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Flatiron Institute
• Center for Computational Quantum Physics (CCQ), New York  

“Develop the concepts, theories, algorithms and codes needed to solve the quantum 
many-body problem…”  

• Supported projects : 

• TRIQS : Quantum Embedded methods (DMFT), diagrammatic

• iTensor : DMRG, MPS …

• NetKet : Machine learning & Quantum Many body

• AFQMC : Auxiliary Field Monte Carlo and applications.
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https://www.simonsfoundation.org/flatiron/center-for-computational-quantum-physics/



What is TRIQS ?

• A Toolkit (Python/C++) to build modern many body computations:

• Quantum Embedded methods:

• DMFT. Cluster DMFT.

• Next generation methods (Trilex, dual fermions/bosons, DΓA,...) 

• State of the art “impurity solvers” for DMFT.

• Ab-initio strongly correlated materials (DFT+ DMFT).  
Interface with electronic structure codes.

• Diagrammatic methods, Monte Carlo, e.g.

• Eliashberg / GW type equations  
(superconductivity,  spin-fluctuations…)

• “Diagrammatic” Monte Carlo
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DMFT : reminder



Dynamical Mean Field Theory (DMFT)

• Density Functional Theory  
Independent electrons in an effective periodic potential.  
Interaction taken into account “in average” (Kohn-Sham potential).

• Dynamical Mean Field Theory  
An atom coupled to a bath of non-interacting electrons,  
determined self-consistently.  
The bath represents the other atoms in the crystal.  
Well suited when atomic physics is important (multiplets)
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W. Metzner, D. Vollhardt,  1989  
A. Georges, G. Kotliar,  1992

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Quantum impurity model

Cf D. Sénéchal’s lecture



Reminder :  Weiss Mean Field Theory

• Ising model (Weiss) :  A single spin in an effective field.
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H = �J
�

ij

⇥i⇥j Ising model.

m = ⇥⇥⇤ Order parameter.

He� = �Jhe�⇥ E�ective Hamiltonian

he� = zJm Weiss Field

m = tanh(�he�) Solution of the e�ective Hamiltonian

Generalisation for quantum models ?

• Qualitatively correct (phase diagram, second order transition)  
 even if critical exponents are wrong (R.G., Field theory....,)

• Derivation : e.g. large dimension limit on hypercubic lattice



Dynamical Mean Field Theory

Ising model 
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Goal: unify both pictures
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Capture Mott physics
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Dynamical Mean Field Theory

• Anderson impurity with an effective band determined self-consistently
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Local site Coupled to an effective electronic bath 

Bath 
“Weiss field” 

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…
Hybridization function
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• Dyson equation on the lattice

Lattice quantities vs impurity quantities

• DMFT : the self-energy on the lattice is local :
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G�latt(k, i!n) ⌘
1

i!n + µ� ✏k � ⌃�latt(k, i!n)

• Glatt depends on k. There is a Fermi surface in metallic regimes.

• Within DMFT, Z, m*, coherence temperature, finite temperature  
lifetime of metals are constant along the Fermi surface.

⌃�latt(k, i!n) = ⌃�imp(i!n)

G�loc(i!n) ⌘
X

k

G�latt(k, i!n) = G�imp

(i!n)

• DMFT : self-consistency condition



DMFT equations (1 band paramagnetic) 11

Ising Hubbard
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Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…
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Solving DMFT : iterative method 12
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Impurity solver

Self consistency condition

• In practice, the iterative loop is (almost) always convergent.
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Cf M. Ferrero’s lecture tomorrow
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Back to TRIQS and hands on



TRIQS: different levels of usage.

• Simplest usage : run a DMFT computation

• e.g. Vary U, study the Mott transition.

• Write your DMFT self-consistency code [Python]

• Use building blocks in Python, including “impurity solvers”

• Write high-performance code, e.g. a new impurity solver [C++]

• Use building blocks in C++ (from TRIQS library) and  
TRIQS/cpp2py to glue the two languages.

• Not covered today.    
A little taste of it on Monday.     Tutorial CT-INT, Cf later.
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Hands-on menu

1. Get familiar with Python, simple Green function, operators, matplotlib  

2. Your first DMFT code : built yourself a IPT solution for DMFT.  

3. Solve DMFT, 1 band Hubbard model, with CT-HYB QMC solver  

4. Hund’s metal:  a two band computation with CT-HYB  

5. Cluster DMFT :  a minimal two patches DCA cluster.  
Mott transition, Fermi Arcs.  

6. Lattice models.  
Lindhard function, Two Particle self-consistent approximation (TPSC)
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• One electron per site on average (half-filled band).

• Should be a textbook metal.

• If U is large enough, it is an insulator : charge motion frozen.

Mott insulator 17

Mott insulator Large Coulomb repulsion U ∼ eV ∼104 K

N. Mott, 50’s

H = �
�
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Doped Mott insulators 18

• How is a metal destroyed close to a Mott transition ?  

Holes = charge carriers

U/t

Fermi liquid metal

Mott insulator

?
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Doping driven

Mott metal
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δ

High temperature  
 superconductors



Iterated Perturbation Theory (IPT)
A cheap quantum impurity solver

• Anderson model : perturbation in U is regular (Yosida, Yamada, 70’s.).

• Bare perturbation theory at second order (Kotliar-Georges, 1992).
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• Quick and relatively simple.

• U=0 and U=∞ limit correct ! 

• Reproduce the main feature of 
the solution of the Mott 
transition (see lecture 1).

• Largely uncontrolled

• Extension beyond 1/2 filling or 
for cluster do not interpolate 
well between U=0 and U=∞ 
(see however Kajueter-Kotliar, condmat/ 
9509152).

Advantages Drawbacks

impurity orbital Green’s function at all energies, and can
be used for an approximate quantitative solution of the
LISA equations.

2. The iterated perturbation theory approximation

The first approximation method that we describe has
turned out to be very useful in investigating the half-
filled Hubbard model and the physics of the Mott tran-
sition (Sec. VII). This method relies on early weak-
coupling studies of the half-filled single-impurity
Anderson model (Yosida and Yamada, 1970, 1975; Ya-
mada, 1975; Salomaa, 1981; Zlatić, Horvatić, and
Sokcević, 1985). In these works, it was shown that the
second-order perturbation theory in U is a very good
approximation up to values of U/�(0)�6. In particular,
it succeeds in capturing not only the quasiparticle
(Abrikosov-Suhl) resonance, but also the upper and
lower incoherent bands. Motivated by this observation,
Georges and Kotliar (1992) first studied the d=⌅ Hub-
bard model by solving the effective impurity model us-
ing the second-order weak-coupling approximation to ⌥
(for a given Weiss field G 0). Explicitly, one makes use of
the approximate form for the self-energy:

⌥⇥ i⇧n⌦�
U
2

⇥U2⇥
0

⌃
d� ei⇧n�Ĝ 0⇥�⌦

3 (157)

in which the shift Ĝ 0
⇥1(i⇧n)�G 0

⇥1⇥U/2 has been made to
enforce particle-hole symmetry. A self-consistent solu-
tion (G ,G 0) is then found by going through the usual
iteration. This is the iterated perturbation theory (IPT)
approximation. The method is easily implemented by
using fast Fourier transforms on the Matsubara axis. At
zero temperature, it is most conveniently implemented
by working with real-frequency Green’s functions. Pro-
grams for both the zero-temperature and the finite-
temperature iterated perturbation theory approximation
are provided with this article (cf. Appendix D).

