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The Hubbard model

Hamiltonian:

H =
∑

r,r′,σ

t

hopping amplitude←

r,r′ c

creation operator←

†
rσcr′σ + U

→ local Coulomb repulsion

∑

r
n

→ number of spin ↑ electrons at r

r↑nr↓

(chemical potential µ= −trr)

w(x)

x
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The Green function

Hilbert space of dimension∼ 4L (L: # of sites)

The many-body ground state |Ω〉 contains too much information

A lot of useful information is contained in the one-particle Green function:

(here at T = 0)

G

→ matrix G

αβ(z) = 〈Ω|cα
1

z −H + E0
c†
β
|Ω〉+ 〈Ω|c†

β

1
z +H − E0

G.S. energy←

cα|Ω〉

Retarded Green function:

GR(t) = −iΘ(t)〈Ω|{cα(t), c†
β
(0)}|Ω〉 =⇒ GR(ω) = G(ω+ i0+)

Approximation schemes for G are easier to implement
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Spectral representation

Gαβ(z) =
∑

r>0

〈Ω|cα|r

→ eigenstate with N + 1 particles

〉
1

z − Er + E0
〈r|c†

β
|Ω〉+
∑

r<0

〈Ω|c†
β
|r

eigenstate with N − 1 particles←

〉
1

z + Er − E0
〈r|cα|Ω〉

Q-matrix:

Qαr =

¨

〈Ω|cα|r〉 (r > 0)
〈r|cα|Ω〉 (r < 0)

and ωr =

¨

Er − E0 (r > 0)
E0 − Er (r < 0)

Spectral representation:

Gαβ(z) =
∑

r

QαrQ
∗
β r

z −ωr
(partial fractions)
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Spectral representation (cont.)

Completeness relations:

∑

r

QαrQ
∗
β r = 〈Ω|
�

cαc†
β
+ c†
β

cα
�

|Ω〉

= δαβ

Asymptotic behavior:

lim
z→∞

Gαβ(z) =
δαβ

z

7 / 71



Spectral function

Spectral function:

Aαβ(ω) = −2 ImGαβ(ω+ i0+)

Translation-invariant system:

G(k, z) =
∑

r>0

|〈Ω|ck|r〉|2
1

z − Er + E0
+
∑

r<0

|〈Ω|c†
k|r〉|

2 1
z + Er − E0

A(k,ω) = −2 ImG(k,ω+ i0+)

=
∑

r>0

|〈Ω|ck|r〉|2

prob. of electron
with ε = Er − E0

←

2πδ(ω− Er + E0)

+
∑

r<0

|〈Ω|c†
k|r〉|

2

→ prob. of hole
with ε = Er − E0

2πδ(ω+ Er − E0)
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non-interacting limit (U = 0)

|Ω〉=
∏

εk<0

c†
k|0〉 (Fermi sea)

G(z) =
1

z − t
G(z, k) =

1
z − εk

εk =
∑

r
t0,re

−ik·r

1
1.4

0.6

kx

ky

−π π
−π

π
t ′ = 0 , t ′′ = 0

1.0
1.40.6

kx

ky

−π π
−π

π
t ′ = −0.3t , t ′′ = 0.2t
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non-interacting limit (cont.)

Spectral function & density of states:

A(k,ω) = 2πδ(ω− εk) ρ(ω) =

∫

k
A(k,ω)

(π, 0)

(0,0)

(π,π)

(π, 0)

−4 −3 −2 −1 0 1 2 3 4

ω/t

Spectral function, half-filling, NN hopping

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−4 −3 −2 −1 0 1 2 3 4

N
(ω
)

ω/t

Associated density of states
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Self-energy

Interacting Green function:

G(z) =
1

z − t −Σ
→ self-energy
(z)

Local limit at half-filling (t = −1
2 U1):

G(z) =
1/2

z + U/2
+

1/2
z − U/2

=
1

z −
U2

4z

Σ(z) =
U2

4z
+

U
2

Analytic structure:

Σαβ(z) = Σ∞αβ
Hartree-Fock←

+
∑

r

SαrS
∗
β r

z −σr

(π, 0)

(0,0)

(π,π)

(π, 0)

−1 −0.5 0 0.5 1

ω/U

Spectral function, half-filled HM (t = 0)
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Approximation schemes

