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• Projectors and locality of correlations

PART 1 EDMFTF



Theoretical Perspective - Correlated Matter

n Electrons have dual nature, partly itinerant and partly localized 

n Need to incorporate the real space perspective: electrons are not just waves 
but are also particles — localization due to interaction. 

n The electron density rho is not quite enough to describe the situation. We need 
to think of electron spectra — Green’s function.

2.4 Electron addition and removal: the bandgap problem and more 23
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Figure 2.5. Schematic illustration of ARPES. The middle figure shows an independent-particle
spectrum of δ-functions with occupation 1 or 0. The right figure exemplifies a spectrum for
interacting electrons with “quasi-particle” peaks (i.e., peaks due to dressed one-particle excitations)
having fractional weight and “satellites” or “sidebands” due to additional excitations that are
induced in the system. Examples for satellites in photoemission are shown in Figs. 2.8 and 2.9 for
plasmons in Na and atomic-like excitations in Ce, and throughout the following chapters. The insets
depicting occupation numbers n(k) are discussed in more detail in Secs. 5.2 and 7.5. (Provided by
A. Damascelli, similar to figure in [59].)

However, the remaining electrons react to the hole that is left behind, as illustrated
in Fig. 2.4. There are an infinite number of possible excitations, leading to a continu-
ous energy spectrum with broadening and extra structures, as shown in the right panel of
Fig. 2.5. All these features can be related to the one-particle Green’s function and the self-
energy, which are central to much of our understanding of interacting electrons, brought
out especially in Chs. 5, 7 and throughout Part III.

Band structures

The concept of a sharp “band structure” is directly linked to an independent-particle pic-
ture, and it reflects the idea of “quasi-particles” that act like electrons with energies that
are affected by interaction with other electrons. Indeed, experimental studies using differ-
ent techniques have shown that for numerous materials there are quasi-particle bands with
little broadening (long lifetimes), i.e., well-defined peaks similar to the schematic diagram
in the middle panel of Fig. 2.5, or the peaks close to the Fermi level in the right panel. An
example is the experimental results for Ge, where the dots shown in the middle panel of
Fig. 2.6 are the maxima of peaks measured by ARPES and inverse ARPES. Even far from
the Fermi energy the peaks are sufficiently well-defined to identify the bands.

Also shown in Fig. 2.6 are the calculated results of three approaches. On the right are
independent-particle bands in the Hartree–Fock approximation; these show a gap that is
much too large and a valence band that is too broad. By definition, the discrepancy from
experiment is due to correlation effects that renormalize the energies and lead to a narrow-
ing of the gap and bandwidth. On the left are the eigenvalues of the Kohn–Sham equations
in the LDA. Even though there is no rigorous theoretical justification, they are remarkably
close to the actual bands, except that the gap is too small, as discussed in the following
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EXACT FUNCTIONAL
(THEORY OF EVERYTHING IN CM)

For a proof see: Abrikosov, Gorkov, Dzialoszynski book
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Richard Feynman

is stationary in the exact solution, i.e.,
gives free energy of the system.

useful to construct conserving approximations
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Luttinger-Ward functional (1950):
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independent of material 

expressible by the perturbation theory
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Basic variable is Green’s function: == dynamic analog of charge density
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Reminder: LWF and indirect approach



Other approaches in LW language

USEFUL  APPROXIMATIONS

1) Hartree-Fock:

Stationarity of          gives:
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KH Computational Physics- 2009 Hartree-Fock Method

Interpretation in terms of electron self-energy
In many-body problems, one usually defines the so-called self-energy. It is the quantity that
needs to be added to non-interacting Hamiltonian to get the interacting effective
Hamiltonian

Heff =

∫

drdr′Ψ†(r)
{

H0(r)δ(r − r
′) + Σ(r, r′)

}

Ψ(r′) (10)

From Eq. (4) we can see that

Σ(r, r′) = δ(r − r
′)

∫

dr′′ρ(r′′, r′′)vc(r
′′ − r) − ρ(r′, r)vc(r

′ − r) (11)

This term is just the lowest order term in perturbation expansion of self-energy in powers of
Coulomb repulsion and its diagrammatic representation in terms of Feyman diagrams is

Kristjan Haule, 2009 –5–
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USEFUL  APPROXIMATIONS

2) RPA (also called GW in abinitio world):
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+VXC [{⇢(r)}] n(r) (12)

VXC [{⇢(r)}] =
�EXC [{⇢(r)}

�⇢(r)
(13)
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⇢(r) = G(r⌧, r⌧) (17)

"xc(n) (18)

⌦phonon

Eelectron

⌧ 1

⌃(k,!) = (19)

q k� q
k, " �k, #
Vk,k0

G
�1
0 (r, r0) = [! + µ+r2 � Vext(r)]�(r� r0) (20)

�[{G}] = �Tr((G�1
0 �G

�1)G) + Tr log(�G) + �[{G}] (21)

��[{G}]
�G

= 0 (22)

�[{G}] ⇡ Exc[{⇢}] (23)

Density Functional Theory:

local to a point in 3D space in LDA
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G(r⌧, r0⌧ 0) = hT⌧ 
†(r0⌧ 0) (r, ⌧)i (16)

⇢(r) = G(r⌧, r⌧) (17)
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�1)G) + Tr log(�G) + �[{G}] (21)
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= 0 (22)
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�[{G}] ⇡ Exc[{⇢}] (24)

�[{Gij}] ⇡ �[{Gii}] (25)

�[{G}] = �DMFT [{Glocal}] (26)

Exact DFT appears as 
an approximation to the Green’s function!

Hartree-Fock approximation:

Dynamical Mean Field 
Theory:

all local Feynman diagrams  
(in fully dressed perturbation theory)

1

�[{Gij}] ⇡ EH [{⇢}] + �[{Gii}] (1)

RPA& 
GW:

Truncation in the space 
of Feynm

an diagram
s

Truncation in the real space
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We can get DFT by
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DFT  In the LW language

The LW functional then leads to identical equations as DFT.

Exact DFT gives exact ground state energy and charge density. But in this 
approach DFT is an approximation for the Green’s function, which gives 
an approximate spectra, i.e., bands. The spectra can then interpreted as 
physical within such approximation for 

1

�[{G}] ! EH [⇢] + EXC [⇢] (1)

�[{G}] = �Tr((G�1
0 �G�1)G) + Tr log(�G) + EH [⇢] + EXC [⇢] (2)

�

�G
�[{G}] = �

�G

�
�Tr((G�1

0 �G�1)G) + Tr log(�G) + EH [⇢] + EXC [⇢]
�
= 0 (3)

�G�1
0 +G�1 +

�(EH [⇢] + EXC [⇢])

�G
= 0 (4)

�EXC [⇢]

�G
=

�⇢

�G

�EXC [⇢]

�⇢
= �(⌧ � ⌧ 0)�(r� r0)VXC [⇢] (5)

G�1
0 �G�1 = (VH [⇢] + VXC [⇢])�(⌧ � ⌧ 0)�(r� r0) (6)

G�1(rr0, i!) =

✓
i! + µ� (

�~2
2me

r2 + Vext(r) + VH [⇢] + VXC [⇢])

◆
�(r� r0) (7)

where

⇢(r) = �(r� r0)T
X

i!

G(rr0, i!) (8)

✓
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ik(r)
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i! + µ� "k,i
 ik(r
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X
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ik ik f("k,i � µ) (11)

EXC [⇢] (12)

�[{G}] (13)

The fact that bands are very reasonable within LDA/GGA is 
an indication that correlations are very local in real space. 

Weaker statement : The picture in which correlations are treated as 
local is very good — convergence faster when considering local 

correlations rather than long range correlations.
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Interaction can be 
tuned from short to 

long ranged by 
parameter lambda:

An illustrative example of local correlations
essentially 

exact solution
any type of 

perturbation ill-
behaved

Electron gas 
problem

1

Define:

�⇤↵(r � Ri) ⌘ U(↵, r) (1)

P̂Ê�1 = U[U†U]�1U† = 1 (2)

V(r) =
e�r
p
�

r
(3)



Functional Point of  view
Gabriel Kotliar

i is site or cluster

DMFT for lattice models:
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DMFT is projector dependent approximation

DMFT for continuous problems:
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Need to define projector to site (or cluster):
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How is correlation potential determined?
Solid with 1023 

electrons

Electron gas problem

uniform positive  
background

electron cloud

To determine e-e correlation  
potential, 

each point in space  
is mapped to

In DMFT we want to lift the restriction and compute all 
correlations local to a given site (not given point in space). 

LDA

projector defines what is a “site” in DMFT, 
typically an ion with open d of f shell.
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DMFT approximation:

in continuum requires discretization of projector, 

where                             forms a basis on a given atom
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0)�(r� r0)VXC [⇢] (5)

G
�1
0 �G

�1 = (VH [⇢] + VXC [⇢])�(⌧ � ⌧
0)�(r� r0) (6)

G
�1(rr0, i!) =

✓
i! + µ� (

�~2
2me

r2 + Vext(r) + VH [⇢] + VXC [⇢])

◆
�(r� r0) (7)

where

⇢(r) = �(r� r0)T
X

i!

G(rr0, i!) (8)

✓
�~2
2me

r2 + Vext(r) + VH [⇢] + VXC [⇢])

◆
 k,i(r) = "k k,i(r) (9)

G(rr0, i!) =  
⇤
ik(r)

1

i! + µ� "k,i
 ik(r

0) (10)

⇢(r) = �(r� r0)T
X

i!

G(rr0, i!) =
X

ik

 
⇤
ik ik f("k,i � µ) (11)

EXC [⇢] (12)

�[{G}] (13)

G�1
0 = G

�1
local

+ ⌃local (14)

�[{G}] !
X

Ri

�[{P̂RiG}] (15)

for example:

2

P̂Ri(rr
0) ! PRi(↵�) =

Z
drdr0PRi(↵�; rr

0) (16)

PRi(rr
0) ! PRi(↵�) =

Z
drdr0�↵(r�Ri)�

⇤
�
(r0 �Ri) (17)

�

�G
�[{G}] = �G

�1
0 +G

�1 +
�
P

Ri
�[{

R
drdr0P(↵�; rr0;Ri)G(rr0)}]

�G
= 0 (18)

�

�G
�[{G}] = �G

�1
0 +G

�1 +
X

Ri,↵�

P(↵�; rr0;Ri)
��[{Glocal,Ri,↵�}]

�Glocal,Ri,↵�

= 0 (19)

⌃local,Ri,�↵ =
��[{Glocal,Ri,↵�}]

�Glocal,Ri,↵�

(20)

⌃(rr0) =
X

Ri,↵�

P(↵�; rr0;Ri)⌃local,Ri,↵� (21)

Glocal,Ri,↵� ⌘
Z

drdr0P(↵�; rr0;Ri)G(rr0) (22)

G
�1
0 �G

�1 =
X

Ri,↵�

P(↵�; rr0;Ri)⌃local,Ri,↵� (23)

P(rr0;�R/2) = �left(r)�
⇤
left

(r0) (24)

P(rr0; +R/2) = �right(r)�
⇤
right

(r0) (25)

|1�g(H
+)i (26)

|1�u(H
+)i (27)

�
left(r) =

1p
2
(hr|1�g(H

+)i � hr|1�u(H
+)i) (28)

�
right(r) =

1p
2
(|r|1�g(H

+)i+ hr|1�u(H
+)i) (29)

(30)
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P̂Ri ! PRi(↵�) =

Z
drdr0PRi(↵�; rr

0) (16)

PRi(rr
0) ! PRi(↵�) =

Z
drdr0�↵(r�Ri)�

⇤
�
(r0 �Ri) (17)

�

�G
�[{G}] = �G

�1
0 +G

�1 +
�
P

Ri
�[{

R
drdr0PRi(↵�; rr

0)G(rr0)}]
�G

= 0 (18)

�

�G
�[{G}] = �G

�1
0 +G

�1 +
X

Ri,↵�

PRi(↵�; rr
0)
��[{Glocal,Ri,↵�}]

�Glocal,Ri,↵�

= 0 (19)

⌃local,Ri,↵� =
��[{Glocal,Ri,�↵}]

�Glocal,Ri,�↵

(20)

⌃(rr0) =
X

Ri,↵�

PRi(↵�; rr
0)⌃local,Ri,↵� (21)

Glocal,Ri,↵� =

Z
drdr0PRi(↵�; rr

0)G(rr0) (22)

G
�1
0 �G

�1 =
X

Ri,↵�

PRi(↵�; rr
0)⌃local,Ri,↵� (23)

P�R/2(rr
0) = �left(r)�

⇤
left

(r0) (24)

P+R/2(rr
0) = �right(r)�

⇤
right

(r0) (25)

|1�g(H
+)i (26)

|1�u(H
+)i (27)

�
left(r) =

1p
2
(hr|1�g(H

+)i � hr|1�u(H
+)i) (28)

�
right(r) =

1p
2
(|r|1�g(H

+)i+ hr|1�u(H
+)i) (29)

(30)

�[{G}] ! EH [⇢] + E
LDA

XC
[⇢] +

X

Ri2corr.

�DMFT [{Glocal,Ri}]� �DC [{⇢local,Ri}] (31)

�[{G}] = �Tr((G�1
0 �G

�1) + Tr log(�G) + �LDA[⇢] +
X

Ri2corr.

�DMFT [{Glocal,Ri}]� �DC [{⇢local,Ri}] (32)

quasi atomic orbitals 
(locally complete set)

so that:

1

�↵(r�Ri) ⌘ hr|�i
↵i (1)

Gi
local(r, r

0) =
X

↵�

hr|�i
↵i h�i

↵|G|�i
�i h�i

� |r0i (2)

↵, beta are orbital-spin indices

1

�↵(r�Ri) ⌘ hr|�i
↵i (1)

Gi
local(r, r

0) =
X

↵�

hr|�i
↵i h�i

↵|G|�i
�i h�i

� |r0i (2)

↵, beta are orbital-spin indices

1

�↵(r�Ri) ⌘ hr|�i
↵i (1)

Gi
local(r, r

0) =
X

↵�

hr|�i
↵i h�i

↵|G|�i
�i h�i

� |r0i (2)

↵,� are orbital-spin indices

The continuous DMFT problem



Correlations are local in large d (large connectivity z) 
where DMFT is exact -- Weiss mean field theory

What about finite D? What about 0?

H2 molecule:

How local are correlations?



Archetypal problem of strong  correlations:

DMFT exact in ∞ D, or large connectivity Z 
It is not expected to be good for low-D problems 

(like H2 molecule)

Error of total energy using LDA+DMFT <0.2%!

LDA+DMFT

HF+DMFT

exact

Juho Lee, KH, PRB 91, 155144 (2015).

DMFT captures exact atomic limit 
accurate at large R!

LDA and GW fail at large R too

R-Hartree-Fock fails 
(both electrons at the same nucleus)

some cluster corrections needed at 
the breaking point of the molecule

How local are correlations ? 
0-D test of the single site DMFT.

http://xxx.lanl.gov/find/cond-mat/1/au:+Haule_K/0/1/0/all/0/1
http://xxx.lanl.gov/abs/1403.2474


𝚪[G] Is stationary and gives free energy of the system.

1

�[G] = Tr logG� Tr((G�1
0 �G�1)G) + EH+XC [⇢] + �DMFT [Glocal]� �H+XC [⇢local](1)

G�1
0 = i! + µ+r2 � Vext(r)]�(r� r0) (2)

Green’s function

non-interacting part of G
Hartree + XC 

functional

sum of all “local”
Feynman diagrams
for correlated ions.

double-counted
interaction

(we know exactly) 1

��[G]

�G
= 0 (1)because

1

��[G]

�G
= 0 (1)

G�1 �G�1
0 + VH+XC�(r� r0)�(⌧ � ⌧ 0) + P̂

��DMFT [Glocal]

�Glocal

� P̂
��DC [⇢local]

�⇢local
�(r� r0)�(⌧ � ⌧ 0)(2)

1

��[G]

�G
= 0 (1)

G�1 �G�1
0 + VH+XC�(r� r0)�(⌧ � ⌧ 0) + P̂

��DMFT [Glocal]

�Glocal

� P̂
��DC [⇢local]

�⇢local
�(r� r0)�(⌧ � ⌧ 0)(2)

1

��[G]

�G
= 0 (1)

G�1 �G�1
0 + VH+XC�(r� r0)�(⌧ � ⌧ 0) + P̂

��DMFT [Glocal]

�Glocal

� P̂
��DC [⇢local]

�⇢local
�(r� r0)�(⌧ � ⌧ 0) = 0(2)

Stationarity : 1st order error in G leads to 2nd order error in free energy.

Vc VDMFT VDMFT

Note: Migdal-Galitskii formula gives non-stationary total energies in DFT+DMFT.

DFT+Embedded Dynamical Mean Field Theory 
Functional

4

EX

VDMFT
[{⇢}] = �1

2

Z
drdr0

 
X

mm0

hr|�i
m
i h�i

m
| ⇢ |�i

m0i h�im0 |r0i
! 

X

m00m000

hr0|�i
m00i h�im00 | ⇢ |�im000i h�im000 |ri

!
VDMFT (r� r0)

= �1

2

X

m,m0,m00,m00

h�i
m
|⇢|�i

m0i h�im00 |⇢|�im000i
Z

drdr0�i⇤
m000(r)�i⇤m0(r0)VDMFT (r� r0)�i

m00(r0)�im(r)

= �1

2

X

m,m0,m00,m00

⇢i
mm0⇢im00m000 h�im000�im0 |VDMFT |�im00�imi

�DC,X = �1

2

Z
drdr0⇢0(r, r0)⇢0(r0r)VDMFT (r� r0) (44)

EF =
⇣
2⇡2(P̂⇢)2/3

⌘
/(2m)

G�1
0 = [i!n + µ+r2 � Vnuc(r)]�(r� r0) (45)

G ! P̂G

VC ! VDMFT

�VDMFT [{Glocal}]

Eelectron�gas[P̂⇢ = ⇢loc, VDMFT ] =

Z
dr⇢loc(r)"

VDMFT
c

(⇢loc(r))

Tr(
�"k!n

i! + µ� "k!n

) = Tr(| ik!ni
1

i! + µ� "k!n

h ik!n |
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(G
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(Gloc�(⌃� VDC)) + ...



We extremize a DFT-DMFT functional in real space:  no need 
to build tight-binding model Hamiltonian ( Wannier orbitals ).

Solid with 1023 
electrons

Auxiliary problem is a 
“interacting atom”  
in a self-consistent 

medium/entanglement

electron cloud 
+ 

interacting ion

E-DMFT To determine e-e 
correlation potential, 

each atom is mapped to  
auxiliary quantum 

impurity 
problem 

Auxiliary problem is a  
non-interacting problem 

in self-consistent 
medium

uniform positive  
background 

+ 
electron cloud

To determine e-e 
correlation potential, 
each point in space  

is mapped to the uniform 
electron gas problem.

LDA

Note: The trick of mapping is used only to determine the exchange-correlation 
potential, while the kinetic energy and Hartree term are always treated exactly.

Embedded Dynamical Mean Field Theory Functional

Quantum impurity model
solved by Monte Carlo

1

�[G] = Tr logG� Tr((G�1
0 �G�1)G) + EH+XC [⇢] + �DMFT [Glocal]� �H+XC [⇢local](1)

G�1
0 = i! + µ+r2 � Vext(r)]�(r� r0) (2)

Vc VDMFT VDMFT



Details on extremization:

or
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↵
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↵,� are orbital-spin indices
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(r0 �Ri)}]

�G
(4)

�

�G
�[{G}] = G�1 �G�1

0 +
�EH+XC

Vc
[⇢]

�⇢
�(r� r0)�(⌧ � ⌧ 0) (5)
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Embedded Dynamical Mean Field Theory Functional

finally
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And Embed self-energies to continuum space 
by

On each correlated site     we have to solve a 
quantum impurity model with       orbitals
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Embedded Dynamical Mean Field Theory Functional
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DFT quantum impurity S. embedded
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REQUIREMENT FOR STATIONARITY

Return to definition 
of the projector:

Return to saddle point Eq.:

Projector should not depend on the solution
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0) = Ê ⇤ P̂G(r, r0) (56)

1

! � Eimp � ⌃��
= P̂

1

! +r2 � Vext � VH � Vxc � Ê(⌃� Vdc)
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REQUIREMENT FOR CAUSAL DMFT EQ.
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Ê ⇤ P̂ 6= I

P̂ ⇤ Ê ⌃ = ⌃
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�[G] = �LDA[⇢] +
X

i2corr
�DMFT [Gi↵,i� ]� �DC [G](46)

�[G] = �Tr(� @
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1

2
)� J

2
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F
0 = U(52)

F
2 = 5J(53)
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F
0 = U(54)

F
2 = 14./1.625 J(55)

F
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F
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F
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Impurity solver

Requires for 
causality
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�
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↵,� are orbital-spin indices
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�
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1

Define:

�⇤↵(r � Ri) ⌘ U(↵, r) (1)

P̂Ê�1 = U[U†U]�1U† (2)

Define:
If projection separable:

1

Define:

�⇤↵(r � Ri) ⌘ U(↵, r) (1)

P̂Ê�1 = U[U†U]�1U† = 1 (2)Satisfied:
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P (lm, lm
0
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l
(r)uLDA

l
(r0)Ylm0(r̂0)

LDA+U projector
non-separable:
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G
DMFT

i↵,i�
= P̂ G(r, r0)

(65)

G
cc =

X

k

(i! + µ+ eHcc

k � ⌃)�1(66)

✓
G

cc
, G

cr

G
rc
, G

rr

◆
=

X

k

✓
i! + µ+H

cc

k � ⌃ �V
cr

k

�V
rc†
k i! + µ�H

rr

k

◆�1

(67)

(68) G
cc

G
DMFT

↵�
=

Z Z
drdr

0
P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

P̂ ⇤ Ê = I
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DMFT (r, r0)(69)

G(r, r0) = (�(r� r
0)(i! + µ+r2 � Vext(r)� Vxc(r))� ⌃DMFT (r, r0))�1

Projection:

Embedding:

Dyson Eq solved 
in large Hilbert space:

SUMMARY: PROJECT/EMBED

DMFT in continuum problem (Project/Embed):

Phys. Rev. B 81, 195107 (2010), K. Haule, Chuck-Hou Yee, Kyoo Kim.

SOME FORMULAS FOR SLIDES 5

�r2 + Vext(r) + Vxc(r) ! t
↵�

ij
(61)

⌃DMFT

i↵,i�
! ⌃DMFT (r, r0)(62)

G
DMFT

i↵,i�
,⌃DMFT

i↵,i�
(63)

⇢(r),�r2 + Vext(r) + Vxc(r)(64)
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Ê ⇤ P̂ G(r, r0) = G
DMFT (r, r0)(69)

Impurity solver

SOME FORMULAS FOR SLIDES 5

�r2 + Vext(r) + Vxc(r) ! t
↵�

ij
(61)

⌃DMFT

i↵,i�
! ⌃DMFT (r, r0)(62)

G
DMFT

i↵,i�
,⌃DMFT

i↵,i�
(63)

⇢(r),�r2 + Vext(r) + Vxc(r)(64)

Ê ⌃DMFT

i↵,i�
! ⌃(r, r0)

G(r, r0) = (i! + µ+r2 � Vext(r)� Vxc(r)� Ê ⌃DMFT )�1
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P̂ ⇤ Ê ⌃ = ⌃
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P̂ ⇤ Ê ⌃ = ⌃
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• Projectors and locality of correlations

PART 1 EDMFTF

• Exact double-counting of DFT+EDMFTF



Double-Counting

Approximation A
(DFT)

Approximation B
(DMFT)DC

Some part of exchange/correlations counted in both 
approximations. 

Important : Determines the oxidation state of correlated ion

only a degenerate Hubbard model approximation can “avoid” this problem



The first experiment was carried out between 32 and
132 GPa at high temperatures (circle symbols in Fig. 1).
Between 30 and 50 GPa, XRD spectra show the structure
change from rB1 to B1 with increasing temperature. The
resistance of the rB1 phase dramatically decreased with
increasing temperature, as is expected in an insulator. The
resistance of B1 FeO showed a much smaller temperature
dependence [Figs. 2(a) and 2(b)], consistent with being a
bad metal or bad insulator, i.e., intermediate between pro-
totypical metallic and prototypical insulating behavior.
The observed nonmetallic behavior in rB1 and B1 FeO is
in good accordance with that obtained in our previous
study [9]. We next measured the resistance from 58 GPa
and 300 K to 73 GPa and 2270 K after gas compression
[Fig. 2(c)]. The temperature dependence of the B1 resist-
ance changed sign to positive at 70 GPa and 1870 K. The
positive temperature slope is consistent with metallic
behavior; we find that B1 FeO metallizes at that P-T
condition. We further measured the resistance of B1 FeO
at higher pressures up to 132 GPa and 2320 K, indicating
it remained metallic [Fig. 2(d)].In the second and third sets
of experiments, we also observed metallization of B1 FeO,
confirming the first set of experiments (Fig. 1). The present
results demonstrate that the metal-insulator transition in B1
FeO occurs at around 70 GPa and 1900 K. The transition
boundary has a negative P-T slope, which was determined
from our data in a temperature range between 1400 and
2000 K (Fig. 1).

Knittle et al. [5] first reported the metallization of
Fe0:94O under shock-wave compression. They observed

high electrical conductivity of FeO approximately of
106 S=m comparable to that of pure iron and iron-silicon
alloy above 72 GPa. They observed a decrease in the
conductivity with increasing shock compression, and
thus higher temperatures, which also was evidence for
metallization. It was thought that this metallization corre-
sponds to the transition to the B8 structure [7] but it
now appears that the B8 structure does not appear until
higher pressures at these temperatures, and the metalliza-
tion we observe occurs in the B1 structure at high tem-
peratures. Electrical conductivity of metallic B1 phase
measured in this study is much lower than 106 S=m,
although positive temperature dependence of the B1 resist-
ance obviously indicates the metallic nature. The discrep-
ancy in the resistivity between present and previous
measurements could be derived from variant chemical
compositions in FeO (Fe0:94O; Knittle et al. [5], Fe0:96O;
this study). Indeed, the electrical conductivity of Fe0:91O is
twice as high as that of Fe0:94O at 1 bar and low tempera-
tures [16].
Our theoretical calculations also show metallization, are

consistent with our experimental observations, and reveal
the mechanism of metallization of B1 FeO. In the DFT-
DMFT method [17], the strong correlations on Fe ion are
treated by the DMFT, adding self-energy!ði!Þ to the DFT
Kohn-Sham Hamiltonian. The self-energy !ði!Þ contains
all Feynman diagrams local to the Fe ion. No downfolding
or other approximations were used, and the calculations are
all-electron as implemented in Ref. [18]. The self-
consistency matrix equation is Pði! þ ! $ HKS $
E!0Þ$ 1 ¼ ði! $ Eimp $ ! $ "Þ$ 1, where P is the projec-

tion from the crystal with the LAPW representation to the
Fe local orbitals,! is the chemical potential adjusted to get
the right number of electrons, HKS is the Kohn-Sham DFT
Hamiltonian, E is the embedding of the impurity into the
crystal (inverse of P), !0 ¼ ! $ EDC, where EDC is
the double counting correction, and Eimp and "ði!Þ are
the impurity levels and hybridization, respectively. The
impurity solver takes as input Eimp and "ði!Þ and delivers
!ði!Þ as the output. We used the Wu-Cohen GGA ex-
change correlation functional in HKS [19]. Brillouin zone
integrations were done over 1000 k points in the whole
zone in the self-consistent calculations and 8000 k points
for the density of states and conductance computations.
The impurity model was solved using continuous time
quantum Monte Carlo (CTQMC) [20,21]. On the order
of 100 DFT and DMFT cycles were required for self-
consistency. Calculations were fully self-consistent in
charge density, chemical potential and impurity levels,
the lattice and impurity Green’s functions, hybridizations,
and self-energies. The densities of states and conductivities
were computed from analytic continuation of the self-
energy from the imaginary frequency axis to real frequen-
cies using an auxiliary Green’s function and the maximum
entropy method, taking care that the zero frequency limit
of imaginary and real axis self-energies agree. The re-

FIG. 1. Phase diagram of FeO. Stabilities of rB1, insulating
B1, and metallic B1 phases are represented by solid, gray solid
and open symbols, respectively. Circles, squares and triangles
indicate each set of experiments (runs1–3). A metal-insulator
transition boundary shown as bold line is determined from
present data, and linearly extrapolated to the melting condition
(broken bold line). The estimated uncertainty in location of the
transition is shown by gray band. The melting curve and the
phase boundaries of FeO shown as broken lines are from
previous studies [1,7,35].
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sistent with that found by Gramsch et al. [22] for LDAþU
with the preferred U of 4.6 eV for the strained ground state
monoclinic structure.

Our calculations do not agree with the DMFT computa-
tions of Shorikov et al. [23] who found metallization at low
temperatures in FeO at 60 GPa persisting to over 140 GPa
with no spin crossover. Their computations were restricted
to Fe 3d orbitals only (downfolded), and the calculations
were not charge self-consistent. These approximations are
likely the reason for the difference in the results. Shorikov
et al. [23] claim agreement with the metallization observed
by Knittle et al. [5] but neglected the fact that latter experi-
ments were performed at high temperatures.

