
 ITensor

http://itensor.org

Hands-on with

http://itensor.org

 ITensor
C++ library for tensor networks

Tensors, matrix product states (MPS), DMRG

Useful for “post-DMRG” methods too:
 - MPS algorithms (time evolution, METTS)
 - MERA
 - PEPS

Much more than a “black box” for DMRG

http://itensor.org

http://itensor.org

ITensor website http://itensor.org/

Schreiber et al.,
“Observation of many-body localization...”,
arxiv:1501.05661 [2015]

the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator
(see Fig. 1C).

U/J=4.7(1)
U/J=10.3(1),

∆/J=8

∆/J=3

∆/J=0

Im
ba

la
nc

e

0 20 30
Time (τ)

0.2

0.8

0.4

0.6

0

10

Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.

2 4 6 8
∆/J

0.2

0.4

0.6
Im

ba
la

nc
e

0.0

Experiment

ED - incl. trap
ED - no trap

Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed

2

where Bij and Aij are boson singlet hopping and pairing on
bond ij, and χij is the spinless fermion hopping. Nonzero
Bij and Aij, which are required to describe CSDW or
SCCL, break the Uð1Þ gauge redundancy down to Z2. The
mean-field boson (fermion) wave function jΨMF

b i (jΨMF
f i)

is the ground state of the corresponding Hamiltonian in
Eq. (6), which can be mathematically represented as a
permanent (determinant). The associated physical wave
function jΨCSDWor SCCLi is obtained by gluing two parts
together and going back to the Hilbert space of the
t-J model.
More precisely, note that any physical state in the t-J

model can be expanded in the spin-occupation basis
fjs1; s2; s3;…; sNig, where N is the number of sites and
si ¼ ↑, ↓, 0 depending on whether the site i is spin-up,
spin-down, or empty:

js1; s2;…; sNi≡
Y

sia¼↑

b†ia;↑
Y

sib¼↓

b†ib;↓
Y

sic¼0

f†ic j0i; ð7Þ

where a certain ordering of sites is required in the last
product to take care of the fermion sign. The physical wave
function jΨCSDWor SCCLi is defined as

hs1; s2;…; sN jΨCSDWor SCCLi

¼ h0j
! Y

sia¼↑

b†ia;↑
Y

sib¼↓

b†ib;↓

"†
jΨMF

b i

· h0j
!Y

sic¼0

f†ic

"†
jΨMF

f i; ð8Þ

i.e., jΨCSDWor SCCLi is a product of a permanent (the second
line) and a determinant (the third line).
It turns out that the real space pattern of Aij, Bij, χij, as

shown in Fig. 4, is describing the CSDW or SCCL phases
(see Appendix B). For simplicity, we plot these amplitudes
only on the NN and next-nearest-neighbor (NNN) bonds.
This complicated pattern ensures that the wave function is
symmetric under lattice space group while capturing the
tetrahedral spin correlation.
One can see that the unit cell of the amplitudes doubles

the original unit cell of the honeycomb lattice, which
indicates that the mean-field states jΨMF

b i (jΨMF
f i) break

translational symmetry. However, the physical state
jΨCSDWor SCCLi is fully translationally symmetric, as shown
in Appendix B. Similar states having doubled unit cell of
the mean-field amplitudes are often called π-flux states in
the context of quantum spin liquids.
In addition, this doubling of unit cell is physically

important. This is why the spinless fermion filling
hf†i fii ¼ 1=4, required by the 1=4 doping, actually corre-
sponds to a fully filled lowest f-fermion band, which is
separated from higher bands by an energy gap generated by
the imaginary part of the NNN hopping eiϕf . Similarly

to the Haldane model of spinless fermions [51], which
preserves the original unit cell of the honeycomb lattice, the
lowest energy band of the f fermion here is found to carry
nonzero Chern number C ¼ 1. Because f fermion
describes the charge dynamics, the electromagnetic
response of CSDW or SCCL features an anomalous
quantum Hall response, σxy ¼ e2=h.
Now, we describe the difference between the CSDW

phase and the SCCL phase in the above slave-fermion
formulation. At the mean-field level, μb is chosen so that
hb†iαbiαi ¼ 3=4 to be consistent with the doping level. On a
finite-size lattice, this is always achieved by tuning μb so
that the boson band minima are close enough to, but not
touching, zero. Note that when the bosonic band minima
touch zero, boson condensation occurs and long-range
tetrahedral magnetic order is established (see Appendix B).
This is the CSDW phase in the slave-fermion formulation.
However, because boson condensation never occurs on
finite-size lattice due to the presence of boson pairing, the
difference between the two phases appears only in the
thermodynamic limit (L → ∞). In this limit, if the boson
band minima separate from zero by a finite gap, the
resulting phase is a SCCL; however, if the gap closes,
the resulting phase is a CSDW.
The SCCL phase is thus a fully gapped phase in the bulk,

which will be studied in detail in Sec. IV. Nevertheless, it is
helpful tomention some of its basic properties here. Because

