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Why is it useful?

1.  Orders of magnitude less computationally 
demanding than DMFT (note also recent combination with ML).


2.  Variational (T=0).


3.  Extensions to finite temperature & time-dependent 
problems.



Limitations
1.  No accurate description of the Mott phase.


2.  No access to high-energy excitations (Hubbard 
bands).


3.  Mott metal-insulator transition-point can be 
overestimated.

(Note:  recent extension g-GA resolve these problems…)



Why is computational speed important?
Exploring large 

chemical spaces



Why is computational 
speed important?

Increase of scientific programs 
prioritising research that can 

benefit society 



Outline
A.  Quantum Embedding (QE) methods.

B.  GA method (multi-orbital models): QE formulation.

C.  DFT+GA algorithmic structure.

D.  Spectral properties.

E.  Examples of applications.

F.  Recent formalism extensions (g-GA).





Algorithmic structure of QE methods 
(DMFT, DMET, GA, g-GA,…)

Impurity i Bath i

Self-consistency

Xf(X)

Embedding Hamiltonian 
or impurity model 

(computational bottleneck)



Example: DMFT

Impurity i Bath i

Self-consistency: → Σ(ω) (Δ(ω), E, U, J)Σ(ω)

Impurity 
model



Self-consistency: → Σ0, Z

GA/RISB (QE formulation)

(D, λc, E, U, J)

Ĥemb = Ĥint(U, J) + ∑
αβ

Eαβ c†
αcβ

+∑
aα

(Daα c†
α fa + H . c . ) + ∑

a

λc
aa fa f †

a

[
⟨c†

αcβ⟩ ⟨c†
α fa⟩

⟨ f †
acα⟩ ⟨ f †

a fb⟩]

Embedding 
Hamiltonian E, U, J

D

λc



Self-consistency: → Σ(ω)

g-GA/g-RISB (QE formulation)

(D, λc, E, U, J)

Ĥemb = Ĥint(U, J) + ∑
αβ

Eαβ c†
αcβ

+∑
aα

(Daα c†
α fa + H . c . ) + ∑

a

λc
aa fa f †

a

[
⟨c†

αcβ⟩ ⟨c†
α fa⟩

⟨ f †
acα⟩ ⟨ f †

a fb⟩]

Embedding 
Hamiltonian

λc

D

E, U, J



Self-consistency: → Σ0

Example: DMET

(D, λc, E, U, J)

Ĥemb = Ĥint(U, J) + ∑
αβ

Eαβ c†
αcβ

+∑
aα

(Daα c†
α fa + H . c . ) + ∑

a

λc
aa fa f †

a

[
⟨c†

αcβ⟩ ⟨c†
α fa⟩

⟨ f †
acα⟩ ⟨ f †

a fb⟩]

Embedding 
Hamiltonian E, U, J

D

λc



GA/RISB (connection with DMET)

Formulation of GA/RISB as QE theory

Comparison between GA/RISB & DMET 

QE equations & performance}

}



Outline
A.  Quantum Embedding (QE) methods.

B.  GA method (multi-orbital models): QE formulation.

C.  DFT+GA algorithmic structure.

D.  Spectral properties.

E.  Examples of applications.

F.  Recent formalism extensions.



The Hamiltonian:

Ĥ = ∑
k

∑
i,j≥0

νi

∑
α=1

νj

∑
β=1

tαβ
k,ij c†

kiαckjβ + ∑
R

∑
i≥1

Ĥloc
Ri

: Unit cellR: Crystal momentumk

:  Projector information: 
: Uncorrelated modes 
:  First subset of correlated modes (e.g. d orbitals of atom 1 in unit cell)

:  Second subset of correlated modes (e.g. f orbitals of atom 1 in unit cell)


…

i
i = 0
i = 1
i = 2



|ΨG⟩ = 𝒫 |Ψ0⟩ = ∏
R,i≥1

𝒫Ri |Ψ0⟩

|Ψ0⟩

|ΨG⟩ 𝒫

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |

The GA variational wave function:



|ΨG⟩ = 𝒫 |Ψ0⟩ = ∏
R,i≥1

𝒫Ri |Ψ0⟩

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |

|Γ; R, i⟩ = [c†
Ri1]

q1(Γ) . . . [c†
Riνi

]qνi(Γ) |0⟩

|n; R, i⟩ = [f †
Ri1]

q1(n) . . . [f †
Riνi

]qνi(n) |0⟩

The GA variational wave function:



Our goal is to minimize   
w.r.t.  .

⟨ΨG | Ĥ |ΨG⟩
{Λi | i ≥ 1}, |Ψ0⟩

2νi × 2νi



Impurity i Bath i

Self-consistency

2νi × 2νi

Quantum-embedding 
formulation

Our goal is to minimize   
w.r.t.  .

⟨ΨG | Ĥ |ΨG⟩
{Λi | i ≥ 1}, |Ψ0⟩

2νi × 2νi



Necessary steps:
1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi≥1}, |Ψ0⟩



Gutzwiller approximation:

Gutzwiller constraints:

 can be treated only numerically in general:|ΨG⟩

We will exploit simplifications that become exact in the limit of -coordination lattices.

In this sense, the GA is a variational approximation to DMFT.

∞

⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}



Gutzwiller approximation:

Gutzwiller constraints:

 can be treated only numerically in general:|ΨG⟩

We will exploit simplifications that become exact in the limit of -coordination lattices.

In this sense, the GA is a variational approximation to DMFT.