It was later realized (Zhang, Rozenberg, and Kotliar,
1993) that this method is actually not limited to moder-
ate couplings (at half-filling), but it also correctly repro-
duces the exact strong-coupling limit. This is easily
shown by considering the atomic limit D/U�0,
for which Ĝ 0

⇥1 i⇧n , and the exact Green’s func-
tion and self-energy read G(i⇧n) 1

2 [1/(i⇧n⇥U/2)
⇥1/(i⇧n⇤U/2)], ⌥(i⇧n) U/2⇥U2Ĝ 0(i⇧n)/4. Hence,
Eq. (157) correctly reproduces this limit. Thus, the iter-
ated perturbation theory approximation provides an ‘‘in-
terpolation’’ scheme between the weak-coupling and
strong-coupling limits that are both captured exactly.
The fact that a weak coupling expansion happens to
work in the strong coupling case is a ‘‘fortunate’’ coinci-
dence. It no longer holds in the particle-hole asymmetric
case. At half filling, the iterated perturbation theory ap-
proximation displays a Mott transition of the paramag-
netic solution, as will be reviewed in detail in Sec. VII.
The iterated perturbation theory approximation gives
results in very good agreement with the QMC and exact
diagonalization results (except very close to the Mott
transition point), as reviewed in Sec. VI.A.4 and de-

tailed in the studies of Zhang, Rozenberg, and Kotliar,
1993; Georges and Krauth, 1993; Rozenberg, Kotliar,
and Zhang, 1994. The rationale behind this success is
that the Anderson impurity model is analytic in U irre-
spectively of the nature of the bath, so that it can be
treated perturbatively. The nonanalyticities (such as the
opening of a gap) stem from the lattice aspects of the
problem and are brought in by the self-consistency con-
dition. The value of the iterated perturbation theory ap-
proximation relies largely on its simplicity: it is much
easier to implement than the full numerical solution of
the model, and allows a fast scan of parameter space.
The iterated perturbation theory approximation has
been successfully extended to various other models in
the LISA framework, such as the Holstein model (Fre-
ericks and Jarrell, 1994a, 1994b; cf. Sec. VIII.E).

Various other methods based on weak-coupling ap-
proximations have been used in the literature for d=⌅
lattice models, namely (i) the direct weak-coupling per-
turbation theory to O(U2) in which the free local
Green’s function GU�0�D̃(i⇧n) is used in (157) in
place of Ĝ 0 (Schweitzer and Czycholl, 1991a); and (ii)
the ‘‘self-consistent’’ weak-coupling approaches, which
look for a solution with the interacting G replacing Ĝ 0 in
Eq. (152) (Müller-Hartmann, 1989b; Schweitzer and
Czycholl, 1991b), and has also been generalized to in-
clude bubble and ladder summations by Menge and
Müller-Hartmann (1991). [See Freericks (1994) for a
comparison of various methods.]

These approaches should not be confused with the
iterated perturbation theory approximation. All three
methods of course coincide for small values of U . How-
ever, only the iterated perturbation theory provides an
interpolation scheme between weak and strong coupling
at half-filling and therefore correctly captures the forma-
tion of the incoherent band and the physics of the Mott-
Hubbard transition. Specifically, it is found (Georges
and Kotliar, 1992) that already for intermediate values
of U , the metallic spectral density displays incoherent
features around energies �U/2, corresponding to the
upper and lower Hubbard bands. As will be shown in
Sec. VI.A.4, these features are indeed present in the
spectral density obtained numerically (with which the
iterated perturbation theory approximation is in good
agreement). In contrast, they are absent from the self-
consistent weak-coupling approximations. Note that, for
intermediate coupling, these features are indeed pre-
dicted by the direct weak-coupling expansion. This re-
mark has been known for a long time in the context of
the single impurity Anderson model (for recent work,
see, e.g., White, 1992).

It would be quite interesting and of great practical use
to develop a reliable extension of the iterated perturba-
tion theory approximation away from half-filling. How-
ever, this is not so easy to achieve because naive exten-
sions of the original iterated perturbation theory method
do not automatically fulfill the Luttinger theorem away
from half-filling. Specifically, if one computes the total
density at T=0 from n/2�↵ ⇤⌅

0 d⇧⇤(⇧), the iterated per-
turbation theory approximation for ⌥ does not satisfy in

50 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



Hands-on menu

1. Get familiar with Python, simple Green function, operators, matplotlib  

2. Your first DMFT code : built yourself a IPT solution for DMFT.  

3. Solve DMFT, 1 band Hubbard model, with CT-HYB QMC solver  

4. Hund’s metal:  a two band computation with CT-HYB  

5. Cluster DMFT :  a minimal two patches DCA cluster.  
Mott transition, Fermi Arcs.  

6. Lattice models.  
Lindhard function, Two Particle self-consistent approximation (TPSC)

20
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4 Georges, de’ Medici& Mravlje

Figure 1: Colour intensity map of the ‘degree of correlation’ (as measured by the quasiparticle

weight Z - right scale) for a Hubbard-Kanamori model with 3 orbitals appropriate to the description

of early transition-metal oxides with a partially occupied t2g shell. The vertical axis is the interaction

strength U normalized to the half-bandwidth D, and a finite Hund’s coupling J = 0.15U is taken

into account. The horizontal axis is the number of electrons per site - from 0 (empty shell) to

6 (full shell). Darker regions correspond to good metals and lighter regions to correlated metals.

The black bars signal the Mott-insulating phases for U > Uc. The arrows indicate the evolution of

Uc upon further increasing J , and emphasize the opposite trend between half-filling and a generic

filling. Crosses denote the values of Uc for J = 0. One notes that, among integer fillings, the

case of 2 electrons (2 holes) displays correlated behaviour in an extended range of coupling, with

‘spin-freezing’ above some low coherence scale. Specific materials are schematically placed on the

diagram. The materials denoted in black have been placed according to the experimental value of

�/�LDA. For detailed explanations, see Sec. 6. The DMFT calculations leading to a related plot in

Ref. [22] have been repeated here using a more realistic DOS for t2g states (inset).

Coulomb interactions in the multi-orbital context is provided. In Sec. 3 the influence of Hund’s

coupling on the intra-atomic charge gap and the Mott critical coupling is explained. Sec. 4 reviews

the influence of Hund’s coupling on the Kondo temperature of a multi-orbital impurity atom in

a metallic host. Sec. 5 briefly introduces dynamical mean-field theory, which provides a bridge

between single-atom physics and the full solid. Sec. 6 is the core part of this article, in which the

key e↵ects of the Hund’s rule coupling in the solid-state context are put together. Sec. 7 and Sec. 8

consider ruthenates and iron pnictides/chalcogenides, respectively, in the perspective of Hund’s

metals.

Hund’s metal

• Kanamori Hamiltonian. 
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6 Georges, de’ Medici& Mravlje

many-body atomic hamiltonian for t2g states takes the Kanamori form [29] :

HK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�J
X

m 6=m0

d+m"dm# d
+
m0#dm0" + J

X

m 6=m0

d+m"d
+
m# dm0#dm0" (2)

The first three terms involve only density-density interactions, between electrons with opposite

spins in the same orbital (U), opposite spins in di↵erent orbitals (U 0 < U) and parallel spins in

di↵erent orbitals. The latter case has the smallest coupling U 0 � J , reflecting Hund’s first rule.

For later use, it will be useful to consider a generalization of this Kanamori multi-orbital hamil-

tonian to a form in which all coupling constants are independent:

HGK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�JX
X

m 6=m0

d+m"dm# d
+
m0#dm0" + JP

X

m 6=m0

d+m"d
+
m# dm0#dm0" (3)

Defining the total charge, spin and orbital isospin generators (~⌧ are the Pauli matrices):

N̂ =
X

m�

n̂m� , ~S =
1

2

X

m

X

��0

d†m�~⌧��0dm�0 , Lm = i
X

m0m00

X

�

✏mm0m00d†m0�dm00�, (4)

the generalized Kanamori hamiltonian (3) can be rewritten as:

HGK = 1
4(3U

0 � U)N̂(N̂ � 1) + (U 0 � U)~S2 + 1
2(U

0 � U + J)~L2 + (74U � 7
4U

0 � J)N̂ +

+(U 0 � U + J + JP )
P

m 6=m0 d+m"d
+
m# dm0#dm0" + (J � JX)

P
m 6=m0 d+m"dm# d

+
m0#dm0" (5)

It thus has full U(1)C ⌦ SU(2)S ⌦ SO(3)O symmetry provided JX = J and JP = U � U 0 � J ,

in which case the hamiltonian reduces to the first line in Eq. (5). We shall loosely refer to such

symmetry as ‘rotational invariance’. Note that rotational invariance of HGK does not imply that

U 0 and U are related. In particular for JX = J and U 0 = U � J (JP = 0), one obtains a minimal

rotationally-invariant hamiltonian (U � 3J/2)N̂(N̂ � 1)/2� J ~S2 involving only N̂2 and ~S2, to be

discussed in more details below (Eqs. (12) and (27)). This actually holds for an arbitrary number

M of orbitals.

