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Reminder about Hubbard model

Local quantities are expressed in a basis of correlated orbitals.

Σ̂(iωn) =
∑
T

|χT〉Σ(iωn)〈χT|

where χT is the unique orbital on the atom at T and T are the lattice vectors.
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Reminder about Hubbard model

Lattice Green’s functions are expressed in Bloch eigenvectors of the non
interacting Hamiltonian (εk = 1

N

∑
ij tije

−ik(Ti−Tj))

Ĥ0 = |χk〉εk〈χk|

with
|χk〉 =

1
√
N

∑
T

|χT〉eikT

where T are lattice vectors.
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Reminder about Hubbard model: from local to lattice

Transforming Σ̂ in the Bloch basis:

Σk(iωn) = 〈χk|Σ̂(iωn)|χk〉 = 〈χk

[∑
T

|χT〉Σ(iωn)〈χT|
]
χk〉 = ... = Σ(iωn),

one can compute the lattice Green’s function as:

G−1
k (iωn) = G−1

kU=0(iωn)− Σk(iωn) = (iωn − εk)− Σ(iωn)

⇒ Gk(iωn) =
1

iωn − εk − Σ(iωn)
(cf lecture of David Sénéchal)

Using the operator expression of the lattice Green’s function

Ĝ(iωn) =
∑
k

|χk〉Gk(iωn)〈χk|,

one can write the local Green’s function as:

G(iωn) =
∑
k

〈χT|χk〉Gk(iωn)〈χk|χT〉 =
∑
k

Gk(iωn)
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Compute lattice Green’s function

Compute local Green’s function
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How to apply such idea for a real solid, with both strongly interacting orbitals, and
weakly interacting orbitals
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DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated or-
bitals and Hamiltonian

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ−Gloc

Impurity Solver (CTQMC)Compute local Green’s function
Compute local Self-energy

New electronic density

More generally, DFT+DMFT can be expressed as functional of the local Green’s
function and the electronic density⇒ Internal and free energies can be computed.
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Correlated orbitals: what are they

For d orbitals (l=2), m ∈ {−2,−1, 0, 1, 2}, a correlated atomic orbital writes:

χm(r) = 〈r|χm〉 = R(r)Ym(θ, φ)

The angular part Ym(θ, φ) is well defined.

The radial part R(r) is not defined in a solid.

In a first step, let’s assume that we have found a good choice for R(r) and thus |χm〉 is
defined.

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 12/42



In a real system in DFT+DMFT

Local Quantity are expressed in a basis of correlated orbitals.

Σ̂(iωn) =
∑

m,m′,T

|χTm〉Σm,m′ (iωn)〈χTm′ |

where m,m′ ∈ −l, ..., l and χTm is an orbital whose angular part is Ylm. Note
that Σm,m′ can be a matrix and have non diagonal elements.

[ for Hubbard model
Σ̂(iωn) =

∑
T

|χT〉Σ(iωn)〈χT|

]

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 13/42



In a real system in DFT+DMFT

Local Quantity are expressed in a basis of correlated orbitals.

Σ̂(iωn) =
∑

m,m′,T

|χTm〉Σm,m′ (iωn)〈χTm′ |

where m,m′ ∈ −l, ..., l and χTm is an orbital whose angular part is Ylm. Note
that Σm,m′ can be a matrix and have non diagonal elements.

[ for Hubbard model
Σ̂(iωn) =

∑
T

|χT〉Σ(iωn)〈χT|

]

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 13/42



DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated or-
bitals and Hamiltonian

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ−Gloc

Impurity Solver (CTQMC)Compute local Green’s function
Compute local Self-energy

New electronic density

Local quantities

Lattice quantity

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 14/42



In a real system in DFT+DMFT

DFT Hamiltonian and thus lattice Green’s functions are more easily expressed in
Bloch eigenvectors of the DFT Kohn Sham Hamiltonian.