(b)(a)

1

2

3

4

5

6

7

8

FIG. 4. The real space pattern of the slave-fermion amplitudes
describing the CSDWor SCCL phases. The dashed line encircles
the doubled unit cell. (a) The nearest-neighbor (NN) and next-
nearest-neighbor (NNN) boson pairing amplitudes Aij are direc-
tional (labeled by arrows) since Aij ¼ −Aji. Aij on the NN
(NNN) bonds have the same magnitude, respectively. Their
different phases are represented by different colors. Black, 1;
violet, eiπ=2; green, ei5π=6; orange, eiπ=6; red, eiπ=3; blue, ei2π=3.
(b) The NN (NNN) boson/fermion hopping amplitudes Bij=χij
also have uniform magnitudes, respectively. When they are
complex, the amplitudes are directional Bij ¼ B$

ji, χij ¼ χ$ji
(labeled by arrows). The phases are illustrated by colors. Black,
%1; blue, eiϕ; red,−eiϕ. Here, the real number ϕ ¼ ϕb for bosons
and ϕ ¼ ϕf for fermions. ϕb and ϕf can be viewed as two
variational parameters. The above pattern is for one of the two
degenerate ground states while the other one is its time-reversal
image, which can be obtained by sending these amplitudes to
their complex conjugates: Aij=Bij=χij → A$

ij=B
$
ij=χ

$
ij. Sites num-

bered 1 to 8 label the quadrupled unit cell used in Appendix C.

CHIRAL SPIN DENSITY WAVE, SPIN-CHARGE-CHERN … PHYS. REV. X 4, 031040 (2014)

031040-5

jRðs1; s2;…; sNÞitJ ≡
YNF

si¼α

c†iαj0i; ð10Þ

where N is the number of sites, si ¼ ↑, ↓, 0 depending on
whether the site i is spin-up, spin-down, or empty, ciα
annihilates electron of spin α ¼ ↑, ↓ at site i, and j0i is the
vacuum. There are exactly NF nonempty sites, enforcing
the fixed fermion number, and, obviously, there is no
double occupancy. We choose to order the c†iα operators
according to site label i, thereby fixing the fermion signs in
the jRðs1; s2;…; sNÞitJ basis. Similarly, in the Hubbard
model we have si ¼ ↑↓, ↑, ↓, 0, and

jRðs1; s2;…; sNÞiHubbard ≡
Y

sj¼↑↓

c†j↑c
†
j↓

Y

si¼α

c†iαj0i; ð11Þ

where again there are in total exactly NF operators c†iα, and
in the obtained jRðs1; s2;…; sNÞiHubbard we order them

according to site label i, keeping the c†i↑ before the c†i↓ for
each doubly occupied site i.
We focus on the total Sz equal to zero sector (in both

models), by additionally choosing an equal number of
spin-up and spin-down electrons. Note that the DMRG
calculation conserves this spin quantumnumber of a state, so
we can work in an Sz sector. As discussed in detail in the
following, we also measure quantities after projecting the
wave function to a certain symmetry sector using a projector
P, and note here that both the action of the operator Ô andP
are dealt with by acting directly on the hRj in Eq. (9).
The optimal value of the single variational parameter, the

pairing Δ=χ ∈ R, which minimizes the variational energy,
is shown in Fig. 8. For smaller J=t, the pairing is too small
and harder to determine precisely.
As we discuss further below (Fig. 10), the energy of the

wave function with optimal pairing is compared to the
DMRG ground state on 24-site and 32-site samples,
showing that the dþ id variational state captures between
97% and 99% of DMRG GS energy throughout the
dþ id phase.
The main signature of the dþ id phase is the complex

phase of pairing; see Fig. 2(b). We therefore calculate the
pair-pair correlation function:

hB̂†
ijB̂kli; with B̂ij ≡ ci↑cj↓ − ci↓cj↑ ð12Þ

the singlet pairing. The pattern from Fig. 2(b) should be
revealed in the long-range physics, so the most interest lies
in pairs of nearest-neighbor bonds ij and kl, which are as
far from each other as possible. Table III reveals that
the pattern indeed occurs and becomes weaker with
decreasing J=t.
The spin-spin correlation function is very short ranged as

expected, so we do not present it in detail [62].

2 4 6 8 10 12 14 16
1.1

1.0

0.9

0.8

0.7

U/t

E
N

FIG. 7. Ground-state energy per site of the Hubbard model. Red
line, 32-site sample, obtained by DMRG. Blue line, 8-site
sample, obtained by ED. For 8-site sample, ED shows a twofold
degenerate ground state.

TABLE III. Pair-pair correlation function in t-J model on 24-site sample, comparing DMRG ground state projected into the
expð−i2π=3Þ eigenspace ofC6 rotation (top values) to VMC result on dþ id variational wave function (bottom values) in each row. Last
two rows are DMRG only. The correlation function Δbb0 ¼ hB̂†

ijB̂kli is considered for nearest-neighbor bond b ¼ ij (labeled 0 in the
figure) and nearest-neighbor bond b0 ¼ kl being one of b0 ¼ 1, 2, 3. To reduce statistical error, the presented value for any of these bond
pairs bb0 is obtained by averaging over all bond pairs related by translation symmetry.

