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Examples

Carbazole molecule Inside of diamant

Réf: Jean-François Brière 
(http://www.phys.umontreal.ca/~michel_
cote/Images_Scientifiques/images.shtml) Réf: Mike Towler 

(http://www.tcm.phy.cam.ac.uk/~mdt26/)

http://www.phys.umontreal.ca/~michel_cote/Images_Scientifiques/images.shtml
http://www.tcm.phy.cam.ac.uk/~mdt26/
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Condensed Matter

Schrödinger's equation:

Hamiltonian for electrons and atoms with coulomb 
interaction:
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Electrons
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Potential 
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Interaction 
energy
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We are looking for a solution of the type of a wave function 
for many electrons:

The problem is easy to write down …but the solution …

Using the Born-Oppenheimer approximation:
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Electrons system
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Storage required:

� 

x→10 ×10 ×10 = 1000 data

� 

10 electrons →  100010  data →  1030 ×16 bytes
= 16 ×1021 Gb

Impracticable!!!



6

Dirac’s quote (1929)

« The underlying physical laws necessary for the 
mathematical theory of a large part of physics and the 
whole of chemistry are thus completely known, and 
the difficulty is only that the exact application of these 
laws leads to equations much too complicated to be 
soluble »

Réf: Quantum mechanics of many-electron systems, Proceedings of the Royal 
Society of London, pp.714. (1929)
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Dirac’s quote (1929)

« It therefore becomes desirable that approximate 
practical methods of applying quantum mechanics 
should be developed, which can lead to an explanation 
of the main features of complex atomic systems 
without too much computation. »

Réf: Quantum mechanics of many-electron systems, Proceedings of the Royal 
Society of London, pp.714. (1929)
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Wavefunction approach: Hartree method
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Lagrange multipliers to 
assure that the φl 
remain orthogonal

Same equation 
for all φl
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Slater determinant

Particules are not independant, change the position of one and all the 
others are affected.

Pauli exclusion principle is respected.

Hartree-Fock method



10

Hartree-Fock method
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Exchange energy

Because of the exchange term, the problem is 
much harder to resolve. 

Results are better than those of the Hartree 
method but still not very satisfying.
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Configuration Interaction method

),,,(),,,( 2121 Ni
i

iN xxxCxxx …… Φ=Ψ ∑
Sum of Slater determinants 

(configurations)

Must find the coefficients Ci

CI = configuration interaction

CIS = CI with single excitations only

CISD = CI with single and double excitations only

Correlation energy: contribution over that of Hartree-Fock
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Wavefunction methods

Advantages:
¡ Control approximations
¡ Systematic approach (H, HF, CIS, …)
¡ Upper bound (variational principle)

Disadvantages:
¡ Very costly numerically 

(up to 20-30 electrons, forget solids!)
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Progress in theoretical methods

Walter Kohn

John A. Pople

Nobel Prize 1998 in Chemistry: 

• efficient
• flexible
• precise
• parameter free

"for his development of 
computational methods in 
quantum chemistry”

"for his development of the 
density-functional theory”
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Walter Kohn

Nobel Prize in 1998 for Chemistry: 
Development of ab initio methods

Density Functional Theory (WK)
(efficient, flexible, precise, parameters free)

• efficient
• flexible
• precise
• parameters free

Austria

EnglandSherbrooke
Toronto

Harvard

Walter Kohn and Canada

Walter Kohn died April 16, 2016.
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Milestones : first-principles approach

Precursor : Thomas-Fermi approximation (1927) 

Inhomogeneous electron gas
P. Hohenberg and W. Kohn, Phys. Rev.  136, B864 (1964)
Self-consistent equations including exchange and correlation effects
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965)

Ceperley, Alder (1980); Perdew, Zunger (1981) : computation and
parametrization of the exchange and correlation energy 
needed in the local density approximation
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Most cited papers
Papers published in APS journals (PRL, PRA, PRB, .. RMP), 

most cited by papers published in APS journals

S. Redner, Citation Statistics from 110 Years of Physical Review, Physics Today, June 2005. 
Today, according to Google Scholar: K&S, 40k; H&K, 35k; PBE functional, 60k ! 
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A basic reference on DFT 
and applications to solids

Richard M. Martin 

Cambridge University Press, 2004

Electronic Structure : Basic Theory and 
Practical Methods 

(ISBN: 0521782856) 

For details, see 

http : //www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521782856



Functionals of the density



19

What is a functional?