Hartree-Fock

Σ(ω, k)→ Σ(∞, k) is
frequency-independent

Can be absorbed in new dispersion

relation ε′(k)
Approximation equivalent to new

one-body Hamiltonian

DMFT

Σ(ω, k)→ Σ(ω) is
momentum-independent

System still fundamentally

interacting

Approximated by single site with

effective medium
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The cavity method

Action of the Hubbard model:

S[crσ, c†
rσ] =

∫ β

0

dτ

�

∑

r,σ

c†
rσ∂τcrσ +
∑

r,r′,σ

trr′ c
†
rσcr′σ + U
∑

r
nr↑nr↓

�

One-site effective action:

1
Zeff.

e−Seff.[c0σ,c†
0σ]

=
1
Z

∫

∏

r 6=0,σ

DcrσDc†
rσe−S 0
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The cavity method (cont.)

Effective action (exact form, spin indices suppressed):

Seff. = S0 +
∞
∑

n=1

∑

r1,...,r′n

∫

dτ η†
r1
· · ·η†

rn
ηr′1

. . .ηr′n
Genv

r1···r′n
(τ1 · · ·τrn

,τ1 · · ·τn)

where ηr = tr0cr0 acts like a source field and

S0 =

∫ β

0

dτ

�

c0∂τc0 −µn0 + Un0↑n0↓

�

One can show that in the d →∞ limit, if t → t/
p

2d , only n= 1 survives.

DMFT approximation:

Seff. = S0 +
∑

r,r′
t0r t0r′

∫

dτ dτ′ c†
0(τ)c0(τ

′)Genv
r,r′ (τ,τ′)
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The cavity method (cont.)

Effective action:

Seff. = −
∫

dτ dτ′ c†
0(τ)G

−1
0 (τ−τ

′)c0(τ
′) + U

∫ β

0

dτ n0↑n0↓

G−1
0 (iωn) = iωn +µ−

∑

r,r′
t0r t0r′G

env
r,r′ (iωn)

Genv
r,r′ (iωn) unknown.

Rather, treat G−1
0 as an adjustable dynamical mean field

Only single particles hop on and off the site

The environment is uncorrelated

Nonlocal in time: no Hamiltonian involving c0 only
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The hybridization function

G0 has the analytic properties of a Green function: poles on the real axis and

positive residues.

Define the hybridization function Γ (z):
G−1

0 (z) = z +µ− Γ (z)
Γ (z) has the analytic properties of a self-energy and can represented by a

(quasi-infinite) set of poles:

Γ (z) =
∑

r

θ2
r

z − εr

Interacting Green function of the effective theory for the ‘single site:

Gs(z) =
1

z +µ− Γ (z)−Σ(z)
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Hamiltonian representation

Gs can be obtained from the following AIM Hamiltonian:

HAIM =
Nb
∑

r=1

θr

hyb. amplitude←

�

c†
0ar

→ bath orbital

+H.c
�

+
Nb
∑

r=1

εr

→ bath energy

a†
r ar −µc†

0c0 + Un0↑n0↓

θ8

θ7

θ6

θ5
θ4 θ3

θ2

θ1 ε1

ε2

ε3

ε4
ε5

ε6

ε7

ε8

site

One-body matrix:

T =
�

−µ θ[1×Nb]

θ †
[Nb×1] ε[Nb×Nb]

�
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Proof (U = 0)

Gfull(z) =

�

Gs Gsb
Gbs Gb

�

G−1
full(z) = z − T =

�

z +µ −θ
−θ † z − ε

�

Need to invert a block matrix:
�

z +µ −θ
−θ † z − ε

��

Gs Gsb
Gbs Gb

�

= 1

block equations:

(z +µ)Gs − θGbs = 1 and − θ †Gs + (z − ε)Gbs = 0

Gbs = (z − ε)−1θ †Gs =⇒
�

(z +µ)− θ
1

z − ε
θ †
�

Gs = 1

therefore

G−1
s = z +µ− θ

1
z − ε

θ † = z +µ− Γ (z)
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Proof (cont.)

where

Γ (z) = θ
1

z − ε
θ † =

Nb
∑

r=1

θ2
r

z − εr

If U 6= 0, simply add the self-energy:

Gs(z) =
1

z +µ− Γ (z)−Σ(z)
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The self-consistency condition

Lattice model Green function in the DMFT approximation:

G(iωn, k) =
1

iωn − ε(k)−Σ(iωn)

The local Green function

Ḡ(iωn) =
1
N

∑

k

G(iωn, k)

must coincide with Gs(iωn):

Ḡ(iωn)
−1 = iωn +µ− Γ (iωn)−Σ(iωn)

= G−1
0 (iωn)−Σ(iωn)
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Variant in terms of the density of states

Noninteracting density of states: ρ0(ω) = (1/N)
∑

k δ(ω− ε(k))
Sum over wavevectors replaced by single integral over frequencies:

1
N

∑

k

F(ε(k)) =
∫

dωF(ω)ρ0(ω)

The local Green function is then

Ḡ(iωn) =

∫

dω
ρ0(ω)

iωn −ω−Σ(iωn)
= R0(iωn −Σ(iωn))

where

R0(z) =

∫

dω
ρ0(ω)
z −ω
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The DMFT self-consistency loop

Initial guess for Γ (iωn)

Impurity solver: Compute Gs(iωn)

Ḡ(iωn) =
1
N

∑

k

�

G−1
0 (iωn, k)−Σ(iωn)

�−1

Γ (iωn)→ iωn+µ− Ḡ(iωn)−Σ(iωn)

Γ converged? exit
YesNo
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The impurity solver

Methods for solving the impurity Hamiltonian:

Perturbation theory (2nd order, NCA)

Numerical Renormalization Group (NRG)

Quantum Monte Carlo (QMC)

Infinite bath: only Γ (iωn) is needed.
Finite temperature

Hirsch-Fye (time grid) or Continuous-time (no discretization error)

But: sign problem

Exact diagonalizations

restricted to small, discrete baths (explicit form of HAIM)

Hence self-consistency relation only approximately satisfied

real-frequency information

zero temperature

Other real frequency methods: CI, natural basis, DMRG & other tensor networks
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The DMFT self-consistency loop (discrete bath version)

1 Start with a guess value of (θr ,εr)

2 Compute the impurity Green function Gs(iωn) (ED)

3 Compute the lattice-averaged (or local) Green function

Ḡ(iωn) =
1
N

∑

k

1

G−1
0 (k)−Σ(iωn)

and G−1
0 (iωn) = Ḡ−1 +Σ(iωn)

4 Minimize the following distance function:

d(θ ,ε) =
∑

ωn

W
→ weights

(iωn) tr
�

�

�G−1
s (iωn)− Ḡ−1(iωn)

�

�

�

2

over the set of bath parameters. Thus obtain a new set (θr ,εr).

5 Go back to step (2) until convergence.
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Application: The Mott transition

disappears continuously (at T=0) at a critical value
Uc2/D.2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=`), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G~ ivn!at5
1/2

ivn1U/2
1

1/2
ivn2U/2

. (232)

Since ImG(v1i01) also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [D(v=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G~ ivn!.
1/2

G 0
21~ ivn!2U/2

1
1/2

G 0
21~ ivn!1U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in D/U . This implies that G(iv);iv for small

v, and the substitution into the self-consistency condi-
tion implies that G 0

−1;iv , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(ivn):

D4G328D2vG214~4v21D22U2!G216v50.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc5D for (234) (Uc5)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap 2Dg/2,v,1Dg/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that S(v+i0+)
must be purely real inside the gap, except for a
d-function piece in ImS at v=0, with

ImS~v1i01!52pr2d~v! for vP@2Dg/2,Dg/2#
(235)

and that ReS has the following low-frequency behavior:

ReS~v1i01!2U/25
r2

v
1O~v!. (236)

In these expressions, r2 is given by

1
r2

5E
2`

1`

de
r~e!

e2 . (237)

r2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap Dg vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U,Uc1(T50), with Uc1

ED

. 2.15D (while the iterated perturbation theory method
yields Uc1

IPT . 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density pDr(v) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.

64 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Density of states N(ω) for the half-filled Hubbard model on the
Bethe lattice with interactions U/D = 1,2,2.5, 3,4. Iterated
perturbation theory. Zhang et al., Phys. Rev. Lett. 70, 1666
(1993).

–6 6

4 sites

U=7t
U=10t

U=t
U=5t

/t–6 6/t

U=t
U=8t

1 site

U=12t
U=14t

N(ω) for the half-filled 3D Hubbard model. Exact diagonaliza-
tion solver. Zhang and Imada, Phys. Rev. B 76, 045108 (2007).
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The Mott transition (cont.)