J=t argðΔ01Þ=2π argðΔ02Þ=2π argðΔ03Þ=2π jΔ01j jΔ02j=jΔ01j jΔ03j=jΔ01j

0 1

2

3

2.0
−0.0025ð9Þ 0.327(1) −0.324ð1Þ 0.00447(2) 1.04(1) 1.05(1)
−0.022ð5Þ 0.313(6) −0.311ð7Þ 0.00073(2) 0.92(7) 0.88(7)

1.5
0.001(1) 0.322(2) −0.324ð2Þ 0.00329(2) 0.97(2) 0.97(2)
0.000(7) 0.311(7) −0.310ð7Þ 0.00062(2) 0.96(7) 0.97(7)

1.0 0.001(2) 0.296(2) −0.304ð2Þ 0.00212(2) 0.97(2) 0.94(2)
0.000(7) 0.305(8) −0.306ð8Þ 0.00050(2) 1.00(9) 0.98(9)

0.78 −0.001ð2Þ 0.289(2) −0.283ð2Þ 0.00163(2) 0.93(3) 0.94(3)
0.003(7) 0.304(9) −0.296ð8Þ 0.00048(2) 1.0(1) 1.0(1)

0.5 −0.005ð3Þ 0.245(3) −0.235ð4Þ 0.00116(2) 0.91(3) 0.78(3)
0.02(2) 0.28(1) −0.28ð1Þ 0.00020(2) 1.5(3) 1.5(3)

0.2 −0.008ð4Þ 0.119(6) −0.127ð6Þ 0.00084(2) 0.75(5) 0.76(5)
0.1 −0.011ð4Þ 0.065(5) −0.067ð5Þ 0.00081(2) 0.89(5) 0.84(5)

SHENGHAN JIANG, ANDREJ MESAROS, AND YING RAN PHYS. REV. X 4, 031040 (2014)

031040-8

Jiang, Mesaros, Ran,
PRX 4, 031040 [2014]

S.V. Dolgov et al. / Computer Physics Communications 185 (2014) 1207–1216 1213

Fig. 5. CPU time vs. dimension d (left) and truncation threshold " (right) for the Hénon–Heiles example (14). Parameters: " = 10�3 (left), B = 2 (right), n = 28.

Fig. 6. Eigenvalue errors (left) and CPU times (right) vs. mode size n and truncation threshold " for the Hénon–Heiles example (14). The reference value �? is computed by
the same algorithm with " = 10�7, n = 28. Parameters: B = 2, d = 30.

6. Heisenberg model

The one-dimensional Heisenberg model is one of the classical
applications of the MPS/DMRG algorithms. We use this example
to compare the performance of the proposed approximate block
eigenvalue solver (Algorithm 1), and verify its accuracy against the
established software, which is developed and widely used in the
MPS community. The Heisenberg model describes the interaction
of spins on a one-dimensional lattice by the Hamiltonian, which in
the antiferromagnetic case writes as follows

H =
d�1X

i=1

SiSi+1 =
d�1X

i=1

�
Sxi S

x
i+1 + Syi S

y
i+1 + Szi S

z
i+1

�
,

S{x,y,z}
i = I ⌦ · · · ⌦ I ⌦ S{x,y,z} ⌦ I ⌦ · · · ⌦ I, S{x,y,z} in position i.

(15)
Here S{x,y,z} are the Pauli matrices, defined for spin-1/2 particles as
follows

Sx = 1
2

✓
0 1
1 0

◆
, Sy = 1

2

✓
0 �i
i 0

◆
, Sz = 1

2

✓
1 0
0 �1

◆
.

The TT ranks of (15) are not larger than 5, see [52].
We compare our implementation of Algorithm 1 with the

DMRG from two free open source packages: ALPS3 (algorithms and
libraries for physics simulations), and ITensor4 The ALPS allows to

3 http://alps.comp-phys.org/, Release 2.1.1.
4 http://itensor.org/, downloaded on May 20, 2013 (no version control).

target the ground and/or several excited states, the ITensor can
find the ground state only, and the Algorithm 1 can compute B > 2
eigenstates, but is not designed for B = 1.

A fair amount of optimization was introduced: all software was
compiled using Intel C/Fortran compiler 2013 and linked with the
optimized Lapack/Blas packages provided in the MKL library. We
used one Intel Xeon E5504 processorwith 4 cores running at 2GHz,
and 72 GB of operative memory. To fit within the memory (and
avoid time-demanding swapping and disk caching), the TT ranks in
all experiments have been limited to 1000. This bound was indeed
hit in extremely large tests: d & 300, " . 10�5, B & 20.

