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GW & LAPW in Python:

•Exact double-counting between LDA&DMFT

•Forces on atoms

•Structural relaxations within DMFT functional

•Phonons within DMFT

•LAPW precise basis set for all electrons



Why bother with uniform electron gas?

• Solution of UEG serves as a proof of principle that tests the capability of a method to address 
realistic materials with long range Coulomb repulsion (beyond simplified models).

• Such solution offers new insights into the ab-intion methods (DFTs and GWs), and more 
understanding of screening in solids. 

Variational Diagrammatic Monte Carlo (VDMC) [1,2] allows
• very precise determination of certain physical observables in electron gas: effective mass, landau-

liquid parameters, spin & charge susceptibilities.
• It also provides XC-kernel needed in TDDFT community [3].
• It settles the debate on bandwidth in electron gas, as relevant for Na metal.
• It is useful in other fields, i.e., warm dense matter field uses the same model at higher 

temperature, where VDMC performs even better.
• VDMC should be developed into electronic structure method for high-throughput calculation 

(like achieved in DFT community, as well as recently by DFT+eDMFT method [4]).

VDMC:
[1] Kun Chen, K. Haule, Nature Communications 10, 3725 (2019) 
[2] K. Haule, K. Chen, Scientific Reports 12, 2294 (2022)
[3] J. P. F. LeBlanc, K. Chen, N. V. Prokof’ev, K.H., Igor S. Tupitsyn, in preparation
[4]Kamal Choudhary et.al., npj Computational Materials 6, 1 (2020).
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History : Uniform electron gas

Is at the heart of the DFT success for materials property prediction.  

1928
Dirac’s relativistic theory of the electron

Bloch’s theory of electrons in solids

Pauli-Sommerfeld free electron theory of metals


1934 Wigner’s proposal of the Wigner crystal


1956 Landau’s theory of Fermi liquids


1957 BCS theory of superconductivity

1964 Hohenberg-Kohn-Sham DFT


1980 Ceperley-Alder QMC prediction of Exc


many properties of UEG remain unknown
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Remains essentially unknown to this day

Needed in TDDFT
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which, in the case of standard PIMC, are nothing else than the
bosonic weights, as |WF(X)| = WB(X). The fermionic expectation
value of an observable Â is then computed as

�Â� = �ÂŜ�′�Ŝ�′ , (12)

with S(X) =WF(X)/WB(X) being the sign of a particular configura-
tionX and the notation �. . .�′ referring to the expectation value with
respect to the bosonic weights

�Â�′ = 1
ZB
� dXWB(X)A(X) = �Â�B. (13)

The denominator in Eq. (12) is the so-called average sign

S ∶= �Ŝ�′ = 1
ZB
� dXWB(X)S(X) = ZF

ZB
= e−βN(fF−fB), (14)

which is readily identified as the ratio of the fermionic and bosonic
partition function (with f denoting the free energy per particle) and
constitutes a measure for the amount cancellation of positive and
negative contributions within the PIMC simulation.12,31,68 In partic-
ular, the statistical uncertainty of Eq. (12) is inversely proportional
to S,

∆AF ∼ 1
S
√
NMC

∼ eβN( fF−fB)√
NMC

, (15)

and thus exponentially increases both with system sizeN and toward
a low temperature. This can only be compensated by increasing
the number of Monte Carlo samples as ∼ 1�√NMC, which quickly
becomes unfeasible as one runs into an exponential wall. This is the
origin of the notorious fermion sign problem,11 which limits stan-
dard PIMC simulations of electrons to a relatively high temperature
or strong coupling and has been shown to be NP-hard for a certain
class of Hamiltonians.69

B. Permutation cycle properties
Evidently, the feasibility of a standard PIMC simulation of elec-

trons depends on the probability of pair-exchanges or, more specif-
ically, on the prevalence of different exchange-cycles. This is illus-
trated in Fig. 2, where we show snapshots from a PIMC simulation
of N = 19 spin-polarized electrons with P = 100 high-temperature
factors at a metallic density, rs = 2. The top panel corresponds to
a relatively high temperature, θ = 4. In this case, the extension of
the paths of different particles, which is proportional to the ther-
mal wavelength λβ = ��h22πβ�m, is significantly smaller than the
average interparticle distance r. Consequently, fermionic exchange-
effects are not of paramount importance, and exchange-cycles only
seldom occur within a PIMC simulation, which results in an average
sign of S ≈ 0.7. In stark contrast, the bottom panel depicts a snap-
shot for θ = 0.5, which falls into the important warm dense matter
regime. In this case, λβ is comparable to r, and fermionic exchange-
effects predominate. In fact, as we shall see in Sec. III, at these con-
ditions, evenmacroscopic exchange-cycles containing all N particles
have a significant weight. Accordingly, configurations with positive

FIG. 2. Snapshots from PIMC simulations of the uniform electron gas at metallic
density, rs = 2, with N = 19 and P = 100 for θ = 4 (top) and θ = 0.5 (bottom). The
blue beads correspond to particle coordinates, and the red lines to their respective
connection in the imaginary time.

and negative configuration weights occur with a similar frequency,
the average sign vanishes within the given statistical uncertainty
[S = 0.0004(3)], and the resulting cancellation renders standard
PIMC simulations unfeasible in this regime.

In this section we introduce two quantities that allow for amore
rigorous characterization of the permutation cycle properties of a
PIMC simulation.

The probability to find a permutation cycle of length l (i.e., a
path of length l ⋅ β in the imaginary time) can be readily defined as

P(l) = 1
lN
� N�
i=1 δ(i, l)�, (16)

with δ(i, l) vanishing, except when particle i is involved in an
exchange-cycle of length l. Note that the prefactor 1/l makes us
count each cycle of length l only once in the definition of P(l), and
the division by N ensures the normalization to one independent of
the system size. The PIMC expectation value for Eq. (16) is then
expressed as

J. Chem. Phys. 151, 014108 (2019); doi: 10.1063/1.5093171 151, 014108-4
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Diffusion MC simulation of UEG (trajectories in imaginary time)
J. Chem. Phys. 151, 014108 (2019) 

Very little is known: spin susceptibility, Landau parameters,
… 


high temperature at warm dense matter (plasma) conditions



The Uniform Electron Gas Problem
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electron-nuclei interaction

nuclei-nuclei interaction

Born-Oppenheimer : 
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Uniform electron gas: 
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e-n and n-n terms diverge, but they cancel out exactly, so that the final Hamiltonian is simplified to 

notice the absence of q=0 term, which is diverging and cancels out.

neglecting spin-orbit coupling



Hohenberg-Kohn theorem: Ground state electron density          is V-representable.
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Significance of Uniform electron gas for DFT
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The knowledge of           alone gives knowledge of the external potential and hence the Hamiltonian H.

If the Hamiltonian is uniquely determined from density, then the ground state is also a functional of the 

density only. (The ground state might be degenerate, but the universality of the functional can still be proven.)
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Hohenberg-Kohn theorem:                                   is universal functional of the density         ,i.e.,
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�1 = U[U†U]�1

U
† = 1 (2)

V(r) =
e
�r

p
�

r
(3)

Exc[n] (4)

Vxc =
�Exc[n]
�n

(5)

fxc[n](r, r0,!) =
�Vxc[n](r,!)
�n(r0!)

(6)

H =
X

s

Z
d

3r †
s
(r)[� r

2

2m
+ Ve�n(r)] s(r) +

1
2

X

ss0

Z
d

3rd
3r0 †

s
(r) †

s0 (r
0)Vc(r � r0) s0 (r0) s(r) + Hn�n (7)

VC(r � r0) = 1
4⇡"0|r � r0| (8)

Ve�n(r) = �
Z

d
3r0VC(r � r0)n0 (9)

n0 is constant

H =
X

k,s

k
2

2m
 †k,s k,s +

1
2V

X

q,0,kk0,ss0
 †k+q,s 

†
k0�q,s0Vc(q) k0 s0 k,s (10)

E = h�0|H|�0i = h�0|T + He�e + Ve�n|�0i = h�0|T + He�e|�0i +
Z

d
3r Ve�n(r) n(r) (11)

Hohenberg-Kohn theorem: Ground state electron density n(r) is V-representable.
One can not find two di↵erent Ve�n potentials that give rise to the same electron density n(r) in the ground state.
The knowledge of the density n(r) therefore uniquely determines Ve�n(r) and therefore the entire Hamiltonian H = T +He�e+

Ve�n

There are two di↵erent potentials Ve�n(r) and V
0
e�n

(r) (that di↵er for more than a constant) and give rise to the same ground
state electron density n(r).

Then

E = h�0|H|�0i (12)
E
0 = h�00|H0|�00i (13)

E = h�0|H|�0i < h�00|H|�00i = h�00|H0 + Ve�n � V
0
e�n
|�00i = E

0 +

Z
d

3r
�
Ve�n(r) � V

0
e�n

(r)
�

n(r) (14)

E < E
0 +

Z
d

3r
�
Ve�n(r) � V

0
e�n

(r)
�

n(r) (15)

E
0 < E +

Z
d

3r
�
V
0
e�n

(r) � Ve�n(r)
�

n(r) (16)

E + E
0 < E + E

0 (17)

1

Define:

�⇤↵(r � Ri) ⌘ U(↵, r) (1)

P̂Ê
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Universal functional can be computed from the simplest possible interacting model, i.e., the

uniform electron gas model???



Significance of Uniform electron gas for DFT
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T0 is not the exact kinetic energy, but just the kinetic energy of the corresponding non-interacting system. We do not even
know how to express the total kinetic energy or the exchange energy as a functional of n.

We want to find a part of the functional for which a local-type approximation is good. 

It is unlikely that we will ever be able to compute functional F[{n}] exactly even for the uniform electron gas.


The functional is non-local even in UEG:
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the corresponding non-interacting system.

We do not even know how to express the total kinetic energy 
or the exchange energy as a functional of density.

They can be expressed exactly with the density matrix. 
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turns out to be a piece that is amenable to local approximation.

map solid point by point to UEG to compute XC energy and XC potentialLDA:
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Time dependent DFT=TDDFT

The same idea was extended by Gross&Kohn in 1985 to compute the excited state properties (PRL 55, 2850):

DFT is pretty good for ground state properties (exact DFT is exact)

But DFT has well known “gap problem” when trying to interpret KS spectra as physical excitations

from Richard Martin et.al., Interacting electrons

Gaps in semiconductors:
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�(r, r0, ⌧) = � h †(r, ⌧) (r, ⌧) †(r0, ⌧0) (r0, ⌧0)i (26)density time response:

Kohn-Sham non-interacting response (RPA bubble):

FIG. 19: 1-PI �(2)(q,!) corresponding to the imaginary time density-density correlation function,

that for real frequencies gives the screened density response function �sc(q,!)[6].

FIG. 20: Diagrammatic expansion of the unscreened density response function �(q,!) in terms of

the screened density response function �sc(q,!), giving (228)[6].
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FIG. 19: 1-PI �(2)(q,!) corresponding to the imaginary time density-density correlation function,

that for real frequencies gives the screened density response function �sc(q,!)[6].

FIG. 20: Diagrammatic expansion of the unscreened density response function �(q,!) in terms of

the screened density response function �sc(q,!), giving (228)[6].
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Runge–Gross theorem (PRL 52, 997, (1984)):

Caveat: Ve-n(t) has to be expandable in Taylor series (analytic in time) and Ve-n(t) and V’e-n(t) differ for more than c(t)

Hohenberg-Kohn for GS DFT: One can not find two different           potentials that give 
rise to the same electron density           in the ground state.
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 Gross&Kohn (PRL 55, 2850, (1985)):
using time-dependent Schroedinger Eq. the response of the interacting electrons is
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Time dependent DFT=TDDFT



Original idea was to take the unknown                  from the uniform electron gas. 
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7.6 The calculation of excitation energies 381

Table 7.7. 1S → 1 P excitation energies in two-valence-electron atoms. The last two
columns on the right contain the KS excitation energies in Ry calculated by the static LDA

and OEP respectively. (From Petersilka et al., 1996.)

Atom ωexp ωAL D A ωT DO E P ω
(0)
L D A ω

(0)
O E P

He 1.56 Ry 1.552 1.568 – –
Be 0.388 0.399 0.392 0.257 0.259
Mg 0.319 0.351 0.327 0.249 0.234
Ca 0.216 0.263 0.234 0.176 0.157
Zn 0.426 0.477 0.422 0.352 0.314
Sr 0.198 0.241 0.210 0.163 0.141
Cd 0.398 0.427 0.376 0.303 0.269

term (known to solid state physicists as depolarization shift) is always positive, while the xc
term is usually negative owing to the negative sign of the static xc kernel (see Eq. (7.179)).
A crucial assumption underlying this approach is that fxcL ("r , "r ′, ω) be a slowly varying
function of frequency in a neighborhood including both ω

(0)
jk and ω jk . The ALDA obviously

satisfies this requirement, since, for better or for worse, it completely ignores the frequency
dependence of fxcL .

The application of the perturbative method to atomic systems was pioneered by Petersilka,
Gossman, and Gross (1996). In Table 7.7 we report their results for the energy of the
1S → 1 P transition in a series of atoms with two electrons in the outer s-shell. Both the initial
and the final states are spin singlets so that one does not have to worry about the spin density.

The calculations were done in the ALDA and in the time-dependent Optimized Effective
Potential (TDOEP) method, another form of the adiabatic approximation based on the
static OEP approach (see Section 2.8.2). The latter decays as − e2

r at large distance from
the nucleus, as the exact xc potential should. The form of the xc kernel in OEP theory is
(Petersilka et al., 1996)

f O E P
xcL ("r , "r ′, ω) = − |

∑
k fkφk("r )φ∗

k ("r ′)|2

|"r − "r ′|n0("r )n0("r ′)
, (7.197)

where φk("r ) are the ground-state OEP orbitals discussed in Section 2.8.2. Notice that f O E P
xcL

is still frequency-independent (i.e., instantaneous in time), but, unlike f AL D A
xcL , is nonlocal

in space.
Inspecting Table 7.7, we see that the OEP performs better than the ALDA, suggesting

that the large distance behavior of the potential is important. We also see that the Hartree
and exchange-correlation shifts, taken together, increase the excitation energy significantly.
While this improves the agreement with experiment, it also casts some doubt on the appro-
priateness of the perturbative treatment, which assumes those shifts to be small.39

39 The perturbative approach has been criticized (Vasiliev et al., 1999). According to these authors the ALDA works better than
the time-dependent OEP when the excitation energies are calculated by solving the eigenvalue problem (7.191) exactly.
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Table 7.7. 1S → 1 P excitation energies in two-valence-electron atoms. The last two
columns on the right contain the KS excitation energies in Ry calculated by the static LDA

and OEP respectively. (From Petersilka et al., 1996.)

Atom ωexp ωAL D A ωT DO E P ω
(0)
L D A ω

(0)
O E P

He 1.56 Ry 1.552 1.568 – –
Be 0.388 0.399 0.392 0.257 0.259
Mg 0.319 0.351 0.327 0.249 0.234
Ca 0.216 0.263 0.234 0.176 0.157
Zn 0.426 0.477 0.422 0.352 0.314
Sr 0.198 0.241 0.210 0.163 0.141
Cd 0.398 0.427 0.376 0.303 0.269

term (known to solid state physicists as depolarization shift) is always positive, while the xc
term is usually negative owing to the negative sign of the static xc kernel (see Eq. (7.179)).
A crucial assumption underlying this approach is that fxcL ("r , "r ′, ω) be a slowly varying
function of frequency in a neighborhood including both ω

(0)
jk and ω jk . The ALDA obviously

satisfies this requirement, since, for better or for worse, it completely ignores the frequency
dependence of fxcL .

The application of the perturbative method to atomic systems was pioneered by Petersilka,
Gossman, and Gross (1996). In Table 7.7 we report their results for the energy of the
1S → 1 P transition in a series of atoms with two electrons in the outer s-shell. Both the initial
and the final states are spin singlets so that one does not have to worry about the spin density.

The calculations were done in the ALDA and in the time-dependent Optimized Effective
Potential (TDOEP) method, another form of the adiabatic approximation based on the
static OEP approach (see Section 2.8.2). The latter decays as − e2

r at large distance from
the nucleus, as the exact xc potential should. The form of the xc kernel in OEP theory is
(Petersilka et al., 1996)

f O E P
xcL ("r , "r ′, ω) = − |

∑
k fkφk("r )φ∗

k ("r ′)|2

|"r − "r ′|n0("r )n0("r ′)
, (7.197)

where φk("r ) are the ground-state OEP orbitals discussed in Section 2.8.2. Notice that f O E P
xcL

is still frequency-independent (i.e., instantaneous in time), but, unlike f AL D A
xcL , is nonlocal

in space.
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Adiabatic LDA

Considerably improves (compared to LDA) the 
excitation energies of molecules Not much better gaps or optical excitations in 

semiconductors.