Struzhkin et al. [24] also observed possible metallization
in FeO at ambient temperatures at megabar pressures. It is
not known whether their sample converted to the B8 struc-
ture stable under those conditions or not, but it could have
been the B1 (or rB1) phase since at room temperature rB1

is general preserved metastably in the stability field of B8
phase [25,26]. The high-spin metallic region we find may
be consistent with those experiments, and lattice strain,
magnetic ordering, and nonstoichiometry could shift or
broaden the range of metallization. More recently Ozawa
et al. [26] investigated the relation between crystal struc-
ture and spin state of FeO at room temperature after laser
heating. They showed that high-spin rB1 FeO transformed
at 100 GPa into inverse B8 phase with high-spin state that
may be insulator, and then underwent normal B8 phase
with low-spin state and metallic nature at around 120 GPa.
Just recently, Fischer et al. [27] presented measurements of
emissivity of FeO at high pressures and temperatures that
show metallization consistent with our results
FeO adopts the metallic B1 phase in the Earth’s lower-

most mantle and the top of outer core conditions (Fig. 1),
and it could exist there [28– 31]. Electrical conductivity
of metallic B1 FeO obtained in this study is about

FIG. 3 (color online). Densities of states (DOS) at 300 and 2000 K at two volumes, 540 bohr3 and 405 bohr3. The DOS were
computed from the DFT-DMFT results. Pressure values were determined from the P-V-T equation of state of B1 FeO [2]. (a) There is a
gap at ambient conditions (the small integrated DOS in the gap is numerical from the analytic continuation). The gap is of Mott and
charge-transfer character, having both Fe d and O p states on both sides on the gap. (b) Under pressure (68 GPa) a high-spin to low-
spin transition occurs, as can be seen from the decrease in eg and increase in t2g occupancies (DOS below the Fermi level EF at 0).
(c) At high temperatures at low compression (13 GPa and 2000 K) the gap turns into a pseudogap, and FeO is a bad metal. (d) At high
temperatures and higher pressures (88 GPa and 2000 K) FeO is a good metal with no gap, or even a ‘‘filled gap’’ at EF.
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Metal-insulator transition in FeO (earth core)

Isostructural MIT in FeO predicted by DFT-DMFT theory.

Kenji Ohta, R. E. Cohen, et.al., PRL 108, 026403 (2012)

DMFT predicted MIT in FeO

High-spin to low spin 
transition occurs only in 
correct d6 valence state 

of iron.
high-spin : insulator 
low spin : metal



P21/n 
insulating

Importance of correct valence in RNiO3

S=1
fluctuating m.

small effective 
moment

Bond disproportionation: Ni1 is in d8 with S=1 while 
Ni2 +two ligand holes d8L2 with total S=0.

“Site	Selec)ve	Mo-	transi)on”,		
Hyowon Park, Andrew J. Millis, and Chris A. 
Marianetti, Phys. Rev. Lett. 109, 156402 (2012) .

The exact double-counting gives Ni d8 configuration.

G.	Sawatzky,	arXiv	1608.01645

Basic physical picture:

Haule & Pascut, ScientificReports7(2017)10375.

With two holes in the high-spin state, Hund’s coupling 
induces strong correlations and Mott physics.

The chemical picture suggest Ni d7 configuration.

Other approaches postulate d8 and 
can not justify without experiment.



Double-Counting

DC : intersection of DMFT 
and LDA approximation
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Double-Counting of Hartree

Exact Hartree Hartree term included

LDA approximation 

Exact Hartree: 
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Double counting to subtract is the DMFT approximation for the Hartree term:
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Notice that when this expression is written in orbital basis, it gives exactly the Hartree term, which appears in DMFT.
The LDA implementation includes the exact Hartree term Eq. 6, and DMFT includes the approximation Eq. 7.

When the two Luttinger-Ward functionals are added in LDA+DMFT, we must subtract the entire DMFT approxi-
mation for Hartree term Eq. 7, because this term was already accounted for by LDA exactly, hence no extra DMFT
term is needed to this order.

Next we consider the exchange term. The exact exchange takes the following form:
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However, the LDA method does not take into account the exact exchange term, but it approximates it with the
following approximation
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where ⇢0 is the charge density of the corresponding electron gas problem, namely,
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where f is the fermi function (at T = 0) and EF = (2⇡2⇢)2/3/(2m) .
Notice that the LDA exchange is obtained from Eq. 8 by replacing the density ⇢�(r, r0) of the solid by the simpler

density of the electron gas problem, ⇢0
�
. The only way the real solid and electron gas problem are linked is throuh

determination of EF of the corresponding electron gas problem.
The DMFT approximates the exact exchange Eq. 8 by the following truncation of variables,
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hence the DMFT includes the following exchange term
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Now, having both LDA and DMFT functionals for exchange written in the same form, Eq. 9 and Eq. 13, it becomes
clear how to perform LDA approximation on DMFT functional, or, DMFT approximation on LDA functional. This
is the double-counting term.

In the DMFT approximation on top of LDA functional Eq. 9, we need to replace V �=0
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the electron gas fermi level EF with ⇢local. When performing LDA approximation on the DMFT functional Eq. 13, we
replace real density P̂⇢ by ⇢0 of electron gas, and determine the fermi level EF by the density of the solid P̂⇢ = ⇢local.
In both cases, we arrive at the exact intersection of the two methods (for exchange term):
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We can continue the same derivation for the correlation term. The result is easiest to derive if we perform the
DMFT approximation on LDA functional. The resulting double-counting of LDA+DMFT is
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Double-Counting of Exchange
Exact Exchange: 

exchange of electron gas, 
matching electron density 

LDA approximation: 
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Notice that when this expression is written in orbital basis, it gives exactly the Hartree term, which appears in DMFT.
The LDA implementation includes the exact Hartree term Eq. 6, and DMFT includes the approximation Eq. 7.

When the two Luttinger-Ward functionals are added in LDA+DMFT, we must subtract the entire DMFT approxi-
mation for Hartree term Eq. 7, because this term was already accounted for by LDA exactly, hence no extra DMFT
term is needed to this order.
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�
. The only way the real solid and electron gas problem are linked is throuh

determination of EF of the corresponding electron gas problem.
The DMFT approximates the exact exchange Eq. 8 by the following truncation of variables,

⇢ ! P̂⇢ (11)

V �=0
c

! V �

c
(12)

hence the DMFT includes the following exchange term

EX

DMFT
= �1

2

X

�

Z
drdr0(P̂⇢�(r, r

0))(P̂⇢�(r
0, r0))V �

c
(|r� r0|) (13)

Now, having both LDA and DMFT functionals for exchange written in the same form, Eq. 9 and Eq. 13, it becomes
clear how to perform LDA approximation on DMFT functional, or, DMFT approximation on LDA functional. This
is the double-counting term.

In the DMFT approximation on top of LDA functional Eq. 9, we need to replace V �=0
c

with V �

c
and replace ⇢ in

the electron gas fermi level EF with ⇢local. When performing LDA approximation on the DMFT functional Eq. 13, we
replace real density P̂⇢ by ⇢0 of electron gas, and determine the fermi level EF by the density of the solid P̂⇢ = ⇢local.
In both cases, we arrive at the exact intersection of the two methods (for exchange term):

EX

DC
= �1

2

Z
drdr0⇢0

�
(r, r0)⇢0

�
(r0, r0)V �

c
(|r� r0|) (14)

where

⇢0(r, r0) =

Z
d3k

(2⇡)3
eik(r�r0)f(

k2

2m
� EF ) (15)

and

EF = (2⇡2P̂⇢)2/3/(2m) = (2⇡2P̂⇢local)
2/3/(2m).

We can continue the same derivation for the correlation term. The result is easiest to derive if we perform the
DMFT approximation on LDA functional. The resulting double-counting of LDA+DMFT is

�DFT+DMFT

DC
[⇢] = EH

V �
c
[P̂⇢] + EXC

V �
c
[P̂⇢]. (16)

3

�F

�Rµ

= Tr

✓
1

i! + µ� "k!n

�("k!n)

�Rµ

◆
� Tr(⇢

�(VKS � Vnuc)

�Rµ

) +
�Enuc�nuc

�Rµ

(32)

�Tr

✓
Gloc

�⌃� �VDC

�Rµ

◆
(33)

h jk!n |

0

@T + Vnuc + VH+XC +
X

mm0,Rµ

|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |

1

A | ik!ni = �ij"k!n,i (34)

h ik!n |

0

@T + Vnuc + VH+XC +
X

mm0,Rµ

|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |

1

A� "k!n,i| ik!ni = 0 (35)

h ik!n |

0

@�(T + Vnuc + VH+XC) +
X

mm0,Rµ

�(|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |)

1

A� �"k!n,i| ik!ni = 0 (36)

�"k!n,i =
X

Rµ,mm0

h ik!n |�µmi h�µ
m
|�(⌃� VDC)|�µm0i h�µm0 | ik!ni+ ... (37)

�(⌃� VDC)

Rµ

EH

DMFT
[⇢] =

1

2

Z
drdr0(P̂⇢(r))(P̂⇢(r0))VDMFT (r� r0) (38)

�DC,Hartree

DMFT
[{⇢}] = 1

2

Z
drdr0(P̂⇢(r))(P̂⇢(r0))VDMFT (r� r0) (39)

EH

VC
[⇢] =

1

2

Z
drdr0VC(|r� r0|)⇢(r)⇢(r0) (40)

VC ! VDMFT

Tr(
�"k!n

i! + µ� "k!n

) = Tr(| ik!ni
1

i! + µ� "k!n

h ik!n |
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(G
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(Gloc�(⌃� VDC)) + ...

&

3

�F

�Rµ

= Tr

✓
1

i! + µ� "k!n

�("k!n)

�Rµ

◆
� Tr(⇢

�(VKS � Vnuc)

�Rµ

) +
�Enuc�nuc

�Rµ

(32)

�Tr

✓
Gloc

�⌃� �VDC

�Rµ

◆
(33)

h jk!n |

0

@T + Vnuc + VH+XC +
X

mm0,Rµ

|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |

1

A | ik!ni = �ij"k!n,i (34)

h ik!n |

0

@T + Vnuc + VH+XC +
X

mm0,Rµ

|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |

1

A� "k!n,i| ik!ni = 0 (35)

h ik!n |

0

@�(T + Vnuc + VH+XC) +
X

mm0,Rµ

�(|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |)

1

A� �"k!n,i| ik!ni = 0 (36)

�"k!n,i =
X

Rµ,mm0

h ik!n |�µmi h�µ
m
|�(⌃� VDC)|�µm0i h�µm0 | ik!ni+ ... (37)

�(⌃� VDC)

Rµ

EH

DMFT
[⇢] =

1

2

Z
drdr0(P̂⇢(r))(P̂⇢(r0))VDMFT (r� r0) (38)

�DC,Hartree

DMFT
[{⇢}] = 1

2

Z
drdr0(P̂⇢(r))(P̂⇢(r0))VDMFT (r� r0) (39)

EH

VC
[⇢] =

1

2

Z
drdr0VC(|r� r0|)⇢(r)⇢(r0) (40)

EX

VDMFT
[⇢] = �1

2

Z
drdr0(P̂⇢(r, r0))(P̂⇢(r0, r))VDMFT (|r� r0|) (41)

VC ! VDMFT

Tr(
�"k!n

i! + µ� "k!n

) = Tr(| ik!ni
1

i! + µ� "k!n

h ik!n |
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(G
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(Gloc�(⌃� VDC)) + ...

3

�F

�Rµ

= Tr

✓
1

i! + µ� "k!n

�("k!n)

�Rµ

◆
� Tr(⇢

�(VKS � Vnuc)

�Rµ

) +
�Enuc�nuc

�Rµ

(32)

�Tr

✓
Gloc

�⌃� �VDC

�Rµ

◆
(33)

h jk!n |

0

@T + Vnuc + VH+XC +
X

mm0,Rµ

|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |

1

A | ik!ni = �ij"k!n,i (34)

h ik!n |

0

@T + Vnuc + VH+XC +
X

mm0,Rµ

|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |

1

A� "k!n,i| ik!ni = 0 (35)

h ik!n |

0

@�(T + Vnuc + VH+XC) +
X

mm0,Rµ

�(|�µ
m
i h�µ

m
|⌃i!n � VDC |�µm0i h�µm0 |)

1

A� �"k!n,i| ik!ni = 0 (36)

�"k!n,i =
X

Rµ,mm0

h ik!n |�µmi h�µ
m
|�(⌃� VDC)|�µm0i h�µm0 | ik!ni+ ... (37)

�(⌃� VDC)

Rµ

EH

DMFT
[⇢] =

1

2

Z
drdr0(P̂⇢(r))(P̂⇢(r0))VDMFT (r� r0) (38)

�DC,Hartree

DMFT
[{⇢}] = 1

2

Z
drdr0(P̂⇢(r))(P̂⇢(r0))VDMFT (r� r0) (39)

EH

VC
[⇢] =

1

2

Z
drdr0VC(|r� r0|)⇢(r)⇢(r0) (40)

EX [⇢] = �1

2

Z
drdr0⇢(r, r0)⇢(r0, r)VC(|r� r0|) (41)

EX

VDMFT
[⇢] = �1

2

Z
drdr0(P̂⇢(r, r0))(P̂⇢(r0, r))VDMFT (|r� r0|) (42)

VC ! VDMFT

Tr(
�"k!n

i! + µ� "k!n

) = Tr(| ik!ni
1

i! + µ� "k!n

h ik!n |
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(G
X

Rµ,mm0

|�µ
m
i h�µ

m
|�(⌃� VDC)|�µm0i h�µm0 |) + ...

= Tr(Gloc�(⌃� VDC)) + ...

DMFT approximation 
density projected &
 interaction screened

3

Notice that when this expression is written in orbital basis, it gives exactly the Hartree term, which appears in DMFT.
The LDA implementation includes the exact Hartree term Eq. 6, and DMFT includes the approximation Eq. 7.

When the two Luttinger-Ward functionals are added in LDA+DMFT, we must subtract the entire DMFT approxi-
mation for Hartree term Eq. 7, because this term was already accounted for by LDA exactly, hence no extra DMFT
term is needed to this order.

Next we consider the exchange term. The exact exchange takes the following form:
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where f is the fermi function (at T = 0) and EF = (2⇡2⇢)2/3/(2m) .
Notice that the LDA exchange is obtained from Eq. 8 by replacing the density ⇢�(r, r0) of the solid by the simpler

density of the electron gas problem, ⇢0
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. The only way the real solid and electron gas problem are linked is throuh
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Now, having both LDA and DMFT functionals for exchange written in the same form, Eq. 9 and Eq. 13, it becomes
clear how to perform LDA approximation on DMFT functional, or, DMFT approximation on LDA functional. This
is the double-counting term.

In the DMFT approximation on top of LDA functional Eq. 9, we need to replace V �=0
c

with V �

c
and replace ⇢ in

the electron gas fermi level EF with ⇢local. When performing LDA approximation on the DMFT functional Eq. 13, we
replace real density P̂⇢ by ⇢0 of electron gas, and determine the fermi level EF by the density of the solid P̂⇢ = ⇢local.
In both cases, we arrive at the exact intersection of the two methods (for exchange term):
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We can continue the same derivation for the correlation term. The result is easiest to derive if we perform the
DMFT approximation on LDA functional. The resulting double-counting of LDA+DMFT is
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Intersection of both approximations: apply both approximations to the functional 
1) Interaction is screened in DC term
2) Use projected density in DC term
3) Replace exact expression by electron gas expression 

Exact Exchange: 

exchange of electron gas, 
matching electron density 

LDA approximation: 

Double-Counting of Exchange

3

Notice that when this expression is written in orbital basis, it gives exactly the Hartree term, which appears in DMFT.
The LDA implementation includes the exact Hartree term Eq. 6, and DMFT includes the approximation Eq. 7.

When the two Luttinger-Ward functionals are added in LDA+DMFT, we must subtract the entire DMFT approxi-
mation for Hartree term Eq. 7, because this term was already accounted for by LDA exactly, hence no extra DMFT
term is needed to this order.

Next we consider the exchange term. The exact exchange takes the following form:
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However, the LDA method does not take into account the exact exchange term, but it approximates it with the
following approximation
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where ⇢0 is the charge density of the corresponding electron gas problem, namely,
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where f is the fermi function (at T = 0) and EF = (2⇡2⇢)2/3/(2m) .
Notice that the LDA exchange is obtained from Eq. 8 by replacing the density ⇢�(r, r0) of the solid by the simpler

density of the electron gas problem, ⇢0
�
. The only way the real solid and electron gas problem are linked is throuh

determination of EF of the corresponding electron gas problem.
The DMFT approximates the exact exchange Eq. 8 by the following truncation of variables,
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hence the DMFT includes the following exchange term
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Now, having both LDA and DMFT functionals for exchange written in the same form, Eq. 9 and Eq. 13, it becomes
clear how to perform LDA approximation on DMFT functional, or, DMFT approximation on LDA functional. This
is the double-counting term.

In the DMFT approximation on top of LDA functional Eq. 9, we need to replace V �=0
c

with V �

c
and replace ⇢ in

the electron gas fermi level EF with ⇢local. When performing LDA approximation on the DMFT functional Eq. 13, we
replace real density P̂⇢ by ⇢0 of electron gas, and determine the fermi level EF by the density of the solid P̂⇢ = ⇢local.
In both cases, we arrive at the exact intersection of the two methods (for exchange term):
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We can continue the same derivation for the correlation term. The result is easiest to derive if we perform the
DMFT approximation on LDA functional. The resulting double-counting of LDA+DMFT is
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DMFT approximation 
density projected &
 interaction screened

3

Notice that when this expression is written in orbital basis, it gives exactly the Hartree term, which appears in DMFT.
The LDA implementation includes the exact Hartree term Eq. 6, and DMFT includes the approximation Eq. 7.

When the two Luttinger-Ward functionals are added in LDA+DMFT, we must subtract the entire DMFT approxi-
mation for Hartree term Eq. 7, because this term was already accounted for by LDA exactly, hence no extra DMFT
term is needed to this order.

Next we consider the exchange term. The exact exchange takes the following form:
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However, the LDA method does not take into account the exact exchange term, but it approximates it with the
following approximation
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where ⇢0 is the charge density of the corresponding electron gas problem, namely,
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where f is the fermi function (at T = 0) and EF = (2⇡2⇢)2/3/(2m) .
Notice that the LDA exchange is obtained from Eq. 8 by replacing the density ⇢�(r, r0) of the solid by the simpler

density of the electron gas problem, ⇢0
�
. The only way the real solid and electron gas problem are linked is throuh

determination of EF of the corresponding electron gas problem.
The DMFT approximates the exact exchange Eq. 8 by the following truncation of variables,
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hence the DMFT includes the following exchange term
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Now, having both LDA and DMFT functionals for exchange written in the same form, Eq. 9 and Eq. 13, it becomes
clear how to perform LDA approximation on DMFT functional, or, DMFT approximation on LDA functional. This
is the double-counting term.

In the DMFT approximation on top of LDA functional Eq. 9, we need to replace V �=0
c

with V �

c
and replace ⇢ in

the electron gas fermi level EF with ⇢local. When performing LDA approximation on the DMFT functional Eq. 13, we
replace real density P̂⇢ by ⇢0 of electron gas, and determine the fermi level EF by the density of the solid P̂⇢ = ⇢local.
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Notice that when this expression is written in orbital basis, it gives exactly the Hartree term, which appears in DMFT.
The LDA implementation includes the exact Hartree term Eq. 6, and DMFT includes the approximation Eq. 7.

When the two Luttinger-Ward functionals are added in LDA+DMFT, we must subtract the entire DMFT approxi-
mation for Hartree term Eq. 7, because this term was already accounted for by LDA exactly, hence no extra DMFT
term is needed to this order.
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EDMFTF Functional:



• Stationary free energy functional (within Embedded DMFT approach) for structural 

optimization, PRL115, 256402 (2015).

PART 2 EDMFTF

PART 1 EDMFTF
• Projectors and locality of correlations

• Exact double-counting of DFT+EDMFTF



PART 1 EDMFTF

• Stationary free energy functional (within Embedded DMFT approach) for structural 

optimization, PRL115, 256402 (2015).

PART 2 EDMFTF

• Projectors and locality of correlations

• Exact double-counting of DFT+EDMFTF

• Implementation of Forces within E-DMFT functional for optimization of internal 

structural parameter, (Phys. Rev. B 49, 195146 (2016), K. Haule, G.L. Pascut)

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.195146


DFT :  The best Independent Particle Approach

Very useful : each electron interacts with an effective potential that mimics to some extent the 
effects of the other electrons.

We do not target the wave function, but rather the charge density, or the single-particle 
Green’s function (spectral function). The two particle correlation function is almost 
always enough, rarely we need to go beyond the two particle correlation function.

Independent particle approach (within DFT) gives total energy and charge density very well, 
spectral should be unphysical, but in and simple metals and band insulators it is quite good.



18 Signatures of electron correlation

Figure 2.1. Volume per atom of the lanthanides (4f ) and actinides (5f ) compared with 4d transition
metals as a function of fractional occupation of the d or f states. The smooth parabolic curve for the
4d series indicates a gradual filling of the d bands with maximum bonding at half-filling. In
contrast, the 4f series lanthanides retain atomic-like character with little effect on the volume as the
f shell is filled. (The jumps for Eu and Yb also support the atomic-like picture with non-monotonic
changes in 4f occupation, denoted by the label “+2,” due to added stability of the half-filled and the
filled shells.) The anomalous elements are Ce and Pu; both have complex phase diagrams (see
Fig. 20.1 for Ce), spectra (e.g., Fig. 2.9), and magnetic properties that are prototypes of strong
interactions and signatures of correlation. (Figure provided by A. K. McMahan.)

established that the binding energy of sodium is off by a factor of 2 if correlation is not
included. The question is not whether to include interactions, but how to include them.

Consider the trends in Fig. 2.1, which show the volume per atom for 4d, 4f , and 5f
transition metal elements. For the 4d series, the smooth variation as a function of atomic
number indicates the filling of delocalized states with a gradual evolution of the density
and a maximum binding energy when the band is half-filled. Already in the 1970s it was
established that this is well described by DFT in the local density approximation (LDA)
[48]. But the figure also shows the very different behavior of the lanthanide elements where
the volume hardly changes, indicating that the 4f states are localized and do not partici-
pate in the bonding. However, two elements, Ce and Pu, are anomalous; here the actinides
change from a delocalized to a localized behavior. A more complete picture emerges from
the phase diagram as a function of temperature and pressure for Ce, shown in Fig. 20.1.
There is a first-order transition that terminates in a critical point where the two types of
behavior must merge into one. Taken together, the strong temperature dependence, mag-
netic behavior, excitation spectra (e.g., for Ce shown in Fig. 2.9), and many other properties
point to strong effects of correlation in the lanthanides and actinides.

Van der Waals dispersion interaction

A compelling example of correlation is the weak attraction between atoms and molecules,
even when there is no covalent bonding or average electrostatic interaction [49]. The

DFT STRUCTURAL PREDICTIONS: SIZE OF THE IONS / UNIT CELL

3d elements 4d elements

4f and 5f

crosses: experiment
black lines: DFT

DFT predicts very 
accurately the size of unit 
cells in 3d&4d elements.

slight over-binding
 by DFT

4f elements are essentially 
localized - no binding versus filling.

essentially atomic physics.

early 5f elements are quite 
itinerant, beyond Pu very 
localized=> DFT fails.

Conclusion: LDA/GGA pretty 
good in elemental solids, 
except in 4f,5f.
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lattice constant in Mott insulating FeO

NaCl structure

Missing local 
fluctuating moments

Overbinding problem
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GGA for Mott Insulator FeO

No local, fluctuating 
moments

Particularly bad for 
Mott insulators

Ordered moments not 
large enough either

PBE underestimates 
V

Ordered moments 
improve, not good 
enough.

Even PBE 
underestimates volume.
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No local, fluctuating 
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Can we consistently improve 
energies and spectra of 

correlated solids?

Question
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The two expressions match within Monte Carlo statistical
error. The lower pannel shows the entropy computed by
both methods. The e�ciency of the “impurity F” method
is reflected in the fact that for almost all the point in the
curve (except the lowest few temperatures T/D < 0.02)
a single calculation is needed. Namely, to evaluate the
integral in Eq. 19 we need to calculate the energy E of
the lattice model at all temperatures and than carry out
the integral. On the other hand, the formula Eq. 20 does
not couple di↵erent temperature together, and it requires
only the knowledge of the Green’s function and Fimp at
a single temperature. For T/D < 0.02 we were able to
calculate Fimp from Eq.5 of the main text. For lower
temperatures, only a few extra impurity calculations in
the temperature range T < T 0 < 0.02 are needed. In
Fig. 1 we also display the impurity part of the entropy,
defined by Fimp = Eimp�TSimp. It is of course expected
that the impurity carries most of the entropy of the sys-
tem, however, there is also extra contribution due to the
coupling of the impurity to the neighboring sites on the
lattice, which seems to consistently increase the entropy
of the system.

Finally we notice that the same parameter regime was
studies in the manuscript by S. L. Skornyakov et. al. [16].
Our results disagree with those of Ref. [16], in particu-
lar, the entropy at high temperature in the metallic state
saturates at log(4) (not shown in the figure) and not at
log(2) value as in Ref. [16]. This is because at high tem-
peratures all four local states can be accessed leading to
4 degrees of freedom per site. We notice that a shallow
plateau appears at S = log(2), but no saturation.

COMPARISON WITH STANDARD
FUNCTIONALS

Here we compare total energy of LDA, PBE [17],
and PBEsol [18] functionals with the free energy of
LDA+DMFT.

In most weakly correlated solids, LDA underesti-
mates lattice constants on average for 1.6%, while
PBE [17] overestimates them for approximately 1%. [19]
PBEsol [18] was designed to predict most accurate vol-
umes in solids, and it typically falls in-between LDA and
PBE.

In Fig. 2 we compare LDA+DMFT free energy in
SrVO3 with the total energy computed by other function-
als. Both LDA+DMFT and PBEsol underestimate lat-
tice constant for approximately 0.6%, while LDA under-
estimates it for 1.5%, and PBE overestimates for 0.7%.
Hence predictions of standard functionals in the case of
SrVO3 are quite in line with standard performance in
weakly correlated solids. Perhaps, this is not very sur-
prising given that SrVO3 is a metallic moderately corre-
lated system.

In FeO (Fig. 3), all standard functionals severally un-

FIG. 1: Free energy and Entropy for the single orbital Hub-
bard on the Bethe lattice in the correlated metallic regime
(U/D = 2). Upper panel shows the free energy computed
from total energy using standard thermodynamic relations
Eq. 19 (“thermodynamics”), and by using impurity free en-
ergy in Eq. 20 (“impurity F”). The lower panel shows entropy
S computed by the two methods. The same panel also shows
the impurity part of the entropy Simp to emphasize that most
of the entropy is coming from the impurity part, and very
small contribution comes from the DMFT self-consistency
condition. The red dots show the points, which were com-
puted by a single DMFT calculation.

FIG. 2: Free energy of LDA+DMFT for SrVO3 compared
with total energy of other standard DFT functionals.

derestimate volume in the paramagnetic state. For ex-
ample the lattice constants with LDA, PBEsol and PBE
are 7.7%, 6.5% and 5.1% too small, far outside the stan-
dard performance of these functionals in weakly corre-
lated solids.

The predictions are improved when the AFM long
range order is allowed. LDA and PBEsol still underes-
timate lattice constant for 3.6%, and 2.3% respectively.
On the other hand PBE is this time quite close to the
experiment (underestimates for 0.7%). In comparison
LDA+DMFT underestimates it for only 0.16%. It is
quite clear that the excellent prediction of AFM-PBE

SrVO3 is a correlated metal with m*/m~3.
DFT predicts its volume quite right.

LDA+DMFT and the best DFT 
functional are in good agreement.

In many correlated metals DFT 
may not give good spectra, but the 
structure is quite good.

cubic perovskite:

This is typically not the case in Mott insulator. 
DFT overbids, and does not account for subtle 
structural distortions, essential for the Mott 
transition.
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Hence, the screened Coulomb interaction has the Slater form with the Slater integrals being

F k = (2k + 1)

Z 1

0
dr

Z 1

0
dr0u2

l
(r)u2

l
(r0)

Ik+1/2(�r<)Kk+1/2(�r>)
p

r< r>
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LDA+DMFT
ARPES
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FIG. 4: (Color online) Energy- and momentum-dependent
spectral weight near the Fermi level. (a) Experimental inten-
sity plot for SrVO3. Peak positions of the EDCs and MDCs
are shown by filled circles and open squares, repectively. The
V 3d bands from the LDA calculation [26] and tight-binding
calculation are also shown by solid thick and thin curves, re-
spectively. Broken curves are LDA bands renormalized by a
factor of 2. (b) Intensity plot of spectral function from DMFT
calculation with U/D = 1.5.

0.5, the experimental band dispersions are well repro-
duced as shown in Fig. 4 (a). This indicates that elec-
tron correlation strength is almost independent of mo-
mentum and of the dxy, dyz or dzx bands of the degen-
erate t2g band. The kink in the band dispersion is weak
and broad, if exists, but the curvature changes its sign
around � �0.2 eV as predicted by a recent DMFT cal-
culation [14]. As for the incoherent part located around
�1.5 eV, one can see a weak but finite (� 0.1 eV) disper-
sion. The intensity of the incoherent part is momentum
dependent and becomes strong within the Fermi surface.

Figure 4 (b) shows the intensity plot of the spectral
functions from the DMFT calculation [25]. The DMFT

self-energy was computed using a single band model in
the present case. One obtains agreement between exper-
iment and theory when the correlation strength of U/D
is set to 1.5, where D is the bandwidth of the occupied
part of the non-interacting band. Although the DMFT
calculation predicts that an incoherent part disperses as
strongly as the bare band, the experimental dispersion of
the incoherent part was weaker. This is probably due to
the overlapping dispersiveless dyz band along the � - X
direction, which has been neglected in the present DMFT
calculation. In future, DMFT + LDA calculation which
takes into account the three-fold degenerate of the t2g

orbitals are necessary to quantitatively understand the
ARPES results.