We recall that values " denote the relative Frobenius-norm
errors for the approximation of eigenvectors. The accuracy
parameter ✏ used in the ALPS and the ITensor sets the density
matrix threshold, which relates to the accuracy of eigenvectors
as ✏ = "2. We refer the readers who are more comfortable with
nomenclature of quantum physics to the Table 1.

We compare the performance of all algorithms for systems
with large number of particles d and for the problems with large
number of excited states B. In Fig. 7 (left) we show how the time
of computation grows with d. We see that Algorithm 1 finds B = 2
states faster than the other methods compute the ground state. A
fair comparison for B = 4 shows that Algorithm 1 is almost ten
times faster than ALPS: for d = 10 the ratio is 16.2, for d = 100
it is 14.0, and for d = 400 it reduces to 5.86. It is difficult to
predict, based on the looks of the graph, whether the ALPS would
outperform the Algorithm 1 for d & 103 or d & 104, but for d 6 103

our method is clearly preferable.
In Fig. 7 (right) we compare the performance of the Algorithm

1 and the ALPS for the number of target states B = 2, . . . , 40. At

Dolgov, Khoromskij, Oseledets, Savostyanov
CPC 185, 1207 [2014]

One-Dimensional Continuum Electronic Structure with the Density-Matrix Renormalization
Group and Its Implications for Density-Functional Theory

E.M. Stoudenmire, Lucas O. Wagner, Steven R. White, and Kieron Burke*

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Received 12 July 2011; revised manuscript received 5 January 2012; published 1 August 2012)

We extend the density matrix renormalization group to compute exact ground states of continuum

many-electron systems in one dimension with long-range interactions. We find the exact ground state of a

chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold

atom systems and to study density-functional theory in an exact setting. To illustrate, we find an

interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.

DOI: 10.1103/PhysRevLett.109.056402 PACS numbers: 71.15.Dx, 05.10.Cc, 31.15.E!, 71.15.Mb

For electronic structure calculations, these are the best of
times and the worst of times. When correlations are weak,
density-functional theory (DFT) makes it possible to tackle
extremely realistic Hamiltonians and large system sizes
with reasonable accuracy [1]. For strongly correlated sys-
tems, there exist powerful and controllable numerical
methods [2] for simulating lattice Hamiltonians, such as
the Hubbard model. However, few numerical tools can
treat the combination of strongly correlated electronic
systems and realistic microscopic Hamiltonians. In the
strongly correlated regime, DFT approximations are nei-
ther systematic nor controllable, often leading to unre-
strained parameter multiplication and empiricism. Model
Hamiltonians rely on the arbitrary truncation of terms that
may be crucial in tipping the balance between competing
phases. Attempts to bridge the gap between realistic
Hamiltonians and strong correlation techniques, such as
dynamical mean field theory coupled to DFT [3,4], may
contain both arbitrary truncations and a less than ideal
treatment of correlations.

Therefore we would like to study DFT in an exact setting
to see how density functional approximations break
down and whether new approximations contain the right
physics. But very few continuum, three-dimensional, long-
range interacting systems can be easily treated exactly.
Here, we show that by studying one-dimensional (1D)
systems instead, we can treat realistic Hamiltonians and
strong electron correlations essentially exactly, even for a
very large number of atoms. Because they preserve the
continuum, our 1D models mimic key features of three-
dimensional reality surprisingly well [5].

Our approach is based on the density matrix renormal-
ization group (DMRG) [6], the most powerful of the
strongly correlated techniques for 1D lattice models. Here
we extend DMRG to treat continuum electron systems
with long-range interactions. This new approach retains
DMRG’s exponential convergence and near linear scaling
with system size. As an example, we present a near exact
calculation of a system with 100 strongly interacting pseu-
dohydrogen atoms (Fig. 1).

A key motivation for this method is to study DFT in an
exact setting, both when correlations are strong and near
the thermodynamic limit. Generically, 1D systems have
strong quantum fluctuations, making them an especially
rigorous test of DFT approximations; they can also be
pushed to large size with less effort. As in Fig. 1, we can
easily compare various DFT approximations with exact
results for extended systems. We can also compute exact
quantities appearing in the DFT formalism; for example,
we show below that a gapped interacting system can
nevertheless have a Kohn-Sham gap which is exactly
zero (a Mott insulator [7]). DMRG also offers new ways
to characterize electronic structure models using quantum

0

0.1

0.2

0.3

0.4
0 8 16 24 32

200 208 216 224 232
x

0

0.1

0.2

0.3

0.4

Exact (DMRG) Unrestricted LSDA Restricted LSDA

T
ot

al
 E

le
ct

ro
n

D
en

si
ty

FIG. 1 (color online). The exact ground state density of a
chain of 100 widely separated (strongly correlated) artificial
atoms. The total length of the system is L ¼ 420 in atomic units
(4200 grid sites with a spacing of 0.1). The upper panel shows
the electron density of a central region superimposed with
the density at the left edge (the dashed blue curve with corres
ponding x above). The lower panel compares the exact electron
density to DFT predictions within the local spin density
approximation.