∞

⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

Wick’s theorem:   ⟨Ψ0 |c†
ac†

b cccd |Ψ0⟩ = ⟨Ψ0 |c†
acd |Ψ0⟩⟨Ψ0 |c†

b cc |Ψ0⟩ − ⟨Ψ0 |c†
acc |Ψ0⟩⟨Ψ0 |c†

b cd |Ψ0⟩



Key consequence:
⟨Ψ0 |𝒫†

Ri𝒫Ri f †
Ria fRib |Ψ0⟩ = ⟨Ψ0 |𝒫†

Ri𝒫Ri |Ψ0⟩⟨Ψ0 | f †
Ria fRib |Ψ0⟩

Gutzwiller constraints:
⟨Ψ0 |𝒫†

Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

+⟨Ψ0 |[𝒫†
Ri𝒫Ri] f †

Ria fRib |Ψ0⟩2−legs

𝒫

f

c



Gutzwiller constraints:
⟨Ψ0 |𝒫†

Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

Key consequence:
⟨Ψ0 |𝒫†

Ri𝒫Ri f †
Ria fRib |Ψ0⟩ = ⟨Ψ0 |𝒫†

Ri𝒫Ri |Ψ0⟩⟨Ψ0 | f †
Ria fRib |Ψ0⟩

+⟨Ψ0 |[𝒫†
Ri𝒫Ri] f †

Ria fRib |Ψ0⟩2−legs

𝒫

f

c



Gutzwiller constraints:
⟨Ψ0 |𝒫†

Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

Key consequence:
⟨Ψ0 |𝒫†

Ri𝒫Ri f †
Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †

Ria fRib |Ψ0⟩

+⟨Ψ0 |[𝒫†
Ri𝒫Ri] f †

Ria fRib |Ψ0⟩2−legs

𝒫

f

c



Gutzwiller constraints:
⟨Ψ0 |𝒫†

Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

Key consequence:

⟨Ψ0 |[𝒫†
Ri𝒫Ri] f †

Ria fRib |Ψ0⟩2−legs = 0 ∀ a, b

𝒫

f

c



Gutzwiller constraints:
⟨Ψ0 |𝒫†

Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

Key consequence:

⟨Ψ0 |[𝒫†
Ri𝒫Ri] f †

R′￼ja fR′￼jb |Ψ0⟩2−legs = 0 ∀ a, b



Necessary steps:
1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi≥1}, |Ψ0⟩



The Hamiltonian:

Ĥ = ∑
k

∑
ij

νi

∑
α=1

νj

∑
β=1

tαβ
k,ij c†

kiαckjβ + ∑
R

∑
i≥1

Ĥloc
Ri

: Unit cellR: Crystal momentumk

:  Projector information: 
: Uncorrelated modes 
:  First subset of correlated modes (e.g. d orbitals of atom 1 in unit cell)

:  Second subset of correlated modes (e.g. f orbitals of atom 1 in unit cell)


…

i
i = 0
i = 1
i = 2

∑
k

tαβ
k,ii = 0 ∀ i ≥ 1



Local operators:

⟨ΨG | 𝒪̂[c†
Riα, cRiα] |ΨG⟩ = ⟨Ψ0 |𝒫†𝒪̂[c†

Riα, cRiα]𝒫 |Ψ0⟩

= ⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩



Local operators: (disconnected terms)

⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩

= ⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

|Ψ0⟩ × ⟨Ψ0 |𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩



Local operators: (disconnected terms)

⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩

= ⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

|Ψ0⟩ × ⟨Ψ0 |𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩

(GA and G. constraints)



Local operators: (disconnected terms)

⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩

= ⟨Ψ0 |𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩



Local operators: (connected terms)

⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩



Local operators: (connected terms)

⟨Ψ0 | ∏
(R′￼,i′￼)≠(R,i)

𝒫†
R′￼i′￼

𝒫R′￼i′￼

𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩

(GA and G. constraints)



√

√

Local operators:

⟨ΨG | 𝒪̂[c†
Riα, cRiα] |ΨG⟩ = ⟨Ψ0 |𝒫†

Ri𝒪̂[c†
Riα, cRiα]𝒫Ri |Ψ0⟩

Non-local 1-body operators, i.e., :(R, i) ≠ (R′￼, i′￼)

⟨ΨG |c†
RiαcR′￼i′￼β |ΨG⟩ = ⟨Ψ0 |[𝒫†

Ric
†
Riα𝒫Ri][𝒫†

R′￼i′￼

cR′￼i′￼β𝒫R′￼i′￼
] |Ψ0⟩



⟨ΨG |c†
RiαcR′￼i′￼β |ΨG⟩ = ⟨Ψ0 |[𝒫†

Ric
†
Riα𝒫Ri][𝒫†

R′￼i′￼

cR′￼i′￼β𝒫R′￼i′￼
] |Ψ0⟩

⟨Ψ0 |𝒫†
Ric

†
Riα𝒫Ri fRia |Ψ0⟩ = ∑

a′￼

[ℛi]a′￼α⟨Ψ0 | f †
Ria′￼

fRia |Ψ0⟩

Where  is determined by:ℛi

= ⟨Ψ0 |[∑
a

[ℛi]aα f †
Ria] [∑

b

[ℛi]†
βb fR′￼i′￼b] |Ψ0⟩

𝒫

f

c

Non-local quadratic operators:



Non-local quadratic operators:

𝒫†
Ric

†
Riα𝒫Ri → ∑

a

[ℛi]aα f†
Ria

𝒫Ri = ∑
Γ,n

[Λi]Γ,n |Γ; R, i⟩⟨n; R, i | |Ψ0⟩

|ΨG⟩ 𝒫|Γ; R, i⟩ = [c†
Ri1]

q1(Γ) . . . [c†
Riνi

]qνi(Γ) |0⟩

|n; R, i⟩ = [f †
Ri1]

q1(n) . . . [f †
Riνi

]qνi(n) |0⟩



Variational energy:

Ĥ = ∑
k

∑
ij

νi

∑
α=1

νj

∑
β=1

tαβ
k,ij c†

kiαckjβ + ∑
R

∑
i≥1

Ĥloc
Ri

ℰ = ∑
kij

∑
ab

[ℛitk,ijℛ†
j ]ab

⟨Ψ0 | f †
kia fkjb |Ψ0⟩ + ∑

R,i≥1

⟨Ψ0 |𝒫†
RiĤ

loc
Ri 𝒫Ri |Ψ0⟩

⟨Ψ0 |𝒫†
Ric

†
Riα𝒫Ri fRia |Ψ0⟩ = ∑

a′￼

[ℛi]a′￼α⟨Ψ0 | f †
Ria′￼

fRia |Ψ0⟩Where:

⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}



Necessary steps:
1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi≥1}, |Ψ0⟩



ℰ = ∑
kij

∑
ab

[ℛitk,ijℛ†
j ]ab

⟨Ψ0 | f †
kiα fkjβ |Ψ0⟩ + ∑

R,i≥1

⟨Ψ0 |𝒫†
RiĤ

loc
Ri 𝒫Ri |Ψ0⟩

⟨Ψ0 |𝒫†
Ric

†
Riα𝒫Ri fRia |Ψ0⟩ = ∑

a′￼

[ℛi]a′￼α ⟨Ψ0 | f †
Ria′￼

fRia |Ψ0⟩Where:

⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

Variational energy:



√ℰ = ∑
kij

∑
ab

[ℛitk,ijℛ†
j ]ab

⟨Ψ0 | f †
kiα fkjβ |Ψ0⟩ + ∑

R,i≥1

⟨Ψ0 |𝒫†
RiĤ

loc
Ri 𝒫Ri |Ψ0⟩

⟨Ψ0 |𝒫†
Ric

†
Riα𝒫Ri fRia |Ψ0⟩ = ∑

a′￼

[ℛi]a′￼α ⟨Ψ0 | f †
Ria′￼

fRia |Ψ0⟩Where:

⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ ∀ a, b ∈ {1,..,νi}

√√

√

√

Variational energy:



Where:

|Γ; R, i⟩ = [c†
Ri1]

q1(Γ) . . . [c†
Riνi

]qνi(Γ) |0⟩

|n; R, i⟩ = [f †
Ri1]

q1(n) . . . [f †
Riνi

]qνi(n) |0⟩

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |

[Fiα]ΓΓ′￼
= ⟨Γ; R, i |cRiα |Γ′￼; R, i⟩

[Fia]nn′￼
= ⟨n; R, i | fRia |n′￼; R, i⟩

⟨Ψ0 |𝒫†
Ric

†
Riα𝒫Ri fRia |Ψ0⟩ = Tr[P0

i Λ†
i F

†
iαΛi Fia]

⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = Tr[P0

i Λ†
i Λi ] = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = Tr[P0
i Λ†

i Λi F†
iaFib] = ⟨Ψ0 | f †

Ria fRib |Ψ0⟩ =: [Δi]ab

√

√

√

√⟨Ψ0 |𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩ = Tr[P0
i Λ†

i 𝒪̂[F†
iα, Fiα]Λi ]



⟨Ψ0 |𝒫†
Ric

†
Riα𝒫Ri fRia |Ψ0⟩ = Tr[P0

i Λ†
i F

†
iαΛi Fia]

⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = Tr[P0

i Λ†
i Λi ] = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = Tr[P0
i Λ†

i Λi F†
iaFib] = ⟨Ψ0 | f †

Ria fRib |Ψ0⟩ =: [Δi]ab

√

√

√

√⟨Ψ0 |𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩ = Tr[P0
i Λ†

i 𝒪̂[F†
iα, Fiα]Λi ]

Where:
[Fiα]ΓΓ′￼

= ⟨Γ; R, i |cRiα |Γ′￼; R, i⟩

[Fia]nn′￼
= ⟨n; R, i | fRia |n′￼; R, i⟩

Matrix of SB amplitudes:

ϕi = Λi P0
i



⟨Ψ0 |𝒫†
Ri𝒫Ri |Ψ0⟩ = Tr[ϕ†

i ϕi ] = 1

⟨Ψ0 |𝒫†
Ri𝒫Ri f †

Ria fRib |Ψ0⟩ = Tr[ϕ†
i ϕi F†

iaFib] = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ =: [Δi]ab

√

√

√

√⟨Ψ0 |𝒫†
Ri𝒪̂[c†

Riα, cRiα]𝒫Ri |Ψ0⟩ = Tr[ϕi ϕ†
i 𝒪̂[F†

iα, Fiα]]

Matrix of SB amplitudes:

ϕi = Λi P0
i

Tr[ϕ†
i F†

iαϕi Fia] = ∑
c

[ℛi]cα [Δi(1 − Δi)]
1
2

ca



Ĥ = ∑
k

∑
ij

νi

∑
α=1

νj

∑
β=1

tαβ
k,ij c†

kiαckjβ + ∑
R

∑
i≥1

Ĥloc
Ri

ℰ = ∑
kij

∑
ab

[ℛitk,ijℛ†
j ]ab

⟨Ψ0 | f †
kia fkjb |Ψ0⟩ + ∑

R,i≥1

Tr[ϕi ϕ†
i Ĥloc

Ri [F†
iα, Fiα]]

Where:

Tr[ϕ†
i ϕi ] = ⟨Ψ0 |Ψ0⟩ = 1

Tr[ϕ†
i ϕi F†

iaFib] = ⟨Ψ0 | f †
Ria fRib |Ψ0⟩ =: [Δi]ab ∀ a, b ∈ {1,..,νi}

Tr[ϕ†
i F†

iαϕi Fia] = ∑
c

[ℛi]cα [Δi(1 − Δi)]
1
2

ca

Variational energy:



Necessary steps:
1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi≥1}, |Ψ0⟩



Impurity i Bath i

2νi × 2νi

2νi × 2νi

[ϕi]Γn ⟶ |Φi⟩ := ∑
Γn

ei π
2 N(n)(N(n)−1)[ϕi]Γn |Γ; i⟩ ⊗ UPH |n; i⟩

Quantum-embedding formulation

N(n) =
νi

∑
a=1

qa(n)

|Γ; i⟩ = [ ̂c†
i1]

q1(Γ) . . . [ ̂c†
iνi

]qνi(Γ) |0⟩

|n; i⟩ = [ ̂f †
i1]

q1(n) . . . [ ̂f †
iνi

]qνi(n) |0⟩



Impurity i Bath i

2νi × 2νi

2νi × 2νi

[ϕi]Γn ⟶ |Φi⟩ := ∑
Γn

ei π
2 N(n)(N(n)−1)[ϕi]Γn |Γ; i⟩ ⊗ UPH |n; i⟩

N(n) =
νi

∑
a=1

qa(n)

|Γ; i⟩ = [ ̂c†
i1]

q1(Γ) . . . [ ̂c†
iνi

]qνi(Γ) |0⟩

|n; i⟩ = [ ̂f †
i1]

q1(n) . . . [ ̂f †
iνi

]qνi(n) |0⟩

Quantum-embedding formulation



Impurity i Bath i

2νi × 2νi

2νi × 2νi

[ϕi]Γn ⟶ |Φi⟩ := ∑
Γn

ei π
2 N(n)(N(n)−1)[ϕi]Γn |Γ; i⟩ ⊗ UPH |n; i⟩

N(n) =
νi

∑
a=1

qa(n)