ĤKS = |Ψkν〉εkν〈Ψkν |

Where Ψkν are one electron Kohn Sham wave function for the k-point k and band
number ν.
Ψkν contains both correlated atomic orbitals and other non correlated orbitals.
(Reminder: in the Hubbard model, the analogue of Ψkν was just the Bloch
transform of atomic orbitals.)
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In a real system in DFT+DMFT

Local quantities such as Σ̂ can be computed in the Bloch basis:

Σνν′k(iωn) = 〈Ψkν |Σ̂(iωn)|Ψkν′ 〉 =
∑

m,m′,T

〈Ψkν |χTm〉Σmm′ (iωn)〈χTm′ |Ψkν′ 〉

Using |χTm〉 = 1√
N

∑
k |χkm〉e−ikT, one arrive to

Σνν′k(iωn) =
∑
m,m′

〈Ψkν |χkm〉Σmm′ (iωn)〈χkm′ |Ψkν′ 〉

Note that now, the self-energy is a k dependent quantity, because of weight of
orbitals over Kohn Sham states depends on the k-point.

[ for Hubbard model Σk(iωn) = Σ(iωn) ]

From the Self energy, the full lattice Green’s function in the Kohn Sham basis

G−1(iωn) = G−1
KS(iωn)−∆Σ(iωn) = (iωn −HKS)I −∆Σ(iωn)

Gνν′k(iωn) = [iωn − εkν −∆Σνν′k(iωn)]−1
νν′k

[ for Hubbard model Gk(iωn) = 1
iωn−εk−Σ(iωn)

]
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In a real system in DFT+DMFT

Using the operator expression of the lattice Green’s function

Ĝ(iωn) =
∑
νν′k

|Ψkν〉Gνν′k(iωn)〈Ψkν′ |

One can write the local Green’s function as:

Gmm′ (iωn) =
∑
νν′k

〈χTm|Ψkν〉Gνν′k(iωn)〈Ψkν′ |χTm′ 〉

for Hubbard model G(iωn) =
∑
k

Gk(iωn)
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Projectors

Projectors are the key quantity of the interface between DFT and DMFT:

〈χkm|Ψkν〉

If |χkm〉 is an atomic orbital, it can be decomposed exactly on all KS eigenstates
as:

|χkm〉 =
∑
ν

〈Ψkν |χkm〉|Ψkν〉

A calculation not feasable because it requires the complete basis set of KS
eigenstates.

We need to restrict the sum over KS states belonging to a windowW and built
new functions |χ̃km〉:

|χ̃km〉 =
∑
ν∈W
〈Ψkν |χkm〉|Ψkν〉
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Definition of correlated orbitals: example of SrVO3.
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Projectors

Projectors are the key quantity of the interface between DFT and DMFT:

〈χkm|Ψkν〉

If |χkm〉 is an atomic orbital, it can be decomposed exactly on all KS bands as:

|χkm〉 =
∑
ν

〈Ψkν |χkm〉|Ψkν〉

A calculation not feasable because it requires a complete basis set of Kohn Sham
states.
We need to restrict the sum over KS states belonging to a windowW and built
new functions |χ̃km〉:

|χ̃km〉 =
∑
ν∈W
〈Ψkν |χkm〉|Ψkν〉

because of the truncation, the projection matrix is not longer unitary, and the new
functions are not normalized (and not Wannier functions)

〈χ̃km′ |χ̃km〉 =
∑
ν∈W
〈χkm′ |Ψkν〉〈Ψkν |χkm〉 6= δmm′

After a proper orthonormalization, new functions |wkm〉 can be obtained that are
unitarily related to KS wave functions.
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Projectors orthonormalization

We define the overlap matrix by:

Om,m′ (k) = 〈χ̃km|χ̃km′ 〉 =
∑
ν

〈χkm|Ψkν〉〈Ψkν |χkm′ 〉

|wkm〉 =
∑
m′

{
[O(k)]−1/2

}
m,m′

|χ̃km′ 〉

In order for the correlated orbitals to be orthogonal on a given site, on need to define
the overlap matrix as:

Om,m′ =
∑
k

〈χ̃km|χ̃km′ 〉 =
∑
νk

〈χkm|Ψkν〉〈Ψkν |χkm′ 〉

(Do the proof as an exercice)
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Projectors calculation in the PAW method in ABINIT

Expression of a Kohn Sham function of Cl2 in PAW

|Ψkν〉 = |Ψ̃kν〉︸ ︷︷ ︸
On plane waves

+
∑
i

|ϕi〉〈p̃i|Ψ̃kν〉 −
∑
i

|ϕ̃i〉〈p̃i|Ψ̃kν〉︸ ︷︷ ︸
On a local radial grid

Blöchl PRB 1994

= + -

[Developed in ABINIT by the CEA group]

[M. Torrent, F. Jollet, F. Bottin, G. Zérah, X. Gonze Comp. Mat. Science 42 (2), 337-351 (2008)]

A grid devoted to local properties : well adapted to correlated systems and to compute:
DFT+U density matrix.
Projected Wannier orbitals.

Projectors are the key quantity of the interface between DFT and DMFT:

〈χkm|Ψkν〉 =
∑
i

〈χkm|ϕi〉〈p̃i|Ψ̃kν〉

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 22/42



Definition of correlated orbitals: example of SrVO3.
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Extended Wannier function

Wannier orbitals are made from Vdt2g bands so, they are not pure dt2g orbitals because of the
hybridization
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Definition of correlated orbitals: example of SrVO3.
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Localized Wannier function

Wannier orbitals are made from Vdt2g bands and O p bands so, they are closer to dt2g orbitals
because more t2g character is taken into account.
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Definition of correlated orbitals: example of SrVO3.
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Localized Wannier function

For SrVO3, these Wannier functions are similar to Maximally localized one.
B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. Wehling and A. I. Lichtenstein Phys. Rev. B 77, 205112 (2008)

Implemented in ABINIT
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An oversimplified derivation

φV

φOε1

Ψ1 = αφO + βφV β ≪ α

ε2

Ψ2 = βφO − αφV β ≪ α

New trends in computational approaches for many-body systems, June 2012, Sherbrooke – p.24/70

Two windows of energy are possible to compute

|χ̃〉 =
∑
i∈W
〈Ψi|φV 〉|Ψi〉

IfW = {ε2}, the correlated wavefunction is |χ̃〉 = |Ψ2〉 = β|φO〉 − α|φV 〉. No
renormalization is necessary thus |w〉 = |χ̃〉. It contains an Oxygen contribution

IfW = {ε1, ε2}, the correlated wavefunction is
|χ̃〉 =

∑
i〈Ψi|φV 〉|Ψi〉 = |φV 〉 and is much more localized.
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The DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated or-
bitals and Hamiltonian

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ−Gloc

Impurity Solver (CTQMC)Compute local Green’s function
Compute local Self-energy

New electronic density
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The DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated or-
bitals and Hamiltonian

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ−Gloc

Impurity Solver (CTQMC)Compute local Green’s function
Compute local Self-energy

New electronic density

From the Green’s function in the Kohn Sham basis, new occupations can be
constructed and the full DFT+DMFT loop be performed.

n(r) =
∑
kν

fkνν′ΨkνΨkν′
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Conclusion

Wannier functions can be conveniently used in the context of DFT+DMFT
calculations

Projected Local Orbital Wannier functions are easy to construct, especially for
entangled cases.

According to the definition of Wannier functions, effective interactions U can be
computed.
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DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated orbitals

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ−Gloc

Impurity Solver (CTQMC)Compute Green’s function
Compute Self-energy

New electronic density
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DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated orbitals

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ−Gloc

Impurity Solver (CTQMC)Compute Green’s function
Compute Self-energy

New electronic density

Effective interaction
parameters U and J .
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How to compute the effective interaction ?