PRL 109, 056402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

0031-9007=12=109(5)=056402(5) 056402-1 ! 2012 American Physical Society

Stoudenmire, Wagner, White, Burke,
PRL 109, 056402 [2012]

Selected applications of ITensor:

Basic data types:

int i = 5;

Real r = 2.3456;

string s = "some string";

lines end with ;
C++

Printing:

println(i); //prints “5”

println("r is ",r); //prints “r is 2.3456”

C++

m.setValue(6);

println(m.name());

Objects can have methods:

Construct an object of type MyClass:

auto m = MyClass("MyClass m", 5);

User defined types (objects)

C++

auto f = FType();

int j = f(5);

auto x = Numerical(1.);
auto y = Numerical(2.);

auto r = x + y;

println(r.value()); //prints 3

Some objects can be called like functions:

Other objects behave like numbers:

#include “itensor/all.h”

using namespace itensor;

int main()
{

//
// Code will go here
//

return 0;
}

Structure of an ITensor C++ program:

01 Single Site
 Wavefunction

Consider a single-site wavefunction,
for example a spin 1/2

Single-site basis:

|s=1i = |"i

|s=2i = |#i

Most general wavefunction for a spin 1/2:

Slight abuse of notation, may refer to either or
as the wavefunction.

The are complex numbers.

| i

| i =
2X

s=1

 s|si

 s

 s

Single-site wavefunction as a tensor: 1

2

= 1

= 2

 s

Using ITensor:

s

auto s = Index("s",2);

auto psi = ITensor(s);

Now initialize First choose

1

 s

= 1

| i = |"i

auto s = Index("s",2);
auto psi = ITensor(s);

psi.set(s(1), 1.0);

PrintData(psi);

Now initialize First choose

1

 s

= 1

| i = |"i

auto s = Index("s",2);
auto psi = ITensor(s);

psi.set(s(1), 1.0);

PrintData(psi);

psi =
ITensor r=1: (s,2,Link,273)
(1) 1.00

auto Sz = ITensor(s,prime(s));

auto Sx = ITensor(s,prime(s));

Make some operators:

s

s’

s

s’

What does “prime” do?

Could use different indices (say s and t),
but s’ more convenient - can remove prime later

prime(s) returns copy of s with a “prime level” of 1

New ITensors start out set to zero

auto Sz = ITensor(s,prime(s));

auto Sx = ITensor(s,prime(s)); s

s’

s

s’

Set their components:

Our operators:

Sz.set(s(1),prime(s)(1), +0.5);
Sz.set(s(2),prime(s)(2), -0.5);

Sx.set(s(1),prime(s)(2), +0.5);
Sx.set(s(2),prime(s)(1), +0.5);

Let’s compute

s

s’

=
s’

In code,

* operator contracts matching indices.

Indices s and s’ don’t match because of different prime
levels.

(Ŝ
x

)
s

0
s

s

=

ITensor phi = Sx * psi;

Ŝ
x

| i = |�i

What state is phi ?

s

s’

=
s’

(Ŝ
x

)
s

0
s

s

=

ITensor phi = Sx * psi;

PrintData(phi);

What state is phi ?

s

s’

=
s’

(Ŝ
x

)
s

0
s

s

=

ITensor phi = Sx * psi;

PrintData(phi);

phi =
ITensor r=1: (s,2,Link,273)'
(2) 0.500

More interesting : choose and

1

2

 s

= cos ✓/2

= sin ✓/2

✓ = ⇡/4

✓

Real theta = Pi/4.;

psi.set(s(1),cos(theta/2));
psi.set(s(2),sin(theta/2));

PrintData(psi);

More interesting : choose and

1

2

 s

= cos ✓/2

= sin ✓/2

✓ = ⇡/4

✓

Real theta = Pi/4.;

psi.set(s(1),cos(theta/2));
psi.set(s(2),sin(theta/2));

PrintData(psi);

psi =
ITensor r=1: (s,2,Link,273)
(1) 0.92388
(2) 0.38268

auto zz = (cpsi * Sz * psi).real();

auto xx = (cpsi * Sx * psi).real();

ITensor cpsi = dag(prime(psi));

Diagrammatically, measurements (expectation values)
look like:

h |Ŝz| i

For convenience, make:

s’

Calculate expectation values:

s

s’

println("<Sz> = ",zz);

println("<Sx> = ",xx);

Printing the results,

we get the output
✓

p
(0.35355)2 + (0.35355)2 = 1/2

auto zz = (cpsi * Sz * psi).real();

auto xx = (cpsi * Sx * psi).real();

<Sz> = 0.35355
<Sx> = 0.35355

More slowly:

Zpsi =

s’

s

Index s matches, so it’s automatically contracted.

 and share Index s’
 * contracts it, leaving a scalar ITensor
Zpsi cpsi

expect =
s’

s’