[𝒫Ri, N̂R,i] = 0 ↔ [
νi

∑
α=1

̂c†
α ̂cα +

νi

∑
a=1

̂f †
a

̂fa] |Φi⟩ = νi |Φi⟩

|Γ; i⟩ = [ ̂c†
i1]

q1(Γ) . . . [ ̂c†
iνi

]qνi(Γ) |0⟩

|n; i⟩ = [ ̂f †
i1]

q1(n) . . . [ ̂f †
iνi

]qνi(n) |0⟩

Quantum-embedding formulation



Impurity i Bath i

2νi × 2νi

2νi × 2νi

[ϕi]Γn ⟶ |Φi⟩ := ∑
Γn

ei π
2 N(n)(N(n)−1)[ϕi]Γn |Γ; i⟩ ⊗ UPH |n; i⟩

N(n) =
νi

∑
a=1

qa(n)

Tr[ϕ†
i ϕi F†

iaFib] = ⟨Φi | ̂fib
̂f †
ia |Φi⟩ = [Δi]ab

Tr[ϕi ϕ†
i 𝒪̂[F†

iα, Fiα]] = ⟨Φi | 𝒪̂[ ̂c†
iα, ̂ciα] |Φi⟩

Tr[ϕ†
i F†

iαϕi Fia] = ⟨Φi | ̂c†
iα

̂fia |Φi⟩

Quantum-embedding formulation



Ĥ = ∑
k

∑
ij

νi

∑
α=1

νj

∑
β=1

tαβ
k,ij c†

kiαckjβ + ∑
R

∑
i≥1

Ĥloc
Ri

Where:

⟨Φi |Φi⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Φi | ̂fib
̂f †
ia |Φi⟩ = ⟨Ψ0 | f †

Ria fRib |Ψ0⟩ =: [Δi]ab ∀ a, b ∈ {1,..,νi}

ℰ = ∑
kij

∑
ab

[ℛitk,ijℛ†
j ]ab

⟨Ψ0 | f †
kia fkjb |Ψ0⟩ + ∑

R,i≥1

⟨Φi | Ĥloc
Ri [ ̂c†

iα, ̂ciα] |Φi⟩

⟨Φi | ̂c†
iα

̂fia |Φi⟩ = ∑
c

[ℛi]cα [Δi(1 − Δi)]
1
2

ca

Variational energy:



Necessary steps:
1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi≥1}, |Ψ0⟩



Where:

⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 | f †
Ria fRib |Ψ0⟩ =: [Δi]ab

ℰ = ∑
kij

∑
ab

[ℛitk,ijℛ†
j ]ab

⟨Ψ0 | f †
kia fkjb |Ψ0⟩ + ∑

R,i≥1

⟨Φi | Ĥloc
Ri [ ̂c†

iα, ̂ciα] |Φi⟩

⟨Φi | ̂c†
iα

̂fia |Φi⟩ =: ∑
c

[ℛi]cα [Δi(1 − Δi)]
1
2

ca

⟨Φi | ̂fib
̂f †
ia |Φi⟩ = [Δi]ab

⟨Φi |Φi⟩ = 1

Variational energy:



Where:

⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 | f †
Ria fRib |Ψ0⟩ =: [Δi]ab

ℰ = ∑
kij

∑
ab

[ℛitk,ijℛ†
j ]ab

⟨Ψ0 | f †
kia fkjb |Ψ0⟩ + ∑

R,i≥1

⟨Φi | Ĥloc
Ri [ ̂c†

iα, ̂ciα] |Φi⟩

⟨Φi | ̂c†
iα

̂fia |Φi⟩ =: ∑
c

[ℛi]cα [Δi(1 − Δi)]
1
2

ca

⟨Φi | ̂fib
̂f †
ia |Φi⟩ = [Δi]ab

⟨Φi |Φi⟩ = 1 Ec
i

E

[λi]ab
[λc

i ]ab

[𝒟i]aα

Variational energy:



Lagrange function:

Where:

ℒ =
1
𝒩

⟨Ψ0 | Ĥqp[ℛ, λ] |Ψ0⟩ + E(1 − ⟨Ψ0 |Ψ0⟩)

+∑
i≥1

⟨Φi | Ĥemb
i [𝒟i, λc

i ] |Φi⟩ + Ec
i (1 − ⟨Φi |Φi⟩)

−∑
i≥1 [∑

ab
([λi]ab + [λc

i ]ab)[Δi]ab + ∑
caα

([𝒟i]aα[ℛi]cα[Δi(1 − Δi)]
1
2
ca + c.c.)]

Ĥemb
i [𝒟i, λc

i ] = Ĥloc
Ri [ ̂c†

iα, ̂ciα] + ∑
aα

([𝒟i]aα ̂c†
iα

̂fia + H.c.) + ∑
ab

[λc
i ]ab

̂fib
̂f †
ia

Ĥqp[ℛ, λ] = ∑
k,ij

∑
ab

[ℛitk,ijℛ†
j ]ab

f †
kia fkjb + ∑

Ri
∑
ab

[λi]ab f †
Ria fRjb



(ℛ, λ) ⟶
1
𝒩 [∑

k

Πi f (ℛtkℛ† + λ) Πi]
ba

= [Δi]ab
⟶ [Δi]ab

1
𝒩 [∑

k

Πitkℛ†f (ℛtkℛ† + λ) Πi]
αa

=
νi

∑
c,a=1

νi

∑
α=1

[𝒟i]cα [Δi (1 − Δi)]
1
2 ⟶ [𝒟i]cα

νi

∑
c,b=1

νi

∑
α=1

∂
∂ [d0

i ]s
[Δi (1 − Δi)]

1
2

cb
[𝒟i]bα [ℛi]cα

+ c . c . + [li + lc
i ]s = 0 ⟶ lc

i

Ĥemb
i |Φi⟩ = Ec

i |Φi⟩ ⟶ |Φi⟩

[ℱ(1)
i ]αa

= ⟨Φi | ̂c†
iα

̂fia |Φi⟩ − ∑
c=1

[Δi (1 − Δi)]
1
2 [ℛi]cα

!= 0

[ℱ(2)
i ]ab

= ⟨Φi | ̂fib
̂f †
ia |Φi⟩ − [Δi]ab

!= 0

Δi =
ν2

i

∑
s=1

[d0
i ]s

t [hi]s

λi =
ν2

i

∑
s=1

[li]s [hi]s

λc
i =

ν2
i

∑
s=1

[lc
i ]s [hi]s

{

Lagrange equations:



(ℛ, λ) ⟶
1
𝒩 [∑

k

Πi f (ℛtkℛ† + λ) Πi]
ba

= [Δi]ab
⟶ [Δi]ab

1
𝒩 [∑

k

Πitkℛ†f (ℛtkℛ† + λ) Πi]
αa

=
νi

∑
c,a=1

νi

∑
α=1

[𝒟i]cα [Δi (1 − Δi)]
1
2 ⟶ [𝒟i]cα

νi

∑
c,b=1

νi

∑
α=1

∂
∂ [d0

i ]s
[Δi (1 − Δi)]

1
2

cb
[𝒟i]bα [ℛi]cα

+ c . c . + [li + lc
i ]s = 0 ⟶ [Λc

i ]ab

Ĥemb
i |Φi⟩ = Ec

i |Φi⟩ ⟶ |Φi⟩

[ℱ(1)
i ]αa

= ⟨Φi | ̂c†
iα

̂fia |Φi⟩ − ∑
c=1

[Δi (1 − Δi)]
1
2 [ℛi]cα

!= 0

[ℱ(2)
i ]ab

= ⟨Φi | ̂fib
̂f †
ia |Φi⟩ − [Δi]ab

!= 0

Δi =
ν2

i

∑
s=1

[d0
i ]s

t [hi]s

λi =
ν2

i

∑
s=1

[li]s [hi]s

λc
i =

ν2
i

∑
s=1

[lc
i ]s [hi]s

{

√

√

Lagrange equations:



Necessary steps:
1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi≥1}, |Ψ0⟩



Outline
A.  Quantum Embedding (QE) methods.

B.  GA method (multi-orbital models): QE formulation.

C.  DFT+GA algorithmic structure.

D.  Spectral properties.

E.  Examples of applications.

F.  Recent formalism extensions (g-GA).



DFT+GA: algorithmic structure



ℰ[ρ] = TKS[ρ] + EHXC[ρ] + ∫ dr V(r) ρ(r)

TKS[ρ] = min
Ψ0→ρ

⟨Ψ0 | ̂T |Ψ0⟩

min
ρ

ℰ[ρ] = min
Ψ0

[⟨Ψ0 | ̂T + ∫ dr V(r) ̂ρ(r) |Ψ0⟩ + EHXC[⟨Ψ0 | ̂ρ |Ψ0⟩]]

{
Kohn-Sham scheme:



TKS[ρ] = min
Ψ0→ρ

⟨Ψ0 | ̂T |Ψ0⟩{
𝒮[Ψ0, ρ(r), 𝒥(r)] = ⟨Ψ0 | ̂T + ∫ dr V(r) ̂ρ(r) |Ψ0⟩ + EHXC[ρ]

+∫ dr𝒥(r)(⟨Ψ0 | ̂ρ(r) |Ψ0⟩ − ρ(r)) Enforcing 
definition of ρ(r)

min
ρ

ℰ[ρ] = min
Ψ0

[⟨Ψ0 | ̂T + ∫ dr V(r) ̂ρ(r) |Ψ0⟩ + EHXC[⟨Ψ0 | ̂ρ |Ψ0⟩]]

ℰ[ρ] = TKS[ρ] + EHXC[ρ] + ∫ dr V(r) ρ(r)

Kohn-Sham scheme:



Kohn-Sham scheme:

TKS[ρ] = min
Ψ0→ρ

⟨Ψ0 | ̂T |Ψ0⟩{
𝒮[Ψ0, ρ(r), 𝒥(r)] = ⟨Ψ0 | ̂T + ∫ dr (V(r) + 𝒥(r)) ̂ρ(r) |Ψ0⟩ + EHXC[ρ] − ∫ dr𝒥(r)ρ(r)

ρ0(r)

ĤKS

𝒥(r)

Solve 

& calculate 

ĤKS
ρ(r)

min
ρ

ℰ[ρ] = min
Ψ0

[⟨Ψ0 | ̂T + ∫ dr V(r) ̂ρ(r) |Ψ0⟩ + EHXC[⟨Ψ0 | ̂ρ |Ψ0⟩]]

ℰ[ρ] = TKS[ρ] + EHXC[ρ] + ∫ dr V(r) ρ(r)



TKSH[ρ] = min
ΨG→ρ

⟨ΨG | ̂T |ΨG⟩{
+∑

i≥1

ĤUi,Ji
i

ℰ[ρ] = TKSH[ρ] + EHXC[ρ] + ∫ dr V(r) ρ(r)

min
ρ

ℰ[ρ] = min
ΨG

⟨ΨG | ̂T + ∫ dr V(r) ̂ρ(r) + ∑
i≥1

ĤUi,Ji
i |ΨG⟩+

+EHXC[⟨ΨG | ̂ρ |ΨG⟩] + EU,J
dc (⟨ΨG | N̂i |ΨG⟩)]

Projectors over “correlated” 
degrees of freedom

Kohn-Sham-Hubbard scheme:
+∑

i≥1

EUi,Ji
dc (⟨ΨG | N̂i |ΨG⟩)



Kohn-Sham-Hubbard scheme:

min
ρ

ℰ[ρ] = min
ΨG

⟨ΨG | ̂T + ∫ dr V(r) ̂ρ(r) + ∑
i≥1

ĤUi,Ji
i |ΨG⟩+

+EHXC[⟨ΨG | ̂ρ |ΨG⟩] + ∑
i≥1

EUi,Ji
dc (⟨ΨG | N̂i |ΨG⟩)

+∫ dr𝒥(r)(⟨ΨG | ̂ρ(r) |ΨG⟩ − ρ(r)) Enforcing 
definition of ρ(r)

+∑
i≥1

Vdc
i (⟨ΨG | N̂i |ΨG⟩ − Ni) Enforcing 

definition of Ni



Algorithmic structure:
ĤKSH = ̂T + ∫ dr [V(r) + 𝒥(r)] ̂ρ(r) + ∑

i≥1
(ĤUi,Ji

i + Vdc
i N̂i)