Si optics

382 Density functional theory

In recent years density functional calculations of excitation energies have been performed
on a variety of complex molecular systems and clusters (Casida, 1995; van Gisbergen et al.,
1998; Onida et al., 2002), and the spin has been taken into account, so that, for example, the
energy difference between the the singlet–singlet 1S → 1 P and the singlet–triplet 1S → 3 P
transitions could be resolved (Dobson, 1998). In most cases, the agreement with experi-
ment and with more time-consuming configuration–interaction calculations has been quite
satisfactory.

7.6.2 Infinite systems

The formalism described in the previous section is also applicable to infinite systems (sys-
tems satisfying periodic boundary conditions in a box of size L tending to infinity) but
a more careful discussion is needed to distinguish between single-particle excitations and
collective modes.

Continuous spectrum – Single particle excitations in an infinite system give rise to a
continuous spectrum, which, in general, consists of several bands. Hartree and exchange-
correlation corrections modify not only the spectral density of excitations within each band
(intra-band transitions), but also the width and the position of the bands.

The effect of the time-dependent Hartree potential on intra-band transitions is very strong,
as we known from the study of the homogeneous electron liquid (see Section 5.3.4), where
this potential causes a dramatic shift of spectral density from electron–hole pairs to the
plasmon mode. Inter-band transitions in crystalline solids are not so strongly affected, yet
dynamical interaction effects cause significant changes, such as the appearance of the two-
peak structure seen in the experiments and shown in Fig. 7.9.
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Fig. 7.9. Imaginary part of the macroscopic dielectric function of Si (proportional to the optical
spectrum) calculated in the adiabatic local density approximation (dashed line) and in a simplified
version of the current-density functional theory of Vignale and Kohn (VK) described in Section 7.9.2.
The experimental spectrum is shown by the thick solid line (courtesy of P. de Boeij).
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Optics is q->0 charge response, which is in TDDFT:
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Third, we have used fxc!r, r0" ! 2a#4pjr 2 r0j, with
the empirical value a ! 0.2. The result of the TDDFT
calculation for ´M!v" is shown in Fig. 1. The dots are
the experimental results for the absorption spectrum
$Im!´"% measured by Lautenschlager et al. [17] and the
refraction index $Re!´"% measured by Aspnes and Studna
[18]. The dot-dashed curve is the result of a standard
TDLDA calculation (i.e., using DFT-LDA eigenvalues
and the static short-range LDA xc kernel). We find the
well-known discrepancies with experiment. The dashed
curve is the BSE result. Finally, the continuous curve
is the result of our approximate TDDFT calculation: It
fits almost perfectly all experimental features in both real
and imaginary parts of ´. It turns hence out that this
static long-range contribution to the kernel is sufficient to
reproduce the strong excitonic effect in a material with
weakly bound excitons such as silicon. Preliminary results
on other materials such as GaAs or AlAs are showing a
similar quality of agreement with experiment. We refer to
a forthcoming manuscript [19] for details.

In conclusion, we have derived a TDDFT equation from
the Bethe-Salpeter equation which should be particularly
suitable for practical applications to the absorption spectra
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FIG. 1. Silicon, optical absorption (bottom), and refraction in-
dex (top panel) spectra. Dots: experiment. Dot-dashed curve:
TDLDA result. Dashed curve: result obtained through the
Bethe-Salpeter method. Continuous curve: TDDFT result us-
ing the long-range kernel derived in this work.

of solids. We have demonstrated that the static exchange-
correlation kernel has a long-range contribution stemming
from the electron-hole interaction. We have explained why
this long-range contribution is particularly important for
the absorption spectra of solids. At the example of bulk
silicon, we have shown how a very simple approximation
for the kernel can yield excellent agreement between the
calculated TDDFT absorption spectrum and experiment.
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Phenomenological ansatz works really well:

But each semiconductor needs different number

L. Reining, V. Olevano, A. Rubio, G. Onida, PRL 88, 066404 (2002)

Conclusion: fxc  is highly non-local  

Should be singular in semiconductors at zero frequency, but not in metals, like UEG.

Time dependent DFT=TDDFT



 Nazarov&Vignale&Chang (PRL 102, 113001, (2009)):
Instead of TDDFT for density-density response function, we might use current-current response functions. 

Time Dependent Current Density Functional Theory (TDCDFT):
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�̂ (34)where is current-current response function.
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Namely:

fLxc(ω) is not known in uniform electron gas, hence this was not evaluated yet.

Only phenomenological kernels are used in practice. 
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Time dependent DFT=TDDFT
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Recent work using a sophisticated unbiased reptation92

Monte Carlo method further indicates that the vertex93

corrections and self-consistency aspects of GW cancel94

to a large degree near the Fermi surface [46]. This re-95

sult also hints that the elemental metallic systems might96

be moderately correlated. An opposite trend of increas-97

ing the bandwidth compared to LDA is found in recent98

studies using self-consistent GW [39, 42] and variational99

and fixed-node di↵usion quantum Monte Carlo [47] tech-100

niques. Contrary to the indications from the GW ap-101

proximation, Zhu and Overhauser [48] predicted that the102

spin fluctuations within a paramagnon pole model could103

account for the bandwidth reduction in Na, but a more104

recent study [38] found that this e↵ect is negligible. In-105

terestingly, the recent ARPES results [49] ruled out the106

proposed [38] strong coupling between the conduction107

electrons and spin fluctuations in Na. This controversy108

remains unresolved, and the reason for the discrepancies109

between ARPES measurements and the theoretically pre-110

dicted bandwidths in these simple metals remains one of111

the fundamental questions in condensed matter physics.112

On a di↵erent tack, the narrowing of the ARPES spec-113

tra has alternatively been ascribed to final-state e↵ects,114

which would require treating the outgoing electron as em-115

bedded in an interacting uniform electron gas inside the116

solid, rather than as a free electron leaving the solid [39].117

A similar approach was taken in Refs. [50] and [28], but118

with the inclusion of surface e↵ects. Such an interpreta-119

tion was challenged in Ref. [29] (see also [40]), as it would120

invalidate the accepted interpretation of the ARPES ex-121

periments as measuring the single-particle spectral func-122

tion weighted by matrix-element e↵ects [51]. This would123

have far-reaching implications for the interpretation of124

all ARPES data to date.125

To answer such questions, our computational study126

is carried out in the framework of a broader ongoing127

program involving the systematic performance and cu-128

ration of electronic structure calculations using a range129

of methodologies and applied to a range of materials130

[18, 52]. The premise of this approach is that for a131

proper evaluation of the strengths and weaknesses of var-132

ious first-principles methods applied to a given class of133

materials, a methodologically heterogeneous literature is134

not enough. Rather, a set of calculations for di↵erent135

functionals performed on a consistent footing is essential.136

This is especially true in the context of high-throughput137

computation, where a desire for accuracy has to be care-138

fully weighed against issues of consistency and modest139

computational load. Moreover, the availability of these140

results in a materials database, such as the “beyond-141

DFT” component [53] of the JARVIS database [54] used142

here, makes the comparisons between di↵erent function-143

als broadly available to the materials science community,144

providing a guide for future calculations on related sys-145

tems.146

Working in this context, we systematically apply sev-147
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FIG. 1. (Color online) Band structure of elemental
Na as computed in LDA, mBJ, G0W0, YS-PBE0, B3LYP,
and eDMFT. Dots in pink and grey indicate angle-resolved-
photoemission(ARPES) data from earlier experiment by Lyo
& Plummer [20] and more recent experiment by Potorochin
et al. [49] respectively.

eral DFT and beyond-DFT methods to the elemental148

metallic systems from the first and second columns of149

the periodic table (Li to Cs and Be to Sr). We resolve150

a controversy over the disagreement between theory and151

experiment for the occupied bandwidths of such systems,152

showing how they depend on the e↵ects of local and153

non-local exchange and correlations. We find that the154

band narrowing is surprisingly well described with non-155

perturbative dynamical correlations modeled as local to156

an atom rather than to a point in 3D space, emphasizing157

the importance of umklapp contributions to the electron158

self-energy at higher order in perturbation theory, be-159

yond GW, seem to have a significant e↵ect even in these160

systems.. In particular, in this letter we show that the el-161

emental metals with partially occupied s orbitals, which162

are usually assumed to be nearly-free-electron metals, are163

in fact moderately correlated, thus forcing a reconsider-164

ation of long-held notions about these simple metals.165

RESULTS166

All computations are performed for the room-167

temperature experimental crystal structures obtained168

from the ICSD database. Most of the elemental met-169

als studied here crystallize in the bcc structure at room170

temperature, except for Be and Mg which crystallize in171

hcp, and Ca and Sr in fcc. In the following we compare172

the electronic band structures using the above-mentioned173

methods with ARPES data, which are available for Na,174

K, and Mg. We describe each of these compounds in de-175

tail here, and direct the reader to the S.I. for the others.176

Exp1: E. Jensen & E.W. Plummer, PRL 55, 1912–1915, (1985). 
Exp2: D. V. Potorochin, B. Buechner  et.al., arXiv:2112.00422 

Bandwidth of alkali metals, correspond to rs~4

Bandwidth of Na metal is controversial for 35 years:  
-ARPES bandwidth show reduction for 18-25% [1,2] (newer 2021 data 10%) 
-some GW calculation reproduce reduction [3], most do not. 
-DMC shows increased bandwidth, not reduced [5] because of fixed node approximation.

[1] E. Jensen & E.W. Plummer, PRL 55, 1912–1915, (1985). 

[2] I.-W. Lyo & E.W. Plummer, PRL 60, 1558–1561, (1988).

[3]  J.E. Northrup, M.S. Hybertsen, & S.G. Louie, PRL 59, 819 (1987). 

[4] X. Zhu, & A.W. Overhauser, RPB 33, 925(1986). 

[5] R. Maezono, M.D. Towler, Y Lee, & R.J. Needs, PRB 68, 165103, (2003). 

[6] J. McClain, J. Lischner, T. Watson, D.A. Matthews, E. Ronca, S.G. Louie, 
T.C. Berkelbach, G. K-L Chan, PRB 93, 235139 (2016)



Variational Diagrammatic Monte Carlo

Variational Diag-MC:
• variational principle to determine best starting point (such as screening by 

Yukawa form) to achieve fast convergent series.

• leverage sign blessing:  exact summation of diagrams that largely cancel 
optimizing internal variables (such as the conserving Baym-Kadanoff 
group of Hugenholtz diagrams)

* N. Prokof’ev, B. Svistunov, PRL 81, 2514 (1998)
   N. Prokof’ev. B. Svistunov, PRB 77, 020408 (2008)

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).

Diagrammatic MC: provided numerically exact solution by 
summing sufficiently high-order Feynman diagrams*
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Convergent Strong-Coupling Expansions from Divergent Weak-Coupling Perturbation Theory
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Divergent weak-coupling perturbation expansions for physical quantities can be converted into
sequences of uniformly and exponentially fast converging approximations. This is possible with
the help of an additional variational parameter to be optimized order by order. The uniformity of
the convergence for any coupling strength allows us to take all expressions directly to the strong-
coupling limit, yielding a simple calculation scheme for the coefficients of convergent strong-coupling
expansions. As an example, we determine these coefficients for the ground state energy of the
anharmonic oscillator up to 22nd order with a precision of about 20 digits.

PACS numbers: 03.65.Db, 02.60.Gf, 12.38.Cy

&(g) = ~ p«l Ig/4
'

0

where eI are rational numbers

(2)

1 3 21 3332'4' 8' 16'
30885
128 (3)

With the help of the recursion relations found by Ben-
der and Wu [I] it is easy to calculate a large num-
ber of these coefficients using some symbolic algebra
program, for example, MApLE. Nevertheless, as is well
known, the series (2) cannot be used to find an accu-
rate energy, since it has a zero radius of convergence
caused by the factorial growth of the coefficients e~ =—(1/7r) Q6/n (—3)'l!l 'I . Only for small couplings

One of the important problems in the physics of strong
interactions is the extraction of physically meaningful
results from perturbation expansions which all diverge,
even for small couplings, and become completely useless
for strong couplings. The perturbation expansion for the
energy eigenvalues of the quantum mechanical oscillator
is often used to illustrate this difficulty. The potential is

V(x) = x + —x (to, g ) 0), (1)
M 2 g 4
2 4

and Rayleigh-Schrodinger perturbation theory for the
ground-state energy yields a power-series expansion

g ~ 0.1 it yields reasonable approximations if truncated
at a finite order N, optimally at the integer closest to 3/4g.
For stronger couplings such as g = 1, the result becomes
worse for increasing orders.
The purpose of this Letter is to point out a possible

future remedy of this problem. It is based on a systematic
extension of the Feynman-Kleinert variational approach
to path integrals [2], which has recently been developed
into a fully Hedged convergent variational perturbation
theory [3,4]. This theory converts ordinary divergent
perturbation expansions into sequences of uniformly and
exponentially fast converging approximations. In this
Letter we show that the theory has a simple strong-
coupling limit which can efficiently be used to calculate
the coefficients of strong-coupling expansions. The latter
are convergent for all g & g„where g, may be quite
small ~

As an example, we consider the ground-state energy of
the quantum mechanical anharmonic oscillator and find
23 strong-coupling expansion coefficients. The associ-
ated approximate expansion yields accurate energies for
all g ~ 0.2 (the convergence radius of the full series be-
ing =0.16). There is no problem in applying the same
method to excited states.
The procedure goes as follows (see Sec. 5.13 of

Ref. [4]). First, the harmonic term of the potential is split
into a new harmonic term with a trial frequency 0, and a
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Variational Perturbation Theory

Started with Kleinert & Feynman 
Later improved by Kleinert & Janke 

Anharmonic oscillator:

Weak coupling series is diverging at small ω:
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Variational Perturbation Theory

Final first order:
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Turned diverging series into fast converging series



Variational Perturbation Theory

Higher order terms are well behaved 
and rapidly converging

Even odd term optimization:

VOLUME 75, NUMBER 15 PH YS ICAL REVIEW LETTERS 9 OcToBER 1995

all 23 digits with the most accurate value for no available
in the literature [6]:
~o = 0.667 986 259 155 777 108 270 962 016919860

199430 404 936 984 060 455 976 663 80. (17)
For a ~ to o. ~ ~, our results are consistent with,
but considerably more accurate than, previous re-
sults in Ref. [7] (e.g. , n~ = 0.143 668 783 380865,
n2 = —0.008 627 565 680 803).
As a further check we have evaluated our strong-

coupling series at g/4 = 0.1, 0.3, 0.5, 1, 2 (setting
cu = 1) and compared the numbers with the very pre-
cise lower and upper bounds of Vinette and Ciiek [6].
Table II shows that the energies are accurate to about
20 digits for all couplings g/4 ~ 1. The accuracy is
limited by the precision of the n, . Note that our strong-
coupling expansion gives very good energies down to
very small couplings g even at g/4 = 0.1 the so-
obtained energy agrees to seven digits with the value in
Ref. [6].
In Fig. 1 we show the approach of n„ to the asymptotic

value given in Table I by plotting
~w = l(~„)Jv —~.l (18)

on a logarithmic scale. The periodic structure in the
data is caused by an oscillatory approach of (n„)z —n„

TABLE II. Ground-state energies from strong-coupling series
expansion. The lines labeled "lb" and "ub" are the lower and
upper bounds of Ref. [6].
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FIG. 1. Convergence of the variational perturbation expansion
for the strong-coupling coefficients no, n~, nq, and n](). The
solid straight lines are the best eyeball fits to the envelope of
the data. The dashed line in the n() data has a slope equal to
the theoretically expected value 9.7 [4].
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Variational Diagrammatic Monte Carlo

1) choose a good reference system (L0), which allows for emergent property. We want 
to leverage the locality of correlations (as known from success of LDA and DMFT) to 
achieve fast convergence : screened short-range interaction in solids or 
DFT+DMFT solution the problem.

2) Optimize parameters in ΔL with principal of the minimal sensitivity, or renormalized 
condition.  ΔL makes L exact, hence ΔL is not just the interaction, but more 
complicated Lagrangian with counter-terms.