=

cpsi

Zpsi

auto Zpsi = Sz * psi;

auto expect = cpsi * Zpsi;

auto zz = expect.real();

Review:

• Construct an Index

• Construct ITensor (indices a, b, c)

• Set ITensor components

• Prime an Index b b’

• The operator automatically contracts
matching Index pairs

*

auto a = Index("index a",4);

auto T = ITensor(a,b,c);

T.set(a(2),c(3),b(1), 7.89);

prime(b)

Quiz:

If we * the following tensors,
how many indices remain?

a a

b’

b b

Quiz:

If we * the following tensors,
how many indices remain?

s’ s

d

b c

c

itensor_tutorial/01_one_site

Code hands-on session:

1. Compile by typing “make” then run by typing “./one”

2. Change psi (line 22) to be an eigenstate of Sx

3. Compute overlap of with :

 Try also normalizing first using the code

| i = 1p
2
(|"i+ |#i)

|�i = Ŝ
x

| i| i

|�i

auto olap = (dag(psi)*phi).real();

phi /= phi.norm();

02 Two Site
 Wavefunction

Most general two-site wavefunction is

| i =
2X

s1,s2=1

 s1s2 |s1i|s2i

Amplitudes are a rank-2 tensor

 s1s2 =

s1 s2

Let’s make a
singlet

1 2

2 1

= �1/
p

2

= 1/
p

2

Using ITensor:

auto s1 = Index("s1",2,Site);
auto s2 = Index("s2",2,Site);

auto psi = ITensor(s1,s2);

psi.set(s1(1),s2(2),+1./sqrt(2));
psi.set(s1(2),s2(1),-1./sqrt(2));

Why Site tag in Index constructor?

Useful for priming just one type of Index, for example

auto s1 = Index("s1",2,Site);
auto s2 = Index("s2",2,Site);

Index objects can have an optional "IndexType" tag

Default type is Link, physical indices of type Site

Let’s make the Heisenberg Hamiltonian Ĥ = S1 · S2

Ĥ = Sz
1Sz

2 +
1
2
S+

1 S�2 +
1
2
S�1 S+

2

First create operators, for example S+

Multiply and add operators to make H:

auto Sp1 = ITensor(s1,prime(s1));
Sp1.set(s1(2),prime(s1)(1), 1);

auto H = Sz1*Sz2 + 0.5*Sp1*Sm2 + 0.5*Sm1*Sp2;

Tensor form of H

Ĥ = +
1
2

+
1
2

=

Showing Index labels

Ĥ =

s1 s2

s0
1 s0

2

Compute singlet energy with this Hamiltonian:

s1 s2

s0
1 s0

2

Ĥ| i = =

Ĥ
Ĥ

s0
1 s0

2

auto Hpsi = H * psi;
Hpsi.mapprime(1,0);

Real E = (dag(Hpsi) * psi).real();
Print(E);
//prints: E = -0.75

Compute singlet energy with this Hamiltonian:

s1 s2

s0
1 s0

2

Ĥ| i = =

Ĥ
Ĥ

; E = s1 s2

Ĥ

 †s1 s2

auto Hpsi = H * psi;
Hpsi.mapprime(1,0);

Real E = (dag(Hpsi) * psi).real();
Print(E);
//prints: E = -0.75

Or compute energy in one shot:

Esing =

00
dag(prime(psi))

Real E = (dag(prime(psi)) * H * psi).real();

Print(E);
//prints: E = -0.75

We’ll use imaginary time evolution to find this
Hamiltonian’s ground state

e��H/2|0i / | 0i
itensor_tutorial/02_two_sites

2. Open imag_tevol.cc and implement the code to make
 using a Taylor series (summed using a recursive formula)

3. Try increasing , compile, and re-run code
 until it converges to the ground state

1. Read through two.cc, compile and run by typing “make two”
 then run by typing “./two”

e��H

�

Solution for missing code (near line 120 of imag_tevol.cc):

for(int ord = max_order-1; ord >= 1; --ord)
 {
 expH = expH * bH;
 expH /= ord;
 expH.mapprime(2,1);
 expH = expH + Id;
 }

03 SVD

The density matrix renormalization group (DMRG)
uses a variational wavefunction known as a
matrix product state (MPS).

Matrix product states arise from compressing a
one-dimensional wavefunction using the
singular-value decomposition (SVD).

Let’s see how this works...