ρ0(r)

𝒥(r)

Solve  with GA

& calculate 

ĤKSH
ρ(r)

Fixed Vdc
i

} Vdc
i

Check Vdc
i =

dEU,J
dc

dNi
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Ground state: |ΨG⟩ = 𝒫 |Ψ0⟩

Excited states: |Ψkn
G ⟩ = 𝒫 ξ†

kn |Ψ0⟩

Spectral properties

Aiα,jβ(k, ω) = ⟨ΨG |ckiα δ(ω − Ĥ) c†
kjβ |ΨG⟩ + ⟨ΨG |c†

kjβ δ(ω + Ĥ) ckiα |ΨG⟩



|ΨG⟩ = 𝒫 |Ψ0⟩Ground state:

Excited states: |Ψkn
G ⟩ = 𝒫 ξ†

kn |Ψ0⟩

Aiα,jβ(k, ω) = ⟨ΨG |ckiα δ(ω − Ĥ) c†
kjβ |ΨG⟩ + ⟨ΨG |c†

kjβ δ(ω + Ĥ) ckiα |ΨG⟩

𝒢(k, ω) = ∫
∞

−∞
dϵ

A(k, ω)
ω − ϵ

≃ ℛ† 1
ω − [ℛϵkℛ† + λ]

ℛ =:
1

ω − tloc − Σ(ω)

Spectral properties



|ΨG⟩ = 𝒫 |Ψ0⟩Ground state:

Excited states: |Ψkn
G ⟩ = 𝒫 ξ†

kn |Ψ0⟩

Aiα,jβ(k, ω) = ⟨ΨG |ckiα δ(ω − Ĥ) c†
kjβ |ΨG⟩ + ⟨ΨG |c†

kjβ δ(ω + Ĥ) ckiα |ΨG⟩

Σi(ω) = tloc − ω
1 − ℛ†

i ℛi

ℛ†
i ℛi

+ [ℛi]−1λi[ℛ†
i ]

−1
Σ(ω) =

[0]ν0×ν0
0 … 0

0 Σ1(ω) … ⋮
⋮ ⋮ ⋱ ⋮
0 … … ΣM(ω)

Spectral properties
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Example: phase diagram of Pu
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A more accurate extension:

the g-GA method



The GA variational wave function:

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |
|Ψ0⟩

|ΨG⟩ 𝒫Square matrix: 2νi × 2νi

|ΨG⟩ = 𝒫 |Ψ0⟩ = ∏
R,i≥1

𝒫Ri |Ψ0⟩



|ΨG⟩ = 𝒫 |Ψ0⟩ = ∏
R,i≥1

𝒫Ri |Ψ0⟩

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i | |Ψ0⟩

|ΨG⟩ 𝒫

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |

Rectangular matrix: 2νi × 2ν̃i

The GA variational wave function:



|ΨG⟩ = 𝒫 |Ψ0⟩ = ∏
R,i≥1

𝒫Ri |Ψ0⟩

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i | |Ψ0⟩

|ΨG⟩ 𝒫

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |

Rectangular matrix: 2νi × 2ν̃i

The GA variational wave function:



|ΨG⟩ = 𝒫 |Ψ0⟩ = ∏
R,i≥1

𝒫Ri |Ψ0⟩

𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |𝒫Ri = ∑
Γn

[Λi]Γn |Γ; R, i⟩⟨n; R, i |

Rectangular matrix: 2νi × 2ν̃i

Impurity i
Bath i

Self-consistency

2νi × 2ν̃i

The GA variational wave function:



Benchmark calculations Hubbard model:

Impurity i
Bath i

Self-consistency

EMERGENT BLOCH EXCITATIONS IN MOTT MATTER PHYSICAL REVIEW B 96, 195126 (2017)

FIG. 2. Evolution of (top) total energy, (middle) local double
occupancy, and (bottom) QP weight as a function of the Hubbard
interaction strength U for the single-band Hubbard model with
semicircular DOS at half-filling. The ghost-GA results are shown
in comparison with the ordinary GA and with DMFT+NRG. The
ghost-GA boundaries of the coexistence region Uc1,Uc2 are indicated
by vertical dotted lines. Inset: Integral of ghost-GA local spectral
weight over all frequencies (see discussion in main text).

in comparison with the ordinary GA theory and with DMFT
in combination with numerical renormalization group (NRG).
In particular, we employed the “NRG Ljubljana” impurity
solver [26].

The agreement between ghost-GA and DMFT is quantita-
tively remarkable. In particular, the ghost-GA theory enables
us to account for the coexistence region of the Mott and
metallic phases, which is not captured by the ordinary GA
theory. The values of the boundaries of the coexistence region
Uc1 ! 2, Uc2 ! 2.88 are in good agreement with the DMFT
results available in the literature [27–30], i.e., Uc1 ! 2.39,
Uc2 ! 2.94. The ghost-GA value of Uc2, which is the actual
Mott transition point at T = 0, is particularly accurate. The
method also gives a reasonable value for the very small energy
scale characterizing the coexistence region, which we can
estimate as Tc ! Eins(Uc1) − Emet(Uc1) ! 0.02, consistently
with both DMFT and experiments [31,32]. We point out also
that, as shown in the second panel of Fig. 2, the ghost-
GA approach captures the charge fluctuations in the Mott
phase, while this is approximated by the simple atomic limit
(which has zero double occupancy) within the Brinkman-Rice
scenario [33].

Interestingly, while at least two ghost orbitals are necessary
to obtain the data illustrated above for the metallic solution, one
ghost orbital is sufficient to obtain our results concerning the

FIG. 3. Poles of the ghost-GA energy-resolved Green’s function
(bullets), see Eq. (6), in comparison with DMFT+NRG. The size of
the bullets indicates the spectral weights of the corresponding poles.
Metallic solution for U = 1, 2.5 and Mott solution for U = 3.5, 5.

Mott phase. Increasing further the number of ghost orbitals
does not lead to any appreciable difference [11]. As we are
going to show, this is connected with the fact that the electronic
structures of the Mott and the metallic phases are topologically
distinct.