3) Use Diagrammatic Monte Carlo to evaluate Feynman expansion to high order until 
convergence (use sign blessed groups to avoid sign problem)  
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Lagrangian + counter-terms:
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in the problem when parameters � and vk are properly
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so that, when the number ⇠ is set to unity, L = L0 +
�L(⇠) is exactly the UEG Lagrangian. The density ⇢
is ⇢q =

P
k�  

†
k� k+q�. Note that the first two terms

in �L are the counterterms [23] which exactly cancel the
two terms we added to L0 above. We use the number ⇠ to
track the order of the Feynman diagrams, so that order
N contribution sums up all diagrams carrying the factor
⇠N . We set ⇠ = 1 at the end of the calculation. Note also
that this arrangement bears similarity with the well es-
tablished methods, such as G0W0 [36], which computes
the self-energy at the lowest order (⇠1) and sets vk to the
DFT Kohn-Sham potential, and �q to the bubble dia-

gram (�q = g0g0 with g0k
�1

= (i!+µ� k2

2m�vk)). The so-
called skeleton Feynman diagram technique is recovered
when vk and �q are equated with the self-consistently
determined self-energy and polarization. However, note
that such diagram expansion can be dangerous, as it can
lead to false convergence to the wrong solution [37]

In optimizing the screening parameter �q by the prin-
ciple of minimal sensitivity, we found it is su�cient

to take a constant �q = �. Furthermore, we found
that the uniform convergence for all momenta is best
achieved when the electron potential vk preserves the
Fermi surface volume of g0k, therefore we expand vk =
⇠ (⌃x

k �⌃x
kF

) + ⇠2 s2 + ⇠3 s3 · · · , and we determine sN so
that all contributions at order N do not alter the physical
volume of the Fermi surface. Since the exchange (⌃x

k) is
static, and is typically large, we accomodate it at the first
order into the e↵ective potential, so that at the first or-
der we recover the screened Hartree-Fock approximation,
i.e., interaction screened to exp(�r

p
�)/r and optimized

�.
The vertex corrected (VC) constant fermi surface

scheme (CFS) is a conserving approximation which is
derived from the Baym-Kadano↵ approach by regarding
the potential vk as a functional of the green’s function,
i.e., vk[g0k], while CFS is the conserving approximation
when vk is taken as a constant in the Baym-Kafano↵
derivation (see the Supplementary Material). In practice,
within the VCCFS scheme, we precompute the three-
point ladder vertex, and attach it to each Feynman dia-
gram on the right-hand side, and at the same time, we
eliminate all ladder-type diagrams from the sampling, to
avoid double-counting of diagrams. Similarly, the ladder
vertex is attached on both sides in the Double Vertex
Corrected Constant Fermi Surface (DVCCFS) scheme,
and a few additional ladder-type diagrams are then elim-
inated from sampling.
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Counter terms make sure that we get the 
exact answer at large order for any λ

Counter-term makes sure that the exact 
answer is obtained for any vk at large p.o.

electron propagator is optimized

1

I(q) =

Z
f(q,k1,k2, · · · ,kn)d

3k1d
3k2 · · · d3kn (1)

⌘
Z

f(x)dx (2)

fm(k1,k2, · · · ,kn) = g(kn)
n�1Y

i=1

gi(ki)hi(kn � ki) (3)

gi(k) /
Z

|f(q,k1,k2, · · · ,kn)�(ki � k)d3qd3k1 · · · d3kn (4)

hi(k) /
Z

|f(q,k1,k2, · · · ,kn)�(kn � ki � k)d3qd3k1 · · · d3kn

P (q = 0,! = 0)/NF (5)

�/EF (6)

V (x) =
1

2
!
2
x
2 + gx

4 (7)

E0 =
!

2
+ g

3

4!2
� g

2 21

8!5
+ g

3 333

16!8
+ · · · (8)

V (x) =
1

2
⌦2

x
2 + ⇠(gx4 +

1

2
(!2 � ⌦2)x2) (9)

⇠ = 1 (10)

E
(1)[⌦], E(2)[⌦], · · · (11)

dE
n[⌦]

d⌦
= 0 ! ⌦n

optimal (12)

E
(1)[⌦1

optimal], E
(2)[⌦2

optimal], · · · (13)

E
(1)[⌦optimal] = g

1/30.681420 (14)

E
exact = g

1/30.66798 (15)

! = 0

�s/NF

H = H0 + ⇠(gx4 +
1

2
(!2 � ⌦2)x2)

E
(1) = h 0|H| 0i =

⌦

2
+ ⇠(g

3

4⌦2
+

1

2

!
2 � ⌦2

2⌦
) !⇠=1 ⌦

4
+

1

4

!
2

⌦
+ g

3

4⌦2

dE
(1)

d⌦
=

1

4
� !

2

4⌦2
� g

3

2⌦3
= 0 (16)

⌦3 � !
2⌦� 6g = 0

! = 0

⌦(1)
optimal = (6g)1/3 (17)

E
(1)[⌦(1)

optimal] = g
1/3 3

8
61/3 ⇡ g

1/3 0.68142

2

|r� r0| !
8⇡

q2

Open question: How to determine parameters λ and vk



Average perturbation order:
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Possible choices for λ: 

Makes sure that average p. order < 1
renormalized condition, 


borrowed from renormalized perturbation theory 

1) Poor convergence and rapid oscillations with orders (approx. 5-times too small)
2)  To converge we need to go to order 25=8𝜋 ! (approx. 5 times too large)
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Exact cancelation of bubbles+c.t. at low energy
i.e., self-consistent determination of screening

The principle of smallest sensitivity.
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Example: expansion for polarization

Screened RPA
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First order is the standard RPA:
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FIG. 1. Feynman diagram building blocks: The bare

electron propagator g describes an electron propagating in an

e↵ective potential vk, the interaction line 8⇡/(q2 + �q) repre-

sents a boson propagator with an e↵ective mass ⇠ �, which
makes the Coulomb repulsion short ranged. The counter

terms, which compensate for our choice of the e↵ective L0,

are proportional to vk(⇠) (the single-particle counter term)

and ⇠�q (the interaction counter term), and are depicted in

the last two diagrams.

Note that the U derivative is taken by the chain rule,
i.e., �/�U = (�g/�U)(�/�g), where the the U -derivative
of the propagator is simple: it just splits the propagator
into two by inserting an external vertex,

�g(1, 2; U)

�U(3+, 3)
= �g(1, 3)g(3, 2). (8)

This relation is derived by taking the derivative of the
identity g�1g = 1, which is g�1dg/dU + (dg�1/dU)g =
0, therefore dg/dU = �g(dg�1/dU)g and dg�1/dU =
1, provided vk is independent of U . Diagrammatically,
a derivative �/�U removes a single-particle propagator
from the Feynman diagram (�/�g), and we then replace
it with an external vertex and the two propagators, i.e.,
�g/�U = �gg. In other words, it inserts an external
vertex on an existing bare electron propagator. Note
that this operation increases the diagram order by one.
Finally, after the derivative is taken, we substitute vk
with its expression in terms of the exchange self-energy,
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kF
) + ⇠2 s2 + ⇠3 s3 · · · . (9)

With the above described algorithm, we obtain the
conserving expansion for the two particle correlation
function �, however, the convergence for the dielectric
function is even faster when the expansion is carried out
for the polarization function defined by Eq. 5. In the
momentum and frequency space, the two are related by

�(q) = � Pq

1 � Pq
8⇡
q2

(10)

or �(q) = �[Pq+Pq
8⇡
q2 Pq+Pq

8⇡
q2 Pq

8⇡
q2 Pq+· · · ], meaning

that Pq is the irreducible part of �(q) with respect to cut-
ting the interaction propagator 8⇡

q2 Similarly, when work-

ing with the screened interaction 8⇡
q2+� , we can rewrite

8⇡

q2
=

8⇡

q2 + �

1X

n=0

✓
⇠�

8⇡

8⇡

q2 + �

◆n

(11)

and therefore

�(q) = � Pq

1 � Pq
8⇡

q2+�

P1
n=0

⇣
⇠�
8⇡

8⇡
q2+�

⌘n , (12)

which shows that Pq is now the irreducible part of �(q)
with respect to cutting the interaction propagator 8⇡

q2+�

or any combination of interaction with counter terms of
arbitrary order, i.e., 8⇡

q2+� ( ⇠�
8⇡

8⇡
q2+� )n. The resulting po-

larization diagrammatic expansion is shown in Fig. 2.
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FIG. 2. Feynman diagrammatic expansion with coun-

terterms: The perturbative expansion for the polarization is

formulated with the standard Feynman diagrams with coun-

terterms. The shaded block represents all one-interaction-

irreducible diagrams for the particle-hole four-point vertex

function. Note that the single-particle counterterm first ap-

pears at the second order, while the interaction counter-term

first appears at the third order.
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FIG. 3. Ladder-type vertex correction: The ladder

diagrams can be resummed by the Bethe-Salpeter equation.

To derive the vertex corrected VCCFS scheme, we
carry out slightly di↵erent order of operations, namely

�(1, 2) =
�
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"
� ln Z[U ]

�U(2+, 2)

�

vk=⌃x
k+···

#

U=0

which means that we substitute the expression for the
e↵ective potential after the first derivative is taken (i.e.,
into the expression for the bare electron propagator).
When taking the second derivative, we need to keep in
mind that the e↵ective potential vk = vk[U ] now de-
pends on U through the exchange self-energy, which is a
functional of the bare propagator g[U ]. The chain rule is
therefore modified to

�
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where the second derivative acts only on the single-
particle counter-terms. Taking the derivative with re-
spect to U as above gives dg/dU = �g(dg�1/dU)g =
�g(1 � d⌃x/dU)g, and since d⌃x/dU = �[8⇡/(q2 +

+



From sign problem to sign blessing

2

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

1

2V

X

q 6=0

⇢q
8⇡

q2
⇢�q (18)

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

X

q 6=0

�†
q
q
2

8⇡
�q +

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (19)

L0 =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m
+ vk(⇠ = 1)

◆
 k� +

X

q 6=0

�†
q
q
2 + �q

8⇡
�q (20)

�L = �
X

k�

 
†
k� vk(⇠) k� �

X

q 6=0

�†
q
�q

8⇡
�q +

p
⇠

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (21)

vk(⇠) = ⇠⌃x
k +

1X

n=1

⇠
n�µ

(n) (22)

vk(⇠ = 1) = v
KS
LDA +�µ (23)

vk(⇠ = 1) = ⌃LDA+DMFT +�µ (24)

vk(⇠) =
1X

n=1

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (25)

⌃LDA+DMFT =
1X

n=1

⌃(n)
LDA+DMFT (26)

G
LDA+DMFT (k,!) (27)

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (28)

|PW | = |
Z

[dx]N
X

diag

Wdiag| (29)

PdMC =

Z
[dx]N

X

diag

|Wdiag| (30)

PV DMC =

Z
[dx]N |

X

diag

Wdiag| (31)

2

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

1

2V

X

q 6=0

⇢q
8⇡

q2
⇢�q (18)

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

X

q 6=0

�†
q
q
2

8⇡
�q +

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (19)

L0 =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m
+ vk(⇠ = 1)

◆
 k� +

X

q 6=0

�†
q
q
2 + �q

8⇡
�q (20)

�L = �
X

k�

 
†
k� vk(⇠) k� �

X

q 6=0

�†
q
�q

8⇡
�q +

p
⇠

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (21)

vk(⇠) = ⇠⌃x
k +

1X

n=1

⇠
n�µ

(n) (22)

vk(⇠ = 1) = v
KS
LDA +�µ (23)

vk(⇠ = 1) = ⌃LDA+DMFT +�µ (24)

vk(⇠) =
1X

n=1

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (25)

⌃LDA+DMFT =
1X

n=1

⌃(n)
LDA+DMFT (26)

G
LDA+DMFT (k,!) (27)

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (28)

|PW | = |
Z

[dx]N
X

diag

Wdiag| (29)

PdMC =

Z
[dx]N

X

diag

|Wdiag| (30)

PV DMC =

Z
[dx]N |

X

diag

Wdiag| (31)

2

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

1

2V

X

q 6=0

⇢q
8⇡

q2
⇢�q (18)

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

X

q 6=0

�†
q
q
2

8⇡
�q +

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (19)

L0 =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m
+ vk(⇠ = 1)

◆
 k� +

X

q 6=0

�†
q
q
2 + �q

8⇡
�q (20)

�L = �
X

k�

 
†
k� vk(⇠) k� �

X

q 6=0

�†
q
�q

8⇡
�q +

p
⇠

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (21)

vk(⇠) = ⇠⌃x
k +

1X

n=1

⇠
n�µ

(n) (22)

vk(⇠ = 1) = v
KS
LDA +�µ (23)

vk(⇠ = 1) = ⌃LDA+DMFT +�µ (24)

vk(⇠) =
1X

n=1

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (25)

⌃LDA+DMFT =
1X

n=1

⌃(n)
LDA+DMFT (26)

G
LDA+DMFT (k,!) (27)

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (28)

|PW | =

������

Z
[dx]N

X

diag

Wdiag

������
(29)

PdMC =

Z
[dx]N

X

diag

|Wdiag| (30)

PV DMC =

Z
[dx]N

������

X

diag

Wdiag

������
(31)

2

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

1

2V

X

q 6=0

⇢q
8⇡

q2
⇢�q (18)

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

X

q 6=0

�†
q
q
2

8⇡
�q +

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (19)

L0 =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m
+ vk(⇠ = 1)

◆
 k� +

X

q 6=0

�†
q
q
2 + �q

8⇡
�q (20)

�L = �
X

k�

 
†
k� vk(⇠) k� �

X

q 6=0

�†
q
�q

8⇡
�q +

p
⇠

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (21)

vk(⇠) = ⇠⌃x
k +

1X

n=1

⇠
n�µ

(n) (22)

vk(⇠ = 1) = v
KS
LDA +�µ (23)

vk(⇠ = 1) = ⌃LDA+DMFT +�µ (24)

vk(⇠) =
1X

n=1

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (25)

⌃LDA+DMFT =
1X

n=1

⌃(n)
LDA+DMFT (26)

G
LDA+DMFT (k,!) (27)

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (28)

Z
[dx]N

X

diag

Wdiag (29)

|PW | =

������

Z
[dx]N

X

diag

Wdiag

������
(30)

PdMC =

Z
[dx]N

X

diag

|Wdiag| (31)

PV DMC =

Z
[dx]N

������

X

diag

Wdiag

������
(32)

We want to calculate

2

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

1

2V

X

q 6=0

⇢q
8⇡

q2
⇢�q (18)

L =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m

◆
 k� +

X

q 6=0

�†
q
q
2

8⇡
�q +

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (19)

L0 =
X

k�

 
†
k�

✓
@

@⌧
� µ� ~2r2

2m
+ vk(⇠ = 1)

◆
 k� +

X

q 6=0

�†
q
q
2 + �q

8⇡
�q (20)

�L = �
X

k�

 
†
k� vk(⇠) k� �

X

q 6=0

�†
q
�q

8⇡
�q +

p
⇠

ip
2V

X

q 6=0

⇢q�
†
q + ⇢�q�q (21)

vk(⇠) = ⇠⌃x
k +

1X

n=1

⇠
n�µ

(n) (22)

vk(⇠ = 1) = v
KS
LDA +�µ (23)

vk(⇠ = 1) = ⌃LDA+DMFT +�µ (24)

vk(⇠) =
1X

n=1

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (25)

⌃LDA+DMFT =
1X

n=1

⌃(n)
LDA+DMFT (26)

G
LDA+DMFT (k,!) (27)

⇠
n(⌃(n)

LDA+DMFT +�µ
(n)) (28)

⌧
Z
[dx]N

X

diag

|Wdiag| (29)

Z
[dx]N

X

diag

Wdiag (30)

|PW | =

������

Z
[dx]N

X

diag

Wdiag

������
(31)

PdMC =

Z
[dx]N

X

diag

|Wdiag| (32)

PV DMC =

Z
[dx]N

������

X

diag

Wdiag

������
(33)

sign problem in diag-MC!

Physical weight:

Weight in diagMC:

Weight in VDMC:

From Sign Problem to Sign Blessing

Observation 2: Efficiency of the minimal algorithm ~𝐹𝑁2. M
on

te
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rlo
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Order 𝑵

Upper bound ~𝐺𝑁
~ Diagram Num (e.g. ~𝑛! 2𝑛𝑛3/2)

Lower bound ~|𝐸𝑁|

Physical weight: |𝐸𝑁| = | ሾ𝑑𝑥ሿ𝑁σ𝑑𝑖𝑔𝑊𝑑𝑖𝑔 |

Minimal algorithm: 𝐹𝑁 = ሾ𝑑𝑥ሿ𝑁 σ𝑑𝑖𝑔𝑊𝑑𝑖𝑔

Previous algorithm: 𝐺𝑁 = ሾ𝑑𝑥ሿ𝑁σ𝑑𝑖𝑔 𝑊𝑑𝑖𝑔

Observation 3: 𝐹𝑁 STRONGLY depends on the internal

variable arrangement:
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Game Rule: Optimize the variables to minimize 𝑭𝑵

N. Prokof’ev,  B. Svistunov, PRB 77, 020408 (2008).

Observation 1: |𝐸𝑁|  𝐹𝑁  𝐺𝑁.