Using (5), the physical t2g hamiltonian (2) which has JX = JP = J is seen to be rotationally

invariant provided:

U 0 = U � 2J (6)

in which case the hamiltonian takes the form:

Ht
2g = (U � 3J)

N̂(N̂ � 1)

2
� 2J ~S2 � J

2
~L2 +

5

2
J N̂ (7)

In this form, Hund’s first two rules (maximal S, then maximal L) are evident. The spectrum of

this hamiltonian is detailed in Table 1.

Condition (6) is realized if U,U 0, J are calculated assuming a spherically symmetric interaction

and the t2g wave-functions resulting from simple crystal-field theory. In this approximation, these

• Effect of Hund’s coupling J on the Mott transition and correlation.  
3 orbitals, N= 1,2,3 electrons.

Cf review A. Georges. L. De Medici, J. Mravlje, arXiv:1207.3033

Z vs U

• Strongly correlated 
metal far from Mott Uc

• Rotationally invariant 
case U 0 = U � 2J

J = 0.15U



Hands-on menu

1. Get familiar with Python, simple Green function, operators, matplotlib  

2. Your first DMFT code : built yourself a IPT solution for DMFT.  

3. Solve DMFT, 1 band Hubbard model, with CT-HYB QMC solver  

4. Hund’s metal:  a two band computation with CT-HYB  

5. Cluster DMFT :  a minimal two patches DCA cluster.  
Mott transition, Fermi Arcs.  

6. Lattice models.  
Lindhard function, Two Particle self-consistent approximation (TPSC)
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DMFT is high temperature method 24

“Top to Bottom” 
Start from high T/doping 

R.G.  
Diagrammatic methods 

“Bottom to Top” 
Study the many-body ground state 

DMRG, PEPS, MERA



Large vs minimal clusters 25
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• At high T or δ, intermediate U:

• Exact solution : can large clusters converge before the sign problem 
kills the “impurity solver” ? 

• At lower T, δ

• Small clusters capture some important effects (pseudogap, d-SC). 
Minimal cluster ? Physical picture ?

Converged : Exact solution of 
Hubbard model in the pseudo-gap !
W. Wu, M. Ferrero, A. Georges, E. Kozik.    Arxiv:1608.08402



3

that the properties of each region will be described by
one orbital of the effective impurity model. More pre-
cisely, we choose the minimal set of two patches of equal
area P+ and P− represented in Fig. 1: P+ is a central
square centered at momentum (0, 0) and containing the
nodal region; the complementary region P− extends to
the edge of the BZ and contains in particular the antin-
odal region and the (π, π) momentum. On Fig. 2, we also
present the partial density of state of both patches.

(0,!) (!,!)

(!,0)(0,0)

P
+

P
-

FIG. 1: (Color online) The Brillouin zone is divided into two
patches P+ (inside the inner blue square) and P− (between
the two squares). The dotted line is the free (U = 0) Fermi
surface at δ = 0.1 for t′/t = −0.3. P+ (resp. P−) encloses the
nodal (resp. antinodal) region.
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"
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-

FIG. 2: (Color online) Partial density of states of the two
patches P+ (solid blue curve with circles) and P− (solid
red curve with squares), and total density of states (dashed
curve); t′/t = −0.3.

It is important to check that the main qualitative re-
sults of our approach are independent of the precise shape
of the patches. We will discuss this point in Sec. III E,
and show that indeed our results are qualitatively similar
for a family of patches in which the P+ patch encloses a
variable part of the bare Fermi surface around the nodal

point. Moreover, we have also considered another clus-
ter method, cellular-DMFT (CDMFT),4,18 and obtained
qualitatively similar results. Because two-site CDMFT
breaks the lattice square symmetry, we focus here on a
generalized DCA approach.

Following the DCA construction (see also Ap-
pendix A), we associate a momentum-independent self-
energy Σ±(ω) to each patch of the Brillouin zone. This
self-energy is then identified with the Fourier transform
of the cluster self-energy of a two-site cluster of Ander-
son impurities embedded in a self-consistent bath. This
two-site Anderson impurity model is given by

Seff = −
∫∫ β

0
dτdτ ′

∑

a,b=1,2
σ=↑,↓

c†aσ(τ)G−1
0,ab(τ, τ

′)cbσ(τ ′)

+

∫ β

0
dτU

∑

a=1,2

na↓na↑(τ) (3)

G−1
0ab(iωn) = (iωn + µ)δab − t̄(1 − δab) − ∆ab(iωn), (4)

where a, b = 1, 2 is the site index, U is the on-site inter-
action, ∆ is the hybridization function with a local com-
ponent ∆11(ω) = ∆22(ω) and an inter-site one ∆12(ω).
We choose a convention in which the hybridization ∆
vanishes at infinite frequencies and therefore denote the
constant term separately (t̄). Since we restrict ourselves
to paramagnetic solutions, we dropped the spin depen-
dence of G0, ∆ and t̄. The self-consistency condition de-
termines both ∆ and t̄ and is written in the Fourier space
of the cluster, which in this case reduces to the even and
odd orbital combinations c†±σ = (c†1σ ± c†2σ)/

√
2:

ΣK(iωn) =G0K(iωn)−1 − GK(iωn)−1 (5)

GK(iωn) =
∑

k∈PK

1

iωn + µ − εk − ΣK(iωn)
. (6)

In this expression, momentum summations are normal-
ized to unity within each patch, and the index K = ±
refers both to the inner/outer patch index and to the
even/odd orbital combinations of the two-impurity prob-
lem. t̄ is determined by the 1/ω2 expansion of the previ-
ous equations, leading to

t̄ =
∑

k∈P+

εk = −
∑

k∈P−

εk. (7)

The impurity model has the same local interaction as the
original lattice model: This is a consequence of the fact
that both patches have equal surface (see Appendix A).

As usual in the DMFT problems, the quantum impu-
rity model (3) can be rewritten in a Hamiltonian form,
i.e. as the Hamiltonian for a dimer coupled to a self-
consistent bath

H = Hdimer + Hbath, (8)
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Minimal cluster DMFT for Fermi Arcs 

• Two patches patches P+, P- (of equal volume)
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Inner patch P+ : Nodes

Outer patch P- : Antinodes

Free Fermi surface

Two-site Anderson impurity model

1

Bath     
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Hands-on menu

1. Get familiar with Python, simple Green function, operators, matplotlib  

2. Your first DMFT code : built yourself a IPT solution for DMFT.  

3. Solve DMFT, 1 band Hubbard model, with CT-HYB QMC solver  

4. Hund’s metal:  a two band computation with CT-HYB  

5. Cluster DMFT :  a minimal two patches DCA cluster.  
Mott transition, Fermi Arcs.  

6. Lattice models.  
Lindhard function, Two Particle self-consistent approximation (TPSC)
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A full DMFT computation in 1 slide



Solving DMFT : iterative method 29

⌃�imp(i!n) ⌘ G�1
� (i!n)�G�1

�imp(i!n)

G�imp(⌧) ⌘ �
⌦
Tc�(⌧)c

†
�(0)

↵
Seff

G Gimp, Σimp

Impurity solver

Self consistency condition

• In practice, the iterative loop is (almost) always convergent.

G�imp[G](i!n) =
X

k

1

i!n + µ� ✏k � ⌃�imp[G](i!n)

Se↵ = �
ZZ �

0
d⌧d⌧ 0c†�(⌧)G�1

� (⌧ � ⌧ 0)c�(⌧
0) +

Z �

0
d⌧ Un"(⌧)n#(⌧)

Cf M. Ferrero’s lecture tomorrow



Depends only the d.o.s of free electrons

• The k dependence is only through εκ for the impurity problem

• Density of states for εκ

• Self-consistency condition is a Hilbert transform

30

D(✏) ⌘
X

k

�(✏� ✏k)

˜D(z) ⌘
Z

d✏
D(✏)

z � ✏
for z 2 C

G�imp[G](i!n) =
X

k

1

i!n + µ� ✏k � ⌃�imp[G](i!n)

= D̃(i!n + µ� ⌃�imp[G](i!n))



Semi circular d.o.s 31

• A simpler case, when the d.o.s is a semi-circular

Finally, besides its intuitive appeal, the mapping onto
impurity models has proven to be useful for practical
calculations. These models have been studied intensively
in the last 30 years by a variety of analytical and numeri-
cal techniques, and this knowledge can be put to good
use in order to understand strongly correlated lattice
models in large dimensions. The crucial step is to use
reliable tools to solve Seff . Recent progress in the field
came from an effort in exploiting the connection with
impurity models in a qualitative and quantitative man-
ner.

