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C@_a Reminder about Hubbard model

@ Local quantities are expressed in a basis of correlated orbitals.

S(iwn) Z [xT)Z (iwn ) (XTI

where xT is the unique orbital on the atom at T and T are the lattice vectors.
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The DMFT Loop
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C@_a Reminder about Hubbard model

o Lattice Green’s functions are expressed in Bloch eigenvectors of the non
interacting Hamiltonian (e = % 3=, tije~(Ti=Ti))

Ho = |xi)ex {xxl
with
ikT

Ixx) = \/% XT: IxT)e

where T are lattice vectors.

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 7/42



The DMFT Loop
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Reminder about Hubbard model: from local to lattice

o Transforming £ in the Bloch basis:

Se(iwn) = (Xl (iwn) xae) = (X Z\XT (iwn) (x| | XKk) = ... = E(iwn),
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Reminder about Hubbard model: from local to lattice

o Transforming £ in the Bloch basis:

Se(iwn) = (Xl (iwn) xae) = (X Z\XT (iwn) (x| | XKk) = ... = E(iwn),

one can compute the lattice Green'’s function as:

Gy Hiwn) = G (iwn) — Si(iwn) = (iwn — ex) — S(iwn)

1
= Gx(iwn) = —————  (cf lecture of David Sénéchal)
iwn — ex — 2(iwn)
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Gy Hiwn) = G (iwn) — Si(iwn) = (iwn — ex) — S(iwn)

1
= Gx(iwn) = —————  (cf lecture of David Sénéchal)
iwn — ex — 2(iwn)

@ Using the operator expression of the lattice Green’s function

Gliwn) = > [xi)Gucliwn) (xic
k

one can write the local Green’s function as:

Giwn) = > (xr|x1) G (iwn) (xic|xT) = Y Gic(itwn)
k k
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The DMFT Loop

DMFT Loop
[ Compute lattice Green’s function ]—
Compute local Green’s function
Compute Weiss field G5 ' = £ — Glo¢

Compute Green’s function "
[ Compute Self-energy Impurity Solver (CTQMC)

How to apply such idea for a real solid, with both strongly interacting orbitals, and
weakly interacting orbitals
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Ce_a DFT+DMFT scheme
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cea DFT+DMFT scheme
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More generally, DFT+DMFT can be expressed as functional of the local Green’s
function and the electronic density = Internal and free energies can be computed.
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cea Correlated orbitals: what are they

For d orbitals (I=2), m € {—2,—1,0, 1,2}, a correlated atomic orbital writes:

Xm(r) = (t[xm) = R(r)Ym(0,¢)

@ The angular part Y7, (0, ¢) is well defined.
@ The radial part R(r) is not defined in a solid.

In a first step, let's assume that we have found a good choice for R(r) and thus |xm) is
defined.
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In a real system in DFT+DMFT

@ Local Quantity are expressed in a basis of correlated orbitals.

S(iwn) = Y xTm) S (iwn) (X |

m,m/’, T

where m, m’ € —,...,l and xT,, is an orbital whose angular part is Y;,,,. Note
that ,, ,,,» can be a matrix and have non diagonal elements.
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Ce_a DFT+DMFT scheme
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In a real system in DFT+DMFT

@ DFT Hamiltonian and thus lattice Green’s functions are more easily expressed in
Bloch eigenvectors of the DFT Kohn Sham Hamiltonian.

Hys = [Wie) s (Wi |

Where Wy, are one electron Kohn Sham wave function for the k-point k and band
number v.

Wy, contains both correlated atomic orbitals and other non correlated orbitals.
(Reminder: in the Hubbard model, the analogue of ¥y, was just the Bloch
transform of atomic orbitals.)
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In a real system in DFT+DMFT

o Local quantities such as & can be computed in the Bloch basis:

Syeien) = (Vi [Swn) W) = S (Vi [xXTm) o (i00) X |1}

m,m/’, T

Using [xTm) = — i [xkm)e T, one arrive to

Eul/’k(iwn) = Z <\I’kv|ka>2mm’(iw")<ka’|\1}ku’>

m,m’

Note that now, the self-energy is a k dependent quantity, because of weight of
orbitals over Kohn Sham states depends on the k-point.
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m,m’

Note that now, the self-energy is a k dependent quantity, because of weight of
orbitals over Kohn Sham states depends on the k-point.