Let us now analyze the ghost-GA single-particle Green’s
function G(ε,ω), see Eq. (6). In Fig. 3 is shown the ghost-GA
energy-resolved spectral function A(ε,ω) = − 1

π
ImG(ε,ω) in

comparison with DMFT [34]. Although the broadening of the
bands (scattering rate), is not captured by our approximation
(as it is not captured by the ordinary GA), the positions
and the weights of the poles of the ghost-GA spectral
function encode most of the DMFT features, not only at low
energies (QP excitations), but also at high energies (Hubbard
bands). In order to analyze how the spectral properties of the
system emerge within the ghost-GA theory, it is particularly
convenient to express the QP Hamiltonian [Eq. (5)] in a gauge
where λ̃ is diagonal [35].

In the metallic phase, an explicit ghost-GA calculation
obtained employing two ghost orbitals shows that the matrices
R̃ and λ̃ are represented as follows:

λ̃ij = l δij (δ2i − δ3i) (7)

R̃ij = δj1(
√

z δi1 +
√

h (δi2 + δi3)/
√

2), (8)

where δij is the Kronecker delta, and l, z and h are real
positive numbers determined numerically as in Ref. [19]. The
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in comparison with the ordinary GA and with DMFT+NRG. The
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weight over all frequencies (see discussion in main text).

in comparison with the ordinary GA theory and with DMFT
in combination with numerical renormalization group (NRG).
In particular, we employed the “NRG Ljubljana” impurity
solver [26].

The agreement between ghost-GA and DMFT is quantita-
tively remarkable. In particular, the ghost-GA theory enables
us to account for the coexistence region of the Mott and
metallic phases, which is not captured by the ordinary GA
theory. The values of the boundaries of the coexistence region
Uc1 ! 2, Uc2 ! 2.88 are in good agreement with the DMFT
results available in the literature [27–30], i.e., Uc1 ! 2.39,
Uc2 ! 2.94. The ghost-GA value of Uc2, which is the actual
Mott transition point at T = 0, is particularly accurate. The
method also gives a reasonable value for the very small energy
scale characterizing the coexistence region, which we can
estimate as Tc ! Eins(Uc1) − Emet(Uc1) ! 0.02, consistently
with both DMFT and experiments [31,32]. We point out also
that, as shown in the second panel of Fig. 2, the ghost-
GA approach captures the charge fluctuations in the Mott
phase, while this is approximated by the simple atomic limit
(which has zero double occupancy) within the Brinkman-Rice
scenario [33].

Interestingly, while at least two ghost orbitals are necessary
to obtain the data illustrated above for the metallic solution, one
ghost orbital is sufficient to obtain our results concerning the

FIG. 3. Poles of the ghost-GA energy-resolved Green’s function
(bullets), see Eq. (6), in comparison with DMFT+NRG. The size of
the bullets indicates the spectral weights of the corresponding poles.
Metallic solution for U = 1, 2.5 and Mott solution for U = 3.5, 5.

Mott phase. Increasing further the number of ghost orbitals
does not lead to any appreciable difference [11]. As we are
going to show, this is connected with the fact that the electronic
structures of the Mott and the metallic phases are topologically
distinct.

Let us now analyze the ghost-GA single-particle Green’s
function G(ε,ω), see Eq. (6). In Fig. 3 is shown the ghost-GA
energy-resolved spectral function A(ε,ω) = − 1

π
ImG(ε,ω) in

comparison with DMFT [34]. Although the broadening of the
bands (scattering rate), is not captured by our approximation
(as it is not captured by the ordinary GA), the positions
and the weights of the poles of the ghost-GA spectral
function encode most of the DMFT features, not only at low
energies (QP excitations), but also at high energies (Hubbard
bands). In order to analyze how the spectral properties of the
system emerge within the ghost-GA theory, it is particularly
convenient to express the QP Hamiltonian [Eq. (5)] in a gauge
where λ̃ is diagonal [35].

In the metallic phase, an explicit ghost-GA calculation
obtained employing two ghost orbitals shows that the matrices
R̃ and λ̃ are represented as follows:

λ̃ij = l δij (δ2i − δ3i) (7)

R̃ij = δj1(
√

z δi1 +
√

h (δi2 + δi3)/
√

2), (8)

where δij is the Kronecker delta, and l, z and h are real
positive numbers determined numerically as in Ref. [19]. The

195126-3



Impurity i
Bath i

Self-consistency

2νi × 2ν̃i

Benchmark calculations ALM:



Analytical (approximate) 
expression for self-energy 

Benchmark calculations ALM:



Some useful references:



Some useful references:



THANK YOU FOR YOUR 
ATTENTION !!!



Self-consistency

Xf(X)

PHYSICAL REVIEW B 90, 155136 (2014)

Machine learning for many-body physics: The case of the Anderson impurity model
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Machine learning methods are applied to finding the Green’s function of the Anderson impurity model, a basic
model system of quantum many-body condensed-matter physics. Different methods of parametrizing the Green’s
function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its
limited number of coefficients and its applicability to state of the art methods of solution. The dependence of
the errors on the size of the training set is determined. The results indicate that a machine learning approach to
dynamical mean-field theory may be feasible.
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I. INTRODUCTION

The fermionic quantum many-body problem is believed to
be in the class of problems whose full solution is exponentially
hard [1]. Approximate methods have been developed, but
many of these are also extremely computationally demanding.
There is, therefore, an ongoing search for efficient approximate
methods, useful, for example, in computational surveys of
wide classes of materials, or to provide a first look at a
complicated situation.

The predominant approach has been to use simplifying
approximations, for example, truncated perturbation-theory
series expansions, variants of mean-field theory, quasiclassical
approximations, or analytical interpolation functions. The de-
velopment of machine learning (ML) techniques in computer
science motivates us to explore a complementary approach.
ML provides an estimate of the result of a calculation based
on interpolation from a statistical analysis of datasets of solved
problems [2]. ML is widely used in many big-data applications
and has recently been proposed as a method for obtaining
approximate solutions of the equations of density functional
theory (DFT) [3], of the molecular electronic Schrödinger
equation [4,5], and of transmission coefficients for electron
quantum transport [6]. ML is also used to construct forcefields
from molecular dynamics [7–11].