PdMC

|PW|

PVDMC



How to group diagrams to sign-blessed groups?

Baym-Kadanoff algorithm is used to construct 
groups of diagrams with consistent internal 
variables (preserve particle number, energy, 
momentum in each MC step).

Ward identity (each MC step is conserving):

Supplementary Material

Kun Chen and Kristjan Haule⇤

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
(Dated: January 19, 2019)

I. CONSERVING DIAGRAMMATIC
EXPANSION

This section introduces two conserving diagrammatic
techniques, which are called CFS and VCCFS in the main
text, to calculate the polarization P (or susceptibility �).
Both schemes preserve the exact crossing symmetry and
conservation laws (particle number, momentum, energy,
etc.) order by order. We note that the particle-number
conservation law of the polarization P (q ! 0, ⌧) ! const
is essential for the Coulomb electron gas, in order to prop-
erly describe the plasmon physics.

The conserving diagrammatic expansions for the po-
larization can be constructed with the Baym-Kadano↵
approach [1, 2], which is briefly reviewed below, before
presenting the computational schemes used in the main
text. In the Baym-Kadano↵ approach one first intro-
duces an external potential coupled to the density oper-
ator of the system,

S[ †, ; U ] = S[ †, ] �
Z

d1d2  †(1)U(1, 2) (2), (1)

where  are a Grassmann field for the electrons; the in-
dexes represent spatial, temporal and spin variables. The
generating functional for the connected correlation func-
tions is defined as ln Z[U ] with,

Z[U ] =

Z
D †D e�S[ †, ;U ]. (2)

For a given approximation to ln Z[U ], one can derive
a conserving approximation for the one-particle Green’s
function by making sure that

G(1, 10) =
� ln Z[U ]

�U(10, 1)

����
U!0

, (3)

while the two particle correlation function (charge, or
spin correlation function if spin indexes are not summed),
should satisfy
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Example of 3rd order polarization diagrams
Diagram Generation & Internal Variables

Examples of the 3rd order polarization diagrams:

Step 1: Start with a Hugenholz diagram for the free energy

functional ~𝑙𝑛𝑍:
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2

Step 2: Attach two external vertices in all possible way 

(Baym-Kadanoff construction ~ డమ𝑍
డ𝐺షభడ𝐺షభ

, conserving group):
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Step 3: Expand Hugenholtz vertex (crossing symmetry) :
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Step 1:

Step 2:

Start with Hugenholtz diagram for the free 
energy functional        . Choose momentum 
loops (shortest path) and time indices.
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Attach two external vertices in all possible ways 

(creates a Baym-Kadanoff conserving group)
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Step 3:
Expand each vertex in Hugenholtz 
diagrams, to generate normal 
Feynman diagrams. Keep all momenta 
and time indices equal to those in           
diagram. 
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Notice that 2N diagrams are 
evaluated at once by Hugenholtz 
trick : GGG (V1-V2) (V1-V2)…
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dielectric constant-direct comparison to DMC

Momentum 
dependence 

challenging for DMC 
because they treat 

finite system.

New method 
beats DMC in 

precision.
VDMC can give momentum 
(and frequency) response.

VCCFS

2kF

DMC: B.J.Alder, PRB 50, 
14838 (1994) 
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note that this spin susceptibility plays a central role in
construction of the DFT exchange-correlation kernel for
magnetically ordered systems. Finally, Fig. 3b displays
the static local-field correction, which measures the de-
viation from the non-interacting electron gas (�RPA),

G(q) ⌘ q2

8⇡ (�
�1
RPA(q,! = 0) � �

�1(q,! = 0)). It is a
very sensitive measure of electron correlations. It has
been suggested in the literature that the possible peak
near k ⇠ 2kF is of great importance for understanding
the quasiparticle properties [30]. Within the local den-
sity approximation, the function G(q) is approximated
by the quadratic parabola depicted in Fig. 3b [31], which
is an excellent approximation at small q  kF , but its de-
viation from the quadratic function is very pronounced
near 2kF . Note that within RPA G(q) vanishes, as RPA
does not take into account the exchange-correlation ker-
nel. We note that our calculation clearly shows that in
the exact solution, the local field correction displays non-
trivial maximum just above 2kF , which is obtained here
for the first time.

a

c

b

d

FIG. 4: The inverse dielectric function (1/✏) for rs = 1�
4 at �⇤

N=5, optimized for order 5, but we show 1/✏ for all orders
up to 5 and its extrapolated value. We also display error-bars
for extrapolated curve, which contains both the statistical
error, and the estimated extrapolation error. Here we use
more rapidly converging VCCFS scheme. The comparison
to DMC and RPA is shown. The DMC data are from Ref.
[31, 32].

Fig. 4 shows the dielectric function ✏(q) for densities
rs = 1 to rs = 4, and its comparison to RPA and
DMC [31, 32] results. We show several orders (N = 2�5)
using VCCFS scheme, and also the extrapolated result
to N = 1 using standard second order Richardson ex-
trapolation. The DMC data are in agreement with our
prediction, but notice that DMC allows one to calculate
only a set of discrete points, while the newly developed
“Variational Diagramatic Monte Carlo” method gives a
smooth and very accurate continuous curve, which allows

one to resolve the fine structure. For example, we notice
that there is a clear kink of 1/✏ curve near 2kF . This fea-
ture has been proposed in some theories (e.g. Ref. [33]),
but the previous DMC results in Ref. [31, 32] were not
precise enough to confirm or disprove it.

rs �s/NF litt.(�s/NF ) P (0)/NF litt.(P (0)/NF )
1 1.152(2) 1.15-1.16 1.208(6) 1.207-1.208
2 1.296(6) 1.27-1.31 1.54(2) 1.549-1.549
3 1.438(9) 1.39-1.48 2.20(6) 2.194-2.203
4 1.576(9) 1.51-1.66

TABLE I: Long wavelength values of spin and charge
response: First column �s = �s(q = 0,! = 0) is the spin
susceptibility, here normalized by the density of states at the
Fermi level (NF ), as computed by the current method. The
second column shows the range of previous estimations from
the literature [34]. P (0) ⌘ P (q = 0,! = 0) is the static
uniform charge polarization as obtained by this method. Un-
fortunately both CFS and VCCFS methods approach the con-
verged value from below, hence extrapolation to N = 1 is
needed, which leads to much larger error-bar in our calcula-
tion. The forth column lists previous DMC results, extracted
from two di↵erent correlation energy ansatzes proposed in
Refs. 34 and 35.

Finally, in Table I we give our best estimates for the
static spin and charge response with estimation of the
error-bar. Within our method the spin response shows
faster convergence with increasing order, hence it allows
us to compute the spin response more precisely than
the charge response, therefore our values for �s/NF are
more precise than currently available literature (compare
columns one and two). Note that the previous estimate
for the spin susceptibility relied on an uncontrolled ansatz
for the spin dependence of the susceptibility, hence large
uncertainty.
Contrary to the spin response, or finite momentum

charge response, the static uniform charge response
P (q = 0,! = 0) can be obtained from the ground state
energy of the system, without explicitly introducing a
modulated external potential, and hence it can be ex-
tracted very precisely from the existing DMC calcula-
tions. We compare it with our results, and find excellent
agreement. We note that static P (q = 0,! = 0) at rs = 4
convergences very slowly in our method, due to proxim-
ity to the well known charge instability at rs ⇡ 5.2, hence
we can not reliably extrapolate its value to infinite order
at rs � 4.

The prospects of combining the Variational diagram-
matic Monte Carlo with DFT to obtain theoretically con-
trolled results in real solids are particularly exciting, as
the DFT potential is semi-local and can be added to vk,
so that it will play a role of a counter-term in the ex-
pansion. The complexity would be modest, because no
expensive self-consistency is required, and because the
interaction is statically screened even at the lowest or-
der, hence the scaling of this method should be similar
to the complexity of screened hybrids [36] rather than
the self-consistent GW approximation [37].

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



Spin-susceptibility at rs=4 (                  )

broad plateau in λ at large order => 
converged value in the plateau.

Scan in λ reveals the speed of convergence.

Values at the optimum (principle of minimal 
sensitivity) converge very fast

spin susceptibility at q=0, ⍵=0 see: Feynman & Kleinert, PRA 34, 5080 (1986) 
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Spin-susceptibility at rs=4 (                  )

3

All results in this work are obtained at temperature
T = 0.04EF , which is much lower than any other scale
in the problem, hence results are the zero temperature
equivalent. We want to point out that finite tempera-
ture calculations are very hard in the Di↵usion Monte
Carlo (DMC), while our method is very well suited for fi-
nite temperature calculations, and converges even faster
with the increasing order. While wave-function proper-

FIG. 2: Spin susceptibility of UEG at rs = 4 (i.e., den-
sity n = 2/(4⇡r3s)) The optimization of �s(q = 0,! = 0) ver-
sus the screening parameter � within (a) CFS and (b) VCCFS
scheme. A single extrememum at the optimized �⇤ appears,
which is however order dependent (�⇤

N ). (c) The value of the
optimized �(q = 0,! = 0)[�⇤] versus diagram order in both
schemes. (d) The momentum dependent �(q,! = 0) at the
converged order N = 6 and optimized �⇤

N=6 = 1.0 in both
CFS and VCCFS schemes, and its comparison with Random
phase approximation (RPA), which is exact when interaction
is ignored.

ties, such as energy and pair distribution function, are
very precisely computed by DMC, and some of them are
also are amenable to approximations such as GW [27, 28],
the response functions are more challenging to evaluate
with the existing techniques. The strength of our ap-
proach is that it can be used to compute both the static
and the dynamic, the single and the multiparticle correla-
tion functions. In Figs. 2 and 3 we show the momentum-
dependent (Pauli) spin susceptibility at zero frequency,
which has never been precisely calculated before to our
knowledge even though its overall shape is crucial for the
design of appropriate exchange-correlation functionals of
the DFT to predict magnetic order in real materials. In
panels (a) and (b) we show how the convergence prop-
erties of the susceptibility �s depends on the screening
parameter � in the theory. Note that the static screening
in L0 is always compensated by the counter-term in �L,
so that with the increasing expansion order the suscep-
tibility conerges towards the exact result. The observ-
able �s(q = 0) develops a broad plateau as a function
of � (Fig. 2a and b) at the point �⇤, which is slightly
increasing with the increasing order. This shows that
if expansion is carried out to high enough order, the

physics becomes more and more local and allows one
to use very short range form of the interaction, which
greatly improves the e�ciency of the method. We note
that this property will be very beneficial in the realistic
material applications, where the converged result is ex-
tremely di�cult to obtain due to the long range nature
of the bare Coulomb interaction. Fig. 2c shows the value
of �s(q = 0) at the optimized �⇤ versus perturbation or-
ders. When the PMS is used, such that the variational
parameter � is optimized order by order, the convergence
to the exact results is very rapid, even when the bare
interaction is strong. The value �s(q = 0) at the opti-
mized �⇤ is monotonically increasing (decreasing) with
the increasing order when we use CFS (LVCFS) method.
Hence the exact result is bracketed from above and below
with these two methods, establishing the controllness of
the extraplations and allowing one to extract very precise
value of �s(q = 0) even at a moderate order (see Fig. 2c).
Fig. 2d shows the momentum dependence of spin-

susceptibility �s(q) at �⇤ = 1.0, optimized at the highest
order (N = 6). Since the two methods CFS and LVCFS
approach the exact result from below and above, the dif-
ference between the two is a good estimate of the system-
atic error due to the finite diagram order, and as the two
curves are extremely close to each other, the precision of
this method is very high.

FIG. 3: Spin susceptibility: (a) �s(q,! = 0) at optimized
�⇤ for rs = 1�4. VC corresponds to VCCFS scheme, and the
rest to CFS scheme. (b) The local field correction for the same
rs = 1 � 4, and its deviation from quadratic approximation
(see the color envelope). For clarity the curves for rs = 1, 2
and 3 are shifted up for 0.75, 0.5, and 0.25.

In Figs. 3a we show the same spin-susecptibility as
in Fig. 2d, but for other values of density parameter
rs = 1� 4 (here density n = 3/(4⇡r3s) ). Finally, Fig. 3b
displays the static local-field correction, which measures
the correction of the electron correlations to the non-
interacting electron gas, in which the Random phase ap-

proximation (RPA) is exact, G(q) ⌘ q2

8⇡ (�
�1
RPA(q,! =

0) � ��1(q,! = 0)). It is a very sensitive measure of
correlations. It has been suggested in the literature that
the possible peak near k ⇠ 2kF is of great importance
in the understanding of the quasiparticle properties [29].
The susceptibility also plays a central role in construc-
tion of the DFT exchange-correlation kernel. Within the
local density approximation, the function G(q) is taken

Convergence to 
exactly the same 
value, but oscillate

VCCFS scheme, a different BK conserving scheme

Bethe-Salpeter ladders added

spin susceptibility at q=0, ⍵=0

3

therefore modified to

�

�U
=

�g

�U

✓
@

@g

◆

vk

+
�vk
�U

✓
@

@vk

◆

g

.

where the second derivative acts only on the single-
particle counter-terms. Taking the derivative with re-
spect to U as above gives dg/dU = �g(dg�1/dU)g =
�g(1 � d⌃x/dU)g, and since d⌃x/dU = �[8⇡/(q2 +
�)] dg/dU , we now need to insert a ladder vertex be-
tween the two g’s in the following way [1],

�g(1, 2; U)

�U(3+, 3)
= �

Z
d10d20 g(1, 10)�3(1

0, 20; 3)g(20, 2),

(14)
where the ladder vertex correction �3 is defined with a
self-consistent equation as shown in Fig. 3. Similarly we
can see that �vk/�U = �⌃x/�U = �[8⇡/(q2 +�)] �g/�U ,
where �g/�U is given by Eq. 14.

This operation then gives the diagrammatic expansion
for the two-particle correlation function, similar to the
previous CFS scheme, except that the external vertex on
one side has to be replaced by the ladder vertex correc-
tions �3, and the ladder diagrams in the bare expansion
on the same side are removed by the diagrams generated
by the operator �vk

�U
@

@vk
. The resulting diagrams for the

polarization function are again the irreducible part of �,
and are depicted in Fig. 4. Note that VCCFS scheme
resumes an infinite series of ladder diagrams, and hence
encodes nonperturbative e↵ects of the charge renormal-
ization.

We emphasize here that all polarization diagrams
in both schemes only involve the statically screened
Coulomb interaction 8⇡

q2+�q
. This is a nontrivial result,

given that the definition of the polarization in Eq. (5) ex-
plicitly depends on the bare Coulomb interaction. Comb-
ing this feature with the fact that screened Coulomb in-
teraction does not diverge in the long-wave-length limit,
all polarization diagrams are now automatically regular-
ized, making the Monte Carlo simulations much more
e�cient.

!"#$$%& = −Γ* Γ*+

FIG. 4. Polarization with the ladder-type vertex cor-
rection: The perturbative expansion for the polarization can

be improved using the ladder resummation. The ladder vertex

correction is attached to one side (the right external vertex)

and to all polarization diagrams. The double-counted dia-

grams need to be subtracted, and the diagram on the right

exactly takes care of the double-counted diagrams. It is gen-

erated by the derivative with respect to the single-particle

counter-term (@/@vk), as explained above.