@ From the Self energy, the full lattice Green’s function in the Kohn Sham basis

G~ iwn) = Ggaiwn) — AS(iwn) = (iwn — Hgs)Z — AS(iwn)

—1

G (iwn) = [iwn — ey — AB, i (iwn)] e
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In a real system in DFT+DMFT

@ Using the operator expression of the lattice Green'’s function

an Z ‘\I’ku vv'k 7J"‘Ml)(\:[]lcu"

vv'k
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In a real system in DFT+DMFT

@ Using the operator expression of the lattice Green'’s function

an Z ‘\I’ku vv'k 7J"‘Ml)(\:[]lcu"

vv'k

@ One can write the local Green’s function as:

Grm! (iw”) = Z <XTm|‘Iij>Guu/k(iwn)<\Ilku’ |XTm/>

v’k
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Projecto rs

Projectors are the key quantity of the interface between DFT and DMFT:

<ka|\1lku>
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Projecto Ir's

Projectors are the key quantity of the interface between DFT and DMFT:

<ka|\1lku>

@ If |xkm ) is an atomic orbital, it can be decomposed exactly on all KS eigenstates

as:
Xiem) = D> (V1w [Xaem ) [ Wiew )

v

A calculation not feasable because it requires the complete basis set of KS
eigenstates.
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Projecto Ir's

Projectors are the key quantity of the interface between DFT and DMFT:

<ka|\1lku>

@ If |xkm ) is an atomic orbital, it can be decomposed exactly on all KS eigenstates
as:

Xiem) = D> (V1w [Xaem ) [ Wiew )

v

A calculation not feasable because it requires the complete basis set of KS
eigenstates.

@ We need to restrict the sum over KS states belonging to a window W and built
new functions |Xim ):

|5€km> = Z <\I,kV|ka>|lIIku>
vew
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Definition of correlated orbitals: example of SrVO3.

e

(eV)
o & A D o N s o ®

R XM T R XM T R rXM™M T
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Definition of correlated orbitals: example of SrVO3.
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Projecto rs

Projectors are the key quantity of the interface between DFT and DMFT:
<ka|\pku>

|)ka> = Z <\I}ku|ka>|lIJkV>
vew

because of the truncation, the projection matrix is not longer unitary, and the new
functions are not normalized (and not Wannier functions)

<>2km’bzk'm> = Z <ka"\1’ku><l11ku‘ka> 7é 6mm.’
vew

After a proper orthonormalization, new functions |wy,,) can be obtained that are
unitarily related to KS wave functions.
Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 20/42



cos Projectors orthonormalization

We define the overlap matrix by:
Om,m’ (k) = <>N(k'm|>~(km'> = Z<ka‘q}ku><qjku‘kal>

v

frer) = 3 {1000]77}  [a0m)

In order for the correlated orbitals to be orthogonal on a given site, on need to define
the overlap matrix as:

O'm#m’ = Z()kal)%km’> = Z<ka‘\yku><\pku‘ka’>
k vk

(Do the proof as an exercice)
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CQa Projectors calculation in the PAW method in ABINIT

Expression of a Kohn Sham function of Cly in PAW

|\I’kv> = |{Ivlku> + Z“Yﬁ/H/}/‘\I}kz» - Z‘El><ﬁ7‘q]ku>
On plane waves -

On a local radial grid

Blochl PRB 1994
= vm,?Jr e

[Developed in ABINIT by the CEA group]

[M. Torrent, F. Jollet, F. Bottin, G. Zérah, X. Gonze Comp. Mat. Science 42 (2), 337-351 (2008)]

A grid devoted to local properties : well adapted to correlated systems and to compute:
@ DFT+U density matrix.
@ Projected Wannier orbitals.

Projectors are the key quantity of the interface between DFT and DMFT:

(kalqjku> - Z<)\klll ‘ﬁ:/> /ﬁ/ ‘\I}kn;}
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.