It is a quantity that depends non on a variable but on a 
function.
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Honenberg et Kohn, Physical Review, vol 136, B864, (1964)

Assume: )()(
)()(
rnrV
rnrV

→Ψ′→′
→Ψ→

′E = ′Ψ ′H ′Ψ < Ψ ′H Ψ = Ψ H −V (r)+ ′V (r) Ψ

′E < E + [ ′V (r)−V (r)]n(r)dr∫

E < ′E + [V (r)− ′V (r)]n(r)dr∫
Samething but starting from E:

EEEE +′<+′
Combine:

Contradiction!!!

Ψ↔↔ )()( rVrn

Density functional theory: 
First Hononberg-Kohn theorem
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First Hohenberg-Kohn theorem 

The ground state density n(r) of a many-electron system 
determines uniquely the external potential V(r), modulo one 
global constant.

Consequence : formally, the density can be considered as the 
fundamental variable of the formalism, instead of the potential.

No need for wavefunctions
or Schrödinger equation !
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The constrained-search approach to DFT
M. Levy, Proc. Nat. Acad. Sci. USA, 76, 6062 (1979)

Use the extremal principle of QM. 

EV = min
Ψ

Ψ ĤV Ψ{ } = min
n

min
Ψ→n

Ψ ĤV Ψ{ }{ }
= min

n
min
Ψ→n

Ψ T̂ + V̂int + V̂ Ψ{ }{ }
= min

n
min
Ψ→n

Ψ T̂ + V̂int Ψ + n(r)V (r)dr∫{ }{ }

F n[ ] = min
Ψ→n

Ψ T̂ + V̂int Ψ{ }

= min
n

F n[ ] + n(r)V (r)dr∫{ } = minn EV n[ ]{ }

where is a universal functional 
of the density ... 
Not known explicitely !



The Kohn & Sham approach
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The exchange-correlation energy
F[n] : large part of the total energy, hard to approximate

Kohn & Sham (Phys. Rev. 140, A1133 (1965)) :
mapping of the interacting system on a non-interacting system

If one considers a non-interacting electronic system : 

Kinetic energy functional of the density

Exchange-correlation functional of the density :

Not known explicitely !
But let’s suppose 
we know it 

F n[ ] = min
Ψ→n

Ψ T̂ + V̂int Ψ{ }

Ts n[ ] = min
Ψ→n

Ψ T̂ Ψ{ }

Exc n[ ] = F n[ ]− Ts n[ ]− 1
2

n(r1)n(r2 )
r1 - r2

∫ dr1dr2
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The Kohn-Sham potential
So, we have to minimize:                (under constraint of total electron number)

Introduction of Lagrange multipliers

If one considers the minimization for non-interacting electrons
in a potential VKS(r), with the same density n(r), one gets

Identification : 

The Kohn-Sham potential

EV n[ ] = Ts n[ ] + V (r)n(r)∫ dr + 1
2

n(r1)n(r2 )
r1 - r2

∫ dr1dr2 + Exc n[ ]

0 = δ EV n[ ]− λ n(r)dr -N∫{ }( ) = δTs n[ ]
δn

+V (r) + n(r1)
r1 - r
∫ dr1 +

δExc n[ ]
δn(r)

− λ
%

&'
(

)*∫ δn(r)dr

0 =
δTs n[ ]
δn

+VKS(r) − λ
$
%&

'
()∫ δn(r)dr

VKS(r) = V (r) +
n(r1)
r1 - r
∫ dr1 +

δExc n[ ]
δn(r)
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VKS(r) = Vext (r) +
n(r1)
r1 - r
∫ dr1 +

δExc n[ ]
δn(r)

The Kohn-Sham orbitals and eigenvalues
Non-interacting electrons in the Kohn-Sham potential : 

Hartree potential     Exchange-correlation potential

Density 

To be solved self-consistently !

