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We express the partition function as a series in the interaction (here U):
Z =Y Z,U"
n

Diagrammatic MC algorithm: write Z,, as a sum of Feynman diagrams:
accumulation

Zn:/dxl...da:n Z F(xl,...,wn):/dajl...dxndet(xl,...,a:n)

, Feynman diagrams F

MC sampling
What about dynamical quantities (Green’s function, self-energy, ...)?

Gn:/dxldfn Z F(xl,...,fn)

conn. Feynman diagrams F R.Rossi, PRL 119, 045701 (2017)

En:/dajldxn Z .F(CEl,...,ZUn)

IPI Feynman diagrams F A. Moutenet et al., PRB 97, 085117 (2018)
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Extended Monte Carlo Simulations Spin Dynamics

We run extgnded Monte Ca_rlo simulation with — S x (= + hy) — S x (S; x (=€)
two dynamical variables spins (Heatbath a h
Algo), positions (Metropolis) both at T=0 and Stochastic Landau-Lifshitz-
finite T. =) JiS; Gilbert equation
j#i
dO 12 dO 6 t=0 ‘) time
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J(dij) = J e~ (i _d?j ) J <0 gjgrr?éﬂaa%gﬁgcz_ Dynamics ruled by the Heisenberg Thermal state(T)
axis hamiltonian with antiferromagnetic
interaction.
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Accurate first-principles description of the
antiferromagnetic state of La,CuO,
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Our computations correctly predict the key experimentally observed features of the electronic
structure and magnetism of LCO/LSCO without invoking any free parameters.
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Quantum Monte-Carlo for nanoelectronics

Real time and out-of-equilibrium

Anderson Impurity Model / Kondo physics

The fermionic Quantum Many-Body problem is the subject of many numerical works in the condensed matter
community and beyond. However their hypothesis rarely overlap the requirements of nanoelectronics: calculating
real-time/frequency quantities in out-of-equilibrium mesoscopic devices (e.g. current between leads), at low
temperature. We developed a new Monte-Carlo algorithm suitable for nanoelectronics which compute perturbation
series of Green's functions. Using the real-time Keldysh formalism, it is generic and grants easy access to
experimental quantities such as the spectral function. We successfully benchmarked our method against NRG
calculations on the Anderson Impurity Model.

Goal: computing real-time many-body Green’s Results: application to the Anderson Impurity Model
functions in nanoelectronic devices Kondo peal and Sell Encray: Outot-equilrium Dos: W characiestice
- I 1 ;I:"'_'r_'['_, Werner (T < 4
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A study of electron correlation effects in SrVO3 : cwggg
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Dynamical mean-field theory with a quasi-continuous
time QMC solver
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We are developing a fully integrated ab-intio

package with the aim at the equation of state Case Stlldy: SrvVO3

for strongly correlated systems.

We are interested in the 3 t2g orbitals near the Fermi Level

Our approach H = H?,DA + Z Ummannm¢ - Z HUNm o

[ Linear Scaling in G-

(ZCompact representations of G( )
Quasi-continuous via extrapolation
in a polynomial basis.

MFully integrated into CASTEP.

(Zlnterfaces to QC-BSS-QMC, CT-
QMC, Hubbard I & IPT.

Future Goals

o fnclion &
Jackson - e ;
Dirichlet

[] Investigation into f-systems and Legendre Polynomials Kernel Polynomial Representation

high pressures.

[J Phonons and Equation of State.
[J Cerium volume collapse.
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The role of interstitial hydrogen in
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SrCo0, SrCoQ, 5 HSrCoO
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Crystal structures of SrCoO, 5 (a) before and (b) after
H doping. Red circle marks the lowest-energy position
of the interstitial H locating in the hollow channel. (c)
and (d), the corresponding DFT+U band structures.
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(a) Charge difference induced by an interstitial H in different charge
states. (b) The electrostatic potential induced by the H+ ion. Also
shown is the ground-state AFM configuration of the Co ions. (c)
Change of total energy AE by rotating different Co sites before and
after H doping. The inset shows the AE-cos(0) fitting.