−8 −6 −4 −2 0 2 4 6 8

U = 2

U = 4

U = 6

U = 8

U = 10

U = 11

U = 12

U = 13

U = 14

ω

N(ω) in the 2D, half-filled Hubbard model. Exact diagonalization solver with Nb = 7.

θ7θ6

θ5

θ4

θ3 θ2

θ1 ε1

ε2

ε3

ε4

ε5

ε6

ε7
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Breaking the exponential barrier

i
b0

b1

b2

b3

b-1

b-2

b-3

c1 c2 c3

v1 v2 v3

bi

c4 c5

v4 v5

b1i b2 b3 b4 b5 b6 b7

(a) (b) (c)

Lu et al., Phys. Rev. B90, 085102 (2014).
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Breaking the exponential barrier (cont.)

Lu et al., Phys. Rev. B90, 085102 (2014).
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Real-space DMFT : Ultra-cold atoms

Antiferromagnetic order in cold

atom systems with harmonic

trap

H =
∑

r,r′,σ

tr,r′ c
†
rσcr′σ

+ U
∑

r
nr↑nr↓

−
∑

r,σ

(Vr −µ)nr,σ

Gorelik et al., Phys. Rev. Lett. 105, 065301 (2010). 30 / 71
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Real-space cluster methods: General idea

Tile the lattice with small units (clusters)

Solve an approximate, effective problem on each cluster

Use the self-energiesΣ( j)(z) to approximate the full self-energy:

Σ=









Σ(1) 0 · · · 0
0 Σ(2) · · · 0
...

...
. . .

...

0 0 · · · Σ(n)









Varieties:

CPT : Cluster Perturbation Theory

VCA : Variational Cluster Approximation

CDMFT : Cluster Dynamical Mean Field Theory

CDIA : Cluster Dynamical Impurity Approximation
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Tiling the lattice into clusters

Tiling of the triangular lattice with 6-site clusters
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Cluster Perturbation Theory

Cluster decomposition of the one-body matrix:

t =









t(1,1) t(1,2) · · · t(1,n)

t(2,1) t(2,2) · · · t(2,n)

...
...

. . .
...

t(n,1) t(n,2) · · · t(n,n)









t = t′
→ diagonal blocks

+ tic

Cluster Green function:

G( j)−1(z) = z − t( j, j) −Σ( j)(z)

CPT Green function for the full system:

G−1
cpt(z) =
⊕

j

G( j)−1(z)− t

→ inter-cluster blocks

ic
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Cluster Perturbation Theory (cont.)

H

lattice Hamiltonian←
= H ′
→ cluster Hamiltonian

+Hic Hic =
∑

α,β

(tic)αβ c†
αc
β

Treat Hic at lowest order in Perturbation theory

At this order, the Green function is

G−1(z) = G′

→ cluster Green function matrix

−1(z)− tic

C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993)

D. Sénéchal, D. Perez, and M. Pioro-Ladrière. Phys. Rev. Lett. 84, 522 (2000)
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Superlattices and reduced Brillouin zones

e1

e2

10-site cluster

(−π,−π)

(π, π)

(0, 0)

K

k̃

k

Brillouin zones
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CPT for translation invariant tilings

one-body index= (R

site within cluster←
, k̃

→ reduced wavevector

,σ
→ spin (or band)

)

Green function and tic are diagonal in k̃.
G′ is independent of k.
The CPT formula may be written as

G−1(z, k̃) = G′−1(z)− tic(k̃)

where matrices are now in (R,σ) space.
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Interlude : Fourier transforms

Unitary matrices performing Fourier transforms:

Uγk,r =
1
p

N
e−ik·r UΓ

k̃r̃
=

√

√ L
N

e−ik̃·r̃ U c
K,R =

1
p

L
e−iK·R

complete superlattice cluster

Various representations of the annihilation operator

c(k) =
∑

r
Uγkr cr cK(k̃) =

∑

r̃,R

UΓ
k̃r̃

U c
KR cr̃+R

cR(k̃) =
∑

r̃

UΓ
k̃r̃

cr̃+R cr̃,K =
∑

R

U c
KR cr̃+R

Caveat: Uγ 6=UΓ ⊗U c

The matrix Λ=Uγ(UΓ ⊗U c)−1 relates (K, k̃) to k:

c(k̃+K) = ΛK,K′(k̃)cK′(k̃)
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Fourier transforms (cont.)

