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Introduction to materials informatics (MI)

Materials informatics (MI)： data-driven approach for materials screening and design. 

Input: some data and physical intuition (databases, experimental or computation).

Tools: machine learning, informatics toolkits … iMAT

Advantage 1: MI has larger searching space

Human:: Thomas Edison performed ~3000 

experiments to find an acceptable material 

for the filament of electric bulb  (103)

MI: ~200,000 experimentally existing 

materials in the Inorganic Crystal Structure 

Database (ICSD, 105)
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Introduction (cont.)

Human: tend to search around known materials 

MI: search all places - no bias toward any material class

Advantage 2: MI can search unknown territory

thermoelectric materials
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Advantage 3: MI presents huge opportunities
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Human have discovered or synthesized ~400,000 compounds and over 140 

million molecules and sequences, but what do we know about them?

➢ Elastic constants:  ~500 compounds

➢ Dielectric constant: ~400 

➢ Heat conductivity:  ~200

➢ Superconductor transition temperature:  ~30,000

➢ Topological insulators:  ~50

Conclusion: we have the materials but don’t know properties for most of them 



Where to find materials data?

experimental data  (e.g., x-ray diffraction)

computational data  (e.g., 104 VASP, 105 Qchem)

database

Materials Project

SuperCon

AFLOWLIB

ICSD

PubChem

OQMD

Mat Navi

NoMaD

MMDB

CATAPP

MAGNDATA
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structure: 67483 electronic structure: 47087

Informatics:  3 simplest examples
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USA: 

materials 

genome



Ex.1  Can we determine crystal types by simple informatics ?

Metallic crystal,            ionic crystal,                covalent crystal,            molecular crystal

Packing factor
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Result: histogram of packing factor (for 67483 crystals in Materials Project)

atomic 

structure

crystal 

type

packing 

factor

CO2 molecular 0.052

graphite layered 0.143

MoS2 layered 0.354

Si covalent 0.340

NaCl ionic 0.523

BCC metallic 0.740

FCC/HCP metallic 0.740

Conclusion by informatics - packing factor can roughly distinguish crystal types 
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Ex.2: can we determine dimensionality by informatics ?

0d, 1d, 2d, 3d and layered structures?

0d 1d

2d 3d
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Algorithm for determining dimensionality of a crystal

Count the connected atom number in a 2 x 2 x 2 supercell

How do we know if two atoms are “connected” ?

R:  covalent radius extrapolated from 426,000 crystal structures 

(Cambridge structure database).
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r12

R1 R2



Results: dimensionality of materials (67483 crystals in Materials Project)

dimensionality δR = 0.5 δR = 1.0 δR = 1.5

0d 3,506 1,839 910

1d 1,257 867 577

2d 3,531 2,510 1,802

3d 59,188 62,266 64,194

Conclusion: by simple informatics, we roughly find all the possible materials from 0d to 3d, 

from a database
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Results: possible magnetic materials with layered structure
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Results: noble metal with layered structures
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Ex.3   Search 2d ferromagnets by materials informatics

Ferromagnetism was found in 2d materials experimentally

UC-Berkeley group Cr2Ge2Te6

UW and MIT group CrI3
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Thanks to: Dr. Eric Zhu, Dr. Xianghua Kong, Dr. Trevor David Rhone



Fundamental: why 2d ferromagnetism is interesting?

Device application:: ultra-compact spintronics, magneto-optoelectronics

Fundamental physics: can ferromagnetism exist in 2d materials?

2d Heisenberg No
thermal 

fluctuations

2d Ising Yes
magnetic 

anisotropy

Mermin-Wagner theorem: Continuous symmetries cannot be spontaneously broken at finite 

temperature in systems with sufficiently short-range interactions in dimensions d ≤ 2.
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Simple and physics based descriptors:

Descriptors:

1) Material exited (use ICSD)

2) dimension = 2

3) packing factor < 0.354

4) magnetic moment per atom > 0.625 μB

5) Must have M-Z-M network: 

M = transition metal atom, 

Z=heavy atom (Z > 49).  This ensures 

some super-exchange.

mp-id quantity

diamond mp-66 dE = 0.136

graphite mp-568286 p = 0.143

MoS2 mp-1434 p = 0.354

Fe mp-13 m = 2.332

Co mp-54 m = 3.319

Ni mp-23 m = 0.625
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Descriptor:  parameter that describes some physical property



Mining ICSD (Inorganic Crystal Structure Database):

page 196/13/2022 International summer school on Computational Quantum Materials



We calculate the 15 material candidates
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Using the 2 experimental data, get a heuristic scaling factor of Tc :   0.2 ~ 0.4.  
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For bulk Cr3Te4, an old measurement reported ferromagnetic transition at Tc = 320K. 

Our Ising simulation produced ~400K after applying the heuristic factor.

2019: Prof. C.G. Zeng of USTC synthesized Cr2Te3:  Tc=220K.  Work on Cr3Te4 on going. 



Advanced data analysis tools – machine learning methods

Statistical 

Learning

Deep

Learning

102 to 103 data points

physics interpretation

> 104  data points

large model compacity
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Old days:  a very old work on computer optimization:
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Decision Tree Random Forest

Today: many machine learning algorithms
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For materials informatics -

supervised learning
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Search for solid Lithium-ion conductors (from Materials Project)

12,831 candidates

Energy Env. Sci. 10, 306 (2017).