Note : by construction, at self-consistency, and supposing the exchange-
correlation functional to be exact, the density will be the exact density, the 
total energy will be the exact one, but Kohn-Sham wavefunctions and 
eigenenergies correspond to a fictitious set of independent electrons, so they 
do not correspond to any exact quantity.

−
1
2
∇2 +VKS(r)

#
$%

&
'(
ψ i (r) = εiψ i (r)

n(r) = ψ i
*(r)ψ i (r)

i
∑
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Minimum principle for the energy

Using the variational principle for non-interacting electrons,
one can show that the solution of the Kohn-Sham self-consistent
system of equations is equivalent to the minimisation of

under constraints of orthonormalization 
for the occupied orbitals.

EKS ψ i{ }"# $% = ψ i −
1
2
∇2 ψ i

i
∑ + Vext (r)n(r)∫ dr + 1

2
n(r1)n(r2 )
r1 - r2

∫ dr1dr2 + Exc n[ ]

ψ i ψ j = δ ij



Density Functional Theory :
approximations
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An exact result for the
exchange-correlation energy

(without demonstration)
The exchange-correlation energy, functional of the density
is the integral over the whole space of the density times the 
local exchange-correlation energy per particle

while the local exchange-correlation energy per particle is the
electrostatic interaction energy of a particle with its DFT
exchange-correlation hole.

Sum rule : 

Exc n[ ] = n(r1)ε xc (r1;n)∫ dr1

ε xc (r1;n)=
1
2
nxc (r2 r1;n)
r1 − r2

∫ dr2

nxc (r2 r1;n)∫ dr2 = −1
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The local density approximation (I)

Hypothesis :
- the local XC energy per particle only depend on the local density
- and is equal to the local XC energy per particle of an 

homogeneous electron gas of same density 
(in a neutralizing background - « jellium » )

   εxc
LDA(r1; n ) = εxc

hom( n(r1) )

Gives excellent numerical results ! Why ?

1) Sum rule is fulfilled

2) Characteristic screening length indeed depend on local density
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The local density approximation (II)

Actual function : exchange part (x) + correlation part (c)

with 

for the correlation part, one resorts to accurate
numerical simulations beyond DFT (e.g. Quantum Monte Carlo)

Corresponding exchange-correlation potential

ε x
hom (n) = Cn1/3 C = −

3
4π

3π 2( )1/3

µx (n) = C
4
3
n1/3 =

4
3
ε x
hom (n)

Vxc (r) =
δExc n[ ]
δn(r)

Vxc
approx (r) = µxc n(r)( ) µxc (n) =

d nε xc
approx (n)( )
dn
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The local density approximation (III)
To summarize :

or

and

ELDA n[ ] = Ts n[ ] + Vext (r)n(r)∫ dr + 1
2

n(r1)n(r2 )
r1 - r2

∫ dr1dr2 + Exc
LDA n[ ]

ELDA ψ i{ }"# $% = ψ i −
1
2
∇2 ψ i

i
∑ + Vext (r)n(r)∫ dr + 1

2
n(r1)n(r2 )
r1 - r2

∫ dr1dr2

                    + n(r1)ε xc
LDA (n(r1))∫ dr1

VKS
LDA (r) = Vext (r) +

n(r1)
r1 - r
∫ dr1 + µxc

hom (n(r))
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Beyond the local density approximation

Generalized gradient approximations (GGA)

No model system like the homogeneous electron gas !
Many different proposals, including one from Perdew,
Burke and Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996),
often abbreviated « PBE ».
Others : PW86, PW91, LYP ...

Also : « hybrid » functionals (B3LYP), 
« exact exchange » functional,
« self-interaction corrected » functionals ...

Exc
approx n[ ] = n(r1)εxc

approx (n(r1), ∇n(r1) ,∇
2n(r1))∫ dr1
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Example

Charge density of graphite
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Accuracy, typical usage.

If covalent bonds, metallic bonds, ionic bonds : 
2-3% for the geometry (bond lengths, cell parameters)
0.2 eV for the bonding energies (GGA)
problem with the band gap

For weak bonding situations (Hydrogen bonding, van derWaals), worse

Treatment of a few thousand atoms is doable on powerful parallel computers
Up to 50-100 atoms is OK on a PC.