Importance of Many Body Effects in The Kernel
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Standard DFT
calculation

Upfold to Sk e Generate Zam
"' 4
Calculate Gpyy (ED
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[t as appropriate

4
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‘ for {€az, Vam}
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We perform first-principle quantum mechanical studies of dioxygen ligand
binding to the hemocyanin protein. Electronic correlation effects in the func-
tional site of hemocyanin are investigated using a state-of-the-art approach,
which treats accurately local many body effects beyond the density functional
theory (DFT), where the treatment of localised copper 3d electrons are studied
using DFT+U and Dynamical Mean Field Theory (DMFT) for the first time.

Figure 1: The side-on (u-n%:n?) CuyOs ‘butterfly’ core of Hemocyanin.



Phase competition effect on superfluid stiffness in CDMFT
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Name: Paresh Chandra Rout

Title: Predicting emergent phenomena across different epitaxial strain regions in Sr-doped
double-perovskite multiferroic Bi,FeCrOg thin-films

Abstract: We explore the interplay between epitaxial strain and A-site hole doping in a thin-film

of Bi,FeCrOs (BFCO) structure by using first-principles DFT calculations. By substituting Bi with Sr
in, namely Bi2—x Srx FeCr6 (x = 1, 0.5) under epitaxial strain, we show the possibility of mitigating
the existing issues like anti-site defects and low magnetism in the BFCO thin-films. While hole doping
induces novel functionalities such as polar half-metal, metal-to-insulator transitions, polar-to-nonpolar
structural transitions and orbital orderings, the epitaxial strain plays a role in stabilizing these phases.
Our work provides a plausible route to encode novel functionalities in double-perovskite oxide
thin-films.



Metal-Insulator Transition in Oxide ETHzirich
Heterostructures from DFT4+DMFT

Sophie Beck & Claude Ederer, ETH Ziirich, Switzerland

surface effects

= emerging phenomena at oxide

interfaces interface & 2 | size
effects y

= “material-by-design” principle
= complex interaction between

structural and electronic degrees

of freedom defects epitaxial
strain

Materials:

= thin films and heterostructures
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Development of computational methods for the

characterization of novel strongly correlated materials
Uthpala Herath - West Virginia University, USA  Email: ukh000 | @mix.wvu.edu

International Summer
School on
Computational

Quantum Materials

May 27th to June 8th
Sherbrooke, Québec

- . . . . L . . h
* To establish a user friendly software framework for investigating electronic, vibrational and elastic properties of strongly
correlated materials using first-principles methods from DFT to DMFT.
_* To investigate the evolution of strongly correlation for several complex materials such as Heusler alloys. p
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Development of computational methods for the nternational Summer

School on

characterization of novel strongly correlated materials Computations

Quantum Materials
Uthpala Herath(1), Aldo H. Romero(1l), Hyowon Park(2) May 27th to June 8th

(1) West Virginia University , (2) University of lllinois at Chicago Sherbrooke, Québec

Project Goals

4 N
* To establish a software framework for investigating electronic, vibrational and elastic properties of stronlgy correlated materials using first-principles

methods from DFT to DMFT.

\- To develop a user-friendly and open-source DFT+DMFT code with various features based on effcient DFT implmentations. y