In conclusion, we have studied the electronic structure
of SrVO3 thin films by means of ARPES. Due to the
“transparent” protective surface V5+ oxide layer, bulk-
like V 3d band structure was successfully observed. We
have determined the occupied quasiparticle width of the
V 3d band to be 0.44 ± 0.02 eV. The band dispersions in
the coherent part were reproduced by the renormalized
LDA bands with the global mass renormalization factor
of � 2. There was a weak but finite dispersion in the
incoherent part and its intensity was stronger within the
Fermi surface. The experimental dispersions and intensi-
ties of the coherent part as well as of the incoherent part
were reproduced by momentum-resolved DMFT calcu-
lation. Since we have employed the single-band model
for the DMFT calculation, multi-orbital e↵ect of the t2g

bands remains to be studied in future studies.
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tron correlation strength is almost independent of mo-
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Figure 4 (b) shows the intensity plot of the spectral
functions from the DMFT calculation [25]. The DMFT

self-energy was computed using a single band model in
the present case. One obtains agreement between exper-
iment and theory when the correlation strength of U/D
is set to 1.5, where D is the bandwidth of the occupied
part of the non-interacting band. Although the DMFT
calculation predicts that an incoherent part disperses as
strongly as the bare band, the experimental dispersion of
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direction, which has been neglected in the present DMFT
calculation. In future, DMFT + LDA calculation which
takes into account the three-fold degenerate of the t2g

orbitals are necessary to quantitatively understand the
ARPES results.

In conclusion, we have studied the electronic structure
of SrVO3 thin films by means of ARPES. Due to the
“transparent” protective surface V5+ oxide layer, bulk-
like V 3d band structure was successfully observed. We
have determined the occupied quasiparticle width of the
V 3d band to be 0.44 ± 0.02 eV. The band dispersions in
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of � 2. There was a weak but finite dispersion in the
incoherent part and its intensity was stronger within the
Fermi surface. The experimental dispersions and intensi-
ties of the coherent part as well as of the incoherent part
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FIG. 5: Spectral function of SrVO3 within LDA+DMFT at
equilibrium volume compared with ARPES spectra of Ref. 20.

This is a product of two one-dimensional integrals and is
very easy to e�ciently implement.

It is clear from Eq. 24 that � uniquely determines
all F k’s, and furthermore even one Slater integral (F 0)
uniquely determines �. This is because F k are monotonic
functions of � and take the value of bare F k at � = 0 and
vanish at large �. Hence given F 0, the screening length
� is uniquely determined, and hence other higher order
F k are uniquely determined as well.

MASS RENORMALIZATION OF METALLIC
SrV O3

Even though the Coulomb interaction in SrVO3 is U =
10 eV, it gives a relatively moderate mass enhancement
over DFT band structure in all-electron LDA+DMFT
implementation. This is because the interaction is
severely screened by hybridization of d states with oxy-
gen p states, and because the t2g orbitals are in mixed-
valence state (nt2g ⇡ 1.5) [3, 4]. In Fig. 5 we show the
LDA+DMFT spectral function as well as recent APRES
measurements [20]. The mass renormalization in the t2g

orbital is m⇤
t2g

/mband ⇡ 2 and in eg is m⇤
t2g

/mband ⇡ 1.3
The agreement between ARPES spectra (the experimen-
tal signal is color coded on the right) and LDA+DMFT
spectral function A(k, !) (plotted on the left) is very
good, both in the quasiparticle band (between �0.5 eV
and 0.5 eV) and Hubbard satellite at �1.5 eV.
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Figure 2.17. Photoemission spectra for the 3d states in SrVO3 as a function of the photon energy
[100]. The spectra are normalized by the incoherent spectral weight. With increasing photon energy
the experiment becomes more bulk sensitive and the quasi-particle/satellite ratio increases,
suggesting weaker correlation effects. Similar studies were done for other vanadates [100] and for
V2O3 [93, 101] to establish that the data in Fig. 2.15 are for the bulk. (From [100].)

and 2.8. The quantity of interest is the ratio between the quasi-particle and sideband inten-
sities, as a measure of the importance of interactions. A strong photon energy dependence
can be observed. The data for the highest photon energy is most representative of the bulk.
Since the sideband-over-quasi-particle ratio is highest at the lowest photon energy (most
surface sensitive), this suggests that, as intuitively expected, interaction effects are stronger
at the surface than in the bulk.

2.10 Wrap-up

The examples in this chapter have been chosen to illustrate the essential role of corre-
lation, defined as the effect of interaction beyond that contained in Hartree–Fock, in the
properties of materials. In every case there are features that cannot be explained by an
independent-particle approach, not even in principle. The purpose of this overview is to
provide motivation for theoretical methods that can provide understanding and quantita-
tive results in a unified way. These are but a handful of the phenomena due to correlation.
Much more could be included, and much more is yet to be discovered.

Spectra & structure of correlated oxides



4

FIG. 2: (Color online): a) E(V) and F(V) for FeO from
Eq. 1 and 4, respectively. Entropy term TSimp(V ) is large
but almost constant. (b) theoretical and experimental p(V ).
Filled and empty circles are from Refs. 43 and 44, respectively.
(c) Impurity entropy Eq. 7 for representative volumes. The
degeneracy of the t2g shell above 1000K is apparent.

FIG. 3: (Color online): a) E(V) and F(V) for elemental
Cerium from Eq. 1 and 4, respectively. Data are presented for
T=400 and 900K. (b) Entropy Simp(V ) is large and changes
dramatically accros the transiton. (c) theoretical and experi-
mental [45] p(V ) diagram.

shape, concomitant with the appearance of the quasipar-
ticle peak at temperature as high as 1500 K, signaling the
first order transition. Using di↵erent implementation of
the same method, Amadon et.al [27, 46] proposed that
the transition is entropy driven, and that the total en-
ergy is featureless with the minimum corresponding to
low volume ↵-phase. Only the addition of the entropy
term moves the minimum to the larger volume of �-phase.
In this picture the transition at low temperatures, where
the entropy becomes small and cannot drive the tran-
sition, is intrinsically absent. Yet another proposal was
recently put forward on the basis of LDA+Gutzwiller cal-
culations [47, 48], in which the transition is present even
at zero temperature, but the transition occurs at negative
pressure. The transition is thus detectable even in the to-
tal energy, in the absence of entropy, and becomes second
order at T = 0. In the same method, the finite temper-
ature transition is first order, and the double-minimum
shape of free energy becomes most pronounced at very
high temperature (1500 K) [48].

Our LDA+DMFT results for Ce are plotted in Fig. 3.
The total energy curve at 400 K clearly shows a region
of very flat shape in the region between the ↵-� volume.
Indeed the derivative of the energy �dE/dV displayed
in Fig. 3(c) shows a clear region of zero slope around
1 GPa. This is consistent with results of Lanata et al. [47]
finding very similar zero slope of �dE/dV at zero tem-
perature, but is inconsistent with Ref. 27, which finds
no feature in total energy. It is also inconsistent with
McMahan et.al [11] showing clear double-peak in total
energy. On the other hand, the addition of entropy sub-
stantially increase the region of soft volume, as suggested
by Amadon et.al [46]. Indeed the change of the entropy
between the two phases is of the order of 0.9kB , which
is consistent with experimental estimations of 30 meV at
400K [49]. The physical mechanism behind this large
entropy change and unusual volume dependence of en-
ergy is in very fast variation of coherence temperature,
as suggested in Refs. [11, 46], and conjectured in Kondo
volume collapse theory [50]. The phase transition in our
calculation occurs around 1.6 GPa, which is not far from
experimentally determined critical pressure of 1.25 GPa
at T = 400 K. The free energy barrier in our calculation
is however extremely small, and no clear double peak
of F (V ) or negative slope of �dF/dV can be detected
within our 1 meV precision of energies. This is similar to
results of Ref. 48 at 400 K, but di↵erent from Ref. 11.
While the start of the transition region in ↵-phase is
in good agreement with experiment, the �-phase vol-
ume is underestimated in our calculation. We believe
that the addition of phonon entropy is needed to further
increase the transition region, and establish larger free
energy barrier between the two phases. Experimentally,
above 460K the ↵ � � phase transition ends with the fi-
nite temperature critical point. Our calculation at high
temperature 900K shows that the signature of the phase

9

To add TSimp at low temperatures, we however need
a few extra impurity runs. The method of computing
TSimp is explained in the main text, and requires the
impurity energy at a few temperatures. An alternative
to this approach is to compute TSimp from so called
”flat-histogram sampling method” [54], which is also
done as postprocessing on self-consistent LDA+DMFT
hybridization �.

Perhaps, the most challenging term in Eq. 19 to com-

pute is Tr log(G), which requires eigenvalues (but not
eigenvectors) of the LDA+DMFT eigenvalue problem.
We first diagonalize

(�r2 + Vext + VH + Vxc + ⌃(i!n) � Vdc) i,k,!n =

= "i,k,!n i,k,!n .(20)

and then evaluate

Tr log(G) + µN = T

X

i!n,i,k,�

(log("i,k,!n � i!n � µ) � log("i,k,1 � i!n � µ)) � T

X

i,k,�

log(1 + e
��("i,k,1�µ)) + µN(21)

FIG. 4: Free energy of LDA+DMFT for SrVO3 compared
with total energy of other standard DFT functionals.

Here it becomes apparent that if ⌃(i!n) is frequency in-
dependent, the first term in the brackets vanishes, while
the second term gives (at T = 0) the sum of eigenvalues

Tr log(G) + µN !U=0!
X

i,k,�

✓("i,k < µ) "i,k,

the well known DFT contribution to the total energy.

COMPARISON WITH STANDARD
FUNCTIONALS

Here we compare total energy of LDA, PBE [55],
and PBEsol [56] functionals with the free energy of
LDA+DMFT.

In most weakly correlated solids, LDA underestimates
lattice constants on average for 1.6%, while PBE [55]
overestimates them for approximately 1%. [2] PBEsol [56]
was designed to predict most accurate volumes in solids,
and it typically falls in-between LDA and PBE.

In Fig. 4 we compare LDA+DMFT free energy in
SrVO3 with the total energy computed by other function-
als. Both LDA+DMFT and PBEsol underestimate lat-
tice constant for approximately 0.6%, while LDA under-

FIG. 5: Free energy of LDA+DMFT for FeO compared
with total energy of other standard DFT functionals. Upper
(lower) panel shows non-magnetic (antiferromagnetic) DFT
calculation. LDA+DMFT results are obtained at 300K in
paramagnetic state.

estimates it for 1.5%, and PBE overestimates for 0.7%.
Hence predictions of standard functionals in the case of
SrVO3 are quite in line with standard performance in
weakly correlated solids. Perhaps, this is not very sur-
prising given that SrVO3 is a metallic moderately corre-
lated system.

In FeO (Fig. 5), all standard functionals severally un-
derestimate volume in the paramagnetic state. For ex-
ample the lattice constants with LDA, PBEsol and PBE
are 7.7%, 6.5% and 5.1% too small, far outside the stan-
dard performance of these functionals in weakly corre-
lated solids.

The predictions are improved when the AFM long
range order is allowed. LDA and PBEsol still underes-
timate lattice constant for 3.6%, and 2.3% respectively.

paramagnetic Mott insulator FeO
All DFT methods underestimate the volume (overbind) 
because of missing fluctuating moments. 
Ordered moments improve, but not good enough.

LDA+DMFT correct gap and volume.

Mott insulators and strongly correlated 
metals require
non-perturbative treatment like DFT+DMFT.DTF-DMFT: Haule & Birol, PRL 115, 256402 (2015).

NaCl structure
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FIG. 2. (Color online) (a) Maximum and Fermi surface average
of deformation potentials (D) for the A1g distortion computed in
DFT-DMFT, and DFT as a function of pressure indicates the presence
of strong EPC in FeSe; inset shows deformation potential as a function
of EF at P = 0. (b) Demonstration of huge local electron-lattice
coupling for the A1g distortion in our DFT-DMFT computations at
P = 0 GPa for a selective part of the Brillouin zone; red and blue
lines represent GGA bands. The common Fermi energy is considered
for the equilibrium position and denoted by the single horizontal line
for both DFT and DFT-DMFT methods.

DMFT is from the electron pocket centered at the M point.
Dm also strongly depends on the EF . The inset of Fig. 2(a)
shows the behavior of maximum and average values of D as a
function of EF at P = 0 calculated with DFT-DMFT. So the
movement of EF due to defect or pressure can significantly
change the FS topology and hence the D.

The momentum resolved spectral function A(ω,k) is shown
in Fig. 2(b) for both equilibrium position and A1g distortion
between the high symmetric points, where the most sensitive
band crosses the EF . The solid red and blue lines represent
corresponding GGA bands for equilibrium position and A1g

distortion, respectively. From Fig. 2(b), we notice that at
P = 0, the shift in energy (δE) over the atomic displacement
of 0.0276 Å is ∼0.12 eV in DFT-DMFT and ∼0.04 eV in

GGA, respectively. So as reflected from Fig. 2, the D is about
three times higher in DFT-DMFT for this particular region
of the Brillouin zone. If we notice carefully in Fig. 2(b), the
shift of the bands due to A1g distortion is very nonuniform
in DFT-DMFT; a strong deformation potential is noticed only
in # to Z region, while for the other part of the Brillouin
zone, deformation potential is found to be small. This leads
to a strong nonuniform EPC at P = 0, which is reflected in
Fig. 2(a) where maximum D is found to be about three times
higher than the average. We found this similar nonuniform
EPC for P = 1.4, 2.6, and −2.0 GPa.

We estimate λ using D (see Supplemental Material [60] for
details). While the average λ is still small, the maximum λ in
DFT-DMFT is found to be 0.98 at P = 0. At P = 2.6 GPa,
the maximum λ reaches 1.159. We found that only certain
electronic states have very strong λ, while the average λ is not
strong enough to explain 37 K. So the conventional electron-
phonon mechanism seems unlikely. On the other hand, this also
indicates that local EPC can be important and one can use a po-
laron model, where a single electron can strongly couple with
the lattice and form polarons. Formation of polarons has been
experimentally found in both Fe superconductors [42,63,64]
and cuprates [49]. The anomalous temperature dependence of
the local Fe-As displacement, observed in Ref. [45], indicates
that local rather than global electron-lattice interaction is
present in Fe-based superconductors and as suggested in
Ref. [48], polaron formation is responsible for the observed
anomalies [45]. Though the formation of polarons depends
on a lot of factors, such as the band filling, temperature,
EPC strength, phonon frequency, etc., our results suggest
the use of a polaron model. We consider the electronic state
corresponding to maximum λ (∼1) forms a polaron, which is
a quasiparticle consisting of an electron and the surrounding
lattice distortion. Then the polaronic binding energy (Ep)
will linearly depend [65,66] on maximum λ and hence on
the square of the maximum deformation potential. Taking
the polaronic band into account, Alexandrov and Mott [65]
described that Tc exponentially depends on the function of
Ep. Under hydrostatic pressure, we found that electronic
properties change monotonically, while only |Dm|2 (and hence
Ep) initially grows (up to 3.4 GPa) and then drops, similarly to
experimental Tc. This indicates that a strong local EPC plays
an important role in Fe-based superconductors.

It is important to mention that Tc was found to increase
rapidly for the low pressure range (0–3 GPa) and can reach
up to 27 K at 1.48 GPa [67]. The disagreement in the
pressure dependence of experimental Tc and our DFT-DMFT
calculation of maximum D can be due to the presence
of the mixed phase in low temperature crystal structure
in experiment, while our calculations are based on room
temperature tetragonal (PbO-type) structure.

The behavior of the DFT-DMFT deformation potential
with pressure hints that superconductivity in FeSe may have
partially phonon or polaron origin and local EPI plays a
very important role in superconductivity in the unconventional
superconductors. Analysis of the contributions of each many-
body state reveals that charge fluctuations due to correlations
and charge transfer from Fe to Se are coupled to the A1g mode.

Our computations predict that applied pressure significantly
changes the FS around the # point. We show the Fermi surface

220502-3

Further developments of the superconducting density-
functional theory include the study of nonphononic pairing
mechanisms, such as plasmon-assisted superconductivity
(Akashi and Arita, 2013a), and the extension to magnetic
systems (Linscheid, Sanna, Essenberger, and Gross, 2015;
Linscheid, Sanna, and Gross, 2015).

XII. ELECTRON-PHONON INTERACTIONS BEYOND THE
LOCAL DENSITY APPROXIMATION TO DFT

The calculations of electron-phonon interactions reviewed
in Secs. VII–XI have in common the fact that most inves-
tigations used the local density approximation to DFT or a
generalized gradient approximation (GGA) such as the PBE
functional (Perdew, Burke, and Ernzerhof, 1996). Although
the LDA and the GGA represent the workhorse of electron-
phonon calculations from first principles, there is growing
evidence that these choices can lead to an underestimation of
the electron-phonon coupling strength. At a conceptual level
we understand this point by rewriting the electron-phonon
matrix element after combining Eqs. (38), (142), and (143):

gmnνðk;qÞ ¼ humkþqj
Z

dr0ϵ−1e ðr; r0;ωÞΔqνvenðr0Þjunkiuc:

ð212Þ

In DFT the many-body dielectric matrix ϵe appearing in this
expression is replaced by the RPAþ xcscreening ϵHxc from
Eq. (54). Given the DFT band gap problem, we expect ϵHxcto
overestimate the screening, thereby leading to matrix elements
gmnνðk;qÞ which are underestimated to some extent.
Several groups investigated this point on quantitative

grounds. Zhang, Louie, and Cohen (2007) studied the elec-
tron-phonon coupling in a model copper oxide superconduc-
tor CaCuO2. By calculating the vibrational frequencies of the
half-breathing Cu-O stretching mode, they established that
the local spin-density approximation (LSDA) yields phonons
which are too soft (65.3 meV) as compared to experiment
(80.1 meV). In contrast, the introduction of Hubbard correc-
tions in a LSDAþ U scheme restored agreement with experi-
ment (80.9 meV). Since the electron-phonon matrix elements
are connected to the phonon frequencies via the phonon self-
energy, Eq. (145), a corresponding underestimation of the
matrix elements can be expected. These results were sup-
ported by the work of Floris et al. (2011), who developed
DFPT within LSDAþ U and applied their formalism to the
phonon dispersions of antiferromagnetic MnO and NiO. They
found that the DFT underestimates measured LO energies by
as much as 15 meV in MnO, while the use of LSDAþ U leads
to good agreement with experiment. Related work was
reported by Hong et al. (2012), who investigated the multi-
ferroic perovskites CaMnO3, SrMnO3, BaMnO3, LaCrO3,
LaFeO3, and the double perovskite La2CrFeO6. They calcu-
lated the variation of the vibrational frequencies between
the ferromagnetic and antiferromagnetic phases of these
compounds as a function of the Hubbard U parameter and
compared DFTþ U calculations with hybrid-functional
calculations.

Lazzeri et al. (2008) investigated the effect of quasiparticle
GW corrections on the electron-phonon coupling of graphene
and graphite, for the A1

0 phonon at K and the E2g phonon
at Γ. They evaluated the intraband electron-phonon matrix
elements using a frozen-phonon approach, noting that
gnnνðk;q ¼ 0Þ precisely represents the shift of the Kohn-
Sham energy εnk upon displacing the atoms according to the
νth phonon eigenmode at q ¼ 0. Lazzeri et al. found that the
matrix elements increase by almost 40% from DFT to GW.
The GW values led to slopes in the phonon dispersions near K
in very good agreement with inelastic x-ray scattering data
(Grüneis et al., 2009b). Similar results, albeit less dramatic,
were obtained by Grüneis et al. (2009a) for the potassium-
intercalated graphite KC8.
Laflamme Janssen et al. (2010) studied the electron-phonon

coupling in the C60 molecule as a model for superconducting
alkali-doped fullerides. They employed the PBE0 hybrid
functional (Perdew, Ernzerhof, and Burke, 1996) with a
fraction of exact exchange α ¼ 30% and obtained an enhance-
ment of the total coupling strength λ of 42% as compared to
PBE. This work was followed up by Faber et al. (2011), who
used the GW approximation and obtained a similar enhance-
ment of 48%. We also point out an earlier work by Saito
(2002) based on the B3LYP functional, reporting similar
results.
Yin, Kutepov, and Kotliar (2013) investigated the effects

of using the GW approximation and the HSE hybrid func-
tional (Heyd, Scuseria, and Ernzerhof, 2003) on the electron-
phonon coupling in the superconducting bismuthates
Ba1−xKxBiO3 and chloronitrides β-ZrNCl, as well as
MgB2. In the case of Ba1−xKxBiO3 they obtained a threefold
increase in the coupling strength λ from PBE to HSE. This
enhancement brought the critical temperature calculated using
Eq. (204) to 31 K, very close to the experimental value of
32 K. Similarly, in the case of β-ZrNCl, Yin et al. obtained a
50% increase of λ, bringing the calculated critical temperature
of 18 K close to the experimental value of 16 K. Instead, in
the case of MgB2, they noticed only a slight increase of the
electron-phonon coupling as compared to the standard LDA.
Another application of hybrid functionals to the study of

EPIs was reported by Komelj and Krakauer (2015). They
investigated the sensitivity of the superconducting critical
temperature of the H3S phase of sulfur hydride to the
exchange and correlation functionals. They found that the
PBE0 functional enhances the critical temperature by up to
25% as compared to PBE, bringing Tc from 201–217 K to
253–270 K (the spread in values is related to the choice of the
parameter μ%).
Mandal, Cohen, and Haule (2014) reported work on the

superconductor FeSe based on dynamical mean-field theory
(DMFT). In this case DMFT yielded a threefold enhancement
of the coupling strength for selected modes.
As mentioned in Sec. IX.A.1, Antonius et al. (2014)

performed GW calculations of the electron-phonon coupling
in diamond using a frozen-phonon approach. They found that
quasiparticle corrections lead to a uniform enhancement of the
electron-phonon matrix elements. The net effect is an increase
of the zero-point renormalization of the band gap by 40% as
compared to standard LDA calculations. Monserrat (2016a)
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ELECTRON-PHONON COUPLING IN FLUCTUATING 
MOMENT SYSTEMS

DFT tends to underestimate g,  
because of RPA-overscreening

Example of FeSe:

DFT+DMFT Prediction: Mandal, Cohen, & Haule,  PRB 89, 220502(R) (2014).

Change of the band structure due to displacement of the ions in 
the direction of a phonon mode.
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FIG. 2. (Color online). Relative total energy calculated in LDA(non-magnetic), GGA(both nonmagnetic and checkerboard
spin-polarized), and DFT-DMFT methods; arrow indicates the experimental value of zSe.

FIG. 3. (Color online). Pressure dependence optical properties at room temperature: Real part of the optical conductivity (a)
along ab-plane and (b) along c-axis.
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FIG. 1. (Color online). Pressure dependence of chalcogen position parameter zSe. a, b, and c are the experimental data of zSe

for the tetragonal phase, obtained from Ref.[6], Ref.[8], and Ref.[9] respectively; d and e are the data for the low temperature
orthorhombic phase, obtained form Ref. [10] and Ref. [8] respectively. f (Ref. [11]), g(Ref. [12]) indicates non-spinpolarized
DFT results and h indicates our spin-polarized DFT results of zSe while the solid line refers to DFT-DMFT.

SUPPLEMENTARY METHODS

In the DFT-DMFT method, the self-energy, sampling all Feynman diagrams local to the Fe ion, is added to
the DFT Kohn-Sham Hamiltonian[1, 2]. This implementation is fully self-consistent and all-electron [2, 3]. The
computations are converged with respect to charge density, impurity level, chemical potential, self-energy, lattice and
impurity Green’s functions. The lattice is represented using the full potential linear augmented plane wave method,
implemented in Wien2k[4] package in its generalized gradient approximation (PBE-GGA). We use the continuous time
quantum Monte Carlo method to solve the quantum impurity problem and to obtain the local self-energy due to the
correlated Fe 3d orbitals. The self-energy is analytically continued from the imaginary to real axis using an auxiliary
Green’s function. We fixed the Coulomb interaction U and Hund’s coupling J at 5.0 eV and 0.7 eV, respectively [5].
We used a fine k-point mesh of 24 � 24 � 16 and 80 million Monte Carlo steps for each iteration for the paramagnetic
phase of the FeSe at room temperature within the pressure range of 0-11 GPa where FeSe is observed to remain in
its tetragonal phase[6]. The lattice parameters are obtained from the experiment[6] and zSe are optimized within
DFT-DMFT method. For P=-2GPa, we estimated the lattice parameters and zSe after fitting. The estimated lattice
parameters for -2GPa are a=3.82178 Å, c=5.7119Å, and zSe = 0.25872.

DEFORMATION POTENTIAL

The shift in the energy eigenvalues at EF due to a particular phonon mode is calculated by:�E = 1/NkF
�

kF (EkF � EA1g
kF ).

Here EkF and EA1g
kF are the energy eigenvalues around the Fermi level respectively for equilibrium and A1g distortion.

Here EkF is the band resolved energy eigenvalues for the equilibrium structure, chosen within a very small energy
window of 5 mRy around EF within a fine k-point mesh of 25x25x17 to allow at least � 2000 points on the FS for
each pressure. EA1g

kF is the corresponding energy eigenvalues to the A1g distortion. Equilibrium position is where the
total energy is minimum in the respective methods whereas A1g distortion refers to the states with small Se atom
displacement (Q) in the zSe. NkF is the number of k-points (kF) on the Fermi surface on which the deformation

potential (D = �E
�Q ) is calculated. � is then estimated as D2

�2Et(Q)

�Q2 |Q=0

, where Et(Q) is the total energy as a function of

the atomic displacement Q in the DFT-DMFT frozen-phonon calculation [7].

In Table I Dm, Davg, NkF , and Davg
FS refer to the maximum deformation potential, deformation potential averaged

over corresponding pocket, number of k-points on the pocket, and deformation potential averaged over all available
pockets (averaged over the entire Fermi surface) respectively. h1, h2, h3, e1, and e2 are labeled in Fig. 1(d-f) in the
main text.

a) b)

Fig. 14. Crystal structure of FeSe: a) Relative total energy calculated
in LDA(non-magnetic), GGA(both nonmagnetic and checkerboard spin-
polarized), and DFT+eDMFT methods; arrow indicates the experimental
value of zS e. b) Pressure dependence of chalcogen position parameter zS e.
a, b, and c are the experimental data of zS e for the tetragonal phase, obtained
from Ref. 120, Ref. 121, and Ref. 122 respectively; d and e are the data for the
low temperature orthorhombic phase, obtained form Ref. 123 and Ref. 121
respectively. f (Ref. 124), g(Ref. 125) indicates non-spinpolarized DFT re-
sults and h indicates spin-polarized DFT results of zS e while the solid line
refers to DFT+eDMFT.
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FIG. 2. (Color online) (a) Maximum and Fermi surface average
of deformation potentials (D) for the A1g distortion computed in
DFT-DMFT, and DFT as a function of pressure indicates the presence
of strong EPC in FeSe; inset shows deformation potential as a function
of EF at P = 0. (b) Demonstration of huge local electron-lattice
coupling for the A1g distortion in our DFT-DMFT computations at
P = 0 GPa for a selective part of the Brillouin zone; red and blue
lines represent GGA bands. The common Fermi energy is considered
for the equilibrium position and denoted by the single horizontal line
for both DFT and DFT-DMFT methods.

DMFT is from the electron pocket centered at the M point.
Dm also strongly depends on the EF . The inset of Fig. 2(a)
shows the behavior of maximum and average values of D as a
function of EF at P = 0 calculated with DFT-DMFT. So the
movement of EF due to defect or pressure can significantly
change the FS topology and hence the D.

The momentum resolved spectral function A(ω,k) is shown
in Fig. 2(b) for both equilibrium position and A1g distortion
between the high symmetric points, where the most sensitive
band crosses the EF . The solid red and blue lines represent
corresponding GGA bands for equilibrium position and A1g

distortion, respectively. From Fig. 2(b), we notice that at
P = 0, the shift in energy (δE) over the atomic displacement
of 0.0276 Å is ∼0.12 eV in DFT-DMFT and ∼0.04 eV in

GGA, respectively. So as reflected from Fig. 2, the D is about
three times higher in DFT-DMFT for this particular region
of the Brillouin zone. If we notice carefully in Fig. 2(b), the
shift of the bands due to A1g distortion is very nonuniform
in DFT-DMFT; a strong deformation potential is noticed only
in # to Z region, while for the other part of the Brillouin
zone, deformation potential is found to be small. This leads
to a strong nonuniform EPC at P = 0, which is reflected in
Fig. 2(a) where maximum D is found to be about three times
higher than the average. We found this similar nonuniform
EPC for P = 1.4, 2.6, and −2.0 GPa.

We estimate λ using D (see Supplemental Material [60] for
details). While the average λ is still small, the maximum λ in
DFT-DMFT is found to be 0.98 at P = 0. At P = 2.6 GPa,
the maximum λ reaches 1.159. We found that only certain
electronic states have very strong λ, while the average λ is not
strong enough to explain 37 K. So the conventional electron-
phonon mechanism seems unlikely. On the other hand, this also
indicates that local EPC can be important and one can use a po-
laron model, where a single electron can strongly couple with
the lattice and form polarons. Formation of polarons has been
experimentally found in both Fe superconductors [42,63,64]
and cuprates [49]. The anomalous temperature dependence of
the local Fe-As displacement, observed in Ref. [45], indicates
that local rather than global electron-lattice interaction is
present in Fe-based superconductors and as suggested in
Ref. [48], polaron formation is responsible for the observed
anomalies [45]. Though the formation of polarons depends
on a lot of factors, such as the band filling, temperature,
EPC strength, phonon frequency, etc., our results suggest
the use of a polaron model. We consider the electronic state
corresponding to maximum λ (∼1) forms a polaron, which is
a quasiparticle consisting of an electron and the surrounding
lattice distortion. Then the polaronic binding energy (Ep)
will linearly depend [65,66] on maximum λ and hence on
the square of the maximum deformation potential. Taking
the polaronic band into account, Alexandrov and Mott [65]
described that Tc exponentially depends on the function of
Ep. Under hydrostatic pressure, we found that electronic
properties change monotonically, while only |Dm|2 (and hence
Ep) initially grows (up to 3.4 GPa) and then drops, similarly to
experimental Tc. This indicates that a strong local EPC plays
an important role in Fe-based superconductors.

It is important to mention that Tc was found to increase
rapidly for the low pressure range (0–3 GPa) and can reach
up to 27 K at 1.48 GPa [67]. The disagreement in the
pressure dependence of experimental Tc and our DFT-DMFT
calculation of maximum D can be due to the presence
of the mixed phase in low temperature crystal structure
in experiment, while our calculations are based on room
temperature tetragonal (PbO-type) structure.