1
|r1−r2|

(1−δ)2
|r1−r2|

1− δ

1− δ

Screening
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The cRPA approach.

The Constrained RPA Method 7.11

Pd

Pr

r

r

d

Pr

Polarisation: P = Pd + Pr

EF

Fig. 3: A schematic picture explaining the meaning of and . While is confined to the
transitions within the subspace, may contain transitions between the and subspaces.

occ unocc

(47)

where are usually chosen to be the Kohn-Sham eigenfunctions and eigenvalues and
is a combined index for the -vector and the spin . For systems without spin-

flipping processes, and evidently have the same spin. has exactly the same form as in
Eq. (47) but with the bands and restricted to the subspace. We note that contains
not only transitions inside the subspace but also transitions between the and subspaces as
illustrated in Fig. 3.
Since does not contain low-energy polarisations that are responsible for metallic screening,
becomes long range. The asymptotic decay of as a function of distance is expected to

behave according to where rather than exponential, as often assumed. This
behaviour is illustrated, e.g., in the case of the BEDT-TTF organic conductors [17].
It may be argued that for narrow-band materials with strong correlations it would not be suffi-
cient to calculate within the RPA. We would like to point out that from a physical point of
view much of the error in the RPA resides in rather than because the former corresponds
to the polarisation of the narrow bands, where we expect vertex corrections to the RPA to be
large, whereas the latter corresponds to polarisation involving more extended states, for which
the RPA is supposed to perform well. Since it is that enters into the calculation of , we
expect that the error in the RPA has much less influence on than one would anticipate
In practice, Eq. (44) is solved by introducing a set of basis functions, and the choice of basis
functions depends on the band-structure method. For band-structure methods based on pseu-
dopotentials, a plane-wave basis set is a natural choice. For band-structure methods based on

In cRPA, all excitations are taken into account except the one belonging to the
correlated subshell.

εr(ω) = 1− vPr(ω).

and Pr is the cRPA non interacting polarisability (see lectures of F. Bruneval and A.M.
Tremblay) which describe transitions between occupied and empty states.
Picture from F. Aryasetiawan, The LDA+DMFT approach to strongly correlated materials E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein
(Eds.), Forschungszentrum Jülich (2011).
F. Aryasetiawan, Imada, Georges, Kotliar, Biermann et Lichtenstein PRB 2004.
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The cRPA approach.

We call here χ0 the non interacting (Kohn-Sham) polarizability of the system. Let’s now
separate the correlated states (They could be d states but the method is more general
and correlated orbitals could gather several orbitals from e.g different atoms) from the
rest (r). We thus have:

χ0 = χcorrel
0 + χr0

thus, we can rewrite the inverse dielectric matrix as:

ε−1 =
1

1− v(χcorrel
0 + χr0)

We now define the dielectric function due to correlated electrons as
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The cRPA approach.

ε−1
correl=̂

1

1−Wrχcorrel
0

,

the dielectric function of the other electrons as

ε−1
r =̂

1

1− vχr0
,

and the interaction screened only by the other (r) electrons as:

Wr =
v

1− vχr0
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The cRPA approach.

With these definitions, one shows that

ε−1
correlε

−1
r = ... =

1

1− vχr0 − vχcorrel
0

=
1

1− vχ0
= ε−1

Thus, we have
W =̂ε−1v = ε−1

correlε
−1
r v

We can interpret this result: The fully screened RPA interaction is the combination of
two screening processes. First, the bare interaction is screened by non-correlated
electrons (r), and it gives rises to a screened interaction Wr . Secondly the screening
of this interaction by correlated electrons recovers the fully screened interaction.

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 33/42



The cRPA approach: key parameters

The definition of correlated orbitals

We use Projected Local Orbitals Wannier functions: effective interaction can thus
be used directly in DFT+DMFT calculations.