66,840 crystals candidates

317 candidates

contain Li atoms

band gap, anti-oxidization, structural stability, no transition 

metal, cost, earth abundance
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Sandek et al. Ener. & Environ. Sci. (2017) 

Next?   Machine Learning to further narrow down the list



Machine learning: build a classifier for “good” Li-conductor
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results
inputs        weights

Simplest regression:



Statistical Learning (SL): experimental property data

Training set:  Li ionic conductivity of 40 measured materials

Ionic conductivity of training set differs by ten orders. Both 

good and bad ionic conductors are valuable for training.
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Sandek et al. Ener. & Environ. Sci. (2017) 



Search for Lithium-ion conductors (from Materials Project)

12,831 candidates

Energy Env. Sci. 10, 306 (2017).

66,840 candidates

317 candidates

21 candidates

containing Li atoms

band gap, anti-oxidization, structural stability, no transition 

metal, cost, earth abundance

Li conduction: machine learning

6/13/2022 International summer school on Computational Quantum Materials page 29

Sandek et al. Ener. & Environ. Sci. (2017) 



Results:  compare to Sendek,  all are the same or similar

oursSendek
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What’s next ?
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➢ For the newly found materials，calculate Li ionic conductivity. 

➢ For those with high conductivity, seek experimental verification.

We collaborate with manufacturing firms
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History of superconductors
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Japanese Superconducting Material Database

(SuperCon)

15,832 

superconducting 

materials with TC > 0

31,364 records as of Aug. 2018

Removing apparently erroneous dataRemoving  data with  near zero TC 

TC database for 

machine learning

Keep all maerials having similar 

chemical formula

For degenerate records, keep the 

one with the highest TC

The superconductor Tc database: SuperCon
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Training set: 70% data

Test set: 30% data



➢ Average atomic mass and largest 

difference in atomic mass

➢ Average number of valence electrons

➢ Atomic magnetic moment

➢ Atomic electronegativity

➢ Largest difference in atomic number

➢ Average atomic number

➢ Average valence radius

➢ Largest difference of valence radius

➢ ……

Descriptors from SuperCon (informatics)
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Found 38 layered materials with TC from  30 K to > 110K

Search high Tc materials by machine learning

~200,000 ICSD Entries

~2600 layered materials

Find all the layered structures

Remove replicate structures

Materials informatics:

SuperCon: 15,832 superconducting 

materials with Tc > 0

Training with random forest, decision 

tree, SVM, and neural network

Multi-step training 

Superconductor model

Machine learning:
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Random forest regression

Testing the regression:
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Support vector machine

Artificial neural network



Results: 3 ML and experiments

6/13/2022 International summer school on Computational Quantum Materials page 38

Of the 38 predicted materials, 13 were already known to be superconductors:



25 new materials are predicted to be high Tc superconductors
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Calculated density of states of some predicted materials:
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45.2K

60.4K

112K

45.9K



Role and location of the descriptors:
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1st place winner of the 2020 APL Materials 

Excellence in Research Award. 

https://aip.scitation.org/apm/info/excellence
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Combustion Deflagration Detonation

• Burning with flame

• Slow process

• Fully oxidized

• Subsonic combustion

• Energy propagate through

heat transfer

• External oxygen involved

• Supersonic combustion

• Energy propagate though

shock wave

• External oxygen not involved

Energetic materials:
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Finding energetic materials can be a dangerous process. Let’s try to find them by materials 

informatics and machine learning, verify by thermal chemistry. 
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What are the proper 

descriptors for 

energetic materials?



Some thermal chemistry of decomposition of CaHbNcOd
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Oxygen balance (OB): 

Decomposition reaction: 

Example: Trinitrotoluene (TNT)



Some thermal chemistry of decomposition of CaHbNcOd  (cont.)
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Heat of explosion & formation: 

Volume of gas products: 

Vg = 9 moles

Explosive power: 



The training set: 41 experimental data
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Descriptors: 

➢ Oxygen balance;

➢ Cohesive energy averaged 

over all constituent elements’

➢ …

Target:      ∆He - heat of explosion



Training data distribution in descriptor space
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∆He

Training data are 

nicely partitioned 

in 3 (or more) 

regions naturally. 

Tree based ML 

should be good



Why are OB and average cohesive energy good descriptors ? 
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Average cohesive energy Oxygen balance

RDX



ICSD (185000 compounds) & PubChem (~140M molecules)
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ML model



Screening ICSD:  116 CHNO molecular crystals are found
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Machine learning predicts 15 of the 116 to have ∆He > 4500 kJ/kg, and some 

of them are well-known explosives:

So, our machine learning model of energetic materials works 



Screening PubChem: ~140 million molecules
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ML model predicts 2732 CHNO candidates to have ∆He > 4500 kJ/kg !

Next: do thermal chemistry validation (since there are no experimental data).

Results: equivalent power of explosion to TNT 

If > 1.5, 162 candidates remain; 

If requiring 1.8 power of explosion of TNT, 29 candidates remain. 



29 energetic materials not known before:
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29 energetic materials not known before (cont.):
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Next ?
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➢ First principles calculation to further validate these 29 candidates.

➢ Calculate other useful properties (sensitivity…).

➢ Speaking to experimentalists.



Summary:

➢ Materials informatics is the 4th paradigm of scientific exploration. It is NOT for finding 

very precise numbers, but for efficiently classifying materials. 

➢ Three important ingredients:   

- Data: those who have data are the winners 

- Methods to analyze data: so far standard and public domain

- Physical indicators: critical !

➢ iMAT:  pre-screening + machine learning ＋ simulation
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Simulation + experimental verification



Technical summary:  iMAT
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simulation experiment
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Thank you !

What will be the 5th paradigm ?