II. EFFICIENT DIAGRAMMATIC MONTE
CARLO ALGORITHM

In this section, we introduce a simple yet e�cient
Monte Carlo algorithm to evaluate high order Feynman
diagrams. To calculate all order N contributions, the
diagrammatic Monte Carlo algorithm needs to integrate
over all internal variables, such as momenta and times,
and also sum over all topology of the diagrams, i.e.,

FN
1 =

Z
[d⌧ ]2N [dk]N+1

X

topology

W [{⌧}, {k}] (15)

All diagrams in the same order share the same set of
interval variables. Due to the Fermi statistics, the sign
of the integrand W [{⌧}, {k}] alternates as the topology
and internal variables change. However, a Monte Carlo
algorithm can only handle positively defined weight func-
tions. A straightforward choice would be to sample the
absolute value of the integrand |W [{⌧}, {k}]|, namely
working with the sum,

FN
3 =

Z
[d⌧ ]2N [dk]N+1

X

topology

|W [{⌧}, {k}]| (16)

However, as pointed out by the previous studies [XXX],
the sign cancellation between diagrams causes FN

1 ⌧
FN
3 . More specifically, although FN

3 always diverge fac-
torially with the number of diagrams, the series FN

1 is
much better behaved (diverging slowly, or even conver-
gent if the series is within the convergence radius). This
phenomenon is referred as sign blessing in Ref. [XXX]. As
a result, the straightforward Monte Carlo scheme sam-
pling FN

3 to evaluate FN
1 su↵ers from the notorious sign

problem, and is very ine�cient. In this work, we propose
a Monte Carlo algorithm, which samples the following
weight function,

FN
2 =

Z
[d⌧ ]2N [dk]N+1|

X

topology

W [{⌧}, {k}]| (17)

Thanks to the inequality FN
1  FN

2  FN
3 , a method

sampling FN
2 is almost guaranteed to su↵er less sign

problem, thus more e�cient, than the straightforward
approach. Of course, the e�ciency of this approach re-
lies on how small is FN

2 , and how close is FN
2 to FN

1 . The
minimization of FN

2 can be achieved by optimizing the
arrangement of interval variables of di↵erent diagrams, so
that the sum of their weights with the same set of vari-
ables strongly cancel with each other. We will discuss
this in more detail in the next section.

Now we summarize the main steps of the new diagram-
matic Monte Carlo algorithm used in this work.

i) Write a script to generate all Feynman diagrams
up to the desired truncation order (say order 6 in
this work), including all necessary symmetry fac-
tors and counter-terms.
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wherethesecondderivativeactsonlyonthesingle-
particlecounter-terms.Takingthederivativewithre-
specttoUasabovegivesdg/dU=�g(dg�1/dU)g=
�g(1�d⌃x/dU)g,andsinced⌃x/dU=�[8⇡/(q2+
�)]dg/dU,wenowneedtoinsertaladdervertexbe-
tweenthetwog’sinthefollowingway[1],

�g(1,2;U)

�U(3+,3)
=�

Z
d10d20g(1,10)�

3(10,20;3)g(20,2),

(14)
wheretheladdervertexcorrection�3isdefinedwitha
self-consistentequationasshowninFig.3.Similarlywe
canseethat�vk/�U=�⌃x/�U=�[8⇡/(q2+�)]�g/�U,
where�g/�UisgivenbyEq.14.

Thisoperationthengivesthediagrammaticexpansion
forthetwo-particlecorrelationfunction,similartothe
previousCFSscheme,exceptthattheexternalvertexon
onesidehastobereplacedbytheladdervertexcorrec-
tions�3,andtheladderdiagramsinthebareexpansion
onthesamesideareremovedbythediagramsgenerated
bytheoperator

�vk
�U

@
@vk.Theresultingdiagramsforthe

polarizationfunctionareagaintheirreduciblepartof�,
andaredepictedinFig.4.NotethatVCCFSscheme
resumesaninfiniteseriesofladderdiagrams,andhence
encodesnonperturbativee↵ectsofthechargerenormal-
ization.

Weemphasizeherethatallpolarizationdiagrams
inbothschemesonlyinvolvethestaticallyscreened
Coulombinteraction

8⇡
q2+�q.Thisisanontrivialresult,

giventhatthedefinitionofthepolarizationinEq.(5)ex-
plicitlydependsonthebareCoulombinteraction.Comb-
ingthisfeaturewiththefactthatscreenedCoulombin-
teractiondoesnotdivergeinthelong-wave-lengthlimit,
allpolarizationdiagramsarenowautomaticallyregular-
ized,makingtheMonteCarlosimulationsmuchmore
e�cient.
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FIG.4.Polarizationwiththeladder-typevertexcor-
rection:Theperturbativeexpansionforthepolarizationcan

beimprovedusingtheladderresummation.Theladdervertex

correctionisattachedtooneside(therightexternalvertex)

andtoallpolarizationdiagrams.Thedouble-counteddia-

gramsneedtobesubtracted,andthediagramontheright

exactlytakescareofthedouble-counteddiagrams.Itisgen-

eratedbythederivativewithrespecttothesingle-particle

counter-term(@/@vk),asexplainedabove.

II.EFFICIENTDIAGRAMMATICMONTE
CARLOALGORITHM

Inthissection,weintroduceasimpleyete�cient
MonteCarloalgorithmtoevaluatehighorderFeynman
diagrams.TocalculateallorderNcontributions,the
diagrammaticMonteCarloalgorithmneedstointegrate
overallinternalvariables,suchasmomentaandtimes,
andalsosumoveralltopologyofthediagrams,i.e.,
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Alldiagramsinthesameordersharethesamesetof
intervalvariables.DuetotheFermistatistics,thesign
oftheintegrandW[{⌧},{k}]alternatesasthetopology
andinternalvariableschange.However,aMonteCarlo
algorithmcanonlyhandlepositivelydefinedweightfunc-
tions.Astraightforwardchoicewouldbetosamplethe
absolutevalueoftheintegrand|W[{⌧},{k}]|,namely
workingwiththesum,

F
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topology
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However,aspointedoutbythepreviousstudies[XXX],
thesigncancellationbetweendiagramscausesFN

1⌧
FN
3.Morespecifically,althoughFN

3alwaysdivergefac-
toriallywiththenumberofdiagrams,theseriesFN

1is
muchbetterbehaved(divergingslowly,orevenconver-
gentiftheseriesiswithintheconvergenceradius).This
phenomenonisreferredassignblessinginRef.[XXX].As
aresult,thestraightforwardMonteCarloschemesam-
plingFN

3toevaluateFN
1su↵ersfromthenotorioussign

problem,andisveryine�cient.Inthiswork,wepropose
aMonteCarloalgorithm,whichsamplesthefollowing
weightfunction,
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ThankstotheinequalityFN
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2FN
3,amethod

samplingFN
2isalmostguaranteedtosu↵erlesssign

problem,thusmoree�cient,thanthestraightforward
approach.Ofcourse,thee�ciencyofthisapproachre-
liesonhowsmallisFN

2,andhowcloseisFN
2toFN

1.The
minimizationofFN

2canbeachievedbyoptimizingthe
arrangementofintervalvariablesofdi↵erentdiagrams,so
thatthesumoftheirweightswiththesamesetofvari-
ablesstronglycancelwitheachother.Wewilldiscuss
thisinmoredetailinthenextsection.

Nowwesummarizethemainstepsofthenewdiagram-
maticMonteCarloalgorithmusedinthiswork.

i)WriteascripttogenerateallFeynmandiagrams
uptothedesiredtruncationorder(sayorder6in
thiswork),includingallnecessarysymmetryfac-
torsandcounter-terms.

3

therefore modified to

�

�U
=

�g

�U

✓
@

@g

◆

vk

+
�vk
�U

✓
@

@vk

◆

g

.

where the second derivative acts only on the single-
particle counter-terms. Taking the derivative with re-
spect to U as above gives dg/dU = �g(dg�1/dU)g =
�g(1 � d⌃x/dU)g, and since d⌃x/dU = �[8⇡/(q2 +
�)] dg/dU , we now need to insert a ladder vertex be-
tween the two g’s in the following way [1],

�g(1, 2; U)

�U(3+, 3)
= �

Z
d10d20 g(1, 10)�3(1

0, 20; 3)g(20, 2),

(14)
where the ladder vertex correction �3 is defined with a
self-consistent equation as shown in Fig. 3. Similarly we
can see that �vk/�U = �⌃x/�U = �[8⇡/(q2 +�)] �g/�U ,
where �g/�U is given by Eq. 14.

This operation then gives the diagrammatic expansion
for the two-particle correlation function, similar to the
previous CFS scheme, except that the external vertex on
one side has to be replaced by the ladder vertex correc-
tions �3, and the ladder diagrams in the bare expansion
on the same side are removed by the diagrams generated
by the operator �vk

�U
@

@vk
. The resulting diagrams for the

polarization function are again the irreducible part of �,
and are depicted in Fig. 4. Note that VCCFS scheme
resumes an infinite series of ladder diagrams, and hence
encodes nonperturbative e↵ects of the charge renormal-
ization.

We emphasize here that all polarization diagrams
in both schemes only involve the statically screened
Coulomb interaction 8⇡

q2+�q
. This is a nontrivial result,

given that the definition of the polarization in Eq. (5) ex-
plicitly depends on the bare Coulomb interaction. Comb-
ing this feature with the fact that screened Coulomb in-
teraction does not diverge in the long-wave-length limit,
all polarization diagrams are now automatically regular-
ized, making the Monte Carlo simulations much more
e�cient.
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FIG. 4. Polarization with the ladder-type vertex cor-
rection: The perturbative expansion for the polarization can

be improved using the ladder resummation. The ladder vertex

correction is attached to one side (the right external vertex)

and to all polarization diagrams. The double-counted dia-

grams need to be subtracted, and the diagram on the right

exactly takes care of the double-counted diagrams. It is gen-

erated by the derivative with respect to the single-particle

counter-term (@/@vk), as explained above.

II. EFFICIENT DIAGRAMMATIC MONTE
CARLO ALGORITHM

In this section, we introduce a simple yet e�cient
Monte Carlo algorithm to evaluate high order Feynman
diagrams. To calculate all order N contributions, the
diagrammatic Monte Carlo algorithm needs to integrate
over all internal variables, such as momenta and times,
and also sum over all topology of the diagrams, i.e.,

FN
1 =
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[d⌧ ]2N [dk]N+1

X

topology

W [{⌧}, {k}] (15)

All diagrams in the same order share the same set of
interval variables. Due to the Fermi statistics, the sign
of the integrand W [{⌧}, {k}] alternates as the topology
and internal variables change. However, a Monte Carlo
algorithm can only handle positively defined weight func-
tions. A straightforward choice would be to sample the
absolute value of the integrand |W [{⌧}, {k}]|, namely
working with the sum,

FN
3 =
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[d⌧ ]2N [dk]N+1
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topology

|W [{⌧}, {k}]| (16)

However, as pointed out by the previous studies [XXX],
the sign cancellation between diagrams causes FN

1 ⌧
FN
3 . More specifically, although FN

3 always diverge fac-
torially with the number of diagrams, the series FN

1 is
much better behaved (diverging slowly, or even conver-
gent if the series is within the convergence radius). This
phenomenon is referred as sign blessing in Ref. [XXX]. As
a result, the straightforward Monte Carlo scheme sam-
pling FN

3 to evaluate FN
1 su↵ers from the notorious sign

problem, and is very ine�cient. In this work, we propose
a Monte Carlo algorithm, which samples the following
weight function,
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Thanks to the inequality FN
1  FN

2  FN
3 , a method

sampling FN
2 is almost guaranteed to su↵er less sign

problem, thus more e�cient, than the straightforward
approach. Of course, the e�ciency of this approach re-
lies on how small is FN

2 , and how close is FN
2 to FN

1 . The
minimization of FN

2 can be achieved by optimizing the
arrangement of interval variables of di↵erent diagrams, so
that the sum of their weights with the same set of vari-
ables strongly cancel with each other. We will discuss
this in more detail in the next section.

Now we summarize the main steps of the new diagram-
matic Monte Carlo algorithm used in this work.

i) Write a script to generate all Feynman diagrams
up to the desired truncation order (say order 6 in
this work), including all necessary symmetry fac-
tors and counter-terms.
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wherethesecondderivativeactsonlyonthesingle-
particlecounter-terms.Takingthederivativewithre-
specttoUasabovegivesdg/dU=�g(dg�1/dU)g=
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wheretheladdervertexcorrection�3isdefinedwitha
self-consistentequationasshowninFig.3.Similarlywe
canseethat�vk/�U=�⌃x/�U=�[8⇡/(q2+�)]�g/�U,
where�g/�UisgivenbyEq.14.

Thisoperationthengivesthediagrammaticexpansion
forthetwo-particlecorrelationfunction,similartothe
previousCFSscheme,exceptthattheexternalvertexon
onesidehastobereplacedbytheladdervertexcorrec-
tions�3,andtheladderdiagramsinthebareexpansion
onthesamesideareremovedbythediagramsgenerated
bytheoperator
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@vk.Theresultingdiagramsforthe

polarizationfunctionareagaintheirreduciblepartof�,
andaredepictedinFig.4.NotethatVCCFSscheme
resumesaninfiniteseriesofladderdiagrams,andhence
encodesnonperturbativee↵ectsofthechargerenormal-
ization.

Weemphasizeherethatallpolarizationdiagrams
inbothschemesonlyinvolvethestaticallyscreened
Coulombinteraction

8⇡
q2+�q.Thisisanontrivialresult,

giventhatthedefinitionofthepolarizationinEq.(5)ex-
plicitlydependsonthebareCoulombinteraction.Comb-
ingthisfeaturewiththefactthatscreenedCoulombin-
teractiondoesnotdivergeinthelong-wave-lengthlimit,
allpolarizationdiagramsarenowautomaticallyregular-
ized,makingtheMonteCarlosimulationsmuchmore
e�cient.
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exactlytakescareofthedouble-counteddiagrams.Itisgen-

eratedbythederivativewithrespecttothesingle-particle

counter-term(@/@vk),asexplainedabove.

II.EFFICIENTDIAGRAMMATICMONTE
CARLOALGORITHM

Inthissection,weintroduceasimpleyete�cient
MonteCarloalgorithmtoevaluatehighorderFeynman
diagrams.TocalculateallorderNcontributions,the
diagrammaticMonteCarloalgorithmneedstointegrate
overallinternalvariables,suchasmomentaandtimes,
andalsosumoveralltopologyofthediagrams,i.e.,
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Alldiagramsinthesameordersharethesamesetof
intervalvariables.DuetotheFermistatistics,thesign
oftheintegrandW[{⌧},{k}]alternatesasthetopology
andinternalvariableschange.However,aMonteCarlo
algorithmcanonlyhandlepositivelydefinedweightfunc-
tions.Astraightforwardchoicewouldbetosamplethe
absolutevalueoftheintegrand|W[{⌧},{k}]|,namely
workingwiththesum,
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However,aspointedoutbythepreviousstudies[XXX],
thesigncancellationbetweendiagramscausesFN

1⌧
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3.Morespecifically,althoughFN

3alwaysdivergefac-
toriallywiththenumberofdiagrams,theseriesFN

1is
muchbetterbehaved(divergingslowly,orevenconver-
gentiftheseriesiswithintheconvergenceradius).This
phenomenonisreferredassignblessinginRef.[XXX].As
aresult,thestraightforwardMonteCarloschemesam-
plingFN

3toevaluateFN
1su↵ersfromthenotorioussign

problem,andisveryine�cient.Inthiswork,wepropose
aMonteCarloalgorithm,whichsamplesthefollowing
weightfunction,
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problem,thusmoree�cient,thanthestraightforward
approach.Ofcourse,thee�ciencyofthisapproachre-
liesonhowsmallisFN

2,andhowcloseisFN
2toFN

1.The
minimizationofFN

2canbeachievedbyoptimizingthe
arrangementofintervalvariablesofdi↵erentdiagrams,so
thatthesumoftheirweightswiththesamesetofvari-
ablesstronglycancelwitheachother.Wewilldiscuss
thisinmoredetailinthenextsection.

Nowwesummarizethemainstepsofthenewdiagram-
maticMonteCarloalgorithmusedinthiswork.

i)WriteascripttogenerateallFeynmandiagrams
uptothedesiredtruncationorder(sayorder6in
thiswork),includingallnecessarysymmetryfac-
torsandcounter-terms.
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where the second derivative acts only on the single-
particle counter-terms. Taking the derivative with re-
spect to U as above gives dg/dU = �g(dg�1/dU)g =
�g(1 � d⌃x/dU)g, and since d⌃x/dU = �[8⇡/(q2 +
�)] dg/dU , we now need to insert a ladder vertex be-
tween the two g’s in the following way [1],

�g(1, 2; U)

�U(3+, 3)
= �

Z
d10d20 g(1, 10)�3(1

0, 20; 3)g(20, 2),

(14)
where the ladder vertex correction �3 is defined with a
self-consistent equation as shown in Fig. 3. Similarly we
can see that �vk/�U = �⌃x/�U = �[8⇡/(q2 +�)] �g/�U ,
where �g/�U is given by Eq. 14.

This operation then gives the diagrammatic expansion
for the two-particle correlation function, similar to the
previous CFS scheme, except that the external vertex on
one side has to be replaced by the ladder vertex correc-
tions �3, and the ladder diagrams in the bare expansion
on the same side are removed by the diagrams generated
by the operator �vk

�U
@

@vk
. The resulting diagrams for the

polarization function are again the irreducible part of �,
and are depicted in Fig. 4. Note that VCCFS scheme
resumes an infinite series of ladder diagrams, and hence
encodes nonperturbative e↵ects of the charge renormal-
ization.