DCA

CDMFT
CDMFT DCA

Simon Verret (unpublished)
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Periodization

CPT breaks translation invariance, which needs to be restored:

Gper.(k, z) =
1
L

∑

R,R′
e−ik·(R−R′)GRR′(k̃, z)

Periodizing (1D half-filled HM, 12-site cluster):

−6 −3 0 3 6
ω

(0)

(π/2)

(π)

Green function periodization

−6 −3 0 3 6
ω

(0)

(π/2)

(π)

Self-energy periodization
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Periodization (2)

Periodization as a change of basis:

G(k̃+K, k̃+K′, z) =
�

Λc(k̃)G(z)Λc†(k̃)
�

KK′

=
1
L2

∑

R,R′,K1,K′1

e−i(k̃+K−K1)·Rei(k̃+K′−K′1)·R
′
GK1K′1

(z)

=
1
L

∑

R,R′
e−i(k̃+K)·Rei(k̃+K′)·R′GRR′(k̃, z)

Set K = K′: the spectral function is a partial trace and thus involves diagonal

elements only

Replace k̃ by k = k̃+K in GRR′(k̃, z), which leaves tic(k̃) unchanged
Since this is a change of basis, analytic properties are still OK.
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One-dimensional example

Spectral function of the half-filled HM with increasing U/t :
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One-dimensional example (cont.)

Spectral function of the half-filled HM with increasing L at U = 4t :

0

π/2

π

L = 2 L = 4 L = 6

0

π/2

π

−4 0 4

L = 8

−4 0 4

L = 10

−4 0 4

L = 12

ω ω ω
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One-dimensional example (cont.)

Spectral gap at half-filling: periodic cluster vs CPT

0

0.5

1

1.5

2

2.5

3
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Application: Pseudogap in h-doped cuprates

2D Hubbard model, t′ = −0.3t , t′′ = 0.2t, 3× 4 cluster, n= 5/6
Sénéchal and Tremblay, PRL 92, 126401 (2004)
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Application: Pseudogap in e-doped cuprates

2D Hubbard model, t′ = −0.3t , t′′ = 0.2t, 3× 4 cluster, n= 7/6
Sénéchal and Tremblay, PRL 92, 126401 (2004)
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Application: Fermi surface maps

U= 2 , n = 5/6 U= 8 , n = 5/6

U= 4 , n = 7/6 U= 8 , n = 7/6

(0,0)

(π,π)

0% 90%

0% 90%
Sénéchal and Tremblay, PRL 92, 126401 (2004)

kx

ky

(0, 0)

(π, π)

F. Ronning et al., PRB 67, 165101
(2003)

N.P. Armitage et al., PRL 88, 257001 (2002)
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CPT : Conclusion

Approximation scheme for the one-body Green function

Yields approximate values for the averages of one-body operators

Exact at U = 0

Exact at t i j = 0

Exact short-range correlations

Allows all values of the wavevector

Controlled by the size of the cluster

But :

No long-range order, no self-consistency

Higher Green functions still confined to the cluster

=⇒ A first step towards CDMFT or VCA
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Generalization of DMFT to small clusters

HAIM→ H ′

Simple adaptation of DMFT

Scalar equations

→matrix equations

H

H ′

H ′

H ′

H ′

H ′

H ′

H ′

H ′

H ′

Dynamical mean field G0:

Seff[c, c∗] = −
∫ β

0

dτdτ′
∑

α,β

c∗α(τ)G
−1
0,αβ(τ−τ

′)cβ(τ
′) +

∫ β

0

dτH1(c, c∗)
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The hybridization function

In the frequency domain:

G−1
0 (iωn) = iωn − t′ − Γ

→ hybridization function

(iωn) where G0(iωn) =

∫ β

0

eiωnτG0(τ)

Spectral representation of Γ:

Γαβ(iωn) =
Nb
∑

r

θαrθ
∗
β r

iωn − εr
= θ

1
iωn − ε

θ †

Corresponding Hamiltonian:

H ′ =
∑

α,β

t ′αβ c†
αc
β
+ U
∑

i

ni↑ni↓ +
∑

r,α

θrα

hybridization matrix←

(c†
αar

→ bath orbital

+H.c.) +
∑

r

εr

bath energies←

a†
r ar
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Discrete bath systems