C. The limit of infinite dimensions

The above mean-field equations become exact in the
limit of infinite coordination on various lattices. In this
section, we discuss several such examples and in each
case we give the relation (7) between the local Green’s
function and the Weiss function G 0 in explicit form. No-
tice that, in the paramagnetic phase, the lattice enters
the mean-field equations only through the noninteract-
ing density of states D(⇤). Since many different lattices
give rise to the same density of states in the limit of large
coordination, one can construct models with the same
single-particle properties (i.e., the same Green’s func-
tion) in the paramagnetic phases but very different
properties regarding magnetic responses and transitions
to phases with long-range order (Müller-Hartmann,
1989a). We refer to Sec. IV and Appendix A for a more
detailed explanation of this point, and to Sec. VII.D for
explicit examples.

The first case to be discussed is the d-dimensional cu-
bic lattice with nearest-neighbor hopping (with coordi-
nation z�2d). In order that the kinetic and interaction
energies remain of the same order of magnitude in the
d�⇧ limit, the hopping amplitude must be scaled ap-
propriately (Metzner and Vollhardt, 1989). The correct
scaling is easily found from the Fourier transform ⇤k of
t ij , which for a generic vector k involves  n�1

d cos(kn), a
sum of d numbers with essentially random signs. Hence
t ij must be scaled as

t ij�
t

�2d
. (18)

More precisely, this ensures that the density of states has
a well-defined d�⇧ limiting form, which reads (from
the central-limit theorem)

D�⇤��
1

t�2⌦
exp⇤ ⇤

⇤2

2t2⇥ . (19)

This expression, and various useful properties of tight-
binding electrons on a d�⇧ cubic lattice, is derived in
Appendix A. The Hilbert transform of (19) reads (for
t=1/&):

D̃�⇥��⇤is�⌦ exp�⇤⇥2�erfc�⇤is⇥�, (20)

where s=sgn[Im(⇥)] and erfc denotes the complemen-
tary complex error function. There is no simple explicit
form for the reciprocal function R(G) in this case and
hence (7) must be used as an implicit relation between
G 0 and G . The Gaussian density of states (19) is also
obtained for the d�⇧ cubic lattice with longer-range
hopping along the coordinate axis. As discussed by
Müller-Hartmann (1989a) and reviewed in Appendix A,
next-nearest-neighbor hopping along the diagonals does
change the density of states and provides an interesting
d=⇧ model in which magnetic order is frustrated.

A second important example is the Bethe lattice
(Cayley tree) with coordination z�⇧ and nearest-
neighbor hopping t ij�t/�z . A semicircular density of
states is obtained in this case (see, e.g., Economou,
1983):

D�⇤��
1

2⌦t2 �4t2⇤⇤2, �⇤�⌅2t . (21)

The Hilbert transform and its reciprocal function take
very simple forms

D̃�⇥���⇥⇤s�⇥2⇤4t2�/2t2, R�G ��t2G⇥1/G (22)

so that the self-consistency relation between the Weiss
function and the local Green’s function takes in this case
the explicit form

TABLE I. Correspondence between the mean-field theory of a classical system and the (dynami-
cal) mean-field theory of a quantum system.

Quantum case Classical case

� ⌃ij�↵t ijc i↵
⇥ cj↵⇥U ini⇤ni⇥ H�⇤ ⌃ij�JijSiSj⇤h iSi Hamiltonian

t ij�(1/�d) �i⇤j� Jij�(1/d) �i⇤j� (ferromagnet) Scaling

Gij(i⌥n)�⇤⌃c i
⇥(i⌥n)cj(i⌥n)� ⌃SiSj� Correlation function

Gii(i⌥n)�⇤⌃c i
⇥(i⌥n)ci(i⌥n)� mi�⌃Si� Local observable

���c↵
+(✏)G 0

�1(✏�✏�)c↵(✏�)+�Un⇤n⇥ Heff=�heffS0 Single-site Hamiltonian
Heff= l↵⇤̃ la l↵

⇥ al↵⇥ l↵Vl(a l↵
⇥ c↵+H.c.)

�⌅ ↵c ↵
⇥c↵⇥Un⇤n⇥

G 0(i⌥n) heff Weiss field/function

G 0
�1(i⌥n)�⌥n⇥⌅⇥G(i⌥n)⇤1 heff=z J m+h Relation between Weiss

⇤R[G(i⌥n)] field and local observable
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It will be assumed in this section, for simplicity, that no
symmetry breaking occurs, i.e., that one deals with the
translation-invariant paramagnetic phase. Phases with
long-range order will be dealt with in Sec. V.

Again, the mean-field description associates with this
Hamiltonian a single-site effective dynamics, which is
conveniently described in terms of an imaginary-time ac-
tion for the fermionic degrees of freedom (co⇣ ,c o⇣

⇥ ) at
that site:

Seff�⇤�
0

�
d◆�

0

�
d◆��

⇣
co⇣

⇥ ⇤◆✓G 0
⇤1⇤◆⇤◆�✓co⇣⇤◆�✓

⇥U�
0

�
d◆ no⇤⇤◆✓no⇥⇤◆✓. (6)

G 0(◆�◆�) plays the role of the Weiss effective field
above. Its physical content is that of an effective ampli-
tude for a fermion to be created on the isolated site at
time ◆ (coming from the ‘‘external bath’’) and being de-
stroyed at time ◆� (going back to the bath). The main
difference with the classical case is that this generalized
‘‘Weiss function’’ is a function of time instead of a single
number. This, of course, is required to take into account
local quantum fluctuations. Indeed, the mean-field
theory presented here freezes spatial fluctuations but
takes full account of local temporal fluctuations (hence
the name ‘‘dynamical’’). G 0 plays the role of a bare
Green’s function for the local effective action Seff , but it
should not be confused with the noninteracting local
Green’s function of the original lattice model.

A closed set of mean-field equations is obtained by
supplementing Eq. (6) with the expression relating G 0 to
local quantities computable from Seff itself, in complete
analogy with Eq. (3) above. As will be shown below, this
self-consistency condition reads

G 0⇤ i⌦n✓⇤1�i⌦n⇥⌃⇥G⇤ i⌦n✓⇤1⇤R⇥G⇤ i⌦n✓� . (7)

In this expression, G(i⌦n) denotes the on-site interact-
ing Green’s function calculated from the effective action
Seff :

G⇤◆⇤◆�✓⌘⇤ Tc⇤◆✓c⇥⇤◆�✓↵Seff
, (8)

G⇤ i⌦n✓��
0

�
d◆ G⇤◆✓ei⌦n◆, ⌦n⌘

⇤2n⇥1 ✓�

�
(9)

and R(G) is the reciprocal function of the Hilbert trans-
form of the density of states corresponding to the lattice
at hand. Explicitly, given the noninteracting density of
states D(⇧),

D⇤⇧✓��
k

⌥⇤⇧⇤⇧k✓, ⇧k⌘�
ij

t ije ik•⇤Ri⇤Rj✓, (10)

the Hilbert transform D̃(⌅) and its reciprocal function R
are defined by

D̃⇤⌅✓⌘�
⇤�

⇥�

d⇧
D⇤⇧✓

⌅⇤⇧
, R⇥D̃⇤⌅✓��⌅ . (11)

Since G can in principle be computed as a functional of
G 0 using the impurity action Seff , Eqs. (6)–(8) form a

closed system of functional equations for the on-site
Green’s function G and the Weiss function G 0 . These
are the basic equations of the LISA method. In practice,
the main difficulty lies in the solution of Seff . These
equations can hardly be attributed to a single author, as
detailed in the Introduction. They appeared first in an
early work of Kuramoto and Watanabe (1987) for the
periodic Anderson model. Following the paper of
Metzner and Vollhardt (1989) that emphasized the inter-
est of the d�� limit, these equations were obtained by
several authors. Brandt and Mielsch (1989) derived and
solved them for the Falicov-Kimball model; the case of
the Hubbard model was considered by Janiš (1991), Oh-
kawa (1991a, 1991b), Georges and Kotliar (1992), and
Jarrell (1992). The presentation followed here is closest
to those of Georges and Kotliar (1992) and Georges,
Kotliar, and Si (1992).