Depending on the energy window used in the calculation, several localization of
orbitals can be described.

In ABINIT, to decide the windows of energy of the Wannier functions, use the keywords
dmftbandi and dmftbandf.
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.
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Wannier dp

Bare interaction can be computed as:

v = 〈χχ|
1

r1 − r2
|χχ〉

Wannier function bare interaction v (eV)
Wannier d 15.3

Wannier dp 19.4
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The cRPA approach: key parameters

The definition of screening.

The core of the cRPA is to suppress the screening corresponding to transitions
inside correlated orbitals.

In ABINIT, to decide the windows of energy for which the screening is suppressed, use
the keywords ucrpa bands.
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Definition of correlated orbitals: example of SrVO3.
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Effective interaction can be computed as:

U = 〈χχ|ε−1
cRPAv|χχ〉

Wannier function bare interaction v (eV) effective interaction U (eV) Name of the model
Wannier d 15.3 2.8 d− d

Wannier dp 19.4 10.8 dp− dp
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Definition of correlated orbitals: example of SrVO3.
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Wannier dWannier d

Wannier dp

Effective interaction can be computed as:

U = 〈χχ|ε−1
cRPAv|χχ〉

Wannier function bare interaction v (eV) effective interaction U (eV) Name of the model
Wannier d 15.3 2.8 d− d

Wannier dp 19.4 10.8 dp− dp
Wannier dp 19.4 3.4 d− dp
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Some conventions

Udiag =
1

2l + 1

∑
i

〈χiχi|Wr|χiχi〉

U =
1

(2l + 1)2

∑
i,j

〈χiχj |Wr|χiχj〉

One has
Udiag > U

In ABINIT, one always uses U as input, whereas in some models, U is defined as
Udiag !
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SrVO3 NiS

Γ

R Γ X M Γ

-8

-6

-4

-2

0

2

4

6

8

(e
V
)

O-p

R Γ X M Γ

V-t
2g

R Γ X M Γ

V-e
g

-8

-6

-4

-2

0

2

ε
-ε

F
(e

V
)

Ni(e
g
) Ni(E

g
, A

1g
) S(3p)

Γ K M ΓA H L AΓ K M ΓA H L A AKΓ M Γ A H L

Non entangled bands Entangled bands
From B. Amadon, F. Lechermann et al PRB 2008
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For non entangled bands (ucrpa=1)

χ
full
0 (G,G

′
,q) =

∑
k,n,n′

〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

χ
f
0(G,G

′
,q) =

∑
k,n=f,n′=f

〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

In χf
0(G,G′,q) the bands (nk) and (n′k) are f bands, and the transition should be suppressed. Thus

χ
cRPA
0 (G,G

′
,q) = χ

full
0 (G,G

′
,q)− χf

0(G,G
′
,q)
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For entangled bands (ucrpa=2)

χ
full
0 (G,G

′
,q) =

∑
k,n,n′

〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

χ
f
0(G,G

′
,q) =

∑
k,n,n′

∑
m1

|Cm1
nk
|2

∑
m2

|Cm2
n′k+q

|2〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

with Cm1
nk

= 〈φm1
|ψnk〉. If

∑
m1
|Cm1
nk
|2 = 1 and

∑
m1
|Cm1
n′k|

2 = 1: the bands (nk) and (n′k) are f

bands, and the transition will be suppressed in χcRPA
0 (G,G′,q):

χ
cRPA
0 (G,G

′
,q) = χ

full
0 (G,G

′
,q)− χf

0(G,G
′
,q)

Bernard Amadon — International Summer School on Computational Quantum Material 2018 — 41/42



Conclusion

cRPA is a coherent way of computing effective interactions for DMFT

The same correlated orbitals can be used.

Care must be taken to estimate the relevant Wannier orbitals and screening.

Implementation in ABINIT is discussed in B. Amadon,T. Applencourt, and F. Bruneval
PRB 2014.
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