ε1

ε2

ε3

ε4

θ1

θ2

θ3

θ4

(A)

θ−2

θ−1

θ+2

θ+1+
+

+
+

+
+

−
−

ε+1

ε+2

ε−1

ε−2

(B)

θ8θ7

θ6θ5

θ4θ3

θ2θ1

ε1 ε2

ε3 ε4

ε5 ε6

ε7 ε8

(C)

(B) : Liebsch and Ishida, Journal of Physics: Condensed Matter 24 (2012), no. 5, 053201.
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The CDMFT Procedure (discrete bath)

1 Start with a guess value of (θαr ,εr).

2 Calculate the cluster Green function G′(ω) (ED).
3 Calculate the superlattice-averaged Green function

Ḡ(ω) =
∑

k̃

1

G−1
0 (k̃)−Σ(ω)

and G−1
0 (ω) = Ḡ−1 +Σ(ω)

4 Minimize the following distance function:

d(θ ,ε) =
∑

ωn

W (iωn) tr
�

�

�G′−1(iωn)− Ḡ−1(iωn)
�

�

�

2

over the set of bath parameters. Thus obtain a new set (θαr ,εr).

5 Go back to step (2) until convergence.
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The CDMFT self-consistency loop

Initial guess for Γ(iωn)

Impurity solver: Compute G′(iωn)

Ḡ(iωn) =
L
N

∑

k̃

�

G−1
0 (iωn, k)−Σ(iωn)

�−1

Γ(iωn) → iωn − t′ + µ − Ḡ(iωn) − Σ(iωn) (QMC)

minimize
∑

ωn
W (iωn) tr
�

�

�G′−1(iωn) − Ḡ−1(iωn)
�

�

�

2
(ED)

Γ converged? exit
YesNo
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Application: The Mott transition

U

T

Uc1(T )

Uc(T )

Uc2(T )

metal
insulator

DMFT

U

T

Uc1(T )

Uc(T )

Uc2(T )
metal

insulator

CDMFT

U

T

Uc1(T ) Uc2(T )

Uc(T )metal
insulator

DIA

M. Balzer et al., Europhys. Lett. 85, 17002 (2009)

–6 6

4 sites

U=7t
U=10t

U=t
U=5t

/t–6 6/t

U=t
U=8t

1 site

U=12t
U=14t

Y.Z. Zhang, M. Imada, Phys. Rev. B 76, 045108 (2007)
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Application: the Mott transition (QMC)

0.0

0.1

0.2
)
ω(

A
U/t=5.0a) U/t=5.4b)

-4 -2 0 2 4
ω

0.0

0.1

0.2

)
ω(

A

U/t=5.6c)

-4 -2 0 2 4
ω

U/t=5.8d)

H. Park et al, PRL 101, 186403 (2008)
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Application: the Mott transition (ED)

0

0.1

0.2 U = 5.0 U = 5.4

0

0.1

0.2

-4 -2 0 2 4

U = 5.6

-4 -2 0 2 4

U = 5.8

A
(
ω
)

A
(
ω
)

ω ω

solutions from M. Balzer et al., Europhys. Lett. 85, 17002 (2009)
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First-order character of the Mott transition (CDMFT)

The Mott transition is seen in CDMFT as a hysteresis of the double occupancy

This shows up nicely in a simulation of BEDT organic superconductors

U/t
0

0.05

0.1

0.15

0.2

D

4 6 8 10

t
t

t′

t=t′

t=0.7t′

B. Kyung, A.M.S. Tremblay, Phys. Rev. Lett. 97, 046402 (2006)
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Digression: Superconductivity

Superconductivity is described by pairing fields:

∆=
∑

r,r′
∆rr′ cr↑cr′↓ +H.c

s-wave pairing: ∆rr′ = δrr′

dx2−y2 pairing:

∆rr′ =

¨

1 if r − r′ = ±x
−1 if r − r′ = ±y

++

−

−

dx y pairing:

∆rr′ =

¨

1 if r − r′ = ±(x+ y)
−1 if r − r′ = ±(x− y)

+

+

−

−

Pairing fields are introduced in the bath, and measured on the cluster
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Digression: Superconductivity (cont.)