The behavior of the DFT-DMFT deformation potential
with pressure hints that superconductivity in FeSe may have
partially phonon or polaron origin and local EPI plays a
very important role in superconductivity in the unconventional
superconductors. Analysis of the contributions of each many-
body state reveals that charge fluctuations due to correlations
and charge transfer from Fe to Se are coupled to the A1g mode.

Our computations predict that applied pressure significantly
changes the FS around the # point. We show the Fermi surface
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Fig. 15. Electron-ohonon coupling in FeSe: the maximum deformation
potential and the Fermi surface average deformation potentailD for the A1g
distortion computed in DFT+eDMFT, and DFT as a function of pressure. It
indicates the presence of strong e-ph coupling in FeSe. Inset shows deforma-
tion potential as a function of EF at zero pressure. Reproduced from Ref. 6.

mode (say A1g) can be calculated by:

�E =
1

NkF

X

kF

(EkF � EA1g
kF

) (42)

Here EkF and EA1g
kF

are the energy eigenvalues around the
Fermi level respectively for equilibrium and A1g distortion.
Equilibrium position is where the total energy is minimum in
the respective methods, whereas A1g distortion refers to the
states with small displacement of the Se atom (Q) in the zS e.
NkF is the number of k-points on the Fermi surface used in the
calculation. The deformation potentialD is then given by

D = �E
�Q

(43)

The coupling � can then be estimated as D2

�2Et(Q)/�Q2 |Q=0
, where

E(Q) is the total energy as a function the atomic displacement
Q in the DFT+eDMFT frozen-phonon calculation.

In Ref. 6 the electron-phonon coupling was calculated for
a particular A1g phonon mode as a function of pressure. In
Fig. 15 we reproduce their results for the maximum value
of the deformation potential D, and the average of D over
the entire fermi surface. The DFT+eDMFT and DFT results
are compared. One notices that the average D increases in
DFT+eDMFT over that obtained in DFT for all pressures. At
P = 0 the average D2 increases ⇡1.5 times in DFT+eDMFT
(D is 0.84eV/Å in DFT+eDMFT, while it is 0.69 eV/Å in
GGA. At P = 3.4 GPa the average D2 increases ⇡2.25 times
in DFT+eDMFT. While this value is still not su�cient to ob-
tain 37 K superconductor, it is not small enough to be ignored,
in contrast to what was suggested in Ref. 133.

More interesting is the pressure dependence of the maxi-
mum D. It was noticed in Ref. 6 that at ambient pressure the
maximum deformation potential (Dm) is several times higher
in DFT+eDMFT than that obtained by standard DFT (com-
pare blue curve with turquoise curve in Fig. 15). This largest
contribution comes from the hole pocket at � point of mainly
xz/yz character, which is very sensitive to this deformation
and also to pressure; it crosses the EF at low pressure, where
the experimental Tc is observed to be high, and goes below
EF at pressure beyond 3 GPa. FeSe exhibits a substantial in-
crease in critical temperature Tc from 8 to 37 K by application
of pressure, which matches the pressure dependence of this
predicted deformation potential, suggesting that correlation
e↵ects have a strong impact on superconductivity in FeSe.

Table II. The Se position zS e, the phonon frequency fA1g, and the electron-
phonon coupling D = �Exz/yz

�Q in FeSe: comparison between experiment and
DMFT prediction.

Exp. (2017) DFT+eDMFT (2014) DFT
Ref. 134 Ref. 6

zS e(r.l.u) 0.2653 0.27 0.2456
fA1g(T Hz) 5.30± 0.05 5.7 6.5± 0.3
�Exz/yz
�Q ( meV

pm ) -13.0± 2.5 -10.3 to -13.4 -1.6± 0.2

The experimental verification of the predicted large en-
hancement of the electron-phonon coupling came in 2017 in
the pioneering work of the Stanford group.134) They combined
two time-domain experiments into a coherent lock-in mea-
surement in the terahertz regime, where the X-ray di↵raction
tracks the light-induced femtosecond coherent lattice motion
at a single phonon frequency, and photoemission monitors the
subsequent coherent changes in the electronic band structure.
In table II we reproduce the measured and computed maxi-
mum deformation potential for the pocket at � point in the
Brillouin zone, which shows the largest change with pressure.
Given that the electron-phonon coupling a↵ects supercon-
ductivity exponentially, this large enhancement of electron-
phonon coupling as compared to DFT highlights the impor-
tance of the cooperative interplay between electron-electron
and electron-phonon interactions in FeSe.

6. Outlook

In conclusion, DFT+eDMFT is a powerful computational
method for correlated materials which can accurately cap-
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Solid lines indicate linear fits. Error bars in C and D denote statistical uncertainties, whereas the 

shaded areas represent systematic fluence uncertainties (supplementary text). The error of the 

fitted slopes accounts for both statistical and systematic uncertainties. 

 
 

 Experiment DFT+DMFT (5) DFT 

zSe (r.l.u.) 0.2653 0.27 0.2456 

fA1g (THz) 5.30 ± 0.05 5.7 6.5 ± 0.3 

∆Exz/yz/∆zSe (meV/pm) −13.0 ± 2.5 −10.3 to −13.4 −1.6 ± 0.2 

∆Ez2/∆zSe (meV/pm) −16.5 ± 3.2 − −8.5 ± 0.9 

Tab. 1. Comparison of experiment and theory.  Selenium height zSe, A1g phonon frequency 

fA1g, as well as A1g deformation potentials ∆Exz/yz/∆zSe and ∆Ez2/∆zSe obtained from experiments, 

canonical DFT calculations and DFT+DMFT by Mandal et al. (5) (band-average and maximum 

value). The experimental value for zSe is taken from Margadonna et al. (30), whereas the 

deformation potentials are obtained by combining the data shown in Fig. 3C,D, and applying 

corrections for spatial integration over pump and probe profiles and effective energy densities 

(supplementary text). The error of the deformation potentials includes systematic and statistical 

uncertainties. DFT deformation potentials account for an empirical renormalization factor of 3 

and the errors reflect the uncertainty of the renormalization determined from ARPES. 

Theoretical values for fA1g are deduced from quadratic fits to the relative total energy. 
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FIG. 2. (Color online) (a) Maximum and Fermi surface average
of deformation potentials (D) for the A1g distortion computed in
DFT-DMFT, and DFT as a function of pressure indicates the presence
of strong EPC in FeSe; inset shows deformation potential as a function
of EF at P = 0. (b) Demonstration of huge local electron-lattice
coupling for the A1g distortion in our DFT-DMFT computations at
P = 0 GPa for a selective part of the Brillouin zone; red and blue
lines represent GGA bands. The common Fermi energy is considered
for the equilibrium position and denoted by the single horizontal line
for both DFT and DFT-DMFT methods.

DMFT is from the electron pocket centered at the M point.
Dm also strongly depends on the EF . The inset of Fig. 2(a)
shows the behavior of maximum and average values of D as a
function of EF at P = 0 calculated with DFT-DMFT. So the
movement of EF due to defect or pressure can significantly
change the FS topology and hence the D.

The momentum resolved spectral function A(ω,k) is shown
in Fig. 2(b) for both equilibrium position and A1g distortion
between the high symmetric points, where the most sensitive
band crosses the EF . The solid red and blue lines represent
corresponding GGA bands for equilibrium position and A1g

distortion, respectively. From Fig. 2(b), we notice that at
P = 0, the shift in energy (δE) over the atomic displacement
of 0.0276 Å is ∼0.12 eV in DFT-DMFT and ∼0.04 eV in

GGA, respectively. So as reflected from Fig. 2, the D is about
three times higher in DFT-DMFT for this particular region
of the Brillouin zone. If we notice carefully in Fig. 2(b), the
shift of the bands due to A1g distortion is very nonuniform
in DFT-DMFT; a strong deformation potential is noticed only
in # to Z region, while for the other part of the Brillouin
zone, deformation potential is found to be small. This leads
to a strong nonuniform EPC at P = 0, which is reflected in
Fig. 2(a) where maximum D is found to be about three times
higher than the average. We found this similar nonuniform
EPC for P = 1.4, 2.6, and −2.0 GPa.

We estimate λ using D (see Supplemental Material [60] for
details). While the average λ is still small, the maximum λ in
DFT-DMFT is found to be 0.98 at P = 0. At P = 2.6 GPa,
the maximum λ reaches 1.159. We found that only certain
electronic states have very strong λ, while the average λ is not
strong enough to explain 37 K. So the conventional electron-
phonon mechanism seems unlikely. On the other hand, this also
indicates that local EPC can be important and one can use a po-
laron model, where a single electron can strongly couple with
the lattice and form polarons. Formation of polarons has been
experimentally found in both Fe superconductors [42,63,64]
and cuprates [49]. The anomalous temperature dependence of
the local Fe-As displacement, observed in Ref. [45], indicates
that local rather than global electron-lattice interaction is
present in Fe-based superconductors and as suggested in
Ref. [48], polaron formation is responsible for the observed
anomalies [45]. Though the formation of polarons depends
on a lot of factors, such as the band filling, temperature,
EPC strength, phonon frequency, etc., our results suggest
the use of a polaron model. We consider the electronic state
corresponding to maximum λ (∼1) forms a polaron, which is
a quasiparticle consisting of an electron and the surrounding
lattice distortion. Then the polaronic binding energy (Ep)
will linearly depend [65,66] on maximum λ and hence on
the square of the maximum deformation potential. Taking
the polaronic band into account, Alexandrov and Mott [65]
described that Tc exponentially depends on the function of
Ep. Under hydrostatic pressure, we found that electronic
properties change monotonically, while only |Dm|2 (and hence
Ep) initially grows (up to 3.4 GPa) and then drops, similarly to
experimental Tc. This indicates that a strong local EPC plays
an important role in Fe-based superconductors.

It is important to mention that Tc was found to increase
rapidly for the low pressure range (0–3 GPa) and can reach
up to 27 K at 1.48 GPa [67]. The disagreement in the
pressure dependence of experimental Tc and our DFT-DMFT
calculation of maximum D can be due to the presence
of the mixed phase in low temperature crystal structure
in experiment, while our calculations are based on room
temperature tetragonal (PbO-type) structure.

The behavior of the DFT-DMFT deformation potential
with pressure hints that superconductivity in FeSe may have
partially phonon or polaron origin and local EPI plays a
very important role in superconductivity in the unconventional
superconductors. Analysis of the contributions of each many-
body state reveals that charge fluctuations due to correlations
and charge transfer from Fe to Se are coupled to the A1g mode.

Our computations predict that applied pressure significantly
changes the FS around the # point. We show the Fermi surface
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DFT+DMFT Prediction: Mandal, Cohen, & Haule,  PRB 89, 220502(R) (2014).
Experiment: S. Gerber, …,Z.X. Shen et.al., Science (2017).
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Figure 3. (color online) (a)-(e) ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respectively.
(f)-(j) ARPES intensity plots of the � and � bands at 30 K,
50 K, 100 K, 150 K and 200 K, respectively. All spectra are
divided by the Fermi-Dirac function convoluted with the sys-
tem resolution. (k)-(p), DFT+DMFT calculated momentum-
and energy-resolved spectral function at 58 K, 116 K and 232
K. (k)-(m) and (n)-(p) are corresponding to hole bands and
electron bands, respectively.

sents non-quasi-particle regime. The area does not go
to zero because of the temperature correction, ⇡kBT , to
the self-energy. The 16 meV anomalies observed in both
�(k,!) and Z(k,!) are likely induced by electron-boson
couplings with negligible contributions of the antiferro-
magnetic spin-resonance[21].

Now we turn to the temperature dependence of the
QPs. Figures 3a-3e show ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respec-
tively. Figures 3f-3j show the temperature evolution of
the � and � bands. To reveal the electronic states above
EF , all spectra are divided by the Fermi-Dirac function
convoluted with the system resolution. As shown in Figs.
3a-3e, the � band, which is mainly composed of dxy or-
bital character, dramatically loses intensity and is nearly
invisible at 200 K, while the � band, which is mainly com-
posed of dxz/yz orbital, becomes broader and its intensity
remains relatively strong even at 200 K. This orbital de-
pendent intensity loss is consistent with previous report
on the same material, where the drop of peak intensity
on � band is much faster than it is on the ↵ and ↵’ band,
which are mainly composed of dxz/yz orbital[13, 21]. In
Fig. 3, we show the DFT+DMFT calculated hole bands
(Figs. 3k-3m) and electron bands (Figs. 3n-3p) at sev-
eral temperatures. The overall momentum and energy
resolved spectra agree quite well with experimental mea-
surements without any adjustment such as band renor-
malization and shift, which are usually needed for the

DFT band structure, validating the DFT+DMFT ap-
proach. It is also evident that the DFT+DMFT inten-
sity of the � band with dxy orbital is substantially weaker
than the dxz/yz bands at 232 K[21], which is consistent
with the experimental observations[21].
In order to quantitatively compare the di↵erence be-

tween the � band and the � band, we analyze the mea-
sured EDCs at k�

F
and k�

F
, which are marked by blue

and red lines in Figs. 3a and 3f, respectively. In Figs.
4a and 4b, we show the EDCs of the � band and the �
band from 20 K to 200 K. All curves are fitted by the QP
spectral function plus a polynomial background and the
extracted QP peaks of the � and the � bands are plotted
in Figs. 4d and 4e, respectively[21]. The temperature-
dependent QP scattering rates are extracted and plotted
in Fig. 4c. The grey shaded background represents the
coherence-incoherence crossover regime where the deriva-
tive of the resistivity curve reaches a maximum and starts
to drop down[23]. Interestingly, in agreement with a re-
cent study[24], we find that the QP scattering rates on
both the � band and the � band also severely deviate
from their low-temperature T -quadratic behavior near
this temperature, indicating that the saturation of re-
sistivity is intimately connected to the high-temperature
QP scattering rate.

Although the scattering rates of the � band and the �
band show similar temperature evolutions, we find that
the total spectral weight (TSW) of the � and � bands
have di↵erent behaviors at high temperature. To extract
the spectral weight (SW), we integrate the extracted and
DFT+DMFT calculated QP spectral functions shown in
Figs. 4d and 4e[21] and plot the integrated SW of the
� and � bands in Fig. 4f. Both the experimental data
and the theoretical calculations show a nearly conserved
SW on the � band up to 200 K, and a dramatically re-
duced SW on the � band at high temperature[21]. In-
deed, the intensity change of the ↵ and ↵’ is similar to
the � band and much slower than the � band with in-
creasing temperature[13, 21], further proving the change
of SW is orbital dependent.

This orbital-dependent SW reduction with ele-
vated temperature is fully consistent with the Hund’s
metal picture where an orbital-di↵erentiated coherence-
incoherence crossover occurs at di↵erent temperatures
due to the strong Hund’s rule coupling[25, 26]. This
is further supported by a recent DMFT plus nu-
merical renormalization group study confirming that
the iron pnictides are Fermi liquids at low tempera-
ture and the orbital-di↵erentiated coherence-incoherence
crossover is driven by a Kondo-type screening with
the Kondo temperature determined by the strength of
Hund’s coupling[27]. In the Hund’s metal point of
view, both iron pnictides and iron chalcogenides have
Hund-di↵erentiated coherence-incoherence crossover. In-
deed, previous studies[7, 8] show that both FeTe
and KxFe2�ySe2 exhibit a similar orbital-di↵erentiated
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Figure 3. (color online) (a)-(e) ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respectively.
(f)-(j) ARPES intensity plots of the � and � bands at 30 K,
50 K, 100 K, 150 K and 200 K, respectively. All spectra are
divided by the Fermi-Dirac function convoluted with the sys-
tem resolution. (k)-(p), DFT+DMFT calculated momentum-
and energy-resolved spectral function at 58 K, 116 K and 232
K. (k)-(m) and (n)-(p) are corresponding to hole bands and
electron bands, respectively.

sents non-quasi-particle regime. The area does not go
to zero because of the temperature correction, ⇡kBT , to
the self-energy. The 16 meV anomalies observed in both
�(k,!) and Z(k,!) are likely induced by electron-boson
couplings with negligible contributions of the antiferro-
magnetic spin-resonance[21].

Now we turn to the temperature dependence of the
QPs. Figures 3a-3e show ARPES intensity plots of the
� band at 30 K, 50 K, 100 K, 150 K and 200 K, respec-
tively. Figures 3f-3j show the temperature evolution of
the � and � bands. To reveal the electronic states above
EF , all spectra are divided by the Fermi-Dirac function
convoluted with the system resolution. As shown in Figs.
3a-3e, the � band, which is mainly composed of dxy or-
bital character, dramatically loses intensity and is nearly
invisible at 200 K, while the � band, which is mainly com-
posed of dxz/yz orbital, becomes broader and its intensity
remains relatively strong even at 200 K. This orbital de-
pendent intensity loss is consistent with previous report
on the same material, where the drop of peak intensity
on � band is much faster than it is on the ↵ and ↵’ band,
which are mainly composed of dxz/yz orbital[13, 21]. In
Fig. 3, we show the DFT+DMFT calculated hole bands
(Figs. 3k-3m) and electron bands (Figs. 3n-3p) at sev-
eral temperatures. The overall momentum and energy
resolved spectra agree quite well with experimental mea-
surements without any adjustment such as band renor-
malization and shift, which are usually needed for the

DFT band structure, validating the DFT+DMFT ap-
proach. It is also evident that the DFT+DMFT inten-
sity of the � band with dxy orbital is substantially weaker
than the dxz/yz bands at 232 K[21], which is consistent
with the experimental observations[21].
In order to quantitatively compare the di↵erence be-

tween the � band and the � band, we analyze the mea-
sured EDCs at k�

F
and k�

F
, which are marked by blue

and red lines in Figs. 3a and 3f, respectively. In Figs.
4a and 4b, we show the EDCs of the � band and the �
band from 20 K to 200 K. All curves are fitted by the QP
spectral function plus a polynomial background and the
extracted QP peaks of the � and the � bands are plotted
in Figs. 4d and 4e, respectively[21]. The temperature-
dependent QP scattering rates are extracted and plotted
in Fig. 4c. The grey shaded background represents the
coherence-incoherence crossover regime where the deriva-
tive of the resistivity curve reaches a maximum and starts
to drop down[23]. Interestingly, in agreement with a re-
cent study[24], we find that the QP scattering rates on
both the � band and the � band also severely deviate
from their low-temperature T -quadratic behavior near
this temperature, indicating that the saturation of re-
sistivity is intimately connected to the high-temperature
QP scattering rate.

Although the scattering rates of the � band and the �
band show similar temperature evolutions, we find that
the total spectral weight (TSW) of the � and � bands
have di↵erent behaviors at high temperature. To extract
the spectral weight (SW), we integrate the extracted and
DFT+DMFT calculated QP spectral functions shown in
Figs. 4d and 4e[21] and plot the integrated SW of the
� and � bands in Fig. 4f. Both the experimental data
and the theoretical calculations show a nearly conserved
SW on the � band up to 200 K, and a dramatically re-
duced SW on the � band at high temperature[21]. In-
deed, the intensity change of the ↵ and ↵’ is similar to
the � band and much slower than the � band with in-
creasing temperature[13, 21], further proving the change
of SW is orbital dependent.

This orbital-dependent SW reduction with ele-
vated temperature is fully consistent with the Hund’s
metal picture where an orbital-di↵erentiated coherence-
incoherence crossover occurs at di↵erent temperatures
due to the strong Hund’s rule coupling[25, 26]. This
is further supported by a recent DMFT plus nu-
merical renormalization group study confirming that
the iron pnictides are Fermi liquids at low tempera-
ture and the orbital-di↵erentiated coherence-incoherence
crossover is driven by a Kondo-type screening with
the Kondo temperature determined by the strength of
Hund’s coupling[27]. In the Hund’s metal point of
view, both iron pnictides and iron chalcogenides have
Hund-di↵erentiated coherence-incoherence crossover. In-
deed, previous studies[7, 8] show that both FeTe
and KxFe2�ySe2 exhibit a similar orbital-di↵erentiated

Momentum resolved spectra of LiFeAs
ARPES

Bands in correlated metals

DFT+DMFT for LiFeAs:

Bands are sharp only very 
near the fermi level and 
only at low temperature 
(Fermi liquid).

Above the coherence 
temperature, electrons are 
better described as 
fluctuating moments, 
rather than plane waves.

m*/m~3

DMFT predicted coherence 
incoherence  crossover in 
Fe-SC (Hund’s metals)
 
(Haule & Kotliar NJP 11, 25021 (2009) )H Miao,…Haule, Kotliar, H. Ding, Phys. Rev. B 94, 201109(R) (2016).
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blue symbols : experiment
red symbols : DFT-DMFT

 beyond 

These are not Stoner magnets.
Have substantial local fluctuating moment at low energy.

DMFT predicts much better magnetic moments than DFT.
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Figure 1 | Summary of neutron scattering and calculation results. Our experiments were carried out on the MERLIN time-of-flight chopper spectrometer
at the Rutherford-Appleton Laboratory, UK (ref. 33). We co-aligned 28 g of single crystals of BaFe1.9Ni0.1As2 (with in-plane mosaic of 2.5�and out-of-plane
mosaic of 4�). The incident beam energies were Ei = 20,25,30,80,250,450,600 meV, and mostly with Ei parallel to the c axis. To facilitate easy
comparison with spin waves in BaFe2As2 (ref. 13), we defined the wave vector Q at (qx,qy,qz) as (H,K,L) = (qxa/2⇡ ,qyb/2⇡ ,qzc/2⇡) reciprocal lattice
units (r.l.u.) using the orthorhombic unit cell, where a = b = 5.564 Å, and c = 12.77 Å. The data are normalized to absolute units using a vanadium
standard13, which may have a systematic error up to 20% owing to differences in neutron illumination of the vanadium and sample, and time-of-flight
instruments. a, AF spin structure of BaFe2As2 with Fe spin ordering. The effective magnetic exchange couplings along different directions are shown.
b, RPA and LDA+DMFT calculations of � 00(!) in absolute units for BaFe2As2 and BaFe1.9Ni0.1As2. c, The solid lines show the spin wave dispersions of
BaFe2As2 for J1a 6= J1b, along the [1,K] and [H,0] directions obtained in ref. 13. The filled circles and triangles are the spin excitation dispersions of
BaFe1.9Ni0.1As2 at 5 K and 150 K, respectively. d, The solid line shows the low-energy spin waves of BaFe2As2. The horizontal bars show the full-width at
half-maximum of spin excitations in BaFe1.9Ni0.1As2. e, Energy dependence of � 00(!) for BaFe2As2 (filled blue circles) and BaFe1.9Ni0.1As2 below (filled red
circles) and above (open red circles) Tc. The solid and dashed lines are guides to the eye. The vertical error bars indicate statistical errors of one standard
deviation. The horizontal error bars in e indicate the energy integration range.

constant-energy cuts along the [1,K ] direction for E = 25 ± 5,
55±5, 95±10, 125±10, 150±10, and 210±10meV. The scattering
becomes dispersive for spin excitation energies above 95meV.
Figure 3g–i shows similar constant-energy cuts along the [H ,0]
direction. The solid lines in the figure show identical spin wave
cuts for BaFe2As2 (ref. 13). As both measurements were taken in

absolute units, we can compare the impact of electron doping on
the spin waves in BaFe2As2. At E = 25±5meV, spin excitations in
superconducting BaFe1.9Ni0.1As2 are considerably broader in mo-
mentum space and weaker in intensity than spin waves (Fig. 3a,g).
On increasing the excitation energy to 55± 5meV, the dispersive
spin waves in BaFe2As2 become weaker and broader (Fig. 3b,h).
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f.m. in RPA calculation 
(U=0.8eV, J=0.2eV)

f.m. in DMFT
Experiment by Pengcheng Dai 

Large fluctuating moment can not be explained by a purely 
itinerant model - property of Hundsness!

The DMFT account for a dual nature of electrons in Hund’s metals:  
itinerant and localized nature.

Fluctuating moment by neutrons:

~1.8 µB/Fe 

up to 300meV

	M.	Liu,…	K.	Haule,	et.al.,	Nature	Physics	8,	376-381	(2012)

Large fluctuating moment



magnetic susceptibility in paramagnetic state
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FIG. 1: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
along the path (0,0)!(1,0)!(1,1)!(0.5,0.5)!(0,0) (in the unit of the one-Fe Brillouin zone) for (a) BaFe2P2 (Tmax

C < 2K); (b)
LiFeP (TC = 6K); (c)LaFePO (TC = 7K); (d) SrFe2As2 (Tmax

C = 37K); (e) LaFeAsO (Tmax
C = 43K); (f) BaFe2As2 (Tmax

C =
39K); (g) LiFeAs (TC = 18K); (h) FeSe (Tmax

C = 37K); (i)MgFeGe (Tmax
C = 0); (j)FeTe (Tmax

C = 0); (k) BaFe1.7Ni0.3As2
(TC < 2K); (l) BaFe1.9Ni0.1As2 (TC = 20K); (m) Ba0.6K0.4Fe2As2 (TC = 39K); (n) KFe2As2 (TC = 3.5K); (o) KFe2Se2. Since
the intensity substantially varies across compounds, the maximum value of intensity was adjusted to emphasize the dispersion
most clearly. The maximum value of the intensity in each compound is shown in the top right corner. The experimental data
shown in (f), (g), (l) and (m) are from Refs. 17–20.

of the fluctuating moment in this energy range, which roughly anti-correlates with strength of correlations, hence
phosphorus compounds show the weakest (max = 4) and FeTe shows the strongest (max = 20) intensity.

The low energy spin-excitations are much more sensitive to the details of both the band-structure and the two-
particle vertex function, hence the trend across di↵erent compounds can not be guessed from either the correlation
strength or from the band structure. In Fig. 2 we show S(q,!) for the same compounds as in Fig. 1, but we take
a di↵erent cut. We keep the energy fixed at ! = 5meV, and change momentum in the two dimensional momentum
plane (qx, qy) at qz = 0/⇡. (The qz dependence is small for most compounds.) As is clear from Figs. 1a-c, and
Fig. 2a-c, the low energy spin-excitations are almost absent in phosphorus compounds, while they are very strong
in arsenides (Figs. 1d-g) at the commensurate wave vector (qx, qy) = (1, 0). This is the ordering wave vector of the
spin-density wave state, which is the ground state of all these compounds except LiFeAs, which is a superconductor
(Tc = 18K). When doped, all these compounds are high-temperature superconductors (Tc ⇡ 37K � 39K). Similarly
chalcogenide FeSe (Fig. 1h) - which becomes superconducting Tc = 37K under modest pressure p = 3GPa - has
similar low energy spin response as the arsenides superconductors. On the other hand, MgFeGe is a compound with
similar band structure as arsenides21, but quite di↵erent spin response, which is much broader and peaked at q = 0,
hence spin fluctuations are ferromagnetic, in agreement with calculation of Ref.22 showing stable ferromagnetic ground
state. Finally FeTe has also much broader spin-excitations covering large part of the Brillouin zone (see Fig. 2j), and
shows two competing excitations at q=(1,0) and q=(0.5, 0.5), the latter corresponds to the ordering wave vector of
the low-temperature antiferromagnetic state of Fe1.07Te.23 The common theme in high-temperature superconductors

3

FIG. 2: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
in the 2D plane at constant !=5 meV for the same materials as in Fig.1. The maximum intensity scale for each compound is
marked as a number in the bottom-left corner of each subplot.

(Figs. d-h) is thus the existence of well defined high energy dispersive spin excitations with bandwidth between
0.1 � 0.35 eV, and most importantly very well developed commensurate low energy spin excitations at wave vector
q = (1, 0), consistent with the theory of spin-fluctuation mediated superconductivity24,25.

The pnictide parent compounds SrFe2As2, LaFeAsO, BaFe2As2 have strong peak centered exactly at q = (1, 0), while
in LiFeAs and FeSe the spin excitation is peaked slightly away from this commensurate wave vector. Consequently,
the former three compounds have antiferromagnetic ground state, while the latter two are superconducting. In the
former, electron or hole doping is needed to suppress the long range magnetic order, and to stabilize the competing
superconducting state. In Figs. 1&2f, k-n we illustrate the doping dependence of the spin-excitation spectrum on the
example of electron doped and hole doped BaFe2As2, i.e., BaFe1�xNixAs2 and Ba1�xKxFe2As2, respectively. The
electron doping slightly increases the bandwidth (compare Fig. 1(k) with Fig. 1(f)), the hole doping dramatically
reduces the bandwidth from ⇠ 0.2 eV to ⇠ 0.05 eV in overdoped KFe2As220,26 (Fig. 1(n)). The low energy spin
excitations in the electron overdoped BaFe1.7Ni0.3As2 become very weak and strongly incommensurate20 with peak
centered at q=(1.0, 0.35) (see Fig. 2k). Similarly, on the hole overdoped side in KFe2As2, the low-energy spectrum
is suppressed (maximum intensity in Fig. 2n is 15 compared to 100 in the parent compound), and main excitation
peak moves to incommensurate q=(0.75, 0) in agreement with experiment.20,27 The optimally doped compounds
(Figs. 1l,m) have high energy spin excitations very similar to the parent compound, while the low energy excitations
are slightly reduced and broadened in momentum space (Fig. 2l,m), to suppress long range magnetic order of the
parent compound. This is very similar to the spectrum of LiFeAs and FeSe, which both have superconducting ground
state. From these plots, we can deduce that near commensurate or commensurate spin excitations at q = (1, 0),
with some finite width in momentum space to reduce the tendency towards the long-range order, are essential for
superconductivity.

Now we comment on the complexity of the KxFe2�ySe2 compounds. Our results for KFe2Se2 in Figs. 1&2(o)
indicate strong low energy spin excitation peaked around q = (1, 0.4). Vacancies in the K site, which reduce the
e↵ective electron doping, can move the peak to q = (1, 0) and favor superconductivity. On the other hand, vacancies
in the Fe sites move the peak to q=(0.6, 0.2) to induce novel magnetism in K0.8Fe1.6Se228.