It is instructive to check these equations in two simple
limits:

(i) In the noninteracting limit U=0, solving (6) yields
G(i⌦n)=G 0(i⌦n) and hence, from (7), G(i⌦n)
�D̃(i⌦n⇥⌃) reduces to the free on-site Green’s func-
tion.

(ii) In the atomic limit t ij=0, one only has a collection
of disconnected sites and D(⇧) becomes a ⌥ function,
with D̃(⌅)=1/⌅. Then (7) implies G 0(i⌦n)⇤1�i⌦n+⌃ and
the effective action Seff becomes essentially local in time
and describes a four-state Hamiltonian yielding
G(i⌦n)at=(1⇤n/2)/(i⌦n⇥⌃)⇥n/2(i⌦n⇥⌃⇤U), with
n/2�(e�⌃⇥e�(2⌃⇤U))/(1⇥2e�⌃⇥e�(2⌃⇤U)).

Solving the coupled equations above not only yields
local quantities but also allows us to reconstruct all the
k-dependent correlation functions of the original lattice
Hubbard model. For example, the Fourier transform of
the one particle Green’s function Gij(◆⇤◆�)
⌘⇤ Tci ,⇣(◆)c j ,⇣

⇥ (◆�)↵ can be shown to read

G⇤k,i⌦n✓�
1

i⌦n⇥⌃⇤⇧k⇤✏⇤ i⌦n✓
, (12)

where the self-energy can be computed from the solu-
tion of the effective on-site problem as

✏⇤ i⌦n✓�G 0
⇤1⇤ i⌦n✓⇤G⇤1⇤ i⌦n✓. (13)

It is therefore k-independent in this approach i.e., purely
local in space: � ij(i⌦n)�⌥ ij✏(i⌦n) (Metzner and Voll-
hardt, 1989, Müller-Hartmann, 1989a, 1989b, 1989c).
From this expression one sees that the ‘‘self-consistency
condition,’’ Eq. (7), relating G and G 0 , ensures that the
on-site (local) component of the Green’s function, given
by Gii(i⌦n)=�kG(k,i⌦n), coincides with the Green’s
function G(i⌦n) calculated from the effective action
Seff . Indeed, summing Eq. (12) over k yields
D̃(i⌦n⇥⌃⇤✏(i⌦n)). Identifying this expression with
G(i⌦n) and using Eq. (13) leads to Eq. (7).

Thermodynamic quantities for the Hubbard model
can all be simply related to their single-site model coun-
terparts: the relevant expressions for the free energy and
internal energy are given by Eqs. (46) and (47) in Sec.
III.B. Two-particle Green’s functions, dynamical re-
sponse functions, and transport properties for the lattice
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Finally, besides its intuitive appeal, the mapping onto
impurity models has proven to be useful for practical
calculations. These models have been studied intensively
in the last 30 years by a variety of analytical and numeri-
cal techniques, and this knowledge can be put to good
use in order to understand strongly correlated lattice
models in large dimensions. The crucial step is to use
reliable tools to solve Seff . Recent progress in the field
came from an effort in exploiting the connection with
impurity models in a qualitative and quantitative man-
ner.

C. The limit of infinite dimensions

The above mean-field equations become exact in the
limit of infinite coordination on various lattices. In this
section, we discuss several such examples and in each
case we give the relation (7) between the local Green’s
function and the Weiss function G 0 in explicit form. No-
tice that, in the paramagnetic phase, the lattice enters
the mean-field equations only through the noninteract-
ing density of states D(⇤). Since many different lattices
give rise to the same density of states in the limit of large
coordination, one can construct models with the same
single-particle properties (i.e., the same Green’s func-
tion) in the paramagnetic phases but very different
properties regarding magnetic responses and transitions
to phases with long-range order (Müller-Hartmann,
1989a). We refer to Sec. IV and Appendix A for a more
detailed explanation of this point, and to Sec. VII.D for
explicit examples.

The first case to be discussed is the d-dimensional cu-
bic lattice with nearest-neighbor hopping (with coordi-
nation z�2d). In order that the kinetic and interaction
energies remain of the same order of magnitude in the
d�⇧ limit, the hopping amplitude must be scaled ap-
propriately (Metzner and Vollhardt, 1989). The correct
scaling is easily found from the Fourier transform ⇤k of
t ij , which for a generic vector k involves  n�1

d cos(kn), a
sum of d numbers with essentially random signs. Hence
t ij must be scaled as

t ij�
t

�2d
. (18)

More precisely, this ensures that the density of states has
a well-defined d�⇧ limiting form, which reads (from
the central-limit theorem)

D�⇤��
1

t�2⌦
exp⇤ ⇤

⇤2

2t2⇥ . (19)

This expression, and various useful properties of tight-
binding electrons on a d�⇧ cubic lattice, is derived in
Appendix A. The Hilbert transform of (19) reads (for
t=1/&):

D̃�⇥��⇤is�⌦ exp�⇤⇥2�erfc�⇤is⇥�, (20)

where s=sgn[Im(⇥)] and erfc denotes the complemen-
tary complex error function. There is no simple explicit
form for the reciprocal function R(G) in this case and
hence (7) must be used as an implicit relation between
G 0 and G . The Gaussian density of states (19) is also
obtained for the d�⇧ cubic lattice with longer-range
hopping along the coordinate axis. As discussed by
Müller-Hartmann (1989a) and reviewed in Appendix A,
next-nearest-neighbor hopping along the diagonals does
change the density of states and provides an interesting
d=⇧ model in which magnetic order is frustrated.

A second important example is the Bethe lattice
(Cayley tree) with coordination z�⇧ and nearest-
neighbor hopping t ij�t/�z . A semicircular density of
states is obtained in this case (see, e.g., Economou,
1983):

D�⇤��
1

2⌦t2 �4t2⇤⇤2, �⇤�⌅2t . (21)

The Hilbert transform and its reciprocal function take
very simple forms

D̃�⇥���⇥⇤s�⇥2⇤4t2�/2t2, R�G ��t2G⇥1/G (22)

so that the self-consistency relation between the Weiss
function and the local Green’s function takes in this case
the explicit form

TABLE I. Correspondence between the mean-field theory of a classical system and the (dynami-
cal) mean-field theory of a quantum system.

Quantum case Classical case

� ⌃ij�↵t ijc i↵
⇥ cj↵⇥U ini⇤ni⇥ H�⇤ ⌃ij�JijSiSj⇤h iSi Hamiltonian

t ij�(1/�d) �i⇤j� Jij�(1/d) �i⇤j� (ferromagnet) Scaling

Gij(i⌥n)�⇤⌃c i
⇥(i⌥n)cj(i⌥n)� ⌃SiSj� Correlation function

Gii(i⌥n)�⇤⌃c i
⇥(i⌥n)ci(i⌥n)� mi�⌃Si� Local observable

���c↵
+(✏)G 0

�1(✏�✏�)c↵(✏�)+�Un⇤n⇥ Heff=�heffS0 Single-site Hamiltonian
Heff= l↵⇤̃ la l↵

⇥ al↵⇥ l↵Vl(a l↵
⇥ c↵+H.c.)

�⌅ ↵c ↵
⇥c↵⇥Un⇤n⇥

G 0(i⌥n) heff Weiss field/function

G 0
�1(i⌥n)�⌥n⇥⌅⇥G(i⌥n)⇤1 heff=z J m+h Relation between Weiss

⇤R[G(i⌥n)] field and local observable
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Finally, besides its intuitive appeal, the mapping onto
impurity models has proven to be useful for practical
calculations. These models have been studied intensively
in the last 30 years by a variety of analytical and numeri-
cal techniques, and this knowledge can be put to good
use in order to understand strongly correlated lattice
models in large dimensions. The crucial step is to use
reliable tools to solve Seff . Recent progress in the field
came from an effort in exploiting the connection with
impurity models in a qualitative and quantitative man-
ner.