Op

o0
Wannier d 8 % 8
Op Op
CoO

Op

Extended Wannier function

Wannier orbitals are made from Vdts, bands so, they are not pure dt», orbitals because of the
hybridization
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Definition of correlated orbitals: example of SrVO3.

cea

B O

N

(V)

N BN O

Wannier dp

Localized Wannier function

o0
T

R XM T R XM T R rXM™M T

Wannier orbitals are made from Vdt2, bands and O p bands so, they are closer to dto orbitals
because more t2, character is taken into account.
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Definition of correlated orbitals: example of SrVO

8
6
4 o5
2
g 0 °P8 XOP
2 Wannier dp
co
4 Op
6 Localized Wannier function

R TXM I''R T XM IR T XM T
For SrVOs3, these Wannier functions are similar to Maximally localized one.

B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. Wehling and A. I. Lichtenstein Phys. Rev. B 77, 205112 (2008)
Implemented in ABINIT
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coz An oversimplified derivation

O—o Uy = 890 —agy B a
€2.—.

v O—

| =0 9o

e
c\lfl = ago + Pov B <L a

Two windows of energy are possible to compute

) =D (Wilgy)| W)

i€EW

o If W = {e2}, the correlated wavefunction is |X) = |¥2) = B|po) — a|év ). No
renormalization is necessary thus |w) = |x). It contains an Oxygen contribution

@ If W = {e1,e2}, the correlated wavefunction is
IX) = > (¥i|év)|¥s) = |ov) and is much more localized.
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CQ_Z The DFT+DMFT scheme
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cea The DFT+DMFT scheme

DFT
[eemm——] > Define correlated or-
e J 1 bitals and Hamiltonian
A
( Kohn-Sham Hamiltonian 175 ) e
DMFT Loop
A Y
[ Compute lattice Green's function )_

A
New electronic density
Y

Fassssssssssssssssssssanns [ Compute local Green’s function ]

Compute Weiss field G; ' = ¥ — G'o¢

A 4

Impurity Solver (CTQMC)

Compute local Green’s function
Compute local Self-energy

From the Green'’s function in the Kohn Sham basis, new occupations can be
constructed and the full DFT+DMFT loop be performed.

TL(I‘) = Z fkuv’ ‘ljkl/‘ljky’
kv
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cea Conclusion

@ Wannier functions can be conveniently used in the context of DFT+DMFT
calculations

@ Projected Local Orbital Wannier functions are easy to construct, especially for
entangled cases.

@ According to the definition of Wannier functions, effective interactions U can be
computed.
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Ce_a DFT+DMFT scheme
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CQa How to compute the effective interaction ?
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How to compute the effective interaction ?

Screening
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The cRPA approach.

Polarisation: P=Pd + Pr

,
- |-

hy
¥
@--F----»

Q
b
Q

o
m

Ry
@----F--F-p

@ In cRPA, all excitations are taken into account except the one belonging to the
correlated subshell.

er(w) =1—vPr(w).

and P, is the cRPA non interacting polarisability (see lectures of F. Bruneval and A.M.
Tremblay) which describe transitions between occupied and empty states.

Picture from F. Aryasetiawan, The LDA+DMFT approach to strongly correlated materials E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein
(Eds.), Forschungszentrum Jilich (2011).
F. Aryasetiawan, Imada, Georges, Kotliar, Biermann et Lichtenstein PRB 2004.
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The cRPA approach.

We call here x¢ the non interacting (Kohn-Sham) polarizability of the system. Let’'s now
separate the correlated states (They could be d states but the method is more general
and correlated orbitals could gather several orbitals from e.g different atoms) from the
rest (r). We thus have:

X0 = Xsorrel + XS
thus, we can rewrite the inverse dielectric matrix as:
1 1
€ - 1— ,U(Xgorrel + XS)

We now define the dielectric function due to correlated electrons as
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cea The cRPA approach.

1 1
€correl = Txgorrel’

the dielectric function of the other electrons as
_1 1

€r

1 —wvxg ’
and the interaction screened only by the other (r) electrons as:

v
Wp=——
1 —wvxg
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The cRPA approach.

With these definitions, one shows that

“loel=.= ! = ! =t

- 1— UXS _ ,UXE:)orrel 1— VX0

€correl €r

Thus, we have
A —1 -1 -1
W=e " "v=r€_ 6 v
We can interpret this result: The fully screened RPA interaction is the combination of
two screening processes. First, the bare interaction is screened by non-correlated
electrons (r), and it gives rises to a screened interaction W,.. Secondly the screening
of this interaction by correlated electrons recovers the fully screened interaction.
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The cRPA approach: key parameters

The definition of correlated orbitals

@ We use Projected Local Orbitals Wannier functions: effective interaction can thus
be used directly in DFT+DMFT calculations.