We emphasize here that all polarization diagrams
in both schemes only involve the statically screened
Coulomb interaction 8⇡

q2+�q
. This is a nontrivial result,

given that the definition of the polarization in Eq. (5) ex-
plicitly depends on the bare Coulomb interaction. Comb-
ing this feature with the fact that screened Coulomb in-
teraction does not diverge in the long-wave-length limit,
all polarization diagrams are now automatically regular-
ized, making the Monte Carlo simulations much more
e�cient.
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FIG. 4. Polarization with the ladder-type vertex cor-
rection: The perturbative expansion for the polarization can

be improved using the ladder resummation. The ladder vertex

correction is attached to one side (the right external vertex)

and to all polarization diagrams. The double-counted dia-

grams need to be subtracted, and the diagram on the right

exactly takes care of the double-counted diagrams. It is gen-

erated by the derivative with respect to the single-particle

counter-term (@/@vk), as explained above.

II. EFFICIENT DIAGRAMMATIC MONTE
CARLO ALGORITHM

In this section, we introduce a simple yet e�cient
Monte Carlo algorithm to evaluate high order Feynman
diagrams. To calculate all order N contributions, the
diagrammatic Monte Carlo algorithm needs to integrate
over all internal variables, such as momenta and times,
and also sum over all topology of the diagrams, i.e.,

FN
1 =

Z
[d⌧ ]2N [dk]N+1

X

topology

W [{⌧}, {k}] (15)

All diagrams in the same order share the same set of
interval variables. Due to the Fermi statistics, the sign
of the integrand W [{⌧}, {k}] alternates as the topology
and internal variables change. However, a Monte Carlo
algorithm can only handle positively defined weight func-
tions. A straightforward choice would be to sample the
absolute value of the integrand |W [{⌧}, {k}]|, namely
working with the sum,

FN
3 =

Z
[d⌧ ]2N [dk]N+1

X

topology

|W [{⌧}, {k}]| (16)

However, as pointed out by the previous studies [XXX],
the sign cancellation between diagrams causes FN

1 ⌧
FN
3 . More specifically, although FN

3 always diverge fac-
torially with the number of diagrams, the series FN

1 is
much better behaved (diverging slowly, or even conver-
gent if the series is within the convergence radius). This
phenomenon is referred as sign blessing in Ref. [XXX]. As
a result, the straightforward Monte Carlo scheme sam-
pling FN

3 to evaluate FN
1 su↵ers from the notorious sign

problem, and is very ine�cient. In this work, we propose
a Monte Carlo algorithm, which samples the following
weight function,

FN
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W [{⌧}, {k}]| (17)

Thanks to the inequality FN
1  FN

2  FN
3 , a method

sampling FN
2 is almost guaranteed to su↵er less sign

problem, thus more e�cient, than the straightforward
approach. Of course, the e�ciency of this approach re-
lies on how small is FN

2 , and how close is FN
2 to FN

1 . The
minimization of FN

2 can be achieved by optimizing the
arrangement of interval variables of di↵erent diagrams, so
that the sum of their weights with the same set of vari-
ables strongly cancel with each other. We will discuss
this in more detail in the next section.

Now we summarize the main steps of the new diagram-
matic Monte Carlo algorithm used in this work.

i) Write a script to generate all Feynman diagrams
up to the desired truncation order (say order 6 in
this work), including all necessary symmetry fac-
tors and counter-terms.
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where the second derivative acts only on the single-
particle counter-terms. Taking the derivative with re-
spect to U as above gives dg/dU = �g(dg�1/dU)g =
�g(1 � d⌃x/dU)g, and since d⌃x/dU = �[8⇡/(q2 +
�)] dg/dU , we now need to insert a ladder vertex be-
tween the two g’s in the following way [1],

�g(1, 2; U)

�U(3+, 3)
= �

Z
d10d20 g(1, 10)�3(1

0, 20; 3)g(20, 2),

(14)
where the ladder vertex correction �3 is defined with a
self-consistent equation as shown in Fig. 3. Similarly we
can see that �vk/�U = �⌃x/�U = �[8⇡/(q2 +�)] �g/�U ,
where �g/�U is given by Eq. 14.

This operation then gives the diagrammatic expansion
for the two-particle correlation function, similar to the
previous CFS scheme, except that the external vertex on
one side has to be replaced by the ladder vertex correc-
tions �3, and the ladder diagrams in the bare expansion
on the same side are removed by the diagrams generated
by the operator �vk

�U
@

@vk
. The resulting diagrams for the

polarization function are again the irreducible part of �,
and are depicted in Fig. 4. Note that VCCFS scheme
resumes an infinite series of ladder diagrams, and hence
encodes nonperturbative e↵ects of the charge renormal-
ization.

We emphasize here that all polarization diagrams
in both schemes only involve the statically screened
Coulomb interaction 8⇡

q2+�q
. This is a nontrivial result,

given that the definition of the polarization in Eq. (5) ex-
plicitly depends on the bare Coulomb interaction. Comb-
ing this feature with the fact that screened Coulomb in-
teraction does not diverge in the long-wave-length limit,
all polarization diagrams are now automatically regular-
ized, making the Monte Carlo simulations much more
e�cient.
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FIG. 4. Polarization with the ladder-type vertex cor-
rection: The perturbative expansion for the polarization can

be improved using the ladder resummation. The ladder vertex

correction is attached to one side (the right external vertex)

and to all polarization diagrams. The double-counted dia-

grams need to be subtracted, and the diagram on the right

exactly takes care of the double-counted diagrams. It is gen-

erated by the derivative with respect to the single-particle

counter-term (@/@vk), as explained above.

II. EFFICIENT DIAGRAMMATIC MONTE
CARLO ALGORITHM

In this section, we introduce a simple yet e�cient
Monte Carlo algorithm to evaluate high order Feynman
diagrams. To calculate all order N contributions, the
diagrammatic Monte Carlo algorithm needs to integrate
over all internal variables, such as momenta and times,
and also sum over all topology of the diagrams, i.e.,

FN
1 =

Z
[d⌧ ]2N [dk]N+1

X

topology

W [{⌧}, {k}] (15)

All diagrams in the same order share the same set of
interval variables. Due to the Fermi statistics, the sign
of the integrand W [{⌧}, {k}] alternates as the topology
and internal variables change. However, a Monte Carlo
algorithm can only handle positively defined weight func-
tions. A straightforward choice would be to sample the
absolute value of the integrand |W [{⌧}, {k}]|, namely
working with the sum,

FN
3 =

Z
[d⌧ ]2N [dk]N+1
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topology

|W [{⌧}, {k}]| (16)

However, as pointed out by the previous studies [XXX],
the sign cancellation between diagrams causes FN

1 ⌧
FN
3 . More specifically, although FN

3 always diverge fac-
torially with the number of diagrams, the series FN

1 is
much better behaved (diverging slowly, or even conver-
gent if the series is within the convergence radius). This
phenomenon is referred as sign blessing in Ref. [XXX]. As
a result, the straightforward Monte Carlo scheme sam-
pling FN

3 to evaluate FN
1 su↵ers from the notorious sign

problem, and is very ine�cient. In this work, we propose
a Monte Carlo algorithm, which samples the following
weight function,

FN
2 =
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W [{⌧}, {k}]| (17)

Thanks to the inequality FN
1  FN

2  FN
3 , a method

sampling FN
2 is almost guaranteed to su↵er less sign

problem, thus more e�cient, than the straightforward
approach. Of course, the e�ciency of this approach re-
lies on how small is FN

2 , and how close is FN
2 to FN

1 . The
minimization of FN

2 can be achieved by optimizing the
arrangement of interval variables of di↵erent diagrams, so
that the sum of their weights with the same set of vari-
ables strongly cancel with each other. We will discuss
this in more detail in the next section.

Now we summarize the main steps of the new diagram-
matic Monte Carlo algorithm used in this work.

i) Write a script to generate all Feynman diagrams
up to the desired truncation order (say order 6 in
this work), including all necessary symmetry fac-
tors and counter-terms.
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where the second derivative acts only on the single-
particle counter-terms. Taking the derivative with re-
spect to U as above gives dg/dU = �g(dg�1/dU)g =
�g(1 � d⌃x/dU)g, and since d⌃x/dU = �[8⇡/(q2 +
�)] dg/dU , we now need to insert a ladder vertex be-
tween the two g’s in the following way [1],

�g(1, 2; U)

�U(3+, 3)
= �

Z
d10d20 g(1, 10)�3(1

0, 20; 3)g(20, 2),

(14)
where the ladder vertex correction �3 is defined with a
self-consistent equation as shown in Fig. 3. Similarly we
can see that �vk/�U = �⌃x/�U = �[8⇡/(q2 +�)] �g/�U ,
where �g/�U is given by Eq. 14.

This operation then gives the diagrammatic expansion
for the two-particle correlation function, similar to the
previous CFS scheme, except that the external vertex on
one side has to be replaced by the ladder vertex correc-
tions �3, and the ladder diagrams in the bare expansion
on the same side are removed by the diagrams generated
by the operator �vk

�U
@

@vk
. The resulting diagrams for the

polarization function are again the irreducible part of �,
and are depicted in Fig. 4. Note that VCCFS scheme
resumes an infinite series of ladder diagrams, and hence
encodes nonperturbative e↵ects of the charge renormal-
ization.

We emphasize here that all polarization diagrams
in both schemes only involve the statically screened
Coulomb interaction 8⇡

q2+�q
. This is a nontrivial result,

given that the definition of the polarization in Eq. (5) ex-
plicitly depends on the bare Coulomb interaction. Comb-
ing this feature with the fact that screened Coulomb in-
teraction does not diverge in the long-wave-length limit,
all polarization diagrams are now automatically regular-
ized, making the Monte Carlo simulations much more
e�cient.
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FIG. 4. Polarization with the ladder-type vertex cor-
rection: The perturbative expansion for the polarization can

be improved using the ladder resummation. The ladder vertex

correction is attached to one side (the right external vertex)

and to all polarization diagrams. The double-counted dia-

grams need to be subtracted, and the diagram on the right

exactly takes care of the double-counted diagrams. It is gen-

erated by the derivative with respect to the single-particle

counter-term (@/@vk), as explained above.

II. EFFICIENT DIAGRAMMATIC MONTE
CARLO ALGORITHM

In this section, we introduce a simple yet e�cient
Monte Carlo algorithm to evaluate high order Feynman
diagrams. To calculate all order N contributions, the
diagrammatic Monte Carlo algorithm needs to integrate
over all internal variables, such as momenta and times,
and also sum over all topology of the diagrams, i.e.,

FN
1 =

Z
[d⌧ ]2N [dk]N+1

X

topology

W [{⌧}, {k}] (15)

All diagrams in the same order share the same set of
interval variables. Due to the Fermi statistics, the sign
of the integrand W [{⌧}, {k}] alternates as the topology
and internal variables change. However, a Monte Carlo
algorithm can only handle positively defined weight func-
tions. A straightforward choice would be to sample the
absolute value of the integrand |W [{⌧}, {k}]|, namely
working with the sum,

FN
3 =

Z
[d⌧ ]2N [dk]N+1

X

topology

|W [{⌧}, {k}]| (16)

However, as pointed out by the previous studies [XXX],
the sign cancellation between diagrams causes FN

1 ⌧
FN
3 . More specifically, although FN

3 always diverge fac-
torially with the number of diagrams, the series FN

1 is
much better behaved (diverging slowly, or even conver-
gent if the series is within the convergence radius). This
phenomenon is referred as sign blessing in Ref. [XXX]. As
a result, the straightforward Monte Carlo scheme sam-
pling FN

3 to evaluate FN
1 su↵ers from the notorious sign

problem, and is very ine�cient. In this work, we propose
a Monte Carlo algorithm, which samples the following
weight function,

FN
2 =

Z
[d⌧ ]2N [dk]N+1|

X

topology

W [{⌧}, {k}]| (17)

Thanks to the inequality FN
1  FN

2  FN
3 , a method

sampling FN
2 is almost guaranteed to su↵er less sign

problem, thus more e�cient, than the straightforward
approach. Of course, the e�ciency of this approach re-
lies on how small is FN

2 , and how close is FN
2 to FN

1 . The
minimization of FN

2 can be achieved by optimizing the
arrangement of interval variables of di↵erent diagrams, so
that the sum of their weights with the same set of vari-
ables strongly cancel with each other. We will discuss
this in more detail in the next section.

Now we summarize the main steps of the new diagram-
matic Monte Carlo algorithm used in this work.

i) Write a script to generate all Feynman diagrams
up to the desired truncation order (say order 6 in
this work), including all necessary symmetry fac-
tors and counter-terms.

+

2

G vq �n�̃(n) �n�̃(n)! 8#/(&' + )*) ,-(.) .)*

FIG. 1. Feynman diagram building blocks: The bare

electron propagator g describes an electron propagating in an

e↵ective potential vk, the interaction line 8⇡/(q2 + �q) repre-

sents a boson propagator with an e↵ective mass ⇠ �, which
makes the Coulomb repulsion short ranged. The counter

terms, which compensate for our choice of the e↵ective L0,

are proportional to vk(⇠) (the single-particle counter term)

and ⇠�q (the interaction counter term), and are depicted in

the last two diagrams.

Note that the U derivative is taken by the chain rule,
i.e., �/�U = (�g/�U)(�/�g), where the the U -derivative
of the propagator is simple: it just splits the propagator
into two by inserting an external vertex,

�g(1, 2; U)

�U(3+, 3)
= �g(1, 3)g(3, 2). (8)

This relation is derived by taking the derivative of the
identity g�1g = 1, which is g�1dg/dU + (dg�1/dU)g =
0, therefore dg/dU = �g(dg�1/dU)g and dg�1/dU =
1, provided vk is independent of U . Diagrammatically,
a derivative �/�U removes a single-particle propagator
from the Feynman diagram (�/�g), and we then replace
it with an external vertex and the two propagators, i.e.,
�g/�U = �gg. In other words, it inserts an external
vertex on an existing bare electron propagator. Note
that this operation increases the diagram order by one.
Finally, after the derivative is taken, we substitute vk
with its expression in terms of the exchange self-energy,

vk = ⇠ (⌃x
k � ⌃x

kF
) + ⇠2 s2 + ⇠3 s3 · · · . (9)

With the above described algorithm, we obtain the
conserving expansion for the two particle correlation
function �, however, the convergence for the dielectric
function is even faster when the expansion is carried out
for the polarization function defined by Eq. 5. In the
momentum and frequency space, the two are related by

�(q) = � Pq

1 � Pq
8⇡
q2

(10)

or �(q) = �[Pq+Pq
8⇡
q2 Pq+Pq

8⇡
q2 Pq

8⇡
q2 Pq+· · · ], meaning

that Pq is the irreducible part of �(q) with respect to cut-
ting the interaction propagator 8⇡

q2 Similarly, when work-

ing with the screened interaction 8⇡
q2+� , we can rewrite

8⇡

q2
=

8⇡

q2 + �

1X

n=0

✓
⇠�

8⇡

8⇡

q2 + �

◆n

(11)

and therefore

�(q) = � Pq

1 � Pq
8⇡

q2+�

P1
n=0

⇣
⇠�
8⇡

8⇡
q2+�

⌘n , (12)

which shows that Pq is now the irreducible part of �(q)
with respect to cutting the interaction propagator 8⇡

q2+�

or any combination of interaction with counter terms of
arbitrary order, i.e., 8⇡

q2+� ( ⇠�
8⇡

8⇡
q2+� )n. The resulting po-

larization diagrammatic expansion is shown in Fig. 2.
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FIG. 2. Feynman diagrammatic expansion with coun-

terterms: The perturbative expansion for the polarization is

formulated with the standard Feynman diagrams with coun-

terterms. The shaded block represents all one-interaction-

irreducible diagrams for the particle-hole four-point vertex

function. Note that the single-particle counterterm first ap-

pears at the second order, while the interaction counter-term

first appears at the third order.
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FIG. 3. Ladder-type vertex correction: The ladder

diagrams can be resummed by the Bethe-Salpeter equation.