C. The limit of infinite dimensions

The above mean-field equations become exact in the
limit of infinite coordination on various lattices. In this
section, we discuss several such examples and in each
case we give the relation (7) between the local Green’s
function and the Weiss function G 0 in explicit form. No-
tice that, in the paramagnetic phase, the lattice enters
the mean-field equations only through the noninteract-
ing density of states D(⇤). Since many different lattices
give rise to the same density of states in the limit of large
coordination, one can construct models with the same
single-particle properties (i.e., the same Green’s func-
tion) in the paramagnetic phases but very different
properties regarding magnetic responses and transitions
to phases with long-range order (Müller-Hartmann,
1989a). We refer to Sec. IV and Appendix A for a more
detailed explanation of this point, and to Sec. VII.D for
explicit examples.

The first case to be discussed is the d-dimensional cu-
bic lattice with nearest-neighbor hopping (with coordi-
nation z�2d). In order that the kinetic and interaction
energies remain of the same order of magnitude in the
d�⇧ limit, the hopping amplitude must be scaled ap-
propriately (Metzner and Vollhardt, 1989). The correct
scaling is easily found from the Fourier transform ⇤k of
t ij , which for a generic vector k involves  n�1

d cos(kn), a
sum of d numbers with essentially random signs. Hence
t ij must be scaled as

t ij�
t

�2d
. (18)

More precisely, this ensures that the density of states has
a well-defined d�⇧ limiting form, which reads (from
the central-limit theorem)

D�⇤��
1

t�2⌦
exp⇤ ⇤

⇤2

2t2⇥ . (19)

This expression, and various useful properties of tight-
binding electrons on a d�⇧ cubic lattice, is derived in
Appendix A. The Hilbert transform of (19) reads (for
t=1/&):

D̃�⇥��⇤is�⌦ exp�⇤⇥2�erfc�⇤is⇥�, (20)

where s=sgn[Im(⇥)] and erfc denotes the complemen-
tary complex error function. There is no simple explicit
form for the reciprocal function R(G) in this case and
hence (7) must be used as an implicit relation between
G 0 and G . The Gaussian density of states (19) is also
obtained for the d�⇧ cubic lattice with longer-range
hopping along the coordinate axis. As discussed by
Müller-Hartmann (1989a) and reviewed in Appendix A,
next-nearest-neighbor hopping along the diagonals does
change the density of states and provides an interesting
d=⇧ model in which magnetic order is frustrated.

A second important example is the Bethe lattice
(Cayley tree) with coordination z�⇧ and nearest-
neighbor hopping t ij�t/�z . A semicircular density of
states is obtained in this case (see, e.g., Economou,
1983):

D�⇤��
1

2⌦t2 �4t2⇤⇤2, �⇤�⌅2t . (21)

The Hilbert transform and its reciprocal function take
very simple forms

D̃�⇥���⇥⇤s�⇥2⇤4t2�/2t2, R�G ��t2G⇥1/G (22)

so that the self-consistency relation between the Weiss
function and the local Green’s function takes in this case
the explicit form

TABLE I. Correspondence between the mean-field theory of a classical system and the (dynami-
cal) mean-field theory of a quantum system.

Quantum case Classical case

� ⌃ij�↵t ijc i↵
⇥ cj↵⇥U ini⇤ni⇥ H�⇤ ⌃ij�JijSiSj⇤h iSi Hamiltonian

t ij�(1/�d) �i⇤j� Jij�(1/d) �i⇤j� (ferromagnet) Scaling

Gij(i⌥n)�⇤⌃c i
⇥(i⌥n)cj(i⌥n)� ⌃SiSj� Correlation function

Gii(i⌥n)�⇤⌃c i
⇥(i⌥n)ci(i⌥n)� mi�⌃Si� Local observable

���c↵
+(✏)G 0

�1(✏�✏�)c↵(✏�)+�Un⇤n⇥ Heff=�heffS0 Single-site Hamiltonian
Heff= l↵⇤̃ la l↵

⇥ al↵⇥ l↵Vl(a l↵
⇥ c↵+H.c.)

�⌅ ↵c ↵
⇥c↵⇥Un⇤n⇥

G 0(i⌥n) heff Weiss field/function

G 0
�1(i⌥n)�⌥n⇥⌅⇥G(i⌥n)⇤1 heff=z J m+h Relation between Weiss

⇤R[G(i⌥n)] field and local observable

20 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

• Its Hilbert transform can be done explicitly

G�1
� (i!n) = i!n + µ� t2G�imp(i!n)| {z }

��(i!n)

G�imp(i!n) = D̃(i!n + µ� ⌃�imp(i!n))

R[G�imp](i!n) = i!n + µ� ⌃�imp(i!n)

t2G�imp(i!n) +G�1
�imp(i!n) = i!n + µ� G�1

� (i!n) +G�1
�imp(i!n)
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G�1
� (i!n) = i!n + µ� t2G�imp(i!n)| {z }
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6• Bethe lattice  =  semi-circular dos

• Physically meaning full, since semi-circular dos is a reasonable shape

• DMFT on the Bethe lattice at z→∞ 
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• Goal: Solve DMFT equations, self-consistently with CT-INT.



How to do it ?

• Which parts ?

• Local Green functions 

• An impurity solver: e.g. the CT-INT solver.

• Save the result.

• Plot it.

33

• Break the DMFT computation into small parts and assemble the 
computation.



Assemble a DMFT computation in 1 slide

• A complete code, using a CT-INT solver (one of the TRIQS apps).

• In Python, with parallelization included (mpi).

• Do not worry about the details of the syntax yet,  
the hands-on are here for that

34



DMFT computation in 1 slide 

• Import some basic blocks (Green function, a solver) ...

• Define some parameters and declare a CT-INT solver S

• All TRIQS solvers contains G, G0, Σ as members  
with the correct β, dimensions, etc...

• Initialize S.G_iw to a (the Hilbert transform of a) semi-circular dos.

35

from pytriqs.gf import *
from ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function



DMFT computation in 1 slide 

• Implement DMFT self-consistency condition
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from pytriqs.gf import *
from ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for sigma, G0 in S.G0_iw: # sigma = ‘up’, ‘down’
  G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

G�1
0� (i!n) = i!n + µ� t2Gc�(i!n), for � =", #



DMFT computation in 1 slide 

• Call the solver.

• From G0(iωn) (and various parameters), it computes G(iωn).
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from pytriqs.gf import *
from ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for sigma, G0 in S.G0_iw:
  G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

S.solve(U, delta, n_cycles) # Solve the impurity problem



DMFT computation in 1 slide 

• DMFT iteration loop 

38

from pytriqs.gf import *
from ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

  S.solve(U, delta, n_cycles) # Solve the impurity problem

SELF CONSISTENCY

IMPURITY PROBLEM

G0 Gc, Σ



DMFT computation in 1 slide 

• Enforce the fact that the solution is paramagnetic, cf DMFT lecture.  
(noise in the QMC would lead to a AF solution after iterations).
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from pytriqs.gf import *
from ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

  S.solve(U, delta, n_cycles) # Solve the impurity problem

  G_sym = (S.G_iw['up'] + S.G_iw['down'])/2 # Impose paramagnetic solution
  S.G_iw << G_sym



DMFT computation in 1 slide 

• Accumulate the various iterations in a (hdf5) file

40

from pytriqs.gf import *
from ctint_tutorial import CtintSolver
from pytriqs.archive import HDFArchive

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0

  S.solve(U, delta, n_cycles) # Solve the impurity problem
 
  G_sym = (S.G_iw['up'] + S.G_iw['down'])/2 # Impose paramagnetic solution
  S.G_iw << G_sym

  with HDFArchive("dmft_bethe.h5",'a') as A:
    A['G%i'%it] = G_sym # Save G from every iteration to file as G1, G2, G3....



• Change the random generator at the last iteration !

DMFT computation in 1 slide 41

from pytriqs.gf import *
from ctint_tutorial import CtintSolver
from pytriqs.archive import HDFArchive

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

S = CtintSolver(beta, n_iw) # Initialize the solver

S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function

for it in range(n_iterations): # DMFT loop
  for sigma, G0 in S.G0_iw:
    G0 << inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[sigma] ) # Set G0
  
  # Change random number generator on final iteration
  random_name = 'mt19937' if it < n_iterations-1 else 'lagged_fibonacci19937'

  S.solve(U, delta, n_cycles, random_name=random_name) # Solve the impurity problem

  G_sym = (S.G_iw['up']+S.G_iw['down'])/2 # Impose paramagnetic solution
  S.G_iw << G_sym

  with HDFArchive("dmft_bethe.h5",'a') as A:
     A['G%i'%it] = G_sym # Save G from every iteration to file



Look at the result (in IPython notebook) 42

A = HDFArchive("dmft_bethe.h5",'r') # Open file in read mode
for it in range(21):      
    if it%2: # Plot every second result 

oplot(A['G%i'%it], '-o', mode=’I’, name='G%i'%it) 

DMFT convergence

Imaginary part onlyRetrieve Gi from the file, 
and use it at once

oplot can plot 
many TRIQS 
objects via 
matplotlib

NB 
lines are guide to the eyes,  

only Matsubara  
frequency point matters



HDF5

• Language agnostic (python, C/C++, F90). 