Recall:
Singular-value decomposition

Given rectangular (4x3) matrix M

0.435839 0.223707 0.10
0.435839 0.223707 -0.10
0.223707 0.435839 0.10
0.223707 0.435839 -0.10

M =

Can decompose as

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

0.933 0 0
 0 0.300 0
 0 0 0.200

 0.707107 0.707107 0
-0.707107 0.707107 0
 0 0 1

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

0.933 0 0
 0 0.300 0
 0 0 0.200

 0.707107 0.707107 0
-0.707107 0.707107 0
 0 0 0 1

A D B

Matrices A and B are "isometries":

D diagonal
Elements of D can be chosen:
 (1) Real
 (2) Positive semi-definite
 (3) Decreasing order

A†A = 1

BB† = 1

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

0.933 0 0
 0 0.300 0
 0 0 0.200

 0.707107 0.707107 0
-0.707107 0.707107 0
 0 0 0 1

A D B
Keep fewer and fewer elements of D:

= M =
0.435839 0.223707 0.10
0.435839 0.223707 -0.10
0.223707 0.435839 0.10
0.223707 0.435839 -0.10

||M �M ||2 = 0

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

0.933 0 0
 0 0.300 0
 0 0 0

 0.707107 0.707107 0
-0.707107 0.707107 0
 0 0 0 1

A D B

0.435839 0.223707 0
0.435839 0.223707 0
0.223707 0.435839 0
0.223707 0.435839 0

= M2 =

||M2 �M ||2 = 0.04 = (0.2)2

Keep fewer and fewer elements of D:

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

0.933 0 0
 0 0 0
 0 0 0

 0.707107 0.707107 0
-0.707107 0.707107 0
 0 0 0 1

A D B

0.329773 0.329773 0
0.329773 0.329773 0
0.329773 0.329773 0
0.329773 0.329773 0

= M3 =

||M3 �M ||2 = 0.13 = (0.3)2 + (0.2)2

Keep fewer and fewer elements of D:

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

0.933 0 0
 0 0 0
 0 0 0

 0.707107 0.707107 0
-0.707107 0.707107 0
 0 0 0 1

A D B

0.329773 0.329773 0
0.329773 0.329773 0
0.329773 0.329773 0
0.329773 0.329773 0

= M3 =

Truncating SVD =

Controlled approximation
for M

||M3 �M ||2 = 0.13 = (0.3)2 + (0.2)2

Keep fewer and fewer elements of D:

Most general two-spin wavefunction

 s1s2 =

s1 s2

Recall:

Can treat as a matrix:

 s1s2 = s1 s2

SVD this matrix:

 s1s2 = s1 s2

= s1 s2

Bend lines back to look like wavefunction:

s1 s2

A D B

svd(psi,A,D,B);

auto A = ITensor(s1)
ITensor D,B;

Using ITensor:

s1 s2

s1 s2

A D B

Say we have a two-site wavefunction psi

Declare A,D,B to hold results of SVD

Call SVD function

What have we gained from SVD?

s1 s2

Generic two-spin wavefunction (say spin S):

(2S+1)2 parameters
Not clear which parameters
important, unimportant

s1 s2

Compressed wavefunction:

SVD tells us which
parameters are important,
might be very few!

Later see that # parameters also scales much better

s1 s2

This form of wavefunction known as
matrix product state (MPS)

Why? Amplitude a product of matrices:

| i =
X

s1,↵,↵0,s2

As1↵D↵↵0B↵0s2 |s1i|s2i

Schollwöck, Ann. of Phys. 326, 96 (2011)

s1 s2

MPS have different equivalent forms, or “gauges”

Canonical form

| i =
X

s1,↵,↵0,s2

As1↵D↵↵0B↵0s2 |s1i|s2i

Schollwöck, Ann. of Phys. 326, 96 (2011)

MPS have different equivalent forms, or “gauges”

| i =
X

s1,↵,↵0,s2

As1↵D↵↵0B↵0s2 |s1i|s2i

Schollwöck, Ann. of Phys. 326, 96 (2011)

s1 s2

MPS have different equivalent forms, or “gauges”

Left-canonical

Schollwöck, Ann. of Phys. 326, 96 (2011)

s1 s2

| i =
X

s1,↵0,s2

 s1↵0B↵0s2 |s1i|s2i

MPS have different equivalent forms, or “gauges”

Matrix B is “right orthogonal” (from SVD)

Schollwöck, Ann. of Phys. 326, 96 (2011)

s1 s2

s2

BB† = I

B

B†

=

s1 s2

MPS have different equivalent forms, or “gauges”

Canonical form

| i =
X

s1,↵,↵0,s2

As1↵D↵↵0B↵0s2 |s1i|s2i

Schollwöck, Ann. of Phys. 326, 96 (2011)

MPS have different equivalent forms, or “gauges”

| i =
X

s1,↵,↵0,s2

As1↵D↵↵0B↵0s2 |s1i|s2i

Schollwöck, Ann. of Phys. 326, 96 (2011)

s1 s2

MPS have different equivalent forms, or “gauges”

Right-canonical

Schollwöck, Ann. of Phys. 326, 96 (2011)

s1 s2

| i =
X

s1,↵,s2

As1↵ ↵s2 |s1i|s2i

MPS have different equivalent forms, or “gauges”

Matrix A is “left orthogonal” (from SVD)

Schollwöck, Ann. of Phys. 326, 96 (2011)

s1 s2

=

A†A = I

s1

A†

A

We’ll use the SVD to study the entanglement of a
two-site wavefunction

itensor_tutorial/03_svd

2. Make a normalized wavefunction that is the sum
 (1-mix)*prod + mix*sing

3. SVD this wavefunction

1. Read through svd.cc; compile; and run

3. Compute the entanglement entropy using the density
 matrix spectrum returned by svd.

nth eigenvalue:
number of eigenvalues:

ITensor A(s1),D,B;
auto spectrum = svd(psi,A,D,B);

spec.eig(n); //n=1,2,3,...
spec.size();

04 Four Sites

Say we have a 4-site MPS.
How efficiently can we compute properties?