To derive the vertex corrected VCCFS scheme, we
carry out slightly di↵erent order of operations, namely

�(1, 2) =
�

�U(1+, 1)

"
� ln Z[U ]

�U(2+, 2)

�

vk=⌃x
k+···

#

U=0

which means that we substitute the expression for the
e↵ective potential after the first derivative is taken (i.e.,
into the expression for the bare electron propagator).
When taking the second derivative, we need to keep in
mind that the e↵ective potential vk = vk[U ] now de-
pends on U through the exchange self-energy, which is a
functional of the bare propagator g[U ]. The chain rule is
therefore modified to

�

�U
=

�g

�U

✓
@

@g

◆

vk

+
�vk
�U

✓
@

@vk

◆

g

.

where the second derivative acts only on the single-
particle counter-terms. Taking the derivative with re-
spect to U as above gives dg/dU = �g(dg�1/dU)g =
�g(1 � d⌃x/dU)g, and since d⌃x/dU = �[8⇡/(q2 +

PVCCFS=

3

a({V1, V2, · · ·Vn}) = Det

0

@
G

0(1, 1) G
0(1, 2) · · · G

0(1, 2n)
· · ·

G
0(2n, 1) G

0(2n, 2) · · · G
0(2n, 2n)

1

A V1V2 · · ·Vn (36)

aE({V1, V2, · · · , V12}) (37)

cE({V9, V10, V11, V12)}) (38)

a0({V1, V2, · · · , V8}) (39)

�q = (�0
q
�1 � VqGq)

�1 (40)

�q = (�0
q
�1 � fxc)

�1 (41)

fxc =
�
2
Exc

�⇢2
(42)

Gq =
q
2

8⇡
fxc (43)

1

n
=

4⇡r3s
3
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spin susceptibility for different momenta.
RPA 57% underestimates.

Spin-susceptibility of electron gas at rs=4 (                )
Calculated values at different densities. 
VDMC get four significant digits at order N=6.
Consistent with literature, but significantly more precise.

rs literature
1 1.152(2) 1.15-1.16
2 1.296(6) 1.27-1.31
3 1.438(9) 1.39-1.46
4 1.576(9) 1.51-1.62

1

I(q) =

Z
f(q,k1,k2, · · · ,kn)d

3k1d
3k2 · · · d3kn (1)

⌘
Z

f(x)dx (2)

fm(k1,k2, · · · ,kn) = g(kn)
n�1Y

i=1

gi(ki)hi(kn � ki) (3)

gi(k) /
Z

|f(q,k1,k2, · · · ,kn)�(ki � k)d3qd3k1 · · · d3kn (4)

hi(k) /
Z

|f(q,k1,k2, · · · ,kn)�(kn � ki � k)d3qd3k1 · · · d3kn

P (q = 0,! = 0)/NF (5)

�/EF (6)

V (x) =
1

2
!2x2 + gx4 (7)

E0 =
!

2
+ g

3

4!2
� g2

21

8!5
+ g3

333

16!8
+ · · · (8)

V (x) =
1

2
⌦2x2 + ⇠(gx4 +

1

2
(!2 � ⌦2)x2) (9)

⇠ = 1 (10)

E(1)[⌦], E(2)[⌦], · · · (11)

dEn[⌦]

d⌦
= 0 ! ⌦n

optimal (12)

E(1)[⌦1
optimal], E

(2)[⌦2
optimal], · · · (13)

E(1)[⌦optimal] = g1/30.681420 (14)

Eexact = g1/30.66798 (15)

�s/NF

3

a({V1, V2, · · ·Vn}) = Det

0

@
G

0(1, 1) G
0(1, 2) · · · G

0(1, 2n)
· · ·

G
0(2n, 1) G

0(2n, 2) · · · G
0(2n, 2n)

1

A V1V2 · · ·Vn (36)

aE({V1, V2, · · · , V12}) (37)

cE({V9, V10, V11, V12)}) (38)

a0({V1, V2, · · · , V8}) (39)

�q = (�0
q
�1 � VqGq)

�1 (40)

�q = (�0
q
�1 � fxc)

�1 (41)

fxc =
�
2
Exc

�⇢2
(42)

Gq =
q
2

8⇡
fxc (43)

1

n
=

4⇡r3s
3
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LDA excellent approximation up to k=kF. RPA much worse.

Spin-susceptibility & local field correction

Definition of local field correction:
Spin/charge response with LDA is:

3

a({V1, V2, · · ·Vn}) = Det

0

@
G

0(1, 1) G
0(1, 2) · · · G

0(1, 2n)
· · ·

G
0(2n, 1) G

0(2n, 2) · · · G
0(2n, 2n)

1

A V1V2 · · ·Vn (36)

aE({V1, V2, · · · , V12}) (37)

cE({V9, V10, V11, V12)}) (38)

a0({V1, V2, · · · , V8}) (39)

�q = (�0
q
�1 � VqGq)

�1 (40)

�q = (�0
q
�1 � fxc)

�1 (41)

fxc =
�
2
Exc

�⇢2
(42)

Gq =
q
2

8⇡
fxc (43)

3

a({V1, V2, · · ·Vn}) = Det

0

@
G

0(1, 1) G
0(1, 2) · · · G

0(1, 2n)
· · ·

G
0(2n, 1) G

0(2n, 2) · · · G
0(2n, 2n)

1

A V1V2 · · ·Vn (36)

aE({V1, V2, · · · , V12}) (37)

cE({V9, V10, V11, V12)}) (38)

a0({V1, V2, · · · , V8}) (39)

�q = (�0
q
�1 � VqGq)

�1 (40)

�q = (�0
q
�1 � fxc)

�1 (41)

fxc =
�
2
Exc

�⇢2
(42)

Gq =
q
2

8⇡
fxc (43)

where
hence

1

�XC [{⇢}] =
Z

�LDA(⇢(r))dr (1)

⇧q = (⇧0
q
�1

+ VqGq)
�1 (2)

⇧q = (⇧0
q
�1

+ fxc)
�1 (3)

1

�XC [{⇢}] =
Z

�LDA(⇢(r))dr (1)

⇧q = (⇧0
q
�1

+ VqGq)
�1 (2)

⇧q = (⇧0
q
�1

+ fxc)
�1 (3)



Green’s function, and statically screened Coulomb interaction does not converge rapidly enough to establish a reliable infinite
order result, hence we here develop an alternative approach.
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Figure 1. Feynman diagrams for the self-energy in terms of the three leg vertex G3, which is expanded in bare series in
terms of G

0
k and partially screened interaction vq = 8p

q2+l and counter-terms ( l
8p )N( 8p

q2+l )N+1.

In this work, we show that extremely rapid convergence with perturbation order can be achieved by using a Hedin-type
equation, in which we first compute the numerically exact screened interaction Wq (previously developed in Ref. 14), and
we then expand only the three-point vertex function G3 in powers of the bare electron propagator G

0
k, and statically screened

interaction vq(l ), with proper counter terms defined in the Method section. Here the screened Coulomb interaction vq(l )
has a Yukawa form, characterized by the inverse screening length l . This screening parameter has to be determined by the
principle of minimal sensitivity in order to achieve rapid convergence of the perturbative series, so that the extrapolation to
infinite order is possible. Fig. 1 shows the sketch of the corresponding Feynman diagrams up to the third order. Below we
apply the algorithm to the UEG model, although the method is completely general and could as well be carried out for realistic
material in the ab-initio framework.

The single particle excitations

rs=1 rs=3

rs=4

a) b)

c)d)

rs

Figure 2. The wave-function renormalization factor Z versus screening parameter l for various perturbation orders
N = 1...5 and for rs = 1,2,3 and 4. The insets show the convergence of Z with perturbation order N when its value is taken at
the extremal l . The numbers next to each point show the value of l used for each calculated point.

We first present the single-particle excitation spectral results. Fig. 2a-c show how the wave-function renormalization factor
Z depends on the screening parameter l in our theory. To determine the optimized parameter l , we scan Z(l ) for each rs,
and determine it with the principle of minimal sensitivity. For efficiency, we here sample the self-energy only at the Fermi
wave vector kF and at the two lowest Matsubara frequencies, which is sufficient to determine Z. We notice that for the first two
orders, no counter term in the parameter l occurs, therefore the curve Z(l ) displayed in Fig. 2 does not have extremum, while
all higher-order terms have a well-defined maximum, which broadens and develops into a broad plateau with increasing order.
The insets of Figs. 2a-c show optimized Z versus perturbation order, where the first two orders are evaluated at the optimal l of
the third order, and for later orders, we take the value in the maximum. We also display the value of l used at each order. From

2/8

The single particle-quantities

2

The Hamiltonian of UEG problem is

Ĥ =
X

k�

�
k2 � µ

�
 ̂
†
k� ̂k� +

1

2V

X

q 6=0
kk0��0

8⇡

q2
 ̂
†
k+q� ̂

†
k0�q�0  ̂k0�0  ̂k�, (1)

where  ̂/ ̂† are the annihilation/creation operator of an
electron, µ is the chemical potential controlling the den-
sity of the electrons in the system, and the long-range
Coulomb repulsion is 8⇡/q2, as we measure the energy in
units of Rydbergs, and the wave number k, q in units of
inverse Bohr radius.
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FIG. 1: Feynman diagrams for the self-energy in
terms of the three leg vertex �3, which is expanded in

bare series in terms of G0
k and partially screened

interaction vq = 8⇡
q2+� and counter-terms

( �
8⇡ )N ( 8⇡

q2+� )N+1.

The expansion in terms of the bare interaction is di-
vergent, therefore we first transform the original prob-
lem into an equivalent but a more appropriate problem
for power expansion, which describes the emergent de-
grees of freedom at the lowest order, and the corrections
are perturbatively included with very rapid convergence.
Motivated by the well-known fact that the long-range
Coulomb interaction is screened in the solid and that the
e↵ective potential of emerging quasiparticles di↵ers from
the bare potential, we introduce the screening parameter
�q and an electron potential vk into the quadratic part
of the emergent Lagrangian L0 of the form

L0 =
X

k�

 
†
k�

✓
@

@⌧
� µ + k2 + vk(⇠ = 1)

◆
 k�

+
X

q 6=0

��q
q
2 + �q

8⇡
�q, . (2)

We then add the following interacting part to the La-
grangian

�L = �
X

k�

 
†
k�vk(⇠) k� � ⇠

X

q 6=0

��q
�q

8⇡
�q

+
p
⇠

ip
2V

X

q 6=0

(�q⇢�q + ⇢q��q) . (3)

so that, when the number ⇠ is set to unity, L(⇠) =
L0(⇠) + �L(⇠) is Lagrangian of UEG. Indeed integrat-
ing out the bosonic fields �q from Lagrangian L, we get
the Lagrangian corresponding to the original Hamilto-
nian Eq. 1. Here ⇢q is the density fluctuation of the prob-

lem ⇢q =
P

k�  
†
k� k+q�. Note that the first two terms

in �L are the counterterms [24] which exactly cancel the
two terms we added to L0 above. We use the number ⇠
to track the order of the Feynman diagrams so that order
N contribution sums up all diagrams carrying the factor
⇠
N . We set ⇠ = 1 once we enumerate all the diagrams of

a certain order.
The emergent screening length �q and e↵ective poten-

tial vk are not a-priory known and need to be properly
optimized to achieve an optimal speed of convergence.
We note in passing that determining those parameters
self-consistently, i.e., �q from the self-consistent polar-
ization, and vk from the single-particle self-energy, is not
the most optimal choice for the speed of convergence. De-
termining them by the principal of minimal sensitivity is
a much better choice, as pointed out by Kleinert and
Feynman [25–28]. They showed that when an e↵ective
parameter of a theory is optimized with this principle,
the perturbative expansion converges very fast, and can
succeed even when the interaction is strong, and regular
perturbation theory fails.

To make optimization manageable, we take �q to be q
independent constant (�), and we will show that such
a simple ansatz is already su�cient for rapid conver-
gence. We emphasize that for any choice of these pa-
rameters we are guaranteed to converge to the same an-
swer, provided that the series converges. Furthermore,
we found that the convergence of the expansion is best
when the Fermi surface of both the dressed Gk and the
bare G

0
k Green’s function at each order is fixed with the

Luttinger’s theorem so that the density and the Fermi
surface volume is not changed with the increasing per-
turbation order. We therefore, expand vk in power series
vk = (⌃x

k(�) � ⌃x
kF

(�)) + ⇠ s1 + ⇠
2
s2 · · · , and we deter-

mine sN so that all contributions at the order ⇠N do not
alter the physical volume of the Fermi surface. Similarly
to optimizing �q, we found that it is su�cient to take
sN constants independent of the momentum. Since the
exchange (⌃x

k) is static and is typically large, we accom-
modate it at the zeroth-order into the e↵ective potential,
so that at the first order we recover the GW type self-
energy with Gk at the screened Hartree-Fock (screened
by screening length �) and exact Wq.

As mentioned before, the algorithm depicted in Fig. 1
needs a numerically exact (converged) Wq, which is first
computed with the algorithm of Ref. 14. It was shown
in Ref. 14 that the most rapidly converging scheme for
charge and spin-susceptibilities is the so-called vertex cor-
rection scheme, in which we add an infinite sum of ladder
diagrams on both sides of a polarization Feynman dia-
gram. To do that, we first precompute the three-point
ladder vertex and then attach it to both sides of a po-
larization Feynman diagram while the diagrams are sam-

K. Haule and Kun Chen, Scientific Reports 12, 2294 (2022) 

• For single-particle quantities 
we need to expand the three-
particle vertex (Hedin-type Eq). 

• We need to optimized 𝝀/EF for 
W, and separately for Z, and 
find optimal 𝝀/EF of the order of 
unity. 

• Optimized 𝝀 increases with 
increasing order, hence higher 
orders are even more local.

Z agrees well with previous 
diffusion MC data by M. 
Holzmann et al. PRL 107, 
110402, (2011). 

Z



effective mass

Quasiparticle dispersion near the fermi level is 
defined by effective mass m*/m. 

DFT assumes m*/m=1 (non-interacting Kohn-
Sham ansatz) 

Exact solution (VDMC) remarkably close to 
m*/m~1. Bounded by vertex corrected 
perturbation theory using local field factors. 

G0W0 and QSGW overestimate mass 
GW underestimates mass 

At the uniform density limit, DFT ansatz is 
remarkably accurate, better than GW.

[G0W0] L. Hedin, Phys. Rev. 139, A796–A823, (1965). 
[G+&G-]Simion, G. E. & Giuliani, PRB 77, 035131,(2008). 
[QSGW] A.Kutepov, G. Kotliar, arXiv:1702.04548
[GW] K. Van Houcke, et.al.,Phys. Rev. B 95, 195131 (2017)

• Over the last 50 years, the mass in electron gas was controversial, some theories 
predicting monotonic behavior with density, and other with a turning point. 

• Important for understanding which method predicts better Bloch bands and bandwidths 
in moderately correlated systems.

—only charge vertex corrections
—charge+spin vertex corrections

K. Haule and Kun Chen, Scientific Reports 12, 2294 (2022) 

rs Z m
⇤/m F

a

0 F
s

0
1 0.8725(2) 0.955(1) -0.171(1) -0.209(5)
2 0.7984(2) 0.943(3) -0.271(2) -0.39(1)
3 0.7219(2) 0.965(3) -0.329(3) -0.56(1)
4 0.6571(2) 0.996(3) -0.368(4) -0.83(2)

Table 1. Landau liquid parameters: The wave-function renormalization factor Z, effective mass m
⇤/m, and the Landau

parameters F
a

0 , F
s

0 for various values of the density parameter rs with the estimated error.

all higher-order terms have a well-defined maximum, which broadens and develops into a broad plateau with increasing order.
The insets of Figs. 2a-c show optimized Z versus perturbation order, where the first two orders are evaluated at the optimal l of
the third order, and for later orders, we take the value in the maximum. We also display the value of l used at each order. From
Fig. 2 it is apparent that beyond order three the rate of convergence to limiting value of Z is extremely fast, and therefore we can
confidently determine the first three digits of Z. The values and the estimated error-bar from the extrapolation and statistical
errors are shown in Table 1.

In Fig. 2d we compare our computed Z(rs) with the previous best available estimates, obtained by various flavors of
Monte Carlo (MC) methods, which are reproduced from Ref.14. Note that all these published MC methods rely on fixed node
approximation and the thermodynamic limit extrapolation, hence they have an inherent systematic error, nevertheless they turn
out to be in very good agreement with current VDMC results. Our current work based on VDMC has only statistical error,
and a small error in extrapolating in perturbation order, and is thus far more precise than previous best results. We notice that
previous MC results are broadly consistent with our results, with SJ-VMC method predicting slightly too large and BF-VMC
and BF-RMC slightly too small value. It is also well known that G0W0 predicts quite accurate Z values, however, we can now
confidently claim that in the range of metallic densities, G0W0 consistently underestimates Z.

Figure 3. Electron effective mass: The upper panel shows our calculated effective mass versus perturbation order for
rs = 1�4. The lower panel compares the rs dependence of the effective mass of this work (VDMC) with the prior analytic and
numeric work from Ref. 26.