• Compressed binary format hence compact, but also portable.

• Dump & reload objects in one line.  
Forget worrying about format, reading files, conventions.

• G(ω)(n1,n2) a 3d array of complex numbers, i.e. 4d array of reals.  
No natural convention in a 2d text file.
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HDF5 :  hierarchical tree structure, like directory 44

G_iw

CT-HYB solver

  H

3d array Mesh

G_iw[up]

  …

  …

Block Green Function

Green Function

Hamiltonian

Impurity Solver



FAQ :  Where was the input file ?

• Traditional way: a monolithic program, input files, output files.

• TRIQS way : write your own script with full control

• No input file as text : no need to parse it,  
we can do operations on the fly, use Python to prepare data ...

45

from pytriqs.gf import *
from ctint_tutorial import CtintSolver

U = 2.5            # Hubbard interaction
mu = U/2.0         # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0        # Inverse temperature
n_iw = 128         # Number of Matsubara frequencies
n_cycles = 10000   # Number of MC cycles
delta = 0.1        # delta parameter
n_iterations = 21  # Number of DMFT iterations

...



Summarize what we have done so far

• A fully functional DMFT code.

• Computation & data analysis: all in Python. 

• Green functions, solvers as Python classes. 

• Since it is a script, it is easy to change various details, e.g.

• Self-consistency condition: enforce paramagnetism

• Change random generator

• Change starting point (e.g. reload G from a file).

• Improve convergence (e.g. mixing quantities over iterations).

• Measure e.g. susceptibilities only at the end of the DMFT loop
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CT-INT implementation

• As a simple example of a TRIQS based application

• https://github.com/TRIQS/tutorials.git,   directory cint_tutorial.

• 1 band, CT-INT QMC code. 

• 150 lines of C++.

• Python wrappings 
automatically generated by TRIQS/cpp2py from the C++ code.

47

mailto:git@github.com
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Why a library rather than a monolithic program ?



Library vs monolithic program

• Better to have a language to express your calculation.

• Many-body approaches are quite versatile.

• Illustration with DMFT methods 

• Many impurity solvers (QMC, ED, NCA, IPT, ....)  
Same interface: use several ones, depending on regimes.

• Various impurity models (# of orbitals, symmetries, clusters)

• Many self-consistency conditions

• No “general” DMFT code. 
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Artificial charge-modulation
in atomic-scale perovskite
titanate superlattices
A. Ohtomo, D. A. Muller, J. L. Grazul & H. Y. Hwang

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
.............................................................................................................................................................................

The nature and length scales of charge screening in complex
oxides are fundamental to a wide range of systems, spanning
ceramic voltage-dependent resistors (varistors), oxide tunnel
junctions and charge ordering in mixed-valence compounds1–6.
There are wide variations in the degree of charge disproportio-
nation, length scale, and orientation in the mixed-valence com-
pounds: these have been the subject of intense theoretical study7–
11, but little is known about the microscopic electronic structure.
Here we have fabricated an idealized structure to examine these
issues by growing atomically abrupt layers of LaTi31O3

embedded in SrTi41O3. Using an atomic-scale electron beam,
we have observed the spatial distribution of the extra electron on
the titanium sites. This distribution results in metallic conduc-
tivity, even though the superlattice structure is based on two
insulators. Despite the chemical abruptness of the interfaces, we
find that a minimum thickness of five LaTiO3 layers is required
for the centre titanium site to recover bulk-like electronic proper-
ties. This represents a framework within which the short-length-
scale electronic response can be probed and incorporated in thin-
film oxide heterostructures.
In perovskites, charge ordering results in modulations of the

electron density in the form of planes and slabs, whereas in lower-
dimensional perovskite-derived systems, charge ordering leads to
stripes, or one-dimensional charge modulations. Approximations
to the first case can be realized in thin-film superlattices inwhich the
formal valence of the transition-metal ion is varied. Superlattices of
SrTiO3 and LaTiO3 are addressed here, where the titaniumvalence is
varied from 4þ to 3þ. SrTiO3 is a band insulator with an empty d
band, whereas LaTiO3 has one d electron per site, and strong
Coulomb repulsion results in a Mott–Hubbard insulator12. Super-
lattices of these two perovskites capture many of the important
aspects of naturally occurring charge-ordered systems, namely
mixed-valence configurations near half-filling. The lattice constants
are relatively well matched (for SrTiO3, ao ¼ 3.91 Å; LaTiO3,
pseudocubic ao ¼ 3.97 Å), and the continuity of the TiO6 octa-
hedral lattice across the superlattice minimizes the perturbation of
the electronic states near the chemical potential13,14. The principal
growth issue reduces to the control of the titanium oxidation state,
which we have recently addressed for bulk-like film growth15.
We grew SrTiO3/LaTiO3 superlattice films in an ultrahigh-

vacuum chamber (Pascal) by pulsed laser deposition, using a
single-crystal SrTiO3 target and a polycrystalline La2Ti2O7 target.
Extreme care was taken to start with atomically flat, TiO2-
terminated SrTiO3 substrates, which exhibited terraces several
hundred nanometres wide, separated by 3.91-Å unit cell steps as
observed by atomic force microscopy16. A KrF excimer laser with a
repetition rate of 4Hz was used for ablation, with a laser fluence at
the target surface of,3 J cm22. The films were grown at 750 8Cwith
an oxygen partial pressure of 1025 torr, which represented the best
compromise for stabilizing both valence states of titanium. Oscil-
lations in the unit-cell reflection high-energy electron diffraction
intensity were observed throughout the growth, and were used to
calibrate the number of layers grown. After growth, the films were
annealed in flowing oxygen at 400 8C for 2–10 hours to fill residual
oxygen vacancies.

Figure 1 shows the annular dark field (ADF) image of a super-
lattice sample obtained by scanning transmission electron
microscopy (JEOL 2010F) of a 30-nm-thick cross-section along a
substrate [100] zone axis. In this imaging mode, the intensity of
scattering scales with the atomic number Z as Z1.7, so the brightest
features are columns of La ions, the next brightest features are
columns of Sr ions, and the Ti ions are weakly visible in between17–19.
The quality of the interfaces does not degrade with continued
deposition, and the atomic step and terrace structure of the growing
surface is maintained for hundreds of nanometres. The magnified
view at the top of Fig. 1 shows a higher-resolution image, which
visibly demonstrates the ability to grow a single layer of La ions.
Because the layer is viewed in projection, roughness along the
beam—particularly on length scales thinner than the sample—
leads to apparent broadening. Thus these results represent an
upper limit to the actual width of the layers.

With the same imaging conditions used to obtain Fig. 1, we
analysed the energy of the transmitted electron beam and per-
formed core level spectroscopy, atom column by atom column20–22.
This approach is able to probe internal structures directly, unlike
surface-sensitive methods. Specifically, the titanium L2,3, oxygen K,
and lanthanumM4,5 edges can be simultaneously recorded, with an
energy resolution of,0.9 eV and a spatial resolution slightly worse
than the ADF resolution of,1.9 Å, primarily owing to drift during
the slower acquisition of the spectra. We obtained a scan through
the Ti sites crossing a 2-unit-cell layer of LaTiO3 (top centre panel of
Fig. 2). By substituting La for Sr, there is locally an extra electron
that resides mainly on the Ti d orbitals23. To visualize this effect, the
Ti L2,3 near-edge structure can be decomposed into a linear
combination of Ti3þ and Ti4þ, with no residual detectable above
the experimental noise level (bottom panel of Fig. 2).