Whereas the dynamic spin structure factor S(q,!) dispersion and the strength of the low energy spin excitations
correlate with experimental Tc across many families of iron superconductors, the superconducting pairing symmetry
and the variation of the superconducting gaps on the di↵erent Fermi surfaces cannot be extracted from the spin
dynamics alone. To make further progress on this issues, we computed the complete screened interaction between two
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FIG. 2: (Color online): a) E(V) and F(V) for FeO from
Eq. 1 and 4, respectively. Entropy term TSimp(V ) is large
but almost constant. (b) theoretical and experimental p(V ).
Filled and empty circles are from Refs. 43 and 44, respectively.
(c) Impurity entropy Eq. 7 for representative volumes. The
degeneracy of the t2g shell above 1000K is apparent.

FIG. 3: (Color online): a) E(V) and F(V) for elemental
Cerium from Eq. 1 and 4, respectively. Data are presented for
T=400 and 900K. (b) Entropy Simp(V ) is large and changes
dramatically accros the transiton. (c) theoretical and experi-
mental [45] p(V ) diagram.

shape, concomitant with the appearance of the quasipar-
ticle peak at temperature as high as 1500 K, signaling the
first order transition. Using di↵erent implementation of
the same method, Amadon et.al [27, 46] proposed that
the transition is entropy driven, and that the total en-
ergy is featureless with the minimum corresponding to
low volume ↵-phase. Only the addition of the entropy
term moves the minimum to the larger volume of �-phase.
In this picture the transition at low temperatures, where
the entropy becomes small and cannot drive the tran-
sition, is intrinsically absent. Yet another proposal was
recently put forward on the basis of LDA+Gutzwiller cal-
culations [47, 48], in which the transition is present even
at zero temperature, but the transition occurs at negative
pressure. The transition is thus detectable even in the to-
tal energy, in the absence of entropy, and becomes second
order at T = 0. In the same method, the finite temper-
ature transition is first order, and the double-minimum
shape of free energy becomes most pronounced at very
high temperature (1500 K) [48].

Our LDA+DMFT results for Ce are plotted in Fig. 3.
The total energy curve at 400 K clearly shows a region
of very flat shape in the region between the ↵-� volume.
Indeed the derivative of the energy �dE/dV displayed
in Fig. 3(c) shows a clear region of zero slope around
1 GPa. This is consistent with results of Lanata et al. [47]
finding very similar zero slope of �dE/dV at zero tem-
perature, but is inconsistent with Ref. 27, which finds
no feature in total energy. It is also inconsistent with
McMahan et.al [11] showing clear double-peak in total
energy. On the other hand, the addition of entropy sub-
stantially increase the region of soft volume, as suggested
by Amadon et.al [46]. Indeed the change of the entropy
between the two phases is of the order of 0.9kB , which
is consistent with experimental estimations of 30 meV at
400K [49]. The physical mechanism behind this large
entropy change and unusual volume dependence of en-
ergy is in very fast variation of coherence temperature,
as suggested in Refs. [11, 46], and conjectured in Kondo
volume collapse theory [50]. The phase transition in our
calculation occurs around 1.6 GPa, which is not far from
experimentally determined critical pressure of 1.25 GPa
at T = 400 K. The free energy barrier in our calculation
is however extremely small, and no clear double peak
of F (V ) or negative slope of �dF/dV can be detected
within our 1 meV precision of energies. This is similar to
results of Ref. 48 at 400 K, but di↵erent from Ref. 11.
While the start of the transition region in ↵-phase is
in good agreement with experiment, the �-phase vol-
ume is underestimated in our calculation. We believe
that the addition of phonon entropy is needed to further
increase the transition region, and establish larger free
energy barrier between the two phases. Experimentally,
above 460K the ↵ � � phase transition ends with the fi-
nite temperature critical point. Our calculation at high
temperature 900K shows that the signature of the phase

First order (entropy driven) transition

Isostructural transition in elemental Cerium

entropy driven

𝛼 ɣ
DOS



Stationary Free Energy Functional

total energy than the Luttinger-Ward functional. Only the
evaluation of the latter is guaranteed to give stationary free
energies. We will give numerical evidence that evaluation
of the MGF in Eq. (1) gives different results than evaluation
of the Luttinger-Ward functional, which strongly suggests
that Eq. (1) gives nonstationary total energies.
The Luttinger-Ward functional of DFTþ DMFT has

been well known for several years [17], but it has never
been successfully implemented to compute the free energy
of solids. It has the following form:

Γ½G# ¼Tr logG−Tr½ðG−1
0 −G−1ÞG#þEH½ρ#

þExc½ρ#þΦDMFT½P̂G#−ΦDC½P̂ρ#þEnuc-nuc; ð2Þ

whereG−1
0 ðrr0;iωÞ¼½iωþμþ∇2−VextðrÞ#δðr−r0Þ,ΦDMFT½P̂G#

is the DMFT functional, which is the sum of all local
skeleton Feynman diagrams. The projected Green’s func-
tion P̂G≡Glocal ¼

P
LL0 jϕLihϕLjGjϕL0 hϕL0 j and the pro-

jected density P̂ρ≡ ρlocal are computed with projection to a
set of localized functions jϕi centered on the “correlated”
atom. The projection defines the local Green’s function
Glocal, the essential variable of the DMFT.
The variation of functional Γ½G# with respect to G

(δΓ½G#=δG) gives

G−1−G−1
0 þðVHþVxcÞδðr− r0Þδðτ−τ0Þ

þ P̂
δΦDMFT½Glocal#

δGlocal
− P̂

δΦDC½ρlocal#
δρlocal

δðr− r0Þδðτ−τ0Þ¼ 0;

ð3Þ

which vanishes, since it is equal to the Dyson equation that
determines a self-consistent G; hence, the functional is
stationary.
The value of the functional Γ at the self-consistently

determined G delivers the free energy of the system [41].
We evaluate it by inserting G−1

0 − G−1 from Eq. (3) into
Eq. (2) to obtain

F ¼ Enuc-nuc − Tr½ðVH þ VxcÞρ# þ EH½ρ# þ Exc½ρ#
þ Tr logG − Tr logGloc þ Fimp

þ TrðVdcρlocÞ − ΦDC½ρloc# þ μN; ð4Þ

where we denoted Vdc ≡ δΦDC½ρlocal#=δρlocal and Fimp is
the free energy of the impurity problem, i.e., Fimp ¼
Tr logGloc − TrðΣGlocÞ þ ΦDMFT½Gloc# [4]. Here we also
use the fact that the solution of the auxiliary impurity
problem delivers the exact local Green’s function, i.e.,
Σ ¼ δΦDMFT½Glocal#=δGlocal, and we added μN because we
work at a constant electron number.
The crucial point is that the continuous time quantum

Monte Carlo (CTQMC) method [44,45] solves the quan-
tum impurity model (QIM) numerically exactly; hence, we

can compute very precisely the impurity internal energy as
well as the free energy Fimp of this model. As the impurity
configurations are visited with probability proportional to
their contribution to the partition function (Pk ¼ Zk=Z),
and since probability for kth order term Pk is easily
sampled by CTQMC algorithm, we can compute the value
of the partition function Z if we know the partition function
at any order of the perturbation theory k. The zeroth order
corresponds to the atomic state, hence, Z0 ¼ Zatom, which
can be directly computed from the knowledge of the atomic
energies. Hence as long as the probability for zeroth
perturbation order is above the QMC noise level
(≈10−5), which is always the case at sufficiently high
temperature, we can compute the impurity free energy from

Fimp ¼ −T½logðZatomÞ − logðP0Þ#: ð5Þ

This is because Z ¼ expð−Fimp=TÞ.
When the temperature is low, P0 becomes exponentially

small, and we can no longer determine Fimp to high enough
precision in this way. However, we can compute very
precisely the internal energy of the impurity at arbitrary
temperature. The internal energy of QIM Eimp is given by

Eimp ¼ Tr
!"

Δþ εimp − ωn
dΔ
dωn

#
Gimp

$
þ Eimp-pot; ð6Þ

which follows directly from the thermodynamic average
of the QIM Hamiltonian. Here the hybridization Δ and
impurity levels εimp are determined from the local green’s
function by the standard DMFT self-consistency condition
G−1

local ¼ iωn − εimp − Σ − Δ. These quantities can be com-
puted very precisely by CTQMC calculations [4]; hence,
the impurity internal energy can be easily computed with
the precision of a fraction of a meV.
To compute the precise impurity free energy Fimp at

temperature T we first converge DFTþ DMFT equations to
high accuracy at this temperature T. Using converged
impurity hybridizationΔðiωnÞ atT, we raise the temperature
of the impurity (keeping Δ fixed) to T>, which is chosen
such that P0 becomes of the order of 10−5 or higher. This
allows us to compute FimpðT>Þ using Eq. (5). We can also
compute entropy at T> from S>¼½EimpðT>Þ−FimpðT>Þ#=
T>. Next, we evaluate the impurity internal energy for
several inverse temperatures β ¼ 1=T between 1=T and
1=T>, and then we use standard thermodynamic relations to
obtain entropy at lower temperature T by

SðTÞ ¼ S> −
EimpðT>Þ

T>
þ
EimpðTÞ

T
−
Z

1=T

1=T>

Eimpð1=βÞdβ

ð7Þ

where β ¼ 1=T. This formula is obtained integrating by
parts the standard formula S ¼

R
cv=TdT and cv ¼ dE=dT.

We hence obtain Simp and Fimp ¼ Eimp − TSimp at T which
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total energy than the Luttinger-Ward functional. Only the
evaluation of the latter is guaranteed to give stationary free
energies. We will give numerical evidence that evaluation
of the MGF in Eq. (1) gives different results than evaluation
of the Luttinger-Ward functional, which strongly suggests
that Eq. (1) gives nonstationary total energies.
The Luttinger-Ward functional of DFTþ DMFT has

been well known for several years [17], but it has never
been successfully implemented to compute the free energy
of solids. It has the following form:

Γ½G# ¼Tr logG−Tr½ðG−1
0 −G−1ÞG#þEH½ρ#

þExc½ρ#þΦDMFT½P̂G#−ΦDC½P̂ρ#þEnuc-nuc; ð2Þ

whereG−1
0 ðrr0;iωÞ¼½iωþμþ∇2−VextðrÞ#δðr−r0Þ,ΦDMFT½P̂G#

is the DMFT functional, which is the sum of all local
skeleton Feynman diagrams. The projected Green’s func-
tion P̂G≡Glocal ¼

P
LL0 jϕLihϕLjGjϕL0 hϕL0 j and the pro-

jected density P̂ρ≡ ρlocal are computed with projection to a
set of localized functions jϕi centered on the “correlated”
atom. The projection defines the local Green’s function
Glocal, the essential variable of the DMFT.
The variation of functional Γ½G# with respect to G

(δΓ½G#=δG) gives

G−1−G−1
0 þðVHþVxcÞδðr− r0Þδðτ−τ0Þ

þ P̂
δΦDMFT½Glocal#

δGlocal
− P̂

δΦDC½ρlocal#
δρlocal

δðr− r0Þδðτ−τ0Þ¼ 0;

ð3Þ

which vanishes, since it is equal to the Dyson equation that
determines a self-consistent G; hence, the functional is
stationary.
The value of the functional Γ at the self-consistently

determined G delivers the free energy of the system [41].
We evaluate it by inserting G−1

0 − G−1 from Eq. (3) into
Eq. (2) to obtain

F ¼ Enuc-nuc − Tr½ðVH þ VxcÞρ# þ EH½ρ# þ Exc½ρ#
þ Tr logG − Tr logGloc þ Fimp

þ TrðVdcρlocÞ − ΦDC½ρloc# þ μN; ð4Þ

where we denoted Vdc ≡ δΦDC½ρlocal#=δρlocal and Fimp is
the free energy of the impurity problem, i.e., Fimp ¼
Tr logGloc − TrðΣGlocÞ þ ΦDMFT½Gloc# [4]. Here we also
use the fact that the solution of the auxiliary impurity
problem delivers the exact local Green’s function, i.e.,
Σ ¼ δΦDMFT½Glocal#=δGlocal, and we added μN because we
work at a constant electron number.
The crucial point is that the continuous time quantum

Monte Carlo (CTQMC) method [44,45] solves the quan-
tum impurity model (QIM) numerically exactly; hence, we

can compute very precisely the impurity internal energy as
well as the free energy Fimp of this model. As the impurity
configurations are visited with probability proportional to
their contribution to the partition function (Pk ¼ Zk=Z),
and since probability for kth order term Pk is easily
sampled by CTQMC algorithm, we can compute the value
of the partition function Z if we know the partition function
at any order of the perturbation theory k. The zeroth order
corresponds to the atomic state, hence, Z0 ¼ Zatom, which
can be directly computed from the knowledge of the atomic
energies. Hence as long as the probability for zeroth
perturbation order is above the QMC noise level
(≈10−5), which is always the case at sufficiently high
temperature, we can compute the impurity free energy from

Fimp ¼ −T½logðZatomÞ − logðP0Þ#: ð5Þ

This is because Z ¼ expð−Fimp=TÞ.
When the temperature is low, P0 becomes exponentially

small, and we can no longer determine Fimp to high enough
precision in this way. However, we can compute very
precisely the internal energy of the impurity at arbitrary
temperature. The internal energy of QIM Eimp is given by

Eimp ¼ Tr
!"

Δþ εimp − ωn
dΔ
dωn

#
Gimp

$
þ Eimp-pot; ð6Þ

which follows directly from the thermodynamic average
of the QIM Hamiltonian. Here the hybridization Δ and
impurity levels εimp are determined from the local green’s
function by the standard DMFT self-consistency condition
G−1

local ¼ iωn − εimp − Σ − Δ. These quantities can be com-
puted very precisely by CTQMC calculations [4]; hence,
the impurity internal energy can be easily computed with
the precision of a fraction of a meV.
To compute the precise impurity free energy Fimp at

temperature T we first converge DFTþ DMFT equations to
high accuracy at this temperature T. Using converged
impurity hybridizationΔðiωnÞ atT, we raise the temperature
of the impurity (keeping Δ fixed) to T>, which is chosen
such that P0 becomes of the order of 10−5 or higher. This
allows us to compute FimpðT>Þ using Eq. (5). We can also
compute entropy at T> from S>¼½EimpðT>Þ−FimpðT>Þ#=
T>. Next, we evaluate the impurity internal energy for
several inverse temperatures β ¼ 1=T between 1=T and
1=T>, and then we use standard thermodynamic relations to
obtain entropy at lower temperature T by

SðTÞ ¼ S> −
EimpðT>Þ

T>
þ
EimpðTÞ

T
−
Z

1=T

1=T>

Eimpð1=βÞdβ

ð7Þ

where β ¼ 1=T. This formula is obtained integrating by
parts the standard formula S ¼

R
cv=TdT and cv ¼ dE=dT.

We hence obtain Simp and Fimp ¼ Eimp − TSimp at T which
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Very hard to compute

total energy than the Luttinger-Ward functional. Only the
evaluation of the latter is guaranteed to give stationary free
energies. We will give numerical evidence that evaluation
of the MGF in Eq. (1) gives different results than evaluation
of the Luttinger-Ward functional, which strongly suggests
that Eq. (1) gives nonstationary total energies.
The Luttinger-Ward functional of DFTþ DMFT has

been well known for several years [17], but it has never
been successfully implemented to compute the free energy
of solids. It has the following form:

Γ½G# ¼Tr logG−Tr½ðG−1
0 −G−1ÞG#þEH½ρ#

þExc½ρ#þΦDMFT½P̂G#−ΦDC½P̂ρ#þEnuc-nuc; ð2Þ

whereG−1
0 ðrr0;iωÞ¼½iωþμþ∇2−VextðrÞ#δðr−r0Þ,ΦDMFT½P̂G#

is the DMFT functional, which is the sum of all local
skeleton Feynman diagrams. The projected Green’s func-
tion P̂G≡Glocal ¼

P
LL0 jϕLihϕLjGjϕL0 hϕL0 j and the pro-

jected density P̂ρ≡ ρlocal are computed with projection to a
set of localized functions jϕi centered on the “correlated”
atom. The projection defines the local Green’s function
Glocal, the essential variable of the DMFT.
The variation of functional Γ½G# with respect to G

(δΓ½G#=δG) gives

G−1−G−1
0 þðVHþVxcÞδðr− r0Þδðτ−τ0Þ

þ P̂
δΦDMFT½Glocal#

δGlocal
− P̂

δΦDC½ρlocal#
δρlocal

δðr− r0Þδðτ−τ0Þ¼ 0;

ð3Þ

which vanishes, since it is equal to the Dyson equation that
determines a self-consistent G; hence, the functional is
stationary.
The value of the functional Γ at the self-consistently

determined G delivers the free energy of the system [41].
We evaluate it by inserting G−1

0 − G−1 from Eq. (3) into
Eq. (2) to obtain

F ¼ Enuc-nuc − Tr½ðVH þ VxcÞρ# þ EH½ρ# þ Exc½ρ#
þ Tr logG − Tr logGloc þ Fimp

þ TrðVdcρlocÞ − ΦDC½ρloc# þ μN; ð4Þ

where we denoted Vdc ≡ δΦDC½ρlocal#=δρlocal and Fimp is
the free energy of the impurity problem, i.e., Fimp ¼
Tr logGloc − TrðΣGlocÞ þ ΦDMFT½Gloc# [4]. Here we also
use the fact that the solution of the auxiliary impurity
problem delivers the exact local Green’s function, i.e.,
Σ ¼ δΦDMFT½Glocal#=δGlocal, and we added μN because we
work at a constant electron number.
The crucial point is that the continuous time quantum

Monte Carlo (CTQMC) method [44,45] solves the quan-
tum impurity model (QIM) numerically exactly; hence, we

can compute very precisely the impurity internal energy as
well as the free energy Fimp of this model. As the impurity
configurations are visited with probability proportional to
their contribution to the partition function (Pk ¼ Zk=Z),
and since probability for kth order term Pk is easily
sampled by CTQMC algorithm, we can compute the value
of the partition function Z if we know the partition function
at any order of the perturbation theory k. The zeroth order
corresponds to the atomic state, hence, Z0 ¼ Zatom, which
can be directly computed from the knowledge of the atomic
energies. Hence as long as the probability for zeroth
perturbation order is above the QMC noise level
(≈10−5), which is always the case at sufficiently high
temperature, we can compute the impurity free energy from

Fimp ¼ −T½logðZatomÞ − logðP0Þ#: ð5Þ

This is because Z ¼ expð−Fimp=TÞ.
When the temperature is low, P0 becomes exponentially

small, and we can no longer determine Fimp to high enough
precision in this way. However, we can compute very
precisely the internal energy of the impurity at arbitrary
temperature. The internal energy of QIM Eimp is given by

Eimp ¼ Tr
!"

Δþ εimp − ωn
dΔ
dωn

#
Gimp

$
þ Eimp-pot; ð6Þ

which follows directly from the thermodynamic average
of the QIM Hamiltonian. Here the hybridization Δ and
impurity levels εimp are determined from the local green’s
function by the standard DMFT self-consistency condition
G−1

local ¼ iωn − εimp − Σ − Δ. These quantities can be com-
puted very precisely by CTQMC calculations [4]; hence,
the impurity internal energy can be easily computed with
the precision of a fraction of a meV.
To compute the precise impurity free energy Fimp at

temperature T we first converge DFTþ DMFT equations to
high accuracy at this temperature T. Using converged
impurity hybridizationΔðiωnÞ atT, we raise the temperature
of the impurity (keeping Δ fixed) to T>, which is chosen
such that P0 becomes of the order of 10−5 or higher. This
allows us to compute FimpðT>Þ using Eq. (5). We can also
compute entropy at T> from S>¼½EimpðT>Þ−FimpðT>Þ#=
T>. Next, we evaluate the impurity internal energy for
several inverse temperatures β ¼ 1=T between 1=T and
1=T>, and then we use standard thermodynamic relations to
obtain entropy at lower temperature T by

SðTÞ ¼ S> −
EimpðT>Þ

T>
þ
EimpðTÞ

T
−
Z

1=T

1=T>

Eimpð1=βÞdβ

ð7Þ

where β ¼ 1=T. This formula is obtained integrating by
parts the standard formula S ¼

R
cv=TdT and cv ¼ dE=dT.

We hence obtain Simp and Fimp ¼ Eimp − TSimp at T which
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sign of structural instability occurs, as shown in Fig. 1b. The free energy curve of the paramagnetic phase develops
a local minimum in the P21/n structure, where oxygen octahedra around Ni1 is expanded, and octahedra around
Ni2 is compressed. Using the technology to calculate forces, we optimized the structural parameters in this phase,
and we list them in table I. In the local minimum, the Mott gap opens up on Ni1 atom, while Ni2, through strong
hybridization with the environment, splits bands such that the band gap opens at the Fermi level, all consistent with
the “site-selective” Mott transition scenario22 (see Fig. 1f.). Just slightly away from this local minimum (80-90%
distortion), the insulator breaks down and strongly incoherent metallic state appears (Fig. 1d).

TABLE I: Optimized atomic positions in the metallic and insulating state of NdNiO3.

Experimental structure is from Ref.2. The GGA and GGA+U structure agrees with calculation in Ref.32.
Pbnm Exp. EDMFTF-PARA GGA
Ni (0.000, 0.000, 0.500) (0.000, 0.000, 0.500) (0.000, 0.000, 0.500)
O1 (0.216, 0.287, 0.539) (0.214, 0.287, 0.539) (0.207, 0.294, 0.547)
O2 (0.569, 0.490, 0.750) (0.573, 0.490, 0.750) (0.591, 0.477, 0.750)
Nd (0.496, 0.035, 0.750) (0.491, 0.044, 0.750) (0.488, 0.058, 0.750)p

h(r� rexp)2i 0.0056 0.0190
P21/n Exp EDMFTF-PARA EDMFT-AFM GGA+U
Ni1 (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
Ni2 (0.000, 0.000, 0.500) (0.000, 0.000, 0.500) (0.000, 0.000, 0.500) (0.000, 0.000, 0.500)
O1 (0.575, 0.487, 0.752) (0.575, 0.489, 0.754) (0.574, 0.489, 0.750) (0.595, 0.475, 0.755)
O2 (0.214, 0.276, 0.527) (0.209, 0.284, 0.540) (0.209, 0.285, 0.540) (0.198, 0.291, 0.549)
O3 (0.719, 0.204, 0.447) (0.717, 0.209, 0.460) (0.717, 0.210, 0.460) (0.711, 0.198, 0.452)
Nd (0.493, 0.039, 0.750) (0.491, 0.044, 0.750) (0.493, 0.044, 0.750) (0.489, 0.056, 0.750)p

h(r� rexp)2i 0.0090 0.0091 0.0180

In the Pbnm structure (zero distortion in Fig. 1b,h) the fluctuating moments are present, but they are not strong
enough to allow for the long range magnetic order, hence the system resolves its excess entropy in the Fermi liquid
state at low temperature. Once the Ni1 hybridization is reduced a bit due to small increase of the oxygen octahedra
(around 10% distortion), the correlations on Ni1 become strong enough so that the static magnetic moment appears
(see Fig. 1h) These correlations are primarily driven by the strong Hunds coupling on Ni ion, which aligns two holes on
the Ni1 site, but the static ordered moment is only about 2/3 of the maximum moment for spin one state. The static
moments on Ni2 however remains exactly zero, as the fluctuating moment on Ni2 gets even reduced in the distorted
(P21/n) structure, and the appearance of the band gap prevents any static moment on that site. The resulting
magnetic configuration, predicted by the present theory, is displayed in Fig. 1i. The magnetic unit cell quadruples,
and the Ni ions in the parallel planes in (1,0,1) direction are ferromagnetically aligned. However, every second Ni plane,
composed on Ni2 ions, has no moment, while the Ni1 planes which are two layers appart, couple antiferromagnetically.
This ordering of moments on Ni1 sites coincides with the model deduced from the neutron scattering29 and resonant
soft X-ray di↵raction31, but it di↵ers from both models due to Ni2 sites. In the model deduced from the neutron
scattering29 Ni2 moments were arranged antiferromagnetically within a single (1,0,1) plane, while in resonant soft X-
ray di↵raction31, Ni2 moments were arranged ferromagnetically, but 90 degrees rotated with respect to Ni1 moments,
so that the resulting magnetic structure is non-collinear. The only stable solution in the DFT-DMFT theory is the
one with no moment on Ni2, and we show in the supplementary that this magnetic configuration fits the neutron
scattering data as good as the model of Ref. 29.

Finally, the gain in free energy is considerable ones the magnetic long range order is turned on, hence this magnetic
order displayed in Fig. 1i is the theoretical ground state of the displayed unit cell. Table I lists the optimized structure
in the magnetic state, which shows almost no di↵erence as compared to the paramagnetic structure in P21/n symmetry.
From Fig. 1b we can also conclude that the magnetism is not necessary for the metal-insulator transition, but in Nd
compound, this paramagnetic insulator appears metastable, and energy gain due to long range magnetic order helps
to stabilizes the insulating state. In supplementary material we show that for smaller rare earth ion (LuNiO3) the
paramagnetic insulating state is stable at 100K in the absence of magnetism. Magnetism is thus just e�cient way to
release the large entropy of fluctuating moment on Ni1 sites, which are formed with a help of much stronger Hund’s
coupling mechanism.

While the large Hun’s coupling is essential for the appearance of strong local moments on Ni sites, the MIT in these
materials is tuned by the reduced hybridization on Ni1 sites, displayed in Fig. 2a and b. It decreases for about 10%
in the bond-disproportionate structure, and this is su�cient for a Mott localization of electrons on Ni1 site. Notice
that the largest contribution to the hybridization comes from Ni-oxygen overlap, and its reduction is also mostly
concentrated at the center of the oxygen states. On Ni2 sites however, the hybridization increases almost as much

Optimized Structure NdNiO3

With the single functional 
we optimize both structures 

and  three solutions. 

Agreement with experiment  
2-3 times better than the best 

of GGA or GGA+U.

~33 meV difference between the GGA 
(GGA+U) and  EDMFTF structure
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was invented in Ref. 11, which still requires integra-
tion over temperature for the entropy term. However,
as we will show below, the force requires only the first
derivative ��[G]/�G, which is the familiar self-energy ⌃,
and which can be computed to very high accuracy in
QMC method. It turns out that only the first deriva-
tive of the free energy functional, i.e., the force, can
be so accurately implemented. To compute the free en-
ergy itself, one needs �[G], which is hard to compute.
For the phonon spectra, which is the second derivative,
one needs �2�[G]/�G2, which is the two particle vertex,
and is again very hard to accurately compute in prac-
tice. Therefore only the force on atoms can be computed
very precisely in the functional DFT+embedded DMFT
(FDFT+EDMFT) method when the exact QMC method
is used as the impurity solver.

As a consequence, the frozen phonon approach is more
tractable than the generalization of the density functional
perturbation theory13. Also the integration of the force
will likely be the best way to calculate phase diagrams
of correlated solids, as the force can be converged with
roughly one order of magnitude higher precision than the
free energy itself.

We are aware of two prior reports on computing forces
and other derivatives within DFT+DMFT method. The
work of Savrasov and Kotliar14 considered only the sec-
ond derivative of the DFT+DMFT functional with re-
spect to atom displacement, to obtain the phonon spec-
tra. They considered only the finite wave vector q, to
avoid the need of di↵erentiating the Kohn-Sham eigenen-
ergies, which are needed for evaluating the forces. More-
over, using the Hubbard-I impurity solver, they also ne-
glected the change of the DMFT self-energy with re-
spect to the atom displacement (�⌃/�G = �2�/�G2),
which plays an important role in our method. The work
of Leonov et. al. 15 reported computation of forces
within DFT+DMFT, however, their implementation is
not based on stationary functional. The derivative of
non-stationary DMFT total energy was computed, in
which the two-particle vertex is needed at all frequencies,
which is extremely hard to compute accurately enough
by the present day impurity solvers, to be useful for
the structural optimizations. Moreover, the method of
Leonov et. al.15 is a based on the two step process, where
the low energy model is build first and then a Hubbard
model is solved by the DMFT method. Also the influ-
ence of the DMFT correlations on the electronic charge,
needed in the DFT step, is neglected. These two ap-
proximations are a source of inacuracy, which is hard to
overcome, even when the impurity is solved with a very
high precision so that the two-particle vertex is converged
within meV accuracy. Hence alternative approaches are
needed for practical predictions of crystal structures for
correlated electron solids.

The manuscript is organized as follows: In Section II
we derive the equations for the forces within functional
DFT+Embedded DMFT. In part IIA we introduce the
Luttinger-Ward functional and its derivative with re-

spect to the atom displacement, which is the well known
Hellmann-Feynman force. In part II B we derive a basis
set independent expression for the Pulay force, the addi-
tional force due to basis set discretization. In part II C
we show how is this formula evaluated in a mixed ba-
sis set, in which the basis has both the atom-centered
and origin-less functions. In part IID we derive Pulay
forces in one such basis, namely the LAPW basis. In
chapter III we apply this method to FeSe, and show how
quantum Monte Carlo noise cancels to large extent when
computing the force. The accuracy of force calculation
is approximately one order of magnitude better than in
computing the free energy. In chapter III we also show
that FeSe is positioned in the critical region where a small
increase of the fluctuating moment on Fe leads to sub-
stantial increase of Se-height, and consequently also of
the correlation strength. In appendix A we give details
of the force evaluation within the LAPW basis set.

II. DERIVATION OF THE FORCE WITHIN
FDFT+EDMFT

The force on an atom is defined as minus the change
of the total free energy when its nucleus is displaced by a
small amount. The Hellmann-Feynman theorem16 states
that this force is equal to the electrostatic force on the nu-
cleus, but due to discretization of the problem, which in-
volves convenient atom centered basis and atom centered
projector, the actual force on an atom has additional con-
tributions, which are usually called Pulay forces17.