Once the extremal value of l is determined, we compute the entire momentum and frequency dependence of the self-energy,
which allows us to determine also the momentum derivative of the self-energy, and hence the effective mass of the electron
through the relation

m

m⇤ = Z

✓
1+

m

kF

dS(kF ,w = 0)

dk

◆
(1)

The convergence of the effective mass ratio m
⇤/m with perturbation order is shown in Fig. 3a, and its dependence on rs is

displayed in Fig. 3b.
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rs Z m
⇤/m F

a

0 F
s

0
1 0.8725(2) 0.955(1) -0.171(1) -0.209(5)
2 0.7984(2) 0.943(3) -0.271(2) -0.39(1)
3 0.7219(2) 0.965(3) -0.329(3) -0.56(1)
4 0.6571(2) 0.996(3) -0.368(4) -0.83(2)

Table 1. Landau liquid parameters: The wave-function renormalization factor Z, effective mass m
⇤/m, and the Landau

parameters F
a

0 , F
s

0 for various values of the density parameter rs with the estimated error.

orders, no counter term in the parameter l occurs, therefore the curve Z(l ) displayed in Fig. 2 does not have extremum, while
all higher-order terms have a well-defined maximum, which broadens and develops into a broad plateau with increasing order.
The insets of Figs. 2a-c show optimized Z versus perturbation order, where the first two orders are evaluated at the optimal l of
the third order, and for later orders, we take the value in the maximum. We also display the value of l used at each order. From
Fig. 2 it is apparent that beyond order three the rate of convergence to limiting value of Z is extremely fast, and therefore we can
confidently determine the first three digits of Z. The values and the estimated error-bar from the extrapolation and statistical
errors are shown in Table 1.

In Fig. 2d we compare our computed Z(rs) with the previous best available estimates, obtained by various flavors of
Monte Carlo (MC) methods, which are reproduced from Ref.14. Note that all these published MC methods rely on fixed node
approximation and the thermodynamic limit extrapolation, hence they have an inherent systematic error, nevertheless they turn
out to be in very good agreement with current VDMC results. Our current work based on VDMC has only statistical error, and
a small error in extrapolating in perturbation order, and is thus far more precise than previous best results. The latter method
has well controlled numerical error which can be made very small. It originates from the statistical error due to MC sampling,
and the error due to extrapolation from finite order to infinite order of expansion, which is well behaved in the metallic regime
rs . 4. We note that VDMC has no systematic error. We notice that previous MC results are broadly consistent with our
results, with SJ-VMC method predicting slightly too large and BF-VMC and BF-RMC slightly too small value. It is also
well known that G0W0 predicts quite accurate Z values, however, we can now confidently claim that in the range of metallic
densities, G0W0 consistently underestimates Z.

a)

b)

Figure 3. Electron effective mass: The upper panel shows our calculated effective mass versus perturbation order for
rs = 1�4 (the statistical error-bar is smaller than the size of the symbols). The lower panel compares the rs dependence of the
effective mass of this work (VDMC) with the prior analytic and numeric work from Ref. 26.

Once the extremal value of l is determined, we compute the entire momentum and frequency dependence of the self-energy,
which allows us to determine also the momentum derivative of the self-energy, and hence the effective mass of the electron
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Uniform electron gas: Landau parameters

Fs0 is going critical at rs=5.2, 
where polarization and 

compressibility diverges.

Landau parameters for UEG.

60 Introduction to the electron liquid

rs rs
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Fig. 1.19. Pressure and bulk modulus of the electron liquid vs rs . The dashed lines represent the
noninteracting results. Notice that both quantities become negative at low density, the pressure
for rs > 1.51 in 2D and rs > 4.18 in 3D, the compressibility for rs > 2.03 in 2D and rs > 5.25
in 3D.

where ε′(rs) and ε′′(rs) are, respectively, the first and second derivative of ε(rs) with respect
to rs , and V is the volume of the d-dimensional system. The inverse of the compressibility
1
K is also known as the bulk modulus, denoted by B, and is related to the chemical potential
by the useful equation

B = 1
K

= n2 ∂µ

∂n
. (1.140)

Fig. 1.19 shows the pressure and the bulk modulus calculated from the formulas of Sec-
tion 1.7.2 for the ground-state energy. A puzzling feature jumps immediately to the eye,
namely both P and B become negative at low density. Since the positivity of the bulk
modulus is normally considered a necessary condition for the stability of a thermodynamic
system, we clearly have some explaining to do.

The paradox is resolved by noting that what we are calculating here is the pressure and
compressibility of a fictitious charge-neutral system in which the positive background of
charge automatically adjusts itself to neutralize the electronic charge at no energy cost.
In what follows, these two quantities will be referred to as the proper pressure and the
proper compressibility of the electron liquid. Because we are thus (unphysically) neglecting
the stiffness of the background, it is not surprising that the proper compressibility can
be negative. In a physical electronic system (of which the jellium model is an idealization)
the negative proper compressibility of the electrons would be more than compensated
by the positive compressibility of the background. Similarly, a negative proper pressure
simply means that the positive background, besides neutralizing the coulomb interaction,
must also be exerting an outward force to keep itself from collapsing (together with the
electrons).57

A completely parallel treatment can be developed for the derivatives of the energy with
respect to spin polarization. The role of the pressure is now played by the magnetic field

57 Since the proper compressibility has been defined in an apparently unphysical manner, one might ask whether there is any hope
to experimentally measure this quantity. In Chapter 5 we will answer this question in the affirmative.

compressibility diverges at rs=5.2, and 

expansion breaks down

Polarization also diverges at this point, 

signaling subtle instability

have never been computed before by controlled method
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Recent work using a sophisticated unbiased reptation92

Monte Carlo method further indicates that the vertex93

corrections and self-consistency aspects of GW cancel94

to a large degree near the Fermi surface [46]. This re-95

sult also hints that the elemental metallic systems might96

be moderately correlated. An opposite trend of increas-97

ing the bandwidth compared to LDA is found in recent98

studies using self-consistent GW [39, 42] and variational99

and fixed-node di↵usion quantum Monte Carlo [47] tech-100

niques. Contrary to the indications from the GW ap-101

proximation, Zhu and Overhauser [48] predicted that the102

spin fluctuations within a paramagnon pole model could103

account for the bandwidth reduction in Na, but a more104

recent study [38] found that this e↵ect is negligible. In-105

terestingly, the recent ARPES results [49] ruled out the106

proposed [38] strong coupling between the conduction107

electrons and spin fluctuations in Na. This controversy108

remains unresolved, and the reason for the discrepancies109

between ARPES measurements and the theoretically pre-110

dicted bandwidths in these simple metals remains one of111

the fundamental questions in condensed matter physics.112

On a di↵erent tack, the narrowing of the ARPES spec-113

tra has alternatively been ascribed to final-state e↵ects,114

which would require treating the outgoing electron as em-115

bedded in an interacting uniform electron gas inside the116

solid, rather than as a free electron leaving the solid [39].117

A similar approach was taken in Refs. [50] and [28], but118

with the inclusion of surface e↵ects. Such an interpreta-119

tion was challenged in Ref. [29] (see also [40]), as it would120

invalidate the accepted interpretation of the ARPES ex-121

periments as measuring the single-particle spectral func-122

tion weighted by matrix-element e↵ects [51]. This would123

have far-reaching implications for the interpretation of124

all ARPES data to date.125

To answer such questions, our computational study126

is carried out in the framework of a broader ongoing127

program involving the systematic performance and cu-128

ration of electronic structure calculations using a range129

of methodologies and applied to a range of materials130

[18, 52]. The premise of this approach is that for a131

proper evaluation of the strengths and weaknesses of var-132

ious first-principles methods applied to a given class of133

materials, a methodologically heterogeneous literature is134

not enough. Rather, a set of calculations for di↵erent135

functionals performed on a consistent footing is essential.136

This is especially true in the context of high-throughput137

computation, where a desire for accuracy has to be care-138

fully weighed against issues of consistency and modest139

computational load. Moreover, the availability of these140

results in a materials database, such as the “beyond-141

DFT” component [53] of the JARVIS database [54] used142

here, makes the comparisons between di↵erent function-143

als broadly available to the materials science community,144

providing a guide for future calculations on related sys-145

tems.146

Working in this context, we systematically apply sev-147
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FIG. 1. (Color online) Band structure of elemental
Na as computed in LDA, mBJ, G0W0, YS-PBE0, B3LYP,
and eDMFT. Dots in pink and grey indicate angle-resolved-
photoemission(ARPES) data from earlier experiment by Lyo
& Plummer [20] and more recent experiment by Potorochin
et al. [49] respectively.

eral DFT and beyond-DFT methods to the elemental148

metallic systems from the first and second columns of149

the periodic table (Li to Cs and Be to Sr). We resolve150

a controversy over the disagreement between theory and151

experiment for the occupied bandwidths of such systems,152

showing how they depend on the e↵ects of local and153

non-local exchange and correlations. We find that the154

band narrowing is surprisingly well described with non-155

perturbative dynamical correlations modeled as local to156

an atom rather than to a point in 3D space, emphasizing157

the importance of umklapp contributions to the electron158

self-energy at higher order in perturbation theory, be-159

yond GW, seem to have a significant e↵ect even in these160

systems.. In particular, in this letter we show that the el-161

emental metals with partially occupied s orbitals, which162

are usually assumed to be nearly-free-electron metals, are163

in fact moderately correlated, thus forcing a reconsider-164

ation of long-held notions about these simple metals.165

RESULTS166

All computations are performed for the room-167

temperature experimental crystal structures obtained168

from the ICSD database. Most of the elemental met-169

als studied here crystallize in the bcc structure at room170

temperature, except for Be and Mg which crystallize in171

hcp, and Ca and Sr in fcc. In the following we compare172

the electronic band structures using the above-mentioned173

methods with ARPES data, which are available for Na,174

K, and Mg. We describe each of these compounds in de-175

tail here, and direct the reader to the S.I. for the others.176

Bandwidth of Na metal is controversial for 35 years:  
-ARPES bandwidth show reduction for 18-25% [1,2] 
-some GW calculation reproduce reduction [3], most do not. 
-DMC shows increased bandwidth, not reduced [5].

[1] E. Jensen & E.W. Plummer, PRL 55, 1912–1915, (1985). 

[2] I.-W. Lyo & E.W. Plummer, PRL 60, 1558–1561, (1988).

[3]  J.E. Northrup, M.S. Hybertsen, & S.G. Louie, PRL 59, 819 (1987). 

[4] X. Zhu, & A.W. Overhauser, RPB 33, 925(1986). 

[5] R. Maezono, M.D. Towler, Y Lee, & R.J. Needs, PRB 68, 165103, 
(2003). 

[6] J. McClain, J. Lischner, T. Watson, D.A. Matthews, E. Ronca, S.G. 
Louie, T.C. Berkelbach, G. K-L Chan, PRB 93, 235139 (2016)

through the relation

m

m⇤ = Z

✓
1+

m

kF

dS(kF ,w = 0)

dk

◆
(1)

The convergence of the effective mass ratio m
⇤/m with perturbation order is shown in Fig. 3a, and its dependence on rs is

displayed in Fig. 3b.
The dependence of the effective mass m

⇤/m on rs has been controversial for many decades. Some theories predict that
the ratio is monotonically decreasing with increasing rs

7, 27, while others predict the existence of a turning point r
⇤
s

26, 28–31 at
which the trend is reversed. Our controlled results confirm the correctness of the later theories. Furthermore, we compare our
controlled VDMC results with previous best estimates, which are based on the theory of many-body local field factors26. This
theory includes vertex corrections associated with charge and spin fluctuations, extracted from available Monte Carlo data. We
notice that G0W0 overestimates the effective mass in the entire range of metallic densities. The density fluctuations beyond
RPA are included in theory with G+ local field corrections, which reduce the mass substantially and bring it very close to our
VDMC results at small rs. However, beyond rs > 3 our VDMC results are closer to the theory which contains both the charge
and the spin fluctuations (G+&G�), hence we can infer that at moderate correlations strength, the spin fluctuations start to play
an important role, and charge fluctuations are no longer sufficient in determining the mass of the electron gas.

The Landau liquid parameters

With precisely calculated effective mass, as well as the spin and charge susceptibility determined in our previous work15, we
can calculate Landau parameters F

a

0 and F
s

0 , which are obtained from cs

c0
s

= m
⇤

m

1
1+F

a

0
and Pq=0

P
0
q=0

= m
⇤

m

1
1+F

s

0
. Here cs and Pq are the

spin susceptibility and charge polarization, while c0
s

and P
0
q

are their non-interacting analogues. In table 1 we list our calculated
Landau parameters F

a

0 and F
s

0 , together with the estimation of their error, which mostly comes from error in determining spin
and charge susceptibility in Ref. 15. While the Landau parameters, which determine the interaction between quasiparticle, have
been estimated by various approximate numerical methods before7, to our knowledge their numerically controlled value has not
be obtained before.

The spectral function and the bandwidth

Figure 4. The spectral function and Sk=0(w) at rs = 4 and k = 0 as relevant for bandwidth of Na metal. The vertical dotted
line marks the peak position of the non-interacting model. The thick and thin lines correspond to two different methods of
analytical continuation, the maximum-entropy and Pade method, respectively.

The present VDMC algorithm also allows us to compute a numerically controlled value for the dynamic self-energy on the
imaginary axis. Analytic continuation is needed to obtain the self-energy on the real frequency axis. In contrast to physical
quantities computed from the imaginary axis data, the analytic continuation is not a numerically controlled method in which
precise error bars would be available. We use the maximum entropy as well as the Pade method, to compute the quasiparticle
energy at the k = 0 point, which determines the bandwidth of the electron dispersion, i.e., the energy difference between the
Fermi level and the lowest possible quasiparticle energy. The difference between these two standard analytic continuation
methods gives a rough estimate of the error bar for the bandwidth. In Fig. 4 we display the self-energy, as well as the spectral
function at momentum k = 0 and finite frequency. We notice that the imaginary part of the self-energy starts to grow rapidly
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EF

VDMC: 4-7% reduction at rs=4. 

VDMC

Exp1: E. Jensen & E.W. Plummer, PRL 55, 1912–1915, (1985). 
Exp2: D. V. Potorochin  et.al., arXiv:2112.00422 

K. Haule and Kun Chen, Scientific Reports 12, 2294 (2022) 
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Real frequency quantities: exchange-correlation kernel

1

�(q,!) = P 0
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dielectric function on real frequency axis fxc(q,ω) on real frequency axis

rs=2

J. P. F. LeBlanc, K. Chen, N. V. Prokof’ev, K.H., Igor S. Tupitsyn, in preparation

TDDFT

Recently we developed real-frequency diag-MC for uniform electron gas.

Challenging to calculate, but a lot of non-trivial structure below EF. 
Such change of sign was needed in Si to explain optical data (PRL 102, 11301 (2009)).

q=0.1 kF 
rs=2
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several momenta

Real frequency quantities: exchange-correlation kernel



Screening in UEG on the two particle level

We find the fastest convergence for spin/charge susceptibility when 𝝀/EF~1 

where

1
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Na metal is close to electron gas with rs~4 and EF~3eV
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Interaction is very well screened in metals and non-local interaction corrections are small.
Hund’s coupling is very large, because Yukawa screening reduces F0, but not much F2,F4.

VDMC:
[1] Kun Chen, K. Haule, Nature Communications 10, 3725 (2019) 
[2] K. Haule, K. Chen, Scientific Reports 12, 2294 (2022)

Local point of view converging much faster than long-range point of view.  

3

fxc(r, r0) = � 0.2
4⇡|r � r0| (32)

�̂�1(q,q0,!) = �̂�1
KS

(q,q0,!) � f̂xc(q,q0,!) � 4⇡ec

!2 �q,q0
~eq ⌦ ~eq

q2 (33)

�̂ f̂xc ! f
L

xc
& f

T

xc
(34)

lim
q!0

fxc(q,!) =
1

n
2
0q2

X

G,0

(G · eq)2[ f
L

xc
(G,!) � f

L

xc
(G,! = 0)]|n0(G)|2 (35)

lim
q!0

fxc(q, 0) =
↵(!)
q2 (36)

E1 = �e0Vsphere(r = 0) +
1
2

Z

⌦

e0

⌦
Vsphere(r)d3

r (37)

Vsphere =
e0

8⇡rs

0
BBBBB@3 �

 
r

rs

!21CCCCCA (38)

E1 = �
9
10

e
2
0

4⇡rs

= �1.8 Ry (39)

Wq,! =
1

q2

8⇡ � ⇧q,!
⇡ 8⇡

q2 + �
(40)

Ui, j/Uii ⇡ exp(�4) ⇡ 0.018 (41)