The band gap problem
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The DFT bandgap problem (I)

• DFT is a ground state theory
=>no direct interpretation of Kohn-Sham eigenenergies  in

• However { } are similar to quasi-particle band structure : 
LDA / GGA results for valence bands are accurate ... but

NOT for the band gap

• The band gap can alternatively be obtained from total energy 
differences

in the limit N
(where E(N) is the total energy of the N - electron system)

Eg
KS  = εc  - εv

Eg  = E(N+1) + E(N-1) - 2 E(N) = E(N+1) - E(N){ }  - E(N) - E(N-1){ }
[ correct expression ! ]

−
1
2
∇2 +Vext (r) +

n(r1)
r1 - r
∫ dr1 +Vxc (r)

$

%&
'

()
ψ i (r) = εiψ i (r)

εi

εi

→∞
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The DFT bandgap problem (II)

• For LDA &  GGA, the XC potential is a continuous functional of 
the number of electrons

• In general, the XC potential might be discontinuous with the 
number of particle

εi  = ∂E
∂fi

              [Janak's theorem]

⇒     Eg
KS  = εc  - εv  

N→∞
=  Eg= E(N+1) + E(N-1) - 2E(N)

e.g.      xOEP                       Eg
KS  ≠  Eg

•

N electrons N+1 electrons

εc - εv  = Eg
KS εc - εv

ΔVxc
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The DFT bandgap problem (III)

Comparison of LDA and GW band
Structures with photoemission and
Inverse photoemission experiments 
for Silicon. 

From "Quasiparticle calculations in solids", 
by Aulbur WG, Jonsson L, Wilkins JW, 
in Solid State Physics 54, 1-218 (2000)



Accuracy:

44 strongly and 5 weakly bound solids

doi: 10.1063/1.4948636
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Pseudopotentials:
Science 351, aad3000 (2016). DOI: 10.1126/science.aad3000

https://molmod.ugent.be/deltacodesdft
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Pseudopotentials: www.pseudo-dojo.org



The band gap problem
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The DFT bandgap problem (I)

• DFT is a ground state theory  
=>no direct interpretation of Kohn-Sham eigenenergies        in

• However {       } are similar to quasi-particle band structure : 
LDA / GGA results for valence bands are accurate ... but
NOT for the band gap

• The band gap can alternatively be obtained from total energy 
differences

 in the limit N
(where E(N) is the total energy of the N - electron system)

Eg
KS = εc  - εv

Eg  = E(N+1) + E(N-1) - 2 E(N) = E(N+1) - E(N){ } - E(N) - E(N-1){ }
[ correct expression ! ]

−
1
2
∇2 +Vext (r ) +

n(r1)
r1 - r∫ dr1 +Vxc (r )

⎛

⎝⎜
⎞

⎠⎟
ψ i (r ) = ε iψ i (r )

ε i

ε i

→∞
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The DFT bandgap problem (II)

• For LDA &  GGA, the XC potential is a continuous functional of 
the number of electrons

• In general, the XC potential might be discontinuous with the 
number of particle 

εi  = ∂E
∂fi

              [Janak's theorem]

⇒     Eg
KS = εc  - εv  

N→∞
=  Eg= E(N+1) + E(N-1) - 2E(N)

e.g.      xOEP                       Eg
KS ≠  Eg

•

N electrons N+1 electrons

εc- εv  = Eg
KS εc- εv
ΔVxc
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The DFT bandgap problem (III)

Comparison of LDA and GW band 
Structures with photoemission and 
Inverse photoemission experiments  
for Silicon.  

From "Quasiparticle calculations in solids",  
by Aulbur WG, Jonsson L, Wilkins JW,  

in Solid State Physics 54, 1-218 (2000)
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Relation to Many-body methods :
the Sham-Schlüter equation

Kohn-Sham hamiltonian:

KS potential:
(choose such that it reproduces 
the interacting density)

KS Green function:
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Relation to Many-body methods :
the Sham-Schlüter equation

Define interaction:

Interacting hamiltonian:

Dyson equation:
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Relation to Many-body methods :
the Sham-Schlüter equation
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Relation to Many-body methods :
the Sham-Schlüter equation
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Relation to Many-body methods :
the Sham-Schlüter equation
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Thank you for your attention.
Questions?