A. The Luttinger-Ward approach

In ab-initio electronic structure methods, the force is
computed by evaluating the analytical derivative of the
total energy functional. In order to compute such deriva-
tives, it is very convenient to use a stationary functional,
in which a small change of the electron density (and the
Green’s function), leaves functional invariant. Indeed, if
the implementation of the functional is exact, one could
evaluate the force by considering a small displacement of
nuclei at fixed electron charge density (and fixed Green’s
function). Namely, the total derivative of the free energy
functional �[G] can be split into two terms, the partial
derivatives with respect to the Green’s function at fixed
atomic positions, and the partial derivatives with respect
to displacements at fixed Green’s function, i.e.,
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Force on all atoms from derivative of the functional

But the LAPW basis set, and 
the DMFT projector, are not 
fixed in space, but rather 
move with the atom.

“Pulay forces” appear

We need to differentiate the implemented 
expression for the free energy.
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Recall: 

at the DMFT solution the Dyson Eq. is satisfied 

Free energy expression again
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hence the free can be computed by 

nuclear-nuclear energy is added; 
 canonical ensemble needs +μ N
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To implement we compute generalized Kohn-Sham orbitals:
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4

Notice that (h�|G|�i)mm0 are the matrix elements of the
local Green’s function h�µm|G|�µm0i.

In the all-electron calculations of the free energy, the
spatial degrees of freedom are expanded in terms of a
mixed basis set, which includes atom centered basis func-
tions, therefore the Hellmann-Feynman force is very dif-
ferent from the derivative of the implemented free energy
Eq. 9. It is therefore essential to find the analytic deriva-

tive of the actually implemented free energy Eq. 9. This
is derived below. We will concentrate on the valence
electron contribution, as the core contribution within
DFT+EDMFTF is the same as in DFT.

To evaluate the logarithm of the Green’s function in
Eq. 9, we first solve the following frequency dependent
eigenvalue-problem
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This is the actual expression implemented in
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where VKS = VH + Vxc + Vnuclei.
Finally, we define the Pulay force on an atom FPuly as

the addition to the Hellmann-Feynman force (due to the
basis set in which the functional is implemented) �F =
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This equation is still completely general expression for
the force within the DFT+EDMFTF, irrespectively of
the basis set employed.

C. Pulay forces expressed in a mixed basis set

To proceed, we need to choose a basis to express the
electron Green’s function. We will here denote it by |�Ki,
(as we have in mind LAPW basis set) but the details of
the basis are not important here, so this derivation is
relevant for any mixed basis set.
The DMFT eigenvectors | ik!n

i are than expanded in
the chosen basis in the usual way
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Note also that the eigenvalue problem is not Hermitian,
therefore we need to distinguish between the right and
the left eigenvectors. Using expansion Eqs. 17 and 18,
the DMFT eigenvalue problem Eq. 10 reads
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Free energy expression implementation
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so that the Green’s function is simply given by
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and the free energy is evaluated by
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This is the actual expression implemented in
FDFT+EDMFT code. To get the force on an atom, we
need to consider a small variation of this energy when
moving an atom at position Rµ
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and, as we work at constant electron density, �N = 0.
Inserting the Hellmann-Feynman forces Eq. 4, we arrive
at
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where VKS = VH + Vxc + Vnuclei.
Finally, we define the Pulay force on an atom FPuly

as the additional force due to incomplete basis set in
which the DFT+DMFT functional is implemented �F =
�
P

µ(F
HF
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µ )�Rµ. From Eq. 15 it follows that
the Pulay forces are
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This equation is still completely general expression for
the force within the FDFT+EDMFT, irrespectively of
the basis set employed.

C. Pulay forces expressed in a mixed basis set

To proceed, we need to choose a basis to express the
electron Green’s function. We will here denote it by |�Ki,
(as we have in mind LAPW basis set) but the details of

the basis are not important here, so this derivation is
relevant for any mixed basis set.
The DMFT eigenvectors | ik!n

i are than expanded in
the chosen basis in the usual way
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Note that the eigenvectors | ik!n
i are momentum and

frequency dependent hence AR
Ki also inherit this momen-

tum and frequency dependence, i.e., AR
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Ki(k,!n).
Note also that the eigenvalue problem is not Hermitian,
therefore we need to distinguish between the right and
the left eigenvectors. Using expansion Eqs. 17 and 18,
the DMFT eigenvalue problem Eq. 10 reads
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Here H0 stands for the DFT part of the Hamiltonian,
and V for the additonal DMFT contributions.
The eigenvectors are orthogonalized in the usual way
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where OK0K = h�K0 |�Ki is the overlap matrix, hence the
eigenvalue problem Eq. 19 can be cast in the following
form
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or in short notation

[H0 + V ]AR = OAR"

Eq. 21 is enforced for any position of atoms Rµ, hence
its variation vanishes. We thus have
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the force within the FDFT+EDMFT, irrespectively of
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� Tr(⇢(�VH + �Vxc))

�Tr(Gloc(�⌃� �VDC)) + �Enuclei +N�µ (13)

where we used the fact that

�(EH + Exc) = Tr((VH + Vxc)�⇢) (14)
X

Rµ

��DMFT [Gµ
loc] + ��DC [⇢µloc] = Tr((⌃� VDC)�Gloc)

and, as we work at constant electron density, �N = 0.
Inserting the Hellmann-Feynman forces Eq. 4, we arrive
at

�F = Tr

✓
�"k!n

i!n + µ� "k!n

◆
� Tr(⇢ �VKS)

�Tr(Gloc(�⌃� �VDC))�
X

µ

FHF
µ �Rµ (15)

where VKS = VH + Vxc + Vnuclei.
Finally, we define the Pulay force on an atom FPuly

as the additional force due to incomplete basis set in
which the DFT+DMFT functional is implemented �F =
�
P

µ(F
HF
µ + FPuly

µ )�Rµ. From Eq. 15 it follows that
the Pulay forces are

FPuly
µ = �Tr

✓
1

i!n + µ� "k!n

�"k!n

dRµ

◆

+ Tr

✓
⇢
�VKS

�Rµ

◆
+Tr

✓
Gloc

�⌃� �VDC

�Rµ

◆
(16)

This equation is still completely general expression for
the force within the FDFT+EDMFT, irrespectively of
the basis set employed.

C. Pulay forces expressed in a mixed basis set

To proceed, we need to choose a basis to express the
electron Green’s function. We will here denote it by |�Ki,
(as we have in mind LAPW basis set) but the details of

the basis are not important here, so this derivation is
relevant for any mixed basis set.
The DMFT eigenvectors | ik!n

i are than expanded in
the chosen basis in the usual way

| ik!n
i =

X

K

|�KiAR
Ki (17)

h ik!n
| =

X

K

AL
iK h�K| (18)

Note that the eigenvectors | ik!n
i are momentum and

frequency dependent hence AR
Ki also inherit this momen-

tum and frequency dependence, i.e., AR
Ki = AR

Ki(k,!n).
Note also that the eigenvalue problem is not Hermitian,
therefore we need to distinguish between the right and
the left eigenvectors. Using expansion Eqs. 17 and 18,
the DMFT eigenvalue problem Eq. 10 reads

X

KK0

AL
jK0

⇥
H0

K0K + VK0K

⇤
AR

Ki = �ij "k!n,i (19)

where

H0
K0K = h�K0 |T + Vnuclei + VH + Vxc|�Ki (20)

VK0K =
X

mm0Rµ

h�K0 |�µmi h�µm|⌃� VDC |�µm0i h�µm0 |�Ki

Here H0 stands for the DFT part of the Hamiltonian,
and V for the additonal DMFT contributions.
The eigenvectors are orthogonalized in the usual way

X

KK0

AL
iK0OK0KAR

Kj = �ij

where OK0K = h�K0 |�Ki is the overlap matrix, hence the
eigenvalue problem Eq. 19 can be cast in the following
form

X

K

⇥
H0

K0K + VK0K

⇤
AR

Ki =
X

K

OK0KAR
Ki "k!n,i (21)

or in short notation

[H0 + V ]AR = OAR"

Eq. 21 is enforced for any position of atoms Rµ, hence
its variation vanishes. We thus have

[(�H0) + (�V )]AR + [H0 + V ]�AR

= (�O)AR"+O(�AR)"+OAR�" (22)

and multiplying with AL we get

AL[(�H0) + (�V )]AR +AL[H0 + V ]�AR

= AL(�O)AR"+ALO(�AR)"+ �" (23)

We also use the fact that AL[H0 + V ] = "ALO to obtain

�" = AL[(�H0) + (�V )]AR �AL(�O)AR"

+"ALO(�AR)�ALO(�AR)" (24)
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FPuly
µ = �Tr

✓
e⇢A0† �H

0

dRµ
A0 � g(⇢")A0† �O

�Rµ
A0

◆
+Tr

✓
⇢
�VKS

�Rµ

◆
� Tr

✓
Ḡ

�V

�Rµ

◆
+Tr

✓
Gloc

�⌃� �VDC

�Rµ

◆
(32)

We next simplify the interacting part (the third term
above), which contains interaction V (defined by Eq. 20):

Tr
�
Ḡ�V

�

=
1

�

X

i!,m0m
KK0

ḠKK0� (h�K0 |�m0i (⌃� VDC)m0m h�m|�Ki)

=
1

�

X

i!n,m
0m

KK0

ḠKK0(⌃� VDC)m0m� (h�K0 |�m0i h�m|�Ki)

+Tr (Gloc(�⌃� �VDC)) (33)

where we used the fact that

(Gloc)mm0 =
X

KK0

h�m|�Ki ḠKK0 h�K0 |�m0i

Finally, the Pulay forces become

FPuly
µ = �Tr

✓
e⇢A0† �H

0

�Rµ
A0 � g(⇢")A0† �O

�Rµ
A0

◆
+Tr

✓
⇢
�VKS

�Rµ

◆

� 1

�

X

i!n

X

KK0,m0m

ḠKK0(⌃� VDC)m0m
� (h�K0 |�m0i h�m|�Ki)

�Rµ
(34)

This is still a basis independent expression of the Pulay
force, as we abstain discussing specifics of a given basis
set, but we nevertheless managed to avoid the expensive
frequency summations in all but the last term. To per-
form the expensive K and frequency summation in the
last term, we need to determine the derivative of the pro-
jector, which depends on the basis set and the choice of
a projector.

D. Pulay forces within LAPW basis and quasi
atomic orbital projector

Within the LAPW method22,23 the interstitial space is
spanned by the plane waves e�K, while inside the mu�n-

tin spheres, the plane waves are augmented and expanded
as a linear superposition of the atom-centered solutions
of the Schroedinger equation. We name these augmented
functions �K, and inside mu�n-tin spheres we express
them in the atom centered coordinate system with the
proper phase factor �K(r) = ei(K+k)Rµ �̄K(r�Rµ). For
convenience of the derivation, we chose �̄K to be the basis
function in the mu�n-tin sphere, but without the phase
factor. The matrix elements of the Hamiltonian are then
computed by an integral of the form

h�K0 |V |�Ki =
Z

int
d3re�⇤

K0(r)V (r)e�K(r) +
X

µ

ei(K�K0)Rµ

Z

MTµ

d3r�̄⇤
K0(r)V (r+Rµ)�̄K(r) (35)

The first term runs over interstitial space between mu�n-
tin (MT) spheres, while the second term is the MT part.
We are looking for a change when we move a single atom

µ at Rµ for a small amount (�Rµ). The plane-wave func-
tions e�K do not change, while the augmented �̄K in the
second integral move with the atom. In addition, be-
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FPuly
µ = �Tr

✓
e⇢A0† �H

0

dRµ
A0 � g(⇢")A0† �O

�Rµ
A0

◆
+Tr

✓
⇢
�VKS

�Rµ

◆
� Tr

✓
Ḡ

�V

�Rµ

◆
+Tr

✓
Gloc

�⌃� �VDC

�Rµ

◆
(32)

We next simplify the interacting part (the third term
above), which contains interaction V (defined by Eq. 20):

Tr
�
Ḡ�V

�

=
1

�

X

i!,m0m
KK0

ḠKK0� (h�K0 |�m0i (⌃� VDC)m0m h�m|�Ki)

=
1

�

X

i!n,m
0m

KK0

ḠKK0(⌃� VDC)m0m� (h�K0 |�m0i h�m|�Ki)

+Tr (Gloc(�⌃� �VDC)) (33)

where we used the fact that

(Gloc)mm0 =
X

KK0

h�m|�Ki ḠKK0 h�K0 |�m0i

Finally, the Pulay forces become

FPuly
µ = �Tr

✓
e⇢A0† �H

0

�Rµ
A0 � g(⇢")A0† �O

�Rµ
A0

◆
+Tr

✓
⇢
�VKS

�Rµ

◆

� 1

�

X

i!n

X

KK0,m0m

ḠKK0(⌃� VDC)m0m
� (h�K0 |�m0i h�m|�Ki)

�Rµ
(34)

This is still a basis independent expression of the Pulay
force, as we abstain discussing specifics of a given basis
set, but we nevertheless managed to avoid the expensive
frequency summations in all but the last term. To per-
form the expensive K and frequency summation in the
last term, we need to determine the derivative of the pro-
jector, which depends on the basis set and the choice of
a projector.

D. Pulay forces within LAPW basis and quasi
atomic orbital projector

Within the LAPW method22,23 the interstitial space is
spanned by the plane waves e�K, while inside the mu�n-

tin spheres, the plane waves are augmented and expanded
as a linear superposition of the atom-centered solutions
of the Schroedinger equation. We name these augmented
functions �K, and inside mu�n-tin spheres we express
them in the atom centered coordinate system with the
proper phase factor �K(r) = ei(K+k)Rµ �̄K(r�Rµ). For
convenience of the derivation, we chose �̄K to be the basis
function in the mu�n-tin sphere, but without the phase
factor. The matrix elements of the Hamiltonian are then
computed by an integral of the form

h�K0 |V |�Ki =
Z

int
d3re�⇤

K0(r)V (r)e�K(r) +
X

µ

ei(K�K0)Rµ

Z

MTµ

d3r�̄⇤
K0(r)V (r+Rµ)�̄K(r) (35)

The first term runs over interstitial space between mu�n-
tin (MT) spheres, while the second term is the MT part.
We are looking for a change when we move a single atom

µ at Rµ for a small amount (�Rµ). The plane-wave func-
tions e�K do not change, while the augmented �̄K in the
second integral move with the atom. In addition, be-
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Here H0 stands for the DFT part of the Hamiltonian,
and V for the additional DMFT contributions.

The eigenvectors are orthogonalized in the usual way

X

KK0

AL
iK0OK0KAR

Kj = �ij

where OK0K = h�K0 |�Ki is the overlap matrix, hence the
eigenvalue problem Eq. 19 can be cast in the following
form

X

K

⇥
H0

K0K + VK0K

⇤
AR

Ki =
X

K

OK0KAR
Ki "k!n,i (21)

or in short notation

[H0 + V ]AR = OAR".

Eq. 21 is enforced for any position of atoms Rµ, hence
its variation vanishes. We thus have

[(�H0) + (�V )]AR + [H0 + V ]�AR

= (�O)AR"+O(�AR)"+OAR�" (22)

and multiplying with AL we get

AL[(�H0) + (�V )]AR +AL[H0 + V ]�AR

= AL(�O)AR"+ALO(�AR)"+ �" (23)

We also use the fact that AL[H0 + V ] = "ALO to obtain

�" = AL[(�H0) + (�V )]AR �AL(�O)AR"

+"ALO(�AR)�ALO(�AR)" (24)

In Eq. 16 we only need the diagonal variation of the
eigenvalues (�")ii, for which the last two terms cancel
because " is diagonal matrix, hence "i(ALO(�AR))ii �
(ALO(�AR)ii"i = 0. We thus obtain

(�"k!n
)ii =

X

KK0

AL
iK0 [�H0

K0K + �VK0K]AR
Ki

�AL
iK0 �OK0K AR

Ki "k!n,i (25)

This is a dynamic generalization of the DFT expression,
derived in Ref. 21.

Next we split the DMFT eigenvectors into the static
(Kohn-Sham) part, and the frequency dependent part

AR
Ki =

X

j

A0
Kj(B

R
!n

)ji (26)

AL
iK =

X

j

(BL
!n

)ijA
0 †
jK (27)

or short AR = A0BR
!n

and AL = BL
!n

A0†. Here A0 satis-
fies the Kohn-Sham eigenvalue problem A0†H0A0 = "0.

In terms of the above defined quantities Eq. 16 takes
the form

FPuly
µ = �Tr

✓
GdBL

!n


A0†

✓
�H0

�Rµ
+

�V

�Rµ

◆
A0BR

!n
�A0† �O

�Rµ
A0BR

!n
"k!n

�◆
+Tr

✓
⇢
�VKS

�Rµ

◆
+Tr

✓
Gloc

�⌃� �VDC

�Rµ

◆
(28)

where we denoted

Gd =
1

i!n + µ� "k!n

,

andGd is the Green’s function in diagonal representation.
Next we define the following DMFT density matrices

e⇢ ⌘ 1

�

X

i!n

BR
!n

1

i!n + µ� "k!n

BL
!n

(29)

g(⇢") ⌘ 1

�

X

i!n

BR
!n

"k!n

i!n + µ� "k!n

BL
!n

(30)

which are the usual DMFT density matrices, but here

written in the Kohn-Sham basis. Note that the density
matrix e⇢ can also be expressed by e⇢ij = h 0

i |⇢| 0
j i where

| 0i are Kohn-Sham eigenvectors of H0 and ⇢ is the self-
consistent charge density of DFT+EDMFTF method.
We also recognize the Green’s functions written in the
|�Ki basis

ḠKK0 = (A0BR
!n

1

i!n + µ� "k!n

BL
!n

A0†)KK0 (31)

The overline here is used to stress that the Green’s func-
tion is expressed in the basis of |�Ki (rather than in real
space). This allows us to simplify

depends on the “non-trivial" DMFT density matrices

Success: Forces do not depend on              or   
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vented in Ref. 11, which still requires integration over
temperature for the entropy term. However, as we will
show below, the force requires only the first derivative
��[G]/�G, which is the familiar self-energy ⌃, and which
can be computed to very high accuracy in QMC method.
It turns out that only the first derivative of the free en-
ergy functional, i.e., the force, can be so accurately im-
plemented. To compute the free energy itself, one needs
�[G], which is hard to compute. For the phonon spectra,
which is the second derivative, one needs �2�[G]/�G2,
which is the two particle vertex, and is again very hard
to accurately compute in practice. Therefore only the
force on atoms can be computed very precisely in the
DFT+embedded DMFT functional (DFT+EDMFTF)
method when the exact QMC method is used as the im-
purity solver.

As a consequence, the frozen phonon approach is more
tractable than the generalization of the density functional
perturbation theory13. Also the integration of the force
will likely be the best way to calculate phase diagrams of
correlated solids, as the force can be converged to much
higher precision than the free energy itself.

We are aware of two prior reports on computing forces
and other derivatives within DFT+DMFT method. The
work of Savrasov and Kotliar14 considered only the sec-
ond derivative of the DFT+DMFT functional with re-
spect to atom displacement, to obtain the phonon spec-
tra. They considered only the finite wave vector q, to
avoid the need of di↵erentiating the Kohn-Sham eigen-
energies, which are needed for evaluating the forces.
Moreover, using the Hubbard-I impurity solver, they also
neglected the change of the DMFT self-energy with re-
spect to the atom displacement (�⌃/�G = �2�/�G2),
which plays an important role in our method. The work
of Leonov et. al. 15 reported computation of forces
within DFT+DMFT, however, their implementation is
not based on stationary functional. The derivative of
non-stationary DMFT total energy was computed, in
which the two-particle vertex is needed at all frequencies,
which is extremely hard to compute accurately enough
by the present day impurity solvers, to be useful for
the structural optimizations. Moreover, the method of
Leonov et. al.15 is a based on the two step process, where
the low energy model is build first and then a Hubbard
model is solved by the DMFT method. Also the influ-
ence of the DMFT correlations on the electronic charge,
needed in the DFT step, is usually neglected. These two
approximations are a source of inaccuracy, which is hard
to overcome, even when the impurity is solved with a very
high precision so that the two-particle vertex is converged
within meV accuracy. Hence alternative approaches are
needed for practical predictions of crystal structures for
correlated electron solids.

The manuscript is organized as follows: In Sec-
tion II we derive the equations for the forces within
DFT+Embedded DMFT functional. In part IIA we in-
troduce the Luttinger-Ward functional and its derivative
with respect to the atom displacement, which is the well

known Hellmann-Feynman force. In part II B we derive
a basis set independent expression for the Pulay force,
the additional force due to basis set discretization. In
part II C we show how is this formula evaluated in a
mixed basis set, in which the basis has both the atom-
centered and origin-less functions. In part IID we derive
Pulay forces in one such basis, namely the LAPW ba-
sis. In chapter III we apply this method to FeSe, and
show how quantum Monte Carlo noise cancels to large
extent when computing the force. In chapter III we also
show that FeSe is positioned in the critical region where
a small increase of the fluctuating moment on Fe leads to
substantial increase of Se-height, and consequently also
of the correlation strength. In appendix A we give details
of the force evaluation within the LAPW basis set.

II. DERIVATION OF THE FORCE WITHIN
DFT+EDMFTF

The force on an atom is defined as minus the change
of the total free energy when its nucleus is displaced by a
small amount. The Hellmann-Feynman theorem16 states
that this force is equal to the electrostatic force on the nu-
cleus, but due to discretization of the problem, which in-
volves convenient atom centered basis and atom centered
projector, the actual force on an atom has additional con-
tributions, which are usually called Pulay forces17.

A. The Luttinger-Ward approach

In ab-initio electronic structure methods, the force is
computed by evaluating the analytical derivative of the
total energy functional. In order to compute such deriva-
tives, it is very convenient to use a stationary functional,
in which a small change of the electron density (and the
Green’s function), leaves functional invariant. Indeed, if
the implementation of the functional is exact, one could
evaluate the force by considering a small displacement of
nuclei at fixed electron charge density (and fixed Green’s
function). Namely, the total derivative of the free energy
functional �[G] can be split into two terms, the partial
derivatives with respect to the Green’s function at fixed
atomic positions, and the partial derivatives with respect
to displacements at fixed Green’s function, i.e.,

��[G]

�Rµ
=

✓
@�[G]

@Rµ

◆

G

+

Z
drdr0

�G(rr0)

�Rµ

✓
@�[G]

@G(rr0)

◆

Rµ

(1)

If the functional is stationary, it follows that⇣
@�[G]
@G

⌘

Rµ

= 0, and therefore only the first term con-

tributes, and gives so-called Hellmann-Feynman forces.
In the Green’s function approaches, such as the Dy-

namical Mean Field Theory, the free energy functional
is best expressed by the stationary Luttinger-Ward func-
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I. INTRODUCTION

The theoretical crystal structure prediction is one of
the most fundamental challenge in condensed matter
physics and material science, but it was not until 90s
that computers became su�ciently powerful to allow
predictions of crystal structures from first principles of
very simple materials.1,2 The last decade has witnessed
a tremendous advance in our ability to predict crystal
structures from ab-initio, mostly due to the development
of e�cient minimization algorithms for finding minimums
in complex total energy landscape of solids3–5, and be-
cause of prior development of e�cient implementations
of the Density Functional Theory (DFT) methods. The
core of almost all these algorithms is based on the DFT
stationary functional, which delivers the total energy of
the solid and the forces on all atoms in the unit cell. How-
ever DFT, in its semilocal approximations such as the lo-
cal density approximation (LDA) or generalized gradient
approximation (GGA), fails to predict the ground state
of many correlated electron materials, such as the Mott
insulators and correlated metals, therefore the crystal
structure predictions in such systems are severely ham-
pered by inaccuracy of available DFT functionals.

It is well known that the DFT total energies are many
times surprisingly good, even when the electronic struc-
ture is completely wrong, such as for example in high-Tc
cuprates. This is because the DFT total energy func-
tional is stationary, i.e., the first derivative of the energy
with respect to electronic charge vanishes. Therefore a
relatively small reorganization of the low energy valence
charge density gives not too large correction to the total
energy.

There are nevertheless many documented failures of
LDA and GGA in predicting crystal structures of cor-
related materials such as in Ce metal, Pu, and transi-
tion metal oxides such as FeO. For the Hund’s metals6,7,
such as the iron superconductors, the pnictogen height is
grosly underestimated by DFT for about 0.15Å.

To account for the correlation e↵ects beyond semi-local
approximations of DFT, more sophisticated many body

methods have been developed. Among them, one of the
most successful algorithms is the combination of the dy-
namical mean-field theory (DMFT) and DFT8–10, which
is also based on the idea of locality of correlations, but in
the case of DMFT only the locality of correlations to a
given atom is explored, which is much less restrictive than
locality to a point in 3D space in DFT semi-local approx-
imations. This DFT+DMFT method has achieved great
success in numerous correlated materials (for a review
see Ref. 10), but its potential for structural optimization
has not been much explored. This is mostly because the
majority of the implementations of this method are not
implementing the DFT+DMFT functional. Instead they
typically build the low energy model first, and then solve
the Hubbard-like model by the DMFT method, thus los-
ing the stationarity property, and hence the precision of
the resulting total energies.
The stationary implementation of the DFT+embedded

DMFT functional has been achieved recently11, which
opened the possibility of computing forces to high-enough
precision for theoretical optimization of structures. The
present manuscript details how this is achieved very e�-
ciently within all electron Linearized Augmented Plane-
wave (LAPW) implementation.
We will also show that in combination with the Quan-

tum Monte Carlo (QMC) impurity solver, the forces can
be converged to even higher accuracy than the free en-
ergy itself, which seems surprising at first, as only the
free energy is stationary, while the forces are not. But
as explained below, this is because some quantities can
be more accurately computed by QMC than others. As
QMC method has inherent statistical noise, such noise
cancelation in computing forces is very wellcome and ex-
tremely useful for practical implementations.
The reason that the free energy is hard to compute by

the exact QMC impurity solver, is that it is not possible
to accurately sample the interacting part of the free en-
ergy functional, the so-called Baym-Kadano↵ functional
�[G]. Essentially, �[G] contains the entropy of the sys-
tem, which is notoriously hard to compute within the
Monte Carlo methods.12 An alternative approach was in-

which are hard to compute.

Final results for forces in a mixed basis set
Pulay force in mixed basis:

derivative of the DMFT projector, because 
the DMF basis moves with the atom

DFT-like terms

K.H. & G.L. Pascut, Phys. Rev. B 49, 195146 (2016)
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I. INTRODUCTION

The theoretical crystal structure prediction is one of
the most fundamental challenges in condensed matter
physics and material science, but it was not until 90s
that computers became su�ciently powerful to allow
predictions of crystal structures from first principles of
very simple materials.1,2 The last decade has witnessed
a tremendous advance in our ability to predict crystal
structures from ab-initio, mostly due to the development
of e�cient minimization algorithms for finding minimums
in complex total energy landscape of solids3–5, and be-
cause of prior development of e�cient implementations
of the Density Functional Theory (DFT) methods. The
core of all these algorithms is based on the DFT sta-
tionary functional, which delivers the total energy of the
solid and the forces on all atoms in the unit cell. How-
ever DFT, in its semilocal approximatons such as the lo-
cal density approximation (LDA) or generalized gradient
approximation (GGA), fails to predict the ground state
of many correlated electron materials, such as the Mott
insulators and correlated metals, therefore the crystal
structure predictions in such systems are severely ham-
pered by inacuracy of available DFT functionals.

It is well known that the DFT total energies are many
times surprisingly good, even when the electronic stru-
cure is completely wrong, such as for example in high-Tc
cuprates. This is because the DFT total energy func-
tional is stationary, i.e., the first derivative of the energy
with respect to electronic charge vanishes. Therefore a
relatively small reorganization of the low energy valence
charge density gives a small correction to the total en-
ergy.

There are nevertheless many documented failures of
LDA and GGA in predicting crystal structures of cor-
related materials such as in Ce metal, Pu, and transi-
tion metal oxides such as FeO. For the Hund’s metals6,7,
such as the iron superconductors, the pnictogen height is
grosly underestimated by DFT for about 0.15Å.

To account for the correlation e↵ects beyond semi-local
approximations of DFT, more sophisticated many body

methods have been developed. Among them, one of the
most successful algorithms is the combination of the dy-
namical mean-field theory (DMFT) and DFT8–10, which
is also based on the idea of locality of correlations, but in
the case of DMFT only the locality of correlations to a
given atom is explored, which is much less restrictive than
locality to a point in 3D space in DFT semi-local approx-
imations. This DFT+DMFT method has achieved great
success in numerous correlated materials (for a review
see Ref. 10), but its potential for structural optimization
has not been much explored. This is mostly because the
majority of the implementations of this method are not
implementing the DFT+DMFT functional. Instead they
typically build the low energy model first, and then solve
the Hubbard-like model by the DMFT method, thus los-
ing the stationarity property, and hence the precision of
the resulting total energies.
The stationary implementation of the DFT+embedded

DMFT functional has been achieved recently11, which
opened the possibility of computing forces to high-
enough precision for theoretical optimizaton of struc-
tures. The present manuscript details how this is
achieved very e�ciently within all electron Linearized
Augmented Planewave (LAPW) implementation.
We will also show that in combination with the Quan-

tum Monte Carlo (QMC) impurity solver, the forces can
be converged to much higher accuracy than the free en-
ergy itself, which seems surprising at first, as only the
free energy is stationary, while the forces are not. But
as explained below, this is because some quantities can
be more accurately computed by QMC than others. As
QMC method has inherent statistical noise, such noise
cancelation in computing forces is very wellcome and ex-
tremely useful for practical implementations.
The reason that the free energy is hard to compute

by the exact QMC impurity solver, is that it is not pos-
sible to accuractely sample the interacting part of the
free energy functional, the so-called Baym-Kadanof func-
tional �[G]. Essentially, �[G] contains the entropy of
the system, which is notoriously hard to compute within
the Monte Carlo methods.12 An alternative approach
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was invented in Ref. 11, which still requires integra-
tion over temperature for the entropy term. However,
as we will show below, the force requires only the first
derivative ��[G]/�G, which is the familiar self-energy ⌃,
and which can be computed to very high accuracy in
QMC method. It turns out that only the first deriva-
tive of the free energy functional, i.e., the force, can
be so accurately implemented. To compute the free en-
ergy itself, one needs �[G], which is hard to compute.
For the phonon spectra, which is the second derivative,
one needs �2�[G]/�G2, which is the two particle vertex,
and is again very hard to accurately compute in prac-
tice. Therefore only the force on atoms can be computed
very precisely in the functional DFT+embedded DMFT
(FDFT+EDMFT) method when the exact QMC method
is used as the impurity solver.