Pairing fields violate particle number conservation

The Hilbert space is enlarged to encompass all particle numbers with a given total

spin

Use the Nambu formalism: a particle-hole transformation on the spin-down

sector: cα↓→ c†
α↓ and ar↓→ a†

r↓
Structure of the one-body matrix:

c↑
a↑
c†
↓

a†
↓









t↑ θ↑ 0 0
θ †
↑ ε↑ 0 ∆b

0 0 −t↓ −θ↓
0 ∆†

b −θ †
↓ −ε↓








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Application: dSC and AF in the 2D Hubbard model

Nine bath parameters

Homogeneous coexistence of dx2−y2 SC and Néel AF

0.7 0.8 0.9 1.0 1.1 1.2 1.3
n

0.0

0.2

0.4

0.6

0.8

1.0

M,ψ M

ψ (10×)

U = 8t

t′ = −0.3t

t′′ = 0.2t

0.7 0.8 0.9 1.0
n

0.0

0.04

0.08

0

0.02

0.04

ψ

ψ/J

U = 24t
U = 16t
U = 12t
U = 8t
U = 4t

Kancharla et al., Phys. Rev. B 77 184516 (2008).
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Mott transition and superconductivity

µ

U

T

(UMIT ,TMIT)

Uc1

Uc2

Td
c

T∗

MI

(µp,Tp)

µc1
µc2

Td
c

Sordi et al., Phys. Rev. Lett. 108 (2012), 216401

Fratino et al, Scientific Reports 6, 22715 (2016)
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Mott transition and superconductivity (cont.)

First-order, finite-doping transition with finite-T critical point: correlated metal

vs pseudogap phase.

The pseudogap phenomenon is related to the Widom line in first-order

transitions

Even though the SC order parameter is suppressed by the Mott transition, Tc isn’t

Results obtained with an efficient CT-QCM-HYB solver.
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Application: Resilience of dSC to extended interactions

H =
∑

r,r′,σ

tr,r′ c
†
rσcr′σ + U
∑

r
nr↑nr↓ +
∑

r 6=r′
Vrr′nrnr′ −µ
∑

r,σ

nr,σ

Question: effect of NN repulsion V on dSC in the 2D Hubbard model?

V is a priori detrimental to dSC (pair breaking effect), and larger than J .
But: V increases J .

Exact treatment of V within the cluster; Hartree approximation between clusters.

Result: a moderate V has no effect on dSC at low doping.

The retarded nature of the effective pairing interaction is important.
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Resilience of dSC to extended interactions (cont.)
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Sénéchal et al., Phys. Rev. B 87, 075123 (2013).
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Non-magnetic impurity in graphene

G
−1(k̃, z) = z − t(k̃)− (z) =















z − t11(k̃)−Σ1(z) −t12(k̃) −t13(k̃) . . . −t1M (k̃)
−t21(k̃) z − t22(k̃)−Σ2(z) −t23(k̃) . . . −t2M (k̃)
−t31(k̃) −t32(k̃) z − t33(k̃)−Σ3(z) . . . −t3M (k̃)

...
...

...
. . .

...

−tM1(k̃) −tM2(k̃) −tM3(k̃) . . . z − tM M (k̃)−ΣM (z)















1 2

3 4

5 6

M. Charlebois et al., Phys. Rev. B91, 35132 (2015).
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The Dynamical Cluster Approximation

Based on periodic clusters

The hybridization function is diagonal in K (cluster momentum):

ΓK(iωn) =
Nb
∑

r

|θKr |2

iωn − εr

The Brillouin zone may be tiled into patches:

Th. Maier, in http://www.cond-mat.de/events/correl15

Th. Maier et al., Rev. Mod. Phys. 77, 1027 (2005).
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The Dynamical Cluster Approximation (cont.)

self-consistency condition:

1
iωn − t̄K − ΓK(ω)−ΣK(ω)

=
L
N

∑

k̃

1

iωn − ε(k̃+K)−ΣK(ω)

where

t̄K =
L
N

∑

k̃

ε(k̃+K)

Not derivable from the Self-energy functional approach

For large clusters:

DCA converges better for k = 0 (average) quantities

CDMFT converges better for r = 0 (local) quantities
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The DCA procedure

Patch functionφK(k) = 1 if k is in patch around K, zero otherwise.

Th. Maier, in http://www.cond-mat.de/events/correl15
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DCA on superconductivity
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QUESTIONS ?
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