This decomposition, which would fail both conceptually and
experimentally for more covalent materials, allows a particularly

Figure 1 Annular dark field (ADF) image of LaTiO3 layers (bright) of varying thickness

spaced by SrTiO3 layers. The view is down the [100] zone axis of the SrTiO3 substrate,

which is on the right. After depositing initial calibration layers, the growth sequence is

5 £ n (that is, 5 layers of SrTiO3 and n layers of LaTiO3), 20 £ n, n £ n, and finally a

LaTiO3 capping layer. The numbers in the image indicate the number of LaTiO3 unit cells

in each layer. Field of view, 400 nm. Top, a magnified view of the 5 £ 1 series. The raw

images have been convolved with a 0.05-nm-wide gaussian to reduce noise.
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SrTiO3/LaTiO3  
Ohtomo et al, Nature 2002

DMFT is quite versatile

• Correlated interfaces.  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Alloy

• Disordered systems  

• Self-consistency in large  
unit cell (Cu + 2 O)  
Σab(ω) a 3x3 matrix

• Impurity model on Cu, 1 band : Σimp(ω) 1x1 matrix

• Multiband/realistic systems
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• DFT + DMFT 

• Interface with electronic structure codes 
(project on Wannier functions, etc).

• Two impurity models 

• One impurity per layer



  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Cluster DMFT

• DMFT:  1 atom (Anderson impurity) + effective self-consistent bath  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⌃(k,!) ⇡ ⌃impurity(!)

Reciprocal space (DCA) 
clusters Brillouin zone patching 

3
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic

Hettler et al. ’98, ...

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Real space clusters (C-DMFT)

Lichtenstein, Katsnelson 2000  
Kotliar et al. 2001

• Clusters = a systematic expansion around DMFT.

• Control parameter = size of cluster / momentum resolution.  
Systematic benchmarks, cf J. LeBlanc et al., PRX 5 (2015)

Cf lecture by D. Sénéchal 



Beyond DMFT
• Atomic approximation but for which quantity ?

• DMFT is only the simplest of a family of approximations.

• Local Mott physics + spin-fluctuations, Bethe Salpeter, Parquet.  
e.g. DΓA Toschi ’07,  Trilex, Quadrilex,  T. Ayral, O.Parcollet, 2015-2016

• Need to assemble more complex methods with more complex 
objects : G(k,ω), Vertex Γ(ω,ν,ν’). 
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Simp[G(iω),Uη(iΩ)]
Σ(k, iω)

P η(q, iΩ)

G

W η

Dyson
equation

Λη
imp(iω, iΩ) η = charge, spin[x, y, z]

impurity
vertex

Slatt[G0(k, iω), U ]
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lattice
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self-energy
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Mix with electronic structure codes 53
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• Cf Lectures next week.

• (Much) more of the same kind of manipulations:  
Extract the Green function of the correlated orbitals.  
Project on Wannier functions.  
Embed the self-energy of the correlated orbital (downfolding).



Need for a library

• No “general” DMFT code. 

• A simple language able to write all of these, and much more.

• A library : extending Python/C++ to express the basic concepts of 
our field (Green functions, Bravais lattice, Brillouin zone, etc).

• Questions:  
design : which blocks ? how to compose them ?
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SELF CONSISTENCY

IMPURITY PROBLEM

G0 Gc, Σ

Hard but well defined problem

Easy to write, but many variants
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TRIQS package : overview  



Technical goals 

• Basic blocks for our field (e.g. Green functions, MC tools).

• Simplicity : what is simple should be coded simply !            

• High performance :

• Human time :  reduce the cost of writing codes.

• Machine time :  run quickly.  Zero cost abstraction (modern C++).
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Reproducibility & Correctness

• Codes should be open source 
Diminish development time/effort with libraries

• Code clarity : written to be read/understood.  
Libraries (std, triqs, …) make code smaller, easier to understand.  
Code review.

• Version control, test driven development.  
tools : git, google test.

• Easy installation, with environment.  
“Container” techniques : docker, singularity
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TRIQS project : a modular structure
58

CTHYB
Impurity solver

TRIQS library
The basic blocks

DFTTools
Interface to 
electronic 
structure 

codes

Your app. 



TRIQS library 59

• Many-body operators to write Hamiltonians.

• Basic solid state physics notion : Bravais Lattices, Brillouin 
zone, density of states, Hilbert transform.

• Interfaces to save/load in HDF5 files,  
plot interactively in the ipython notebook.

Matsubara Matsubara Real Real time

• “Green functions” containers (any function on a mesh)  
  G(ω), G(r, τ), G(k,ω), Vertex Γ(ω,ν,ν’). 

• Tools for Monte-Carlo
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TRIQS/CTHYB. 

A state of the art quantum impurity solver  
for multi-orbital systems

Cf M. Ferrero’s lecture



TRIQS/CTHYB 61

https://triqs.ipht.cnrs.fr/1.x/applications/cthyb/

https://triqs.ipht.cnrs.fr/1.4/applications/cthyb/


CTHYB

• Expansion in coupling to the bath

• “Any" local Hamiltonian (3, 5 bands, low temperature), including 
spin-orbit.

62
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TRIQS/DFTTools. 

Interface to electronic structure codes



TRIQS / DFTTools

• Ab-initio DMFT + DFT.  
Cf lectures by Kotliar & Haule next week.

• A TRIQS python interface with a growing number of electronic 
structure codes:

• Wien2k

• Wannier90

• Vasp (to be published ?).
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Markus Aichhorn, Leonid Pourovskii, Priyanka Seth, Veronica Vildosola, Manuel Zingl, Oleg E. 
Peil, Xiaoyu Deng, Jernej Mravlje, Gernot J. Kraberger, Cyril Martins, M. Ferrero, O. Parcollet 
Comp. Phys. Comm. 204, 200 (2016), arXiv:1511.01302

Figure 3: Real-space representation of the vanadium t2g Wannier function of SrVO3.
Left plot: projection only to t2g bands. Right plot: projection to all vanadium d and
oxygen p bands. The blue and red colours indicate the negative and positive phases,
respectively, of the Wannier function. Note the much better localisation of the d-like
Wannier functions in the latter case, without weight around the oxygen positions. The
Wannier functions are constructed using the dmftproj program, their real-space repre-
sentations are generated with the help of the wplot program from the wien2wannier [10]
package. Plots are produced using XCrysDen [26].

Wannier functions:

Pα,σ
mν (k) =

∑

α′m′

Sα,α′

m,m′ P̃
α′,σ
m′ν (k) (4)

P̃α,σ
mν (k) = ⟨χ̃α,σ

m |ψσ
kν⟩, ν ∈ W (5)

These projectors can now be used to calculate, e.g., the local projected non-interacting
Matsubara Green’s function from the DFT Green’s function,

G0,α
mn(iωn) =

∑

k

∑

ν

Pα
mν(k)

1

iωn − εkν + µ
Pα∗
nν (k), (6)

where we have dropped the spin index for better readability. Note that throughout
the paper we assume a proper normalisation of the momentum sum over k in the first
Brillouin zone, i.e.

∑
k
1 = 1. From this non-interacting Green’s function one can

calculate the density of states. As an example, we show in Fig. 2 the DOS for the
prototypical material SrVO3. Three different Wannier constructions are displayed. First,
a projection where only the vanadium t2g bands are taken into account is shown in black.
The projection that comprises vanadium t2g as well as the oxygen p bands is shown in
red, and the green line is the DOS for a projection using DFT bands up to 8 eV. The
difference in the latter two projections is minor, and consists primarily in the small
transfer of weight to large energies around 7 eV.

In Fig. 3 we show the real-space representation of the Wannier charge density. The
left plot shows a t2g-like Wannier function for a projection of t2g bands only, which
corresponds to the black line in Fig. 2. The right plot is the corresponding Wannier

6

SrVO3
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Web sites



TRIQS web site 66

https://triqs.github.io/

https://triqs.github.io/


The Github site 67

https://github.com/TRIQS

https://github.com/TRIQS


TRIQS releases

• 2.x series :

• Just released 2.0 (used in this school).

• Upgrade to multiple components.

• C++17.  

• Packaging : Cf Nils’ talk

• 3.x series : Python 3, …
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More applications, DMFT solvers, and upgrade

• CT-HYB :  Vertex computations.

• CT-HYB “segment picture”,  
an optimised code for density-density interaction.

• CT-INT multiband, cluster, with general retarded interaction.

• RISB quick impurity solvers.

• Susceptibility computations in DMFT :  
Bethe-Salpeter,  Vertex computations
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Thank you for your attention