As a consequence, the frozen phonon approach is more
tractable than the generalization of the density functional
perturbation theory13. Also the integration of the force
will likely be the best way to calculate phase diagrams
of correlated solids, as the force can be converged with
roughly one order of magnitude higher precision than the
free energy itself.

We are aware of two prior reports on computing forces
and other derivatives within DFT+DMFT method. The
work of Savrasov and Kotliar14 considered only the sec-
ond derivative of the DFT+DMFT functional with re-
spect to atom displacement, to obtain the phonon spec-
tra. They considered only the finite wave vector q, to
avoid the need of di↵erentiating the Kohn-Sham eigenen-
ergies, which are needed for evaluating the forces. More-
over, using the Hubbard-I impurity solver, they also ne-
glected the change of the DMFT self-energy with re-
spect to the atom displacement (�⌃/�G = �2�/�G2),
which plays an important role in our method. The work
of Leonov et. al. 15 reported computation of forces
within DFT+DMFT, however, their implementation is
not based on stationary functional. The derivative of
non-stationary DMFT total energy was computed, in
which the two-particle vertex is needed at all frequencies,
which is extremely hard to compute accurately enough
by the present day impurity solvers, to be useful for
the structural optimizations. Moreover, the method of
Leonov et. al.15 is a based on the two step process, where
the low energy model is build first and then a Hubbard
model is solved by the DMFT method. Also the influ-
ence of the DMFT correlations on the electronic charge,
needed in the DFT step, is neglected. These two ap-
proximations are a source of inacuracy, which is hard to
overcome, even when the impurity is solved with a very
high precision so that the two-particle vertex is converged
within meV accuracy. Hence alternative approaches are
needed for practical predictions of crystal structures for
correlated electron solids.

The manuscript is organized as follows: In Section II
we derive the equations for the forces within functional
DFT+Embedded DMFT. In part IIA we introduce the
Luttinger-Ward functional and its derivative with re-

spect to the atom displacement, which is the well known
Hellmann-Feynman force. In part II B we derive a basis
set independent expression for the Pulay force, the addi-
tional force due to basis set discretization. In part II C
we show how is this formula evaluated in a mixed ba-
sis set, in which the basis has both the atom-centered
and origin-less functions. In part IID we derive Pulay
forces in one such basis, namely the LAPW basis. In
chapter III we apply this method to FeSe, and show how
quantum Monte Carlo noise cancels to large extent when
computing the force. The accuracy of force calculation
is approximately one order of magnitude better than in
computing the free energy. In chapter III we also show
that FeSe is positioned in the critical region where a small
increase of the fluctuating moment on Fe leads to sub-
stantial increase of Se-height, and consequently also of
the correlation strength. In appendix A we give details
of the force evaluation within the LAPW basis set.

II. DERIVATION OF THE FORCE WITHIN
FDFT+EDMFT

The force on an atom is defined as minus the change
of the total free energy when its nucleus is displaced by a
small amount. The Hellmann-Feynman theorem16 states
that this force is equal to the electrostatic force on the nu-
cleus, but due to discretization of the problem, which in-
volves convenient atom centered basis and atom centered
projector, the actual force on an atom has additional con-
tributions, which are usually called Pulay forces17.

A. The Luttinger-Ward approach

In ab-initio electronic structure methods, the force is
computed by evaluating the analytical derivative of the
total energy functional. In order to compute such deriva-
tives, it is very convenient to use a stationary functional,
in which a small change of the electron density (and the
Green’s function), leaves functional invariant. Indeed, if
the implementation of the functional is exact, one could
evaluate the force by considering a small displacement of
nuclei at fixed electron charge density (and fixed Green’s
function). Namely, the total derivative of the free energy
functional �[G] can be split into two terms, the partial
derivatives with respect to the Green’s function at fixed
atomic positions, and the partial derivatives with respect
to displacements at fixed Green’s function, i.e.,
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FIG. 1: (Color online): Force on Se atom when displaced
in z-direction. The free energy is calculated from the free
energy functional and is compared to integrated force. We
show both the free energy F and F + TSimp. The latter is
directly computed in our method, while the former requires
additional integration over the temperature. The quantum
Monte Carlo noise is approximatley one order of magnitude
smaller when computing energy di↵erence from the force than
computing the free energy directly, and the estimated error
on the force is approximately 10-times smaller.

Here we used the modified eigenvectors

A = A0B (64)

A = A0B (65)

The resulting Eqs. 61,62,63 have now very similar form
as the DFT Pulay forces within LAPW method23, except
in DFT A and A are both equal to the KS-eigenvectors,
and wi’s are fermi functions fi and (w")i are fermi func-
tion times KS-eigenvalues (fi"i). The last term in Eq. 63
bares some resemblance to the LDA+U force26, but is
di↵erent due to dynamic nature of ⌃ and Gloc. The al-
gorithm to evaluate these terms is given in appendix A.

III. RESULTS

We tested the method on several transition metal ox-
ides, pnictides and chalchogenides.41 In this section, we
show result for FeSe, one of the most studied member of
iron superconductor family, which has attracted tramen-
dous attention recently.

Bulk FeSe crystalizes in tetragonal P4/nmm structure
(No. 129). It is superconducting below 10K under ambi-
ent pressure27, and the superconducting Tc is increases
to 37K under pressure28,29. By substitution of Se by Te,
Tc can also be increased to 15K30,31, and by intercala-
tion with spacer layers, Tc can also be boosted to over
40K32.

First we test the implementation of forces within
FDMFT+EDMFT by computing force on Se, located at

FIG. 2: (Color online): The convergence of free energy F +
TSimp and force with the number of DMFT iterations. Per
each DMFT iteration (self-energy updates) we performe up
to 10 charge iterations (DFT updates). The last seven steps
are converged, but display typical Monte Carlo noise, which
can be reduced only with better MC statistics. While the
free energy shows considerable a fluctuations when converged,
the force shows several times less noise. When the force is
multiplied with the dispacement from equilibrium, which has
the units of energy, the noise is an order of magnitude smaller
than by computing free energy. This is done for the zSe =
0.25. For clarity we subtracted a constant from both the
energy and force.

Wicko↵ position 2c (1/4, 1/4, zSe) versus the Se height
zSe. As shown in Fig. 1 the force is almost linear around
the equilibrium position, and its integral matches quite
well (within the statistical noise) to the free energy of the
system. Note that there is always some systematic error
due to frozen radial augmentation approximation, i.e., in
computing the force we do not di↵erentiate the solutions
of the radial Schroedinger equation ul. In Fig. 1 we show
both the free energy, and the free energy withouth the
impurity entropy. The latter quantity is computed di-
rectly from the Green’s function, while the former needs
additional integration over temperature11. Notice that
the error-bars in computing the force are significantly
smaller than the error-bars on the free energy.
To make this point more clear, we show in Fig. 2 the

free energy and the force from our simulation. We count
as a start of the new iteration whenever the DMFT self-
energy is updated, but note that we perform approxi-
mately 10 charge self-consistent steps for each self-energy
update, so that the charge is practically converged at
each iteration. As is clear from Fig. 2, the Monte Carlo
noise in computing the free energy, of the order of a few
meV, is present even when the free energy is converged,
and only better statistics in the QMC solver can reduce
this noise. The calculated force, measured in meV per
atomic unit, has almost factor of five smaller noise than
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was invented in Ref. 11, which still requires integra-
tion over temperature for the entropy term. However,
as we will show below, the force requires only the first
derivative ��[G]/�G, which is the familiar self-energy ⌃,
and which can be computed to very high accuracy in
QMC method. It turns out that only the first deriva-
tive of the free energy functional, i.e., the force, can
be so accurately implemented. To compute the free en-
ergy itself, one needs �[G], which is hard to compute.
For the phonon spectra, which is the second derivative,
one needs �2�[G]/�G2, which is the two particle vertex,
and is again very hard to accurately compute in prac-
tice. Therefore only the force on atoms can be computed
very precisely in the functional DFT+embedded DMFT
(FDFT+EDMFT) method when the exact QMC method
is used as the impurity solver.

As a consequence, the frozen phonon approach is more
tractable than the generalization of the density functional
perturbation theory13. Also the integration of the force
will likely be the best way to calculate phase diagrams
of correlated solids, as the force can be converged with
roughly one order of magnitude higher precision than the
free energy itself.

We are aware of two prior reports on computing forces
and other derivatives within DFT+DMFT method. The
work of Savrasov and Kotliar14 considered only the sec-
ond derivative of the DFT+DMFT functional with re-
spect to atom displacement, to obtain the phonon spec-
tra. They considered only the finite wave vector q, to
avoid the need of di↵erentiating the Kohn-Sham eigenen-
ergies, which are needed for evaluating the forces. More-
over, using the Hubbard-I impurity solver, they also ne-
glected the change of the DMFT self-energy with re-
spect to the atom displacement (�⌃/�G = �2�/�G2),
which plays an important role in our method. The work
of Leonov et. al. 15 reported computation of forces
within DFT+DMFT, however, their implementation is
not based on stationary functional. The derivative of
non-stationary DMFT total energy was computed, in
which the two-particle vertex is needed at all frequencies,
which is extremely hard to compute accurately enough
by the present day impurity solvers, to be useful for
the structural optimizations. Moreover, the method of
Leonov et. al.15 is a based on the two step process, where
the low energy model is build first and then a Hubbard
model is solved by the DMFT method. Also the influ-
ence of the DMFT correlations on the electronic charge,
needed in the DFT step, is neglected. These two ap-
proximations are a source of inacuracy, which is hard to
overcome, even when the impurity is solved with a very
high precision so that the two-particle vertex is converged
within meV accuracy. Hence alternative approaches are
needed for practical predictions of crystal structures for
correlated electron solids.

The manuscript is organized as follows: In Section II
we derive the equations for the forces within functional
DFT+Embedded DMFT. In part IIA we introduce the
Luttinger-Ward functional and its derivative with re-

spect to the atom displacement, which is the well known
Hellmann-Feynman force. In part II B we derive a basis
set independent expression for the Pulay force, the addi-
tional force due to basis set discretization. In part II C
we show how is this formula evaluated in a mixed ba-
sis set, in which the basis has both the atom-centered
and origin-less functions. In part IID we derive Pulay
forces in one such basis, namely the LAPW basis. In
chapter III we apply this method to FeSe, and show how
quantum Monte Carlo noise cancels to large extent when
computing the force. The accuracy of force calculation
is approximately one order of magnitude better than in
computing the free energy. In chapter III we also show
that FeSe is positioned in the critical region where a small
increase of the fluctuating moment on Fe leads to sub-
stantial increase of Se-height, and consequently also of
the correlation strength. In appendix A we give details
of the force evaluation within the LAPW basis set.

II. DERIVATION OF THE FORCE WITHIN
FDFT+EDMFT

The force on an atom is defined as minus the change
of the total free energy when its nucleus is displaced by a
small amount. The Hellmann-Feynman theorem16 states
that this force is equal to the electrostatic force on the nu-
cleus, but due to discretization of the problem, which in-
volves convenient atom centered basis and atom centered
projector, the actual force on an atom has additional con-
tributions, which are usually called Pulay forces17.

A. The Luttinger-Ward approach

In ab-initio electronic structure methods, the force is
computed by evaluating the analytical derivative of the
total energy functional. In order to compute such deriva-
tives, it is very convenient to use a stationary functional,
in which a small change of the electron density (and the
Green’s function), leaves functional invariant. Indeed, if
the implementation of the functional is exact, one could
evaluate the force by considering a small displacement of
nuclei at fixed electron charge density (and fixed Green’s
function). Namely, the total derivative of the free energy
functional �[G] can be split into two terms, the partial
derivatives with respect to the Green’s function at fixed
atomic positions, and the partial derivatives with respect
to displacements at fixed Green’s function, i.e.,
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Forces more stable than free energies

free energy noise ~1meV

MC noise at constant statistics

force noise ~ 0.2 meV/a.u.

Forces very stable!



Can be downloaded: http://hauleweb.rutgers.edu/tutorials

Electronic structure package: EDMFTF

Database:  
http://hauleweb.rutgers.edu/

• Projection & Embedding instead of 
downloading in the full potential 
(APW+lo,LAPW) basis. 

• Continuous time quantum Monte Carlo, 
OCA, NCA… 

• Stationary implementation of free energy 

• Forces on all atoms 

• Structural optimization within DFT+DMFT

tutorials available

http://hauleweb.rutgers.edu/tutorials
http://hauleweb.rutgers.edu/


Electronic structure package: EDMFTF

• Package needs wien2k for part of the DFT calculation.
• Composed of many Python, C++, Fortran90 executables linked by Python 

scripts.
• Two main Python executables:

•  init_dmft.py  (initialization)
•  run_dmft.py  (DFT+DMFT scheduler

•  Several post processing tools, such as:
•  maxent_run.py
•  x_dmft.py dmft1   (calculates DOS)
•  x_dmft.py dmft2   (recalculates electronic charge)
•  x_dmft.py dmftp   (calculates A(k,w)
•  wakplot.py            (displays A(k,w) )
• dmftopt                  (calculates optical conductivity or transport)
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FLOW: DFT+DMFT COMBINED

run_dmft.py ==

x lapwso :     adds spin-orbit

run_lapw :
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where

3) Calculate local Green’s function, hybridization, imp. levels: 

symmetrization over all group operations is performed 
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3) Solve the Dyson Eq.: 
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5) Calculate DMFT electronic charge in space: 
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6) Calculate DMFT free energy and forces on all atoms 

x_dmft.py dmft2 : 

SOME FORMULAS FOR SLIDES 7
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EDMFTF initialization: Exercise MnO

Assume Wien2k run successfully finished in directory “case” = MnO.
We will initialize EDMFTF in the same directory, because we will need 
energy files (for finding energy of bands).

In Wien2k directory name has to be equal to struct file-name (“case”). In EDMFTF 
this is not needed anymore, hence we can create directory with any name.

> module load edmftf (loads executables, paths, etc) 
Two ways to initialize EDMFTF: 

1) execute init_dmft.py and answer the questions.
2) append all options in the command line as arguments to the init_dmft.py script.

We will use method 2.

> init_dmft.py  -ca 1 -ot d -qs 7

> cd MnO directory with Wien2k DFT run.

> srun -n2 --pty bash    # start interactive shell on compute node( )



What are options  “-ca 1 -ot d -qs 7”?

EDMFTF initialization
Each option answers one of the questions in the 
initialization.
Options not specified use default values. 

correlated atoms:
 1 in MnO.struct is 
treated by DMFT

orbital type:
The “d” orbital is 

correlated by DMFT

    Qsplit  Description
------  ------------------------------------------------------------
     0  average GF, non-correlated
     1  |j,mj> basis, no symmetry, except time reversal (-jz=jz)
    -1  |j,mj> basis, no symmetry, not even time reversal (-jz=jz)
     2  real harmonics basis, no symmetry, except spin (up=dn)
    -2  real harmonics basis, no symmetry, not even spin (up=dn)
     3  t2g orbitals 
    -3  eg orbitals
     4  |j,mj>, only l-1/2 and l+1/2
     5  axial symmetry in real harmonics
     6  hexagonal symmetry in real harmonics
     7  cubic symmetry in real harmonics
     8  axial symmetry in real harmonics, up different than down
     9  hexagonal symmetry in real harmonics, up different than down
    10  cubic symmetry in real harmonics, up different then down
    11  |j,mj> basis, non-zero off diagonal elements
    12  real harmonics, non-zero off diagonal elements
    13  J_eff=1/2 basis for 5d ions, non-magnetic with symmetry
    14  J_eff=1/2 basis for 5d ions, no symmetry
------  ------------------------------------------------------------

“d” orbitals have cubic symmetry and 
we will use real harmonics (to avoid 

QMC sign problem)

All available options for orbital symmetry

> init_dmft.py  -h
For more options:



There are 2 atoms in the unit cell: 
  1 Mn 
  2 O 
You have chosen the following atoms to be correlated: 
  1 Mn

For each atom, specify correlated orbital(s) (ex: d,f): 
You have chosen to apply correlations to the following orbitals: 
  1  Mn-1 d

Atom 1 in MnO.struct is 
treated by DMFT

The “d” orbital is 
correlated by DMFT

Specify qsplit for each correlated orbital (default = 0): 
    Qsplit  Description 
------  ------------------------------------------------------------ 
     0  average GF, non-correlated 
     1  |j,mj> basis, no symmetry, except time reversal (-jz=jz) 
    -1  |j,mj> basis, no symmetry, not even time reversal (-jz=jz) 
     2  real harmonics basis, no symmetry, except spin (up=dn) 
    -2  real harmonics basis, no symmetry, not even spin (up=dn) 
     3  t2g orbitals  
    -3  eg orbitals 
     4  |j,mj>, only l-1/2 and l+1/2 
     5  axial symmetry in real harmonics 
     6  hexagonal symmetry in real harmonics 
     7  cubic symmetry in real harmonics 
     8  axial symmetry in real harmonics, up different than down 
     9  hexagonal symmetry in real harmonics, up different than down 
    10  cubic symmetry in real harmonics, up different then down 
    11  |j,mj> basis, non-zero off diagonal elements 
    12  real harmonics, non-zero off diagonal elements 
    13  J_eff=1/2 basis for 5d ions, non-magnetic with symmetry 
    14  J_eff=1/2 basis for 5d ions, no symmetry 
------  ------------------------------------------------------------ 
You have chosen the following qsplits: 
  1  Mn-1 d: 7 

“d” orbitals have cubic symmetry and 
we will use real harmonics (to avoid 

QMC sign problem)



Specify projector type (default = 5): 
  Projector  Description 
------  ------------------------------------------------------------ 
     1  projection to the solution of Dirac equation (to the head) 
     2  projection to the Dirac solution, its energy derivative,  
          LO orbital, as described by P2 in PRB 81, 195107 (2010) 
     4  similar to projector-2, but takes fixed number of bands in 
          some energy range, even when chemical potential and  
          MT-zero moves (follows band with certain index) 
     5  fixed projector, which is written to projectorw.dat. You can 
        generate projectorw.dat with the tool wavef.py 
------  ------------------------------------------------------------ 
>  5  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5

projectorw.dat u 1:2

Mn 3d orbital

Projector fixed to achieve stationarity of the functional. 
Radial dependence of projector stored in projectorw.dat

Range (in eV) of hybridization taken into account in impurity 
problems; default -10.0, 10.0:  
-10.0,10.0

Very large 20eV window of bands is used to construct DMFT projector. 
Rule of thumb : should be more than [-U,U].

Perform calculation on real; or imaginary axis? (i/r): (default=i) 
i QMC works on the imaginary axis.



EDMFTF initialization

Which files were created by this initialization?
• projectorw.dat   (contains the radial dependence of the orbital)
•  MnO.indmfl     (connects DMFT orbitals with the Kohn-Sham states)
• MnO.indmfi      (connects DMFT orbitals with the impurity solver)



5 15 1 5                              # hybridization band index nemin and nemax, renormalize for interstitials, projection type
1 0.025 0.025 200 -3.000000 1.000000  # matsubara, broadening-corr, broadening-noncorr, nomega, omega_min, omega_max (in eV)
1                                     # number of correlated atoms
1     1   0                           # iatom, nL, locrot
  2   7   1                           # L, qsplit, cix
#================ # Siginds and crystal-field transformations for correlated orbitals ================
1     5   2       # Number of independent kcix blocks, max dimension, max num-independent-components
1     5   2       # cix-num, dimension, num-independent-components
#---------------- # Independent components are --------------
'eg' 't2g' 
#---------------- # Sigind follows --------------------------
1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
#---------------- # Transformation matrix follows -----------
 0.00000000  0.00000000    0.00000000  0.00000000    1.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000  
 0.70710679  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000    0.70710679  0.00000000  
 0.00000000  0.00000000    0.70710679  0.00000000    0.00000000  0.00000000   -0.70710679  0.00000000    0.00000000  0.00000000  
 0.00000000  0.00000000    0.00000000  0.70710679    0.00000000  0.00000000    0.00000000  0.70710679    0.00000000  0.00000000  
-0.00000000 -0.70710679    0.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.70710679  

.indmfl file

first and last band used in the projector
projector type Green’s function calculated on imaginary axis

connects DMFT orbitals with the Kohn-Sham states

Each correlated orbital has specification (which atom from 
structure, which L, locrot =for rotations, qsplit=which 
symmetry, cix=successive number of correlated set)



5 15 1 5                              # hybridization band index nemin and nemax, renormalize for interstitials, projection type
1 0.025 0.025 200 -3.000000 1.000000  # matsubara, broadening-corr, broadening-noncorr, nomega, omega_min, omega_max (in eV)
1                                     # number of correlated atoms
1     1   0                           # iatom, nL, locrot
  2   7   1                           # L, qsplit, cix
#================ # Siginds and crystal-field transformations for correlated orbitals ================
1     5   2       # Number of independent kcix blocks, max dimension, max num-independent-components
1     5   2       # cix-num, dimension, num-independent-components
#---------------- # Independent components are --------------
'eg' 't2g' 
#---------------- # Sigind follows --------------------------
1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
#---------------- # Transformation matrix follows -----------
 0.00000000  0.00000000    0.00000000  0.00000000    1.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000  
 0.70710679  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000    0.70710679  0.00000000  
 0.00000000  0.00000000    0.70710679  0.00000000    0.00000000  0.00000000   -0.70710679  0.00000000    0.00000000  0.00000000  
 0.00000000  0.00000000    0.00000000  0.70710679    0.00000000  0.00000000    0.00000000  0.70710679    0.00000000  0.00000000  
-0.00000000 -0.70710679    0.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.00000000    0.00000000  0.70710679  

.indmfl file

correlated set (cix) if of dimension 5 and has two 
self-energies, i.e., eg and t2g

How is self-energy matrix constructed from the two 
self-energy components

Transformation matrix from spheric harmonics to the orbitals used in the DMFT.

L=2,m=-2 L=2,m=-1 L=2,m=0 L=2,m=1 L=2,m=2

z2 
x2-y2 
xz 
yz 
xy



.indmfi file
connects DMFT orbitals with the impurity solver

1   # number of sigind blocks 
5   # dimension of this sigind block 
1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

Only one impurity problem needs to be calculated

symmetry of orbitals in the impurity problem

5 orbital problem



EDMFTF initialization

Need two more files to start EDMFTF calculation:
1) params.dat     (files with parameters — se below)

2) sig.inp            ( guess for initial self-energy)

params.dat is a python file, which can use python expressions. 
Can be checked for syntactic correctness by “python params.dat”

text file with columns corresponding to real and imaginary part of self-energy. 
first column is frequency, following by the real and imaginary part of Sigma for 
each orbital specified in case.indmfi

> cp $RESULTS/MnO/DMFT/params.dat .

> szero.py creates empty self-energy sig.inp with 
goods guess for Vdc and sigma(∞)



solver         =  'CTQMC'   # impurity solver
DCs            =  ‘exactd'      # exact double-counting with dielectric constant approx.

max_dmft_iterations = 1     # number of iteration of the dmft-loop only
max_lda_iterations  = 100   # number of iteration of the LDA-loop only
finish         =  10                   # number of iterations of full charge loop (1 = no charge self-consistency)

ntail          =  300       # on imaginary axis, number of points in the tail of the logarithmic mesh

cc             =  5e-5      # the charge density precision to stop the LDA+DMFT run
ec             =  5e-5      # the energy precision to stop the LDA+DMFT run
recomputeEF    =  0         # Recompute EF in dmft2 step. If recomputeEF = 0, it fixed the chemical potential. Good for insulators

# Impurity problem number 0
iparams0={"exe"                : ["ctqmc"          , "# Name of the executable"],
                   "U"                  : [9.0                 , "# Coulomb repulsion (F0)"],
                    "J"                  : [1.14               , "# Coulomb repulsion (F0)"],
            "CoulombF"           : ["'Ising'"           , "# Form of Coulomb repulsion. 'Full' allows rotational invariant form of C.I."],
                  "beta"               : [38.68             , "# Inverse temperature T=116K"],
              "svd_lmax"           : [25                  , "# We will use SVD basis to expand G, with this cutoff"],
                   "M"                  : [5e6                , "# Total number of Monte Carlo steps"],
                "mode"               : ["SH"               , "# We will use self-energy sampling, and Hubbard I tail"],
                 "nom"                : [100                , "# Number of Matsubara frequency points sampled"],
               "tsample"            : [30                   , "# How often to record measurements"],
              "GlobalFlip"         : [500000           , "# How often to try a global flip”],
              "warmup"             : [1e5                , "# Warmup number of QMC steps"],
                   "nf0"                : [5.0                 , "# Nominal occupancy nd for double-counting"],
                    }

run_dmft.py ==

x lapwso :     adds spin-orbit

run_lapw :

x lapw1:
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x lapw0 :

x core :
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x mixer: 

SOME FORMULAS FOR SLIDES 7

Z = Zatom

X

k

1

k!

Z �

0
d⌧1

Z �

0
d⌧

0
1 · · ·

Z �

0
d⌧k

Z �

0
d⌧

0
k

X

↵1↵0
1,↵2,↵0

2,···↵k↵0
k

hT⌧ ↵0
1
(⌧ 01) 

†
↵1
(⌧1) · · · ↵0

k
(⌧ 0k) 

†
↵k

(⌧k)iatom ⇥

1

k!
Det

0

BB@

�↵1↵0
1
(⌧1, ⌧ 01) �↵2↵0

2
(⌧2, ⌧ 02) · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·

�↵k↵0
1
(⌧k, ⌧ 01) · · · · · · �↵k↵0

k
(⌧k, ⌧ 0k)

1

CCA

H =
X

↵�

 
†
↵E

↵�

imp
 � +

X

↵���

U↵��� 
†
↵ 

†
�
 � � +

X

↵�

Vk↵� 
†
↵ck� + V

⇤
k�↵

c
†
k�
 ↵ +

X

k�

✏k�c
†
k�
ck�

Z =

Z
D[ †

 ]e�Satom

Z
D[c†c]e�Sbath�SV = Z0

Z
D[ †

 ]e�Satom�
R R

d⌧d⌧
0
 
†
↵(⌧)�↵�(⌧�⌧ 0) �(⌧

0
)

(84) �↵�(i!) =
X

k�

V
⇤
k↵�

V��

i! � ✏k�

(85)

Z =

Z
D[ †

 ]e�
R �
0

R �
0 d⌧d⌧

0
 
†
↵(⌧)((� @

@⌧ �Eimp)�(⌧�⌧ 0)��(⌧�⌧ 0)) ↵0 (⌧ 0)�
R �
0 d⌧

P
↵��� U↵��� 

†
↵ 

†
� � �

⇢
atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "
DFT

k,i , 
DFT

k,i(87)

"
DFT

k,i , 
DFT

k,i ! ⇢
val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢
val + ⇢

core
, ⇢

old(r) ! ⇢
new(r)(90)

SOME FORMULAS FOR SLIDES 7

Z = Zatom

X

k

1

k!

Z �

0
d⌧1

Z �

0
d⌧

0
1 · · ·

Z �

0
d⌧k

Z �

0
d⌧

0
k

X

↵1↵0
1,↵2,↵0

2,···↵k↵0
k

hT⌧ ↵0
1
(⌧ 01) 

†
↵1
(⌧1) · · · ↵0

k
(⌧ 0k) 

†
↵k

(⌧k)iatom ⇥

1

k!
Det

0

BB@

�↵1↵0
1
(⌧1, ⌧ 01) �↵2↵0

2
(⌧2, ⌧ 02) · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·

�↵k↵0
1
(⌧k, ⌧ 01) · · · · · · �↵k↵0

k
(⌧k, ⌧ 0k)

1

CCA

H =
X

↵�

 
†
↵E

↵�

imp
 � +

X

↵���

U↵��� 
†
↵ 

†
�
 � � +

X

↵�

Vk↵� 
†
↵ck� + V

⇤
k�↵

c
†
k�
 ↵ +

X

k�

✏k�c
†
k�
ck�

Z =

Z
D[ †

 ]e�Satom

Z
D[c†c]e�Sbath�SV = Z0

Z
D[ †

 ]e�Satom�
R R

d⌧d⌧
0
 
†
↵(⌧)�↵�(⌧�⌧ 0) �(⌧

0
)

(84) �↵�(i!) =
X

k�

V
⇤
k↵�

V��

i! � ✏k�

(85)

Z =

Z
D[ †

 ]e�
R �
0

R �
0 d⌧d⌧

0
 
†
↵(⌧)((� @

@⌧ �Eimp)�(⌧�⌧ 0)��(⌧�⌧ 0)) ↵0 (⌧ 0)�
R �
0 d⌧

P
↵��� U↵��� 

†
↵ 

†
� � �

⇢
atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "
DFT

k,i , 
DFT

k,i(87)

"
DFT

k,i , 
DFT

k,i ! ⇢
val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢
val + ⇢

core
, ⇢

old(r) ! ⇢
new(r)(90)

⇢
DFT (r)(91)

x_dmft.py dmft2 : 
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x_dmft.py dmft1:
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params.dat

To stop the loop need sufficient 
QMC precision (many cores)

Careful: allowed only for insulators. 
For metals recomputeEF=1.

CTQMC 
options



• U — Hubbard U 
• J — Hund’s interaction 
• CoulombF — form of the Coulomb interaction : Ising==density-density Slater form, Full==rotationally invariant Slater 

form.                                   See for details : http://hauleweb.rutgers.edu/tutorials/CoulombUexplain.html 

• beta — 1/T[eV] or 11604/T[K] 
• M    — number of MC-steps on single core. If it runs on more cores, better results & equal  run-time. 
• mode — S==computing self-energy by Schwinger equation (rather than Dyson) H==high frequency computed by 

Hubbard-I form. 
• nom — number of Matsubara points keeps in the mesh (the rest in log mesh of ntail~100) (usually 3*beta) 
• tsample  — every 30 MC steps we measure self-energy 
• GlobalFlip — is attempted every 5e5 steps 
• warmup  — first 1e5 steps are not used to meassure 
• nf0     — Mn valence, used for double-counting. Here only for the initial guess (from DFT), will use exactDC later.