In this paper we investigate ML techniques to infer solutions
to the quantum many-body problem arising in applications of
the dynamical mean-field theory (DMFT) method [12–14].
DMFT has become widely used in condensed-matter physics
and materials science for obtaining nonperturbative informa-
tion about materials with strong local correlations. While
DMFT is an approximation to the full many-body problem,
it does require the solution of a fully interacting quantum
impurity model (a quantum field theory defined in zero
space but one time dimension), and accurate solutions require
substantial numerical effort which is time consuming even
with modern algorithms and hardware [15–17]. A sufficiently
accurate ML model of DMFT could provide an inexpensive
solver, useful for rapid preliminary screening of wide ranges

*la2518@columbia.edu

of materials and as a method for identifying promising
starting points for further refinement using more expensive
and sophisticated methods or experiments.

In its conventional formulation, DMFT maps one function
of frequency into another. The input is the bare hybridization
function, which encapsulates relevant information about the
crystal structure and quantum chemistry of a material via a
representation of what the local density of electronic excita-
tions would be if many-body correlations were neglected. A
small number of additional parameters, such as the on-site
interaction strength, must also be specified. The output is
the electron Green’s function (or equivalently self-energy),
which provides an approximation to the exact density of
states (DOS) obtained by including local effects of many-body
correlations.

Implementing a ML approach to DMFT thus entails con-
structing a training set of physically reasonable hybridization
functions, determining the spectral functions corresponding to
the training examples, and constructing a model that provides
the needed interpolation formula. Such a ML procedure goes
beyond previous applications of ML to electronic structure
because we are mapping a function to a function whereas
the ML approaches to DFT or the Schrödinger equation
provide only a small number of scalar outputs, such as the
total energy of atomization, ionization potential, or excitation
energy [5,18]. A key issue is thus to devise an efficient
representation of the functions of interest in terms of a
reasonably sized set of parameters. The first application we
foresee for real systems is a material science computation tool
to optimize a desired property.

In this paper we address this key issue for the Anderson
impurity model (AIM), the archetypical quantum impurity
model. For this model the input hybridization function is
known a priori and can be specified by few parameters. The
focus therefore lies on the prediction of the output, namely,
the electron Green’s function. In future work we will discuss
ML applications to the full DMFT problem of determining
the self-consistent relation between the Green’s function and
hybridization function, starting from an arbitrary hybridization
function.

This paper is organized as follows: in Sec. II, we summarize
the supervised learning approach. In Sec. II A we discuss how

1098-0121/2014/90(15)/155136(16) 155136-1 ©2014 American Physical Society

PHYSICAL REVIEW RESEARCH 3, 013101 (2021)

Bypassing the computational bottleneck of quantum-embedding theories
for strong electron correlations with machine learning
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A cardinal obstacle to performing quantum-mechanical simulations of strongly correlated matter is that,
with the theoretical tools presently available, sufficiently accurate computations are often too expensive to be
ever feasible. Here we design a computational framework combining quantum-embedding (QE) methods with
machine learning. This allows us to bypass altogether the most computationally expensive components of QE
algorithms, making their overall cost comparable to bare density functional theory. We perform benchmark
calculations of a series of actinide systems, where our method accurately describes the correlation effects,
reducing by orders of magnitude the computational cost. We argue that, by producing a larger-scale set of training
data, it will be possible to apply our method to systems with arbitrary stoichiometries and crystal structures,
paving the way to virtually infinite applications in condensed matter physics, chemistry, and materials science.

DOI: 10.1103/PhysRevResearch.3.013101

I. INTRODUCTION

The atomic energy scales emerging in “strongly correlated”
systems [1–3] can induce a broad spectrum of spectacular
effects, ranging from arresting the electronic motion [1] to
causing high-temperature superconductivity [4], unlocking
access to new topological phases and dramatically influencing
the potential-energy surfaces (PES) of molecules and solids
[5–10]. Therefore, the need and the potential effects for sci-
ence and society of extending to strongly correlated systems
the computational materials-by-design paradigm can hardly
be overstated [2]. The substantial progress achieved in the
past decade in calculating the electronic structure of strongly
correlated materials is largely owed to the idea of combining
mean-field (MF) theories, such as approximations to density
functional theory (DFT) [11–17] with quantum-embedding
(QE) [2,18,19] theoretical frameworks. Well-known examples
are dynamical mean-field theory (DMFT) [20–27] and den-
sity matrix embedding theory (DMET) [28,29]. As shown
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in Ref. [30], also the multiorbital Gutzwiller approximation
(GA) [30–34], which is a variational framework [equivalent
to the rotationally invariant slave boson (RISB) [35–37] at the
MF level [38,39]], can be formulated as a QE scheme fea-
turing recursive ground-state calculations of impurity models
with a finite bath called “embedding Hamiltonians” (EHs).
Therefore, even if the principles underlying E = DMFT, GA,
RISB, DMET are very different, the concept of QE allows us
to formalize and implement these techniques from a unified
perspective [30,40,41].

The fundamental idea underlying all QE theoretical frame-
works consists in replacing the original (typically unfeasible)
problem of directly simulating these systems with the more
manageable task of solving equations for a series of EHs,
composed by fractions of the material (impurities) and
effective-medium degrees of freedom (self-consistently deter-
mined for describing the interaction of the impurities with
their environment). The current state-of-the-art approach to
tackle QE simulations is based on solving the EH equations
recursively utilizing many-body techniques [42–45]. On the
other hand, due to the quantum-mechanical nature of the EH,
its solution ultimately has a computational cost that grows ex-
ponentially with the number of impurity degrees of freedom.
Because of this reason, the practical application of these tools
to complex materials is often too computationally demanding
to ever be feasible.

Here we show that this problem can be efficiently tackled
from a completely different perspective: capitalizing on the

2643-1564/2021/3(1)/013101(10) 013101-1 Published by the American Physical Society
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Figure 4. Panel (a): LDA+GA+nKRR (n = 3) and LDA+GA equilibrium volumes of the the low-temperature allotropes of Pa,
U, Np, Pu, Am; in comparison with bare LDA and the experimental values. Panels (b1-b5): Corresponding LDA+GA+nKRR
(n = 1, 2, 3), LDA+GA+ED and LDA energy-volume curves. The vertical blue dashed lines indicate the experimental equilib-
rium volumes. Within the mesh of volumes considered, the LDA+GA+nKRR (n = 3) and LDA+GA+ED minima correspond
to the same equilibrium points (panel (a)).
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