbation theory using local field factors.

GOWO and QSGW overestimate mass
GW underestimates mass

At the uniform density limit, DFT ansatz is
remarkably accurate, better than GW.

[GOWO] L. Hedin, Phys. Rev. 139,A796—A823, (1965).
[G+&G-]Simion, G. E. & Giuliani, PRB 77,035131,(2008).

K. Haule and Kun Chen, Scientific Reports 12,2294 (2022)

[QSGW] A.Kutepov, G. Kotliar, arXiv:1702.04548

[GW] K.Van Houcke, et.al.,Phys. Rev. B 95, 195131 (2017)



Uniform electron gas: Landau parameters e

Landau parameters for UEG.

have never been computed before by controlled method

compressibility diverges at rs=5.2, and

Fso is going critical at rs=5.2,
where polarization and
compressibility diverges.

rg V4 m*/m Fy Fy
1 | 0.8725(2) | 0.955(1) | -0.171(1) | -0.209(5)
2 1 0.7984(2) | 0.943(3) | -0.271(2) | -0.39(1)
3 | 0.7219(2) | 0.965(3) | -0.329(3) | -0.56(1)
4 | 0.6571(2) | 0.996(3) | -0.368(4) | -0.83(2)
|
— (R
X .Y)
1.25
1
0.75
0.5
0.25
g

expansion breaks down

Polarization also diverges at this point,
signaling subtle instability



Bandwidth of Na metal is controversial for 35 years:

-ARPES bandwidth show reduction for 18-25% [1,2]
-some GW calculation reproduce reduction [3], most do not.
-DMC shows increased bandwidth, not reduced [5].

2/EF

- ReX-maxent
ImZz-maxent
— A(w)-maxent

—— Rez-pade
EF . Imz-pade
—— A(w)-pade
-2 -1 0 1 2
w/EF

K. Haule and Kun Chen, Scientific Reports 12,2294 (2022)

VDMC: 4-7% reduction at rs=4.
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Expl: E. Jensen & E.W. Plummer, PRL 55, 1912-1915, (1985).
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Real frequency quantities: exchange-correlation kernel

Recently we developed real-frequency diag-MC for uniform electron gas.
X(qvw) = PfofS(qv w) + PIO{S(q’ w)[Vq + wa(qaw)]X(qaw_)\

1 V.
In UEG we compute:  f.c(q,w) = —; - a
P (q’w) I 5(%"‘-))
dielectric function on real frequency axis fxe(g,w) on real frequency axis
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W/EF 0.0 0.2 0.4 0.6 0.8 1.0 1.2
w/EF
I. S. Tupitsyn, A. M. Tsvelik, R. M. Konik, and N. V. Prokof’ev, PRL 127, 026403 (2021) J. P.F LeBlanc, K. Chen, N.V. Prokof’ev, K.H., Igor S.Tupitsyn, in preparation

Challenging to calculate, but a lot of non-trivial structure below EF,
Such change of sign was needed in Si to explain optical data (PRL 102, 11301 (2009)).



Real frequency quantities: exchange-correlation kernel

fxe(g,w) on real frequency axis

several momenta
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e He

Screening in UEG on the two particle level 2{

s"'%
R

We find the fastest convergence for spin/charge susceptibility when A/E¢~|

AEE
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Na metal is close to electron gas with rs~4 and EF~3eV

Eng = 2rg = 0.8Ry7m =~ 0.25a and Uiy j/U; = exp(—4) = 0.018

Interaction is very well screened in metals and non-local interaction corrections are small.
Hund’s coupling is very large, because Yukawa screening reduces Fo, but not much Fy,Fa.

Local point of view converging much faster than long-range point of view.
VDMC:
[1] Kun Chen, K. Haule, Nature Communications 10, 3725 (2019)
[2] K. Haule, K. Chen, Scientific Reports 12,2294 (2022)