# Impurity problem number 0
iparams0={"exe"                : ["ctqmc"          , "# Name of the executable"],
                   "U"                  : [9.0                 , "# Coulomb repulsion (F0)"],
                    "J"                  : [1.14               , "# Coulomb repulsion (F0)"],
            "CoulombF"           : ["'Ising'"           , "# Form of Coulomb repulsion. 'Full' allows rotational invariant form of C.I."],
                  "beta"               : [38.68             , "# Inverse temperature T=116K"],
              "svd_lmax"           : [25                  , "# We will use SVD basis to expand G, with this cutoff"],
                   "M"                  : [5e6                , "# Total number of Monte Carlo steps"],
                "mode"               : ["SH"               , "# We will use self-energy sampling, and Hubbard I tail"],
                 "nom"                : [100                , "# Number of Matsubara frequency points sampled"],
               "tsample"            : [30                   , "# How often to record measurements"],
              "GlobalFlip"         : [500000           , "# How often to try a global flip”],
              "warmup"             : [1e5                , "# Warmup number of QMC steps"],
                   "nf0"                : [5.0                 , "# Nominal occupancy nd for double-counting"],
                    }

# Impurity problem number 1
iparams1={
   ……
   …….
}

params.dat continue

http://hauleweb.rutgers.edu/tutorials/CoulombUexplain.html


> x kgen -f MnO
       2000

Final steps in initialization
Increase number of k-points for more precise DMFT frequency dependence.

> run_lapw -NI

Optional : Rerun LDA with new k-mesh.

Optional : Create new directory with only necessary files for DFT+DMFT 
calculation> mkdir LDA; mv * LDA/

> mkdir DMFT; cd DMFT
> dmft_copy.py ../LDA

params.dat 
MnO.indmfl 
MnO.indmfi 
projectorw.dat 
sig.inp 

MnO.struct   
MnO.clmsum 
MnO.in0 
MnO.in1 
MnO.in2 
MnO.inm 
MnO.klist 
MnO.scf2

DMFT files, which we already discussed

W2k files

crystal structure
charge density
input to lapw0
input to lapw1
input to lapw2
input to mixer
list of k-points
input to lapw2/dmft2

basic parameters
KS-lattice to DMFT connection
impurity to DMFT connection
radial dependent projector
self-energy



Final steps in initialization

> echo "mpirun -np 2 -x OMP_NUM_THREADS=1" > mpi_prefix.dat

For parallel execution we need to create special file “mpi_prefix.dat”

• If this file does not exists, the run will be serial.
• np specified number of available cores (unfortunately only 2 can be afforded here)
• OMP_NUM_THREADS=1 switches off open_mp when mpi is used. If a lot of 

cores are available, one can use combination of open_MP and MPI.
• mpi_prefix.dat is used for the ctqmc impurity solver. If dmft1, dmft2, lapw1, 

lapwso require different parallelization, one can specify also mpi_prefix.dat2.

> run_dmft.py >& nohup.dat

Finally run EMDFTF code by executing

> export OMP_NUM_THREADS=1
It appears that multithreading makes code 
slower on this machine, so please turn it off.



Monitor the run

> less info.iterate 
> less  dmft_info.out
> less ':log'
> less MnO.dayfile
> grep ':CHARGE' MnO.dayfile
> plot -u1:3,1:5 -x:10  MnO.dlt1
> plot -x:20 -g -u1:3,1:5 imp.0/Gf.out.?.1
> plot -x:20 -g -u1:3,1:5 imp.0/Sig.out
>plot -g -u1:9,1:10 info.iterate

check the summary file

execution log+convergence

plot hybridization function

plot the DMFT output G

see what/how is executed

charge converged by iterations

plot lattice & imp. occupancy

check execution log

plot the impurity output Sigma



  #   #.  #           mu          Vdc                          Etot          Ftot+T*Simp     Ftot+T*Simp       n_latt            n_imp         Eimp[0]     Eimp[-1]  
  0   0.  0     6.531263    37.425774    -2467.684855    -2467.691806    -2467.689050     4.686248     5.013583     0.054065    -0.045105  
  1   0.  1     6.531263    37.425774    -2467.681073    -2467.718333    -2467.686794     4.721879     5.013583     0.054065    -0.045105  
  2   0.  2     6.531263    37.425774    -2467.674694    -2467.799804    -2467.684399     4.829063     5.013583     0.054065    -0.045105  
….. 
 18   1.  0     6.531263    37.585587    -2467.686310    -2467.693145    -2467.694964     5.103626     5.032720    -0.423417    -0.543007  
 19   1.  1     6.531263    37.585587    -2467.684830    -2467.678463    -2467.692387     5.085911     5.032720    -0.423417    -0.543007  
 20   1.  2     6.531263    37.585587    -2467.681235    -2467.634600    -2467.685370     5.032847     5.032720    -0.423417    -0.543007  
 21   1.  3     6.531263    37.585587    -2467.678106    -2467.571185    -2467.677109     4.960474     5.032720    -0.423417    -0.543007  
….. 

> less info.iterate 

#step #charge 
step

#outside 
loop

chemical 
potential

average 
Vdc

total 
energy

total free 
energy 
without 
impurity 
entropy

orbital 
occupation 

from 
projection 

of KS 
orbitals

impurity 
occupation

should be equal when 
converged

impurity 
energy 
levels

summary file



> less dmft_info.out 
********------ parameter change ------*********** 
iparams0 = {'nom': [100, '# Number of Matsubara frequency points sampled'], 'tsample': [30, '# How often to record measurements'], 'Ncout': [500000, '# How often to print out info'], 'J': [1.14, '# Coulomb J'], 'M': [5000000.0, '# 
Total number of Monte Carlo steps per core'], 'CoulombF': ["'Ising'", "# Density-density form. Can be changed to 'Full' "], 'beta': [38.68, '# Inverse temperature'], 'U': [9.0, '# Coulomb repulsion (F0)'], 'GlobalFlip': [500000, '# How 
often to try a global flip'], 'sderiv': [0.02, '# Maximum derivative mismatch accepted for tail concatenation'], 'Nmax': [500, '# Maximum perturbation order allowed'], 'exe': ['ctqmc', '# Name of the executable'], 'warmup': 
[500000.0, '# Warmup number of QMC steps'], 'OCA_G': [False, "# Don't compute OCA diagrams for speed"], 'aom': [3, '# Number of frequency points used to determin the value of sigma at nom']} 
....... 
DCs = exactd 
Znucs= {1: 25} 
iSiginds= {0: [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 2, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 2]]} 
...... 
#<lapw0>:  wien2k_14/x -p -f MnO lapw0 
#<lapw1>:  x_dmft.py -p lapw1 
DmftEnvironment: mpi_prefix.dat exists -- running in parallel mode. 
   mpirun -np 2 
..... running: mpirun -np 2  ./lapw1 lapw1.def 
case=MnO, nom=100, ntail=300, insig=sig.inp, outsig=sig.inp[1-n] 
s_oo= [38.22, 38.22] 
Edc= [38.22, 38.22] 
..... Creating logarithmic mesh 
..... Going over all correlated blocks 
icix= 1 colsp= [1, 2] colsm= [] 
icl= 1 
icl= 2 
Running ---- dmft1 —— 
#<dmft1>:  /usr/bin/time  mpirun -np 2 ./dmft dmft1.def >> dmft1_info.out  
#<sjoin>:  sjoin.py -m 1.0 
Running ----- impurity solver ----- 
Taking care of high frequency 
Eimp= [-38.16593522 -38.26510458] 
Edc= [ 38.22  38.22] 
ncorr= 5.01358294333 
#<sgather>:  sgather.py 
------- DMFT part of the step #  0 done --------- 
case=MnO, nom=100, ntail=300, insig=sig.inp, outsig=sig.inp[1-n] 
s_oo= [38.26987655713145, 38.35976476628431] 
Edc= [37.425774429186845, 37.431910457048744] 
..... Creating logarithmic mesh 
--------- Preparing Charge calculation --------- 
#<prep-dmft2>:  x_dmft.py -d --mode c -m 0 -x 1.0 -w 1.0 -p dmft2 >> ksum_info.out 2>&1 
#<ssplit>:  ssplit.py -n 100 -t 300 
#<dmft2>:  mpirun -np 2 ./dmft2 dmft2.def >> dmft2_info.out  
#<lcore>:  x -f MnO lcore 
#<mixer>:  x -f MnO mixer 
------- LDA(charge) step 0 0 done --------- 
#<lapw0>:  x -p -f MnO lapw0 
#<lapw1>:  x_dmft.py -p lapw1 
..... running: mpirun -np 2  ./lapw1 lapw1.def 
--------- Preparing Charge calculation --------- 
#<prep-dmft2>:  x_dmft.py -d --mode c -m 0 -x 1.0 -w 1.0 -p dmft2 >> ksum_info.out 2>&1 
#<ssplit>:  ssplit.py -n 100 -t 300 
#<dmft2>:  mpirun -np 2 ./dmft2 dmft2.def >> dmft2_info.out  
#<lcore>:  x -f MnO lcore 
#<mixer>:  x -f MnO mixer 
------- LDA(charge) step 1 0 done --------- 

details of every step  and its execution (a lot of information)



Wed May 23 23:56:53 EDT 2018> (x) -f MnO lapw0 
Wed May 23 23:56:54 EDT 2018>     lapw1 
Wed May 23 23:56:55 EDT 2018>     dmft1 
Wed May 23 23:56:56 EDT 2018>     impurity 
Wed May 23 23:59:38 EDT 2018>     dmft2 
Wed May 23 23:59:39 EDT 2018> (x) -f MnO lcore 
Wed May 23 23:59:39 EDT 2018> (x) -f MnO mixer 
Wed May 23 23:59:39 EDT 2018> (x) -f MnO lapw0 
Wed May 23 23:59:40 EDT 2018>     lapw1 
Wed May 23 23:59:41 EDT 2018>     dmft2 
Wed May 23 23:59:42 EDT 2018> (x) -f MnO lcore 
Wed May 23 23:59:42 EDT 2018> (x) -f MnO mixer 
Wed May 23 23:59:42 EDT 2018> (x) -f MnO lapw0 
Wed May 23 23:59:43 EDT 2018>     lapw1 
Wed May 23 23:59:44 EDT 2018>     dmft2 
Wed May 23 23:59:44 EDT 2018> (x) -f MnO lcore 
Wed May 23 23:59:44 EDT 2018> (x) -f MnO mixer 
Wed May 23 23:59:44 EDT 2018> (x) -f MnO lapw0 
Wed May 23 23:59:46 EDT 2018>     lapw1

> less :log 

   cycle 0      Wed May 23 23:56:53 2018 30/30 to go 

>lapw0      ( 23:56:53 ) 
>lapw1      ( 23:56:54 ) 
>dmft1      ( 23:56:55 ) 
>impurity   ( 23:56:56 ) 
>dmft2      ( 23:59:38 ) 
>lcore      ( 23:59:39 ) 
>mixer      ( 23:59:39 ) 
:ENERGY convergence:  0.00275430000011 
:CHARGE convergence:  0.269067 
:EF     convergence:  0

> less MnO.dayfile

which steps have finished when?



> plot -u1:3,1:5 -x:10  MnO.dlt1

Check current impurity hybridization function

imaginary part of eg imaginary part of t2g

> plot -x:20 -g -u1:3,1:5 imp.0/Gf.out.?.1

eg
t2g
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hybridization vanishes 
at ω=0. Charge gap!
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Check impurity Green’s function

G converges even 
on two cores.

G also gapped.

> plot -x:20 -g -u1:3,1:5 imp.0/Sig.out.?.1

Check self-energy

Some output files



 4.8
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info.iterate u 1:9
info.iterate u 1:10

> plot -g -u1:9,1:10 info.iterate

impurity and lattice 
occupancy should 

converge. 

Some output files

> grep ':CHARGE' MnO.dayfile
:CHARGE convergence:  1.0
:CHARGE convergence:  0.272381
:CHARGE convergence:  0.208401
:CHARGE convergence:  0.094013
:CHARGE convergence:  0.075578
:CHARGE convergence:  0.071506
:CHARGE convergence:  0.014747
:CHARGE convergence:  0.005258
:CHARGE convergence:  0.001651
:CHARGE convergence:  0.00165
:CHARGE convergence:  0.00068
:CHARGE convergence:  0.00045
:CHARGE convergence:  0.000309
:CHARGE convergence:  0.000188
:CHARGE convergence:  0.000108
:CHARGE convergence:  6.2e-05
:CHARGE convergence:  2e-05
:CHARGE convergence:  0.085869
:CHARGE convergence:  0.075714
:CHARGE convergence:  0.055726
:CHARGE convergence:  0.026821
:CHARGE convergence:  0.014785
:CHARGE convergence:  0.010197
:CHARGE convergence:  0.001906
:CHARGE convergence:  0.001064
:CHARGE convergence:  0.000376
:CHARGE convergence:  0.000176
:CHARGE convergence:  2.1e-05

>less imp.0/nohup_imp.out.000

Check difference between impurity and lattice 
occupancy

Check convergence of electronic charge

Check what impurity solver is doing



Postprocessing : maxent

> mkdir maxent; cd maxent

> cp ../sig.inp.10.1 .

> maxent_run.py sig.inp.10.1

> cp $RESULTS/MnO/maxent/maxent_params.dat .
params={'statistics': 'fermi', # fermi/bose 
        'Ntau'      : 300,             # Number of time points 
        'L'         : 20.0,               # cutoff frequency on real axis 
        'x0'        : 0.005,            # low energy cut-off 
        'bwdth'     : 0.004,         # smoothing width 
        'Nw'        : 300,              # number of frequency points on real axis 
        'gwidth'    : 2*15.0,        # width of gaussian 
        'idg'       : 1,                    # error scheme: idg=1 -> sigma=deltag ; idg=0 -> sigma=deltag*G(tau) 
        'deltag'    : 0.004,           # error 
        'Asteps'    : 4000,           # anealing steps 
        'alpha0'    : 1000,           # starting alpha 
        'min_ratio' : 0.001,          # condition to finish, what should be the ratio 
        'iflat'     : 1,                     # iflat=0 : constant model, iflat=1 : gaussian of width gwidth, iflat=2 : input using file model.dat 
        'Nitt'      : 1000,              # maximum number of outside iterations 
        'Nr'        : 0,                   # number of smoothing runs 
        'Nf'        : 40,                 # to perform inverse Fourier, high frequency limit is computed from the last Nf points 
        }

create new directory for analytic continuation

copy the latest self-energy

saverage.py $RESULTS/MnO/sig.inp.1?.1
alternatively, take average over previous run:

need several parameters

run maximum entropy
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> plot -g -u1:3,1:5 -x-20:20 Sig.out

Postprocessing : maxent

Check the resulting self-energy on real axis

Mott gap with delta-function in 
the gap



> mkdir ../onreal; cd ../onreal Create another directory for  real axis DOS

> dmft_copy.py  ../ copy converged results on imaginary axis

If you do not have your own results, use:
dmft_copy.py  $RESULTS/MnO

Postprocessing : Density of states

5 15 1 5                              # hybridization band index nemin and nemax, renormalize for interstitials, projection type 
1 0.025 0.025 200 -3.000000 1.000000  # matsubara, broadening-corr, broadening-noncorr, nomega, omega_min, 
omega_max (in eV) 
1                                     # number of correlated atoms 
1     1   0                           # iatom, nL, locrot 
  2   7   1                           # L, qsplit, cix

5 15 1 5                              # hybridization band index nemin and nemax, renormalize for interstitials, projection type 
0 0.025 0.025 200 -3.000000 1.000000  # matsubara, broadening-corr, broadening-noncorr, nomega, omega_min, 
omega_max (in eV) 
1                                     # number of correlated atoms 
1     1   0                           # iatom, nL, locrot 
  2   7   1                           # L, qsplit, cix

edit the second line of MnO.indmfl file and change the flag matsubara to 0 

changed file:

>cp ../maxent/Sig.out sig.inp copy maxent real-axis self-energy to this directory



> x lapw0 -f MnO Recompute potential (lapw0)

Postprocessing : Density of states

> x_dmft.py lapw1 Recompute KS bands

> x_dmft.py dmft1 Recompute Green’s function on the real axis

> plot -x-10:10 -uall MnO.cdos
Check resulting DOS
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charge Mott gap.

> plot -x-10:10 -u1:3,1:5 MnO.gc1
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Check Green’s t2g and eg Green’s function

valence state is from Mn-d.
conduction state is not-Mn-d



other occupied states, consists of a narrow peak that is domi-
nated by dz2

↓ character. The second and third bands are very
close to each other and are mainly of !dxz

↑ ,dyz
↑ " and dz2

↑ char-
acter, respectively, with significant admixture of other d
characters and O-2pstates. The last wide band is character-
ized by !dxz

↑ ,dyz
↑ " and !dx2−y2

↑ ,dxy
↑ " mixed with O-2p. The most

noticeable feature when increasing U is that the splitting be-
tween the dz2

↓ and the !dxz
↑ ,dyz

↑ " bands decreases dramatically
in LDA+U but changes very little in GW0. In the fully lo-
calized limit, the LDA+U correction will shift occupied and
unoccupied dbands by !U /2, respectively. Our observation
of the LDA+U behavior indicates that the occupied dz2

↓ band
moves downward more strongly than other occupied dstates.
This nonuniformity of different occupied d states can be
explained by the different hybridization with O 2p states:
All occupied dstates except dz2

↓ have energetic overlap with

O 2pstates; as a result, the effect of the "V̂ term is partially
relieved by changing the hybridization strength when these
states are pushed toward lower energy.

3. Comparisons with experiment

Finally we compare our GW@LDA+U results for later
transition-metal oxides, using U and J determined by con-

strained DFT calculations, to experiment. Table III summa-
rizes the fundamental band gaps of MnO, FeO, CoO, and
NiO obtained in this work in relation to experimental and
other theoretical results. Compared to widely cited experi-
mental values, the band gaps from GW@LDA+U are con-
siderably underestimated. We note, however, that a direct
comparison of the fundamental band gap between theory and
experiment has to be done with caution. An accurate experi-
mental determination of fundamental band gaps is anything
but trivial and the accuracy can be impaired by several fac-
tors, including sample quality, limited instrumental reso-
lution, suitability of the chosen technique, or a mix of bulk
and surface features. The conceptually most straightforward
way to obtain band gaps is by direct and inverse PES.126

While direct PES is now a routine technique used for prob-
ing electronic properties of occupied !including deep core
and valence-band" states with ever-increasing resolution, in-
verse PES is not nearly as developed and the resolution is
typically limited by charge accumulation on the sample sur-
face in the course of the measurement. In practice, the band
gap is therefore often measured with optical-absorption tech-
niques. However, features in the absorption spectrum are
mainly determined by dipole selection rules and the strength
of the electron-hole attraction !excitonic effects".127 In addi-
tion, the determination of the band edge can be obscured by
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FIG. 9. !Color online" Comparison of theoretical DOS calculated by LDA+U !dashed", and GW0 !solid" with constrained DFT U and J
as listed in Table I, to experimental spectra from XPS-BIS measurements for late transition-metal monoxides. The XPS-BIS data for MnO,
FeO, CoO, and NiO are extracted from Refs. 120– 122 and 128, respectively.

JIANG et al. PHYSICAL REVIEW B 82, 045108 !2010"

045108-12

Check with Experiment

Should be careful with 
direct comparison(surface 
issues, matrix elements 
effects, low resolution for 
inverse Ph). Nevertheless, 
the agreement good, and 
far superior than LDA+U 
or GW.

Exp: 
Sawatzky et.al., PRB 44, 1530 (1991)

Other methods (M. Scheffler):  
PRB 82, 045108 (2010).



Postprocessing :  A(k,w)

> cp $RESULTS/MnO/onreal/MnO.klist_band . copy k-list path
can be created by xcrysden

> x_dmft.py lapw1 --band recomputed KS bands on the current k-path.

edit the second line of MnO.indmfl file and change omega_min, 
omega_max to -6 6 . We use 200 frequency points
5 15 1 5                              # hybridization band index nemin and nemax, renormalize for interstitials, projection type 
0 0.025 0.025 200 -3.000000 1.000000  # matsubara, broadening-corr, broadening-noncorr, nomega, omega_min, 
omega_max (in eV) 
1                                     # number of correlated atoms 
1     1   0                           # iatom, nL, locrot 
  2   7   1                           # L, qsplit, cix

5 15 1 5                              # hybridization band index nemin and nemax, renormalize for interstitials, projection type 
0 0.025 0.025 200 -6.000000 6.000000  # matsubara, broadening-corr, broadening-noncorr, nomega, omega_min, 
omega_max (in eV) 
1                                     # number of correlated atoms 
1     1   0                           # iatom, nL, locrot 
  2   7   1                           # L, qsplit, cix

changed file:

> x_dmft.py dmftp computed and store DMFT bands (eigvals.dat) on the same k-path



We did not change EF during self-consistent run, therefore “EF.dat” file was not yet 
created. For metals “EF.dat” should exist already. Check “mu” from info.iterate and 
copy it into “EF.dat”

> echo 6.530817 > EF.dat

> wakplot.py 0.02 display the DMFT eigenvalues.

adjust this number to have 
best contract

hybrid Mn-eg state+ 
O-p state 

(Zhang-Rice physics)

itinerant 4s-state

Should see picture like:

Mn-2tg state

optical gap 
~3eV

Exp: optical gap ~3eV,  
PRB 58, 9783 (1998).



Exercise 2: FeSe example (iron superconductor)

International Summer School on Computational Quantum Materials C. H. Yee | Rutgers University

Exercise 2: FeSe
Iron-based superconductor

Tc = 9K to 37K (high-pressure)

Doesn’t require doping

Heterostructures: possible
superconductivity at ~100K

> init_dmft.py -ca 1,2 -ot d,d -qs 2,2

> cd FeSe

atom 1 and 2 are the 
two Fe in the u.c. They 

are correlated.

orbital type:
The “d” orbital is 

correlated by DMFT

“d” orbitals in real harmonics 
with tetragonal symmetry

directory with Wien2k DFT run.



copy a good guess for self-energy 
to achieve faster convergence.

solver         =  'CTQMC'   # impurity solver
DCs            =  'nominal'   # double counting scheme

max_dmft_iterations = 1      # number of iteration of the dmft-loop only
max_lda_iterations  = 100   # number of iteration of the LDA-loop only
finish         =  30                   # number of iterations of full charge loop (1 = no charge self-consistency)

ntail          =  300                  # on imaginary axis, number of points in the tail of the logarithmic mesh

cc             =  2e-5      # the charge density precision to stop the LDA+DMFT run
ec             =  2e-5      # the energy precision to stop the LDA+DMFT run

recomputeEF    = 1          # Recompute EF in dmft2 step. If recomputeEF = 2, it tries to find an insulating gap.

GoodGuess      = True       # We have a good guess for self-energy, and the scheduler optimizes run for good existing self-energy

# Impurity problem number 0
iparams0={"exe"      : ["ctqmc"            , "# Name of the executable"],
          "U"                 : [5.0                    , "# Coulomb repulsion (F0)"],
          "J"                  : [0.8                    , "# Coulomb repulsion (F0)"],
          "CoulombF"   : ["'Full'"                , "# Can be set to 'Full'"],
          "beta"             : [50                      , "# Inverse temperature"],
          "svd_lmax"     : [25                      , "# We will use SVD basis to expand G, with this cutoff"],
          "M"                 : [10e6                  , "# Total number of Monte Carlo steps"],
          "Mlist"            : [ [10e6]*5 + [20e6], "# Changing M"],
          "mode"           : ["SH"                 , "# We will use self-energy sampling, and Hubbard I tail"],
          "nom"             : [200                   , "# Number of Matsubara frequency points sampled"],
          "tsample"        : [100                   , "# How often to record measurements"],
          "GlobalFlip"    : [1000000           , "# How often to try a global flip"],
          "warmup"        : [3e5                   , "# Warmup number of QMC steps"],
          "nf0"                : [6.0                    , "# Nominal occupancy nd for double-counting"],
          }

> cp $RESULTS/FeSe/DMFT/params.dat .

> cp $RESULTS/FeSe/DMFT/sig.inp .

Add “params.dat" and “sig.inp”

metal requires to 
compute EF at each 
iteration

will start with a good 
guess for sigma

use rotationally 
invariant Coulomb U

number of MC steps 
will change. start with 
10M, and later 20M



> x kgen -f FeSe
       1000
       Do you want to shift k-mesh:1
> run_lapw -NI

> mkdir LDA; mv * LDA/
> mkdir DMFT; cd DMFT
> dmft_copy.py ../LDA
> echo "mpirun -np 2 -x OMP_NUM_THREADS=1" > mpi_prefix.dat

> run_dmft.py >& nohup.dat

> less info.iterate 
> less  dmft_info.out
> less imp.0/nohup_imp.out.000
> less FeSe.dayfile
> plot -g -u1:9,1:10 info.iterate

check the summary file

execution log+convergence

see what/how is executed

impurity occupancy convergence

check what impurity is doing

Monitor the run

Prepare & execute

Optional: move LDA data to directory LDA and 
start new calculation in directory DMFT. 
Copy necessary data to new directory by  
dmft_copy.py script.



Note: due to a flag “GoodGuess=True” in 
params file, the calculation started with 
converging electronic charge on the 
currently provided self-energy (sig.inp), 
and impurity solver is run only after the 
charge is converged.

> plot -x:10 -g -u1:3,1:5,1:7,1:9,1:11 imp.0/Sig.out.?.1 plot impurity self-energy

Checking the amount of force on atoms 
We can switch on the calculation of force on atoms by changing a variable 
in FeSe.in2

currently FeSe.in2 line1 contains:

change to :

# FeSe.in2, line 1 :
TOT             (TOT,FOR,QTL,EFG,FERMI)

# FeSe.in2, line 1 :
FOR             (TOT,FOR,QTL,EFG,FERMI)



       TOTAL FORCE IN mRy/a.u. = |F|     Fx             Fy             Fz     with/without FOR in case.in2
:FOR001:   1.ATOM       0.000000       0.000000       0.000000       0.000000 total forces
:FOR002:   2.ATOM      19.938644       0.000000       0.000000     -1.226529  total forces
       TOTAL FORCE WITH RESPECT TO GLOBAL CARTESIAN COORDINATES:
:FCA001:   1.ATOM                      0.000000       0.000000       0.000000 total forces
:FCA002:   2.ATOM                      0.000000       0.000000     -1.226529  total forces
       TOTAL FORCE WITH RESPECT TO THE GLOBAL COORDINATE SYSTEM:
:FGL001:   1.ATOM                 0.000000000     0.000000000     0.000000000 total forces
:FGL002:   2.ATOM                 0.000000000     0.000000000    -1.226529    total forces
This format is identical to the format in Wien2k, and it says that the Se atom has a force in z-direction of -1.22mRy/a.u. (for different RKmax, it might be 
somewhat different value). We can grep the force at each step by
grep ':FGL002' FeSe.scf

Note: force of a few mRy/a.u. is very small and says that 
the structure is already optimized. This is because z-
position of Se z=0.27 in this structure file is very close to 
its equilibrium in DMFT (and experiment). 
The LDA equilibrium value is z=0.245, which would 
create very large force in DMFT.

# FeSe.inm, line 1:
MSR1a   0.0   YES  (BROYD/PRATT, extra charge (+1 for additional e), norm)  

After this change, FeSe.scf should contain a printout of the total force, for example:

If you wish to optimize the structure (which is not needed in this case), you just need to edit FeSe.inm file and 
change MSR1 in the first line to MSR1a , i.e., 

The DFT equilibrium value is z=0.245 
DMFT equilibrium value : z=0.268
Experiment : z=0.265



Maximum entropy steps are identical as in previous MnO example. The same 
maxent_params.dat file should be good.

Postprocessing : maxent + dos

> mkdir maxent; cd maxent

> cp ../sig.inp .

> maxent_run.py sig.inp

> cp $RESULTS/MnO/DMFT/maxent/maxent_params.dat .

> mkdir ../onreal; cd ../onreal
> dmft_copy.py  ../

edit the second line of FeSe.indmfl file and change the flag matsubara to 0 
>cp ../maxent/Sig.out sig.inp

> x lapw0 -f FeSe

> cp ../mpi_prefix.dat .

> x_dmft.py dmft1
> x_dmft.py lapw1
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> cp $RESULTS/FeSe/onreal/FeSe.klist_band .

> x_dmft.py lapw1 --band
edit the second line of FeSe.indmfl file and change omega_min, 
omega_max to -1 1 . We use 200 frequency points

> x_dmft.py dmftp

> wakplot.py 0.5

> plot -x-10:10 -uall FeSe.cdos

should give the 
following DOS:

should give the 
following spectra:



Thank you!



1) Due to Pauli exclusion principle, the fermions tend to avoid each other, and single particle 
methods take into account fermi statistics through use of the Slater determinants. (Small 
phase space for scattering)

Why DOES I.P.A. EVER work?

2) Conservation laws are unchanged by the interaction and suggests continuity of the non-
interacting picture.

1

H(uk(r+R)eikr) = "k(uk(r+R)eikr) (1)

Example: Bloch theorem for single-particle states leads to the concept of bands.

3) Fermi liquid theory: there should be a one-to-one correspondence between the excitations 
of the non-interacting system and the low energy quasiparticle excitations if continuity is 
satisfied [no intervening phase transition, like metal-insulator transition]

4) The “Luttinger theorem” states that, so long as the actual interacting system can be 
considered to evolve continuously from a non-interacting system, the volume enclosed by the 
Fermi surface does not change. 

5) Screening is strong in simple metals, so that effective onsite Coulomb repulsion is only of 
the order of a few eV in Cu or Fe. But is of the order of 10eV in transition metal oxides.