@ Depending on the energy window used in the calculation, several localization of
orbitals can be described.

In ABINIT, to decide the windows of energy of the Wannier functions, use the keywords
dmftbandi and dmftbandf.
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Definition of correlated orbitals: example of SrVO3.

e
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Definition of correlated orbitals: example of SrVO3.

<

rATEN SED -

‘ Walirz (it
EPIA SE .
vl N SN N

\
/

R XM T R XM T R rXM™M T

(eV)
* & A HfomEY =

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 35/42



Definition of correlated orbitals: example of SrVO3.

o0
~ Wannier d
S ey Op Op
<
Op

Extended Wannier function
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.

8

i

4

2
~Ir Wannier d
2

2 Wannier dp

4

6

\
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~
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Bare interaction can be computed as:

1
v=(xxl——Ixx)
TKL — T2

Wannier function  bare interaction v (eV)
Wannier d 15.3
Wannier dp 19.4
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coz The cRPA approach: key parameters

The definition of screening.

@ The core of the cRPA is to suppress the screening corresponding to transitions
inside correlated orbitals.

In ABINIT, to decide the windows of energy for which the screening is suppressed, use
the keywords ucrpa_bands.
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Definition of correlated orbitals: example of SrVO3.

8
i
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~Ir Wannier d
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2 Wannier dp
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~
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Effective interaction can be computed as:

—1
U = (xxlecrpavxx)

Wannier function  bare interaction v (eV)  effective interaction U (eV)  Name of the model
Wannier d 15.3 2.8 d—d
Wannier dp 19.4 10.8 dp — dp
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Definition of correlated orbitals: example of SrVO3.

8
i
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~Ir Wannier d
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2 Wannier dp
4
6
\
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~
=1

Effective interaction can be computed as:

—1
U = (xxlecrpavxx)

Wannier function  bare interaction v (eV) effective interaction U (eV) ~ Name of the model

Wannier d 15.3 2.8 d—d
Wannier dp 19.4 10.8 dp — dp
Wannier dp 19.4 3.4 d—dp
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Some conventions

1
Udiag = BT ;<XiXi‘Wr|XiXi>
U= s b Webas)

GRS X

One has
Udiag >U

In ABINIT, one always uses U as input, whereas in some models, U is defined as
Udiag !
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Non entangled bands Entangled bands

From B. Amadon, F. Lechermann et al PRB 2008
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For non entangled bands (ucrpa=1)

full —1i G
i@, @', q) ST Wnsle TSy )

k,n,n’
(et |€i(q+G,)r|UJnk> Tuticra = Jnie
" a €nlktq — €pk + w + 16
f —1i G
Xg(G»G/vQ) = Z (Ynkle Hat )r‘w,L/k+q>
k,n=f,n/=
(et le?@+GDr|y 1y Tuticra = Ink
n q 3

€nlktq — €nk T W+ i
In XB(G» G’, q) the bands (nk) and (n'k) are f bands, and the transition should be suppressed. Thus

XA (G, @’ q) = x5(@, @' a) — x5(G, G, q)
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For entangled bands (ucrpa=2)

i@, G’ q) s <¢nk|e—i<q+c>rwn,k+q>

k,n,n’

iatG ey, Fnikgq = fnk
" en/k+q—enk+w+i5

<1Z)"/k+q\e

f ’ 2 v 2 i G
@G = X SIS IO e
k n, 71, mq mo
. ’ fnr — fox
(Wrrietqle’ TG 0 Lo
en/k+qfe"k+w+26
my

with C 7L = (b y (i) 1, [crl?2=1and Y, el |2 = 1: the bands (nk) and (n'k) are
bands, and the transition will be suppressed in XCRPA (G, G’, q):

PA full
PP (@, 6’ q) = x"M(@. G’ ) - x6(G, G, q)
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Conclusion

@ cRPA is a coherent way of computing effective interactions for DMFT
@ The same correlated orbitals can be used.
@ Care must be taken to estimate the relevant Wannier orbitals and screening.

Implementation in ABINIT is discussed in B. Amadon,T. Applencourt, and F. Bruneval
PRB 2014.
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