Proposed Materials

Introduction

/M otivation: » Density functional theory (DFT) \ /Overview: \ a
> Strongly Correlated Materials DFT has been a powerful first-principles method | ) \We are interested In:
- - for weakly correlated materials. [ Crystal Structure and Chemical Composition }
- 3d,4f orbitals are localized. . . ry P
’ - Currently available DFT codes has different DFT-GGA C
. . e e onvergence of Parameters : : 4
interfaces for inputs, therefore it is difficult for | | | | « Materials with strong S AL
A users to take advantage of various features of DFT+Hybrid = DFT+U = DMFT+DFT - - B '{7‘-?/“'
F == different DET codes. | | correlation effects to which £ )
0:‘\/"(3&: o . - Application to the study of strongly correlated Energetics and Relaxation both d- and f- orbitals can
——— | — T _ ¢ materials usually is not very accurate, therefore . : :
05| == o.sbc more advanced method beyond DFT is essential _ High Level Tasks . contribute ex) Gd, LaNIO3
mf\%f“_ O N_ " Ce@n] to treat the correlation problem. E|e°tI°“'C V'braf'0"3| Elaft'c
- T 1 1 " 1- However, different choices of correlated orbitals, | . | |
O'Z- A / 1 *F | interaction parameters, and different levels of pemand B * DFT+DMFT spectra can
- Ta (5d) - 0 Th (5f)— ) _ _ (with energies) through deformation i
| MF——1 .+ 1 approximations to solve correlation problem have Interatomic Force gradients be dlrectly Compared to Heusler Alloy prototypes
A r(A) been the bottleneck of beyond DFT methods. gaef::is“z;’tsﬁes Constants — imental phot
- Partial occupations of of d- and/or f- orbitals lead to strong electronic correlations. Effecﬁtze Mass Phonon dispersion Elastic Properties exp_e I_ ental photo-
- Novel phenomena of strongly correlated materials include magnetism, high-temperature Wanneir Functions relation, symmetries Ideal Strength emission Spectroscopy !
superconductivity, colossal magnetoresistance, heavy fermion systems, metal to insulator Stability comparator __ ] |and eigenvectors *In Interface with Phonopy
\ transitions (Mott insulator), and thermo-magnetism. / K / \ data of real SyStemS /
Theory: Dynamical Mean Field Theory Methodology
/> Within DFT, the correlation energy functional is crudely approximated. \ / \
1) We do not know the exact torm of the correlation energy functional. > Outline of new code > Schematic flow diagram of the full charge-self-consistent DFT+DMFT

2) The dynamical correlation effect is ignored since the DFT functional is based on a
static charge density.

Initialize:

. . . _PPFT Full Hilbert Space
Root (Minimal inputs for users) . ~ybridiation Window  “Correiated Subspace\\
» Dynamical mean field theory (DMFT) : One defines a Free energy functional E?E"F“?i '“'“a'ggm'j"""’“ :
using a time-dependent and local Green’s function G. DFT | codes A |
’ Mix density: ' Compute density: \

oo (siesta Q. E. ) Cabinit ) (VAP ) ELK =
» Advantages of DMFT: i

\ 4
[ A (iw,) @2 5oliw,) ]

1) The lattice problem can be mapped onto a local Anderson impurity problem
hybridized to a self-consistently determined bath. | ocalized Orbitals : Wannier function

2) The impurity problem can be numerically solved in a non-perturbative way using
qguantum Monte Carlo and capture both itinerant and localized nature of electrons.

» Features of our DFT+DMFT code

Generation of interaction parameters : U, J

3) The DMFT calculation scales as O(N) where N is the number of the correlated 1) Various free-license DFT codes are available for DFT+DMFT simulations and
atoms while DFT scales as O(N°). Dynamical mean field theory same correlated basis sets (Maximally localized Wannier function) are used to

Impurit solver : CTQMC obtain DMFT solutions to minimize the ambiguity of different DFT codes and to
y : perform fair comparisons.
2) The DMFT part of the code scales linearly with the number of correlated atoms.

Characterization of Strong|y Correlated Materials 3) Interaction parameters U and J are obtained using the linear-response
constrained DFT method.

JU/t>>1 : Band structure, DOS, Total energy, Atomic 4) Band structure, total energy, atomic force calculations are currently being
'DOS(¢) forces, Magnetic susceptibility, ... implemented.

5) Other post-processing codes are also interfaced including Wannier90,
l \ A phonopy,...
> e/ /

€

e The self-consistency condition

10) )

. DMFT

N

|2

Hybridization: ~ A(w) =" V. bath 2
~w-—¢

LY >

-

Proof of concep:
/3 LaNiO, \ / —— .

: Charge Self-consistent DFT+DMFT Phase Diagram a— pR——— e am— p——
30 : , . , : | .
: 19 == DFT+DMFT (Structural) l<s_le_5t_a> <‘_(ie_,> CA_b'_nit> <YA_S?> <_EE(_>J
| 25| ~@~ DFT+DMFT (Metal-Ins.) || Y
: -'- Exp. (Metal-Ins.) Computational Select DFT code:
T — Pbmn Metal |'E' DFT+U (Structural v rrg— B
I o\o 20} . mn -0 DFT+U (Metal-Ins.) | Python Libraries PyChemia * éManual Input I.lir::ﬁb EB% ibinit
s 155..::::::::::::::::::::::::::::: ------------- =] * sdpy — * Intel® Math Your choice:1
= 15 BRRERELEEY - EPH LT TP * numpy A ) Kernel Lib
i ....... E a matplotlib ﬁf DC ]v . gfel:]n:Clelnt"l?I::y VASP selected.
< 10 e N 5 bycnenta
I " dall I _—DFT ™
----- DFT - ,
2:' 5 . +Hybb OV ™
. P2, /n Ins. D
=3 0.94 0.95 096 097 0.98 The structural diagram of the interface (left) and the current state of the
Tol. fac. [Lu,Y,Eu,Sm,Nd,Pr,La] program (top)
 The VASP+DMFT interface has been implemented.
. . . :  Theinterf f DMFT with Siesta, QE, Abinit and ELK i tl
DFT+DMFT bandstructure of LaNiO; compared to DFT bands (green) (left) and Metal-insulator and structural phase + Bandstructure oo |[* Total energy Vibration — be; Igniren p?;:r?] ;)nted- with Siesta, QE, Abinit an is currently
diagram computed using charge self-consistent DFT+DMFT as a function of volume and the series of rare-earth ions * Fermi surface * Erfective mass analysis strain
wght). / \ A GUI version of the program will be implemented in the future. /
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Diagrammatic Monte Carlo technique for frustrated spin system

/ Simulation of diagrams\

Rather than evaluating integrals over
internal variables for each diagram,
one samples their momenta, time
and expansion orders stochastically
(Markov-chain).

Q Houcke et al., Physics Procedia 6, 95-105 (2010).

/ Feynman diagram \

Qﬂagin et al,, Phys. Rev. B 87, 024407 (2013).

/ Magnetic frustration\

* Large degeneracy

* Exotic magnetic state:
qguantum spin liquid

* Very rich behavior




Ab initio study of cross-interface electron-phonon
couplings in FeSe thin films on SrTiO; and BaTiO,

Yan Wang,1? A. Linscheid,? T. Berlijn,* and S. Johnston?
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: Se mgfoslzyer ** Monolayer FeSe thin film on STO or
Fe BTO substrates has superconducting
? g‘ T.~60 — 70 K.
Sr SrT|03 . ]
4 ® ¥ substrate % Replica energy bands seen in ARPES
spectra indicate a strong forward-

Red arrows: atomic displacements for the oxygen .
polar mode mode (2~100 meV) at q = (0,0). focused electron-phonon coupllng

I 016  g(k q) peaked at small |q].

% We find from ab initio calculation that
0.08 for the oxygen polar mode with mode

energy Q~100 meV, g(k |q| > =) ~ 0,
0 consistent with a forward-focused
electron-phonon coupling.

r

Coupling function |g(k, q)|? in the first Brillouin zone as a function
of k. Left: g = (0,0). Right: q = (0,-) and 400 x |g(k, q)|*.
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ldentification of intrinsic surface defects in a
thin PtSe, film from first-principles
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Theoretlcal Prediction of Oxygen-tunctionalized Mixed MXene as
Topological Insulator

Viechanical E

Zeeshan Ahmad”, Venkat Viswanathan*

Department of Mechanical Engineering, Carnegie Mellon University
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INTRODUCTION

N

Quantum Spin Hall Effect!

Spinless 1D chain Spinful 1D chain

3 > z f_: t >

v‘v2=1+1 ‘4=2+2
_@——

Quantum Hall

Quantum spin Hall

_¢_1.—

* 2D gapped phases characterized by a Z, invariant which
distinguishes a topological from a trivial insulator

* Bulk energy gap but gapless edge states protected by time
reversal symmetry

* First proposed using the Kane-Mele model: two copies of the
Haldane model for up and down spin

» Zero charge-Hall conductance but finite spin-Hall conductance

o Z2pack computes topological invariant based on evolution of
hybrid Wannier functions, equivalent to the computation of
the Wilson loop

MXenes: Layered MAX phases exfoliated into 2D single/multilayers
(M€eTransition metal, X € {C,N}, A €{Al,Ga})?

Structure of Oxygen-functionalized MoWCQO2: A layer of C atoms (brown) is
surrounded by a top layer of W atoms (pink) and a bottom layer of Mo atoms
(gray). The red atoms are oxygens as functional group attached to M,;M,Xene
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