Depends on the gauge!

s1 s2 s3 s4

| i =
X

{s},{↵}

Ms1
↵1

Ms2
↵1↵2

Ms3
↵2↵3

Ms4
↵3

|s1s2s3s4i

Assume we know nothing about the MPS
Put it in a useful gauge:

s1 s2 s3 s4

Assume we know nothing about the MPS
Put it in a useful gauge:

s1 s2 s3 s4

{ Contract

s1 s2 s3 s4

Assume we know nothing about the MPS
Put it in a useful gauge:

s1 s2 s3 s4

{ Contract

s1 s2 s3 s4

SVD

s1 s2 s3 s4

Assume we know nothing about the MPS
Put it in a useful gauge:

s1 s2 s3 s4

{ Contract

s1 s2 s3 s4

SVD

s1 s2 s3 s4

Group (AD) B

Note that site 4 tensor now right orthogonal

s1 s2 s3 s4

Note that site 4 tensor now right orthogonal

Recall this means

=s4

s1 s2 s3 s4

s1 s2 s3 s4

Can repeat gauge transformation (repeated SVD)

s1 s2 s3 s4
Contract,
SVD &
regroup

s1 s2 s3 s4

Can repeat gauge transformation (repeated SVD)

s1 s2 s3 s4
Contract,
SVD &
regroup

s1 s2 s3 s4
Contract,
SVD &
regroup

What have we gained?

Consider measuring an operator on site 1

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

| i

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

| i

h |
Â1

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

| i

h |
Â1

hÂ1i =
X

{s}

 ̄s0
1s2s3s4As0

1s1 s1s2s3s4

s1

s0
1

s2 s3 s4

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

| i

h |
Â1

hÂ1i =
X

{s}

 ̄s0
1s2s3s4As0

1s1 s1s2s3s4

s1

s0
1

s2 s3 s4

Cost scales
exponentially!

24 in this case

s1 s2 s3 s4

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

Much simpler computation!

What have we gained?

How much simpler a computation?

Choose always singular values
in each SVD

 m

What have we gained?

How much simpler a computation?

Choose always singular values
in each SVD

 m

Link index runs from 1...m
(from SVD)

What have we gained?

How much simpler a computation?

Choose always singular values
in each SVD

 m

Link index runs from 1...m
(from SVD)

Site indices
run from 1...d

Computational cost ~ d2 m (compared to d4)

Gauging an MPS Using ITensor:

auto sites = SpinHalf(N);
auto psi = MPS(sites);
computeGroundState(psi);

Create lattice sites and MPS

Gauge to site number 2

psi.position(2);

Gauging an MPS Using ITensor:

auto sites = SpinHalf(N);
auto psi = MPS(sites);
computeGroundState(psi);

Create lattice sites and MPS

Gauge to site number 2

psi.position(2);

= =
Recall:

Measuring an MPS Using ITensor:

Measure Sz on second site

auto sz2 = (dag(prime(psi.A(2),Site))
 * sites.op("Sz",2)
 * psi.A(2)).real();

= =
Recall:

Measuring an MPS Using ITensor:

Measure Sz on second site

auto sz2 = (dag(prime(psi.A(2),Site))
 * sites.op("Sz",2)
 * psi.A(2)).real();

3. Create similar code that measures the bond strength
 on bonds (N/2-1) and (N/2+1) [lines 62 and 73]
 These are combined into the "dimer order parameter"

We’ll measure the dimer order of the J1-J2 model

itensor_tutorial/04_mps

2. Study the code [lines 46-51] which
 measures

1. Read through j1j2.cc; compile; and run

B̂N/2 = SN/2 · SN/2+1

D = hB̂N/2i �
1

2
hB̂N/2�1i �

1

2
hB̂N/2+1i

4. Run the code for various sizes N and plot the results.
 How does large J2/J1 differ from small J2/J1 ?

Solution for missing lines of j1j2.cc:

val += -0.5 * (dag(prime(wf2,Site)) * B2 * wf2).real();

val += -0.5 * (dag(prime(wf3,Site)) * B3 * wf3).real();

05 Trotter

Just as we can measure one-site operators,
can measure two-site operators

= =

Recall:

Just as we can measure one-site operators,
can measure two-site operators

= =

Recall:

Since two “center” sites have orthogonal
environment, ok to apply operators:

Since two “center” sites have orthogonal
environment, ok to apply operators:

Since two “center” sites have orthogonal
environment, ok to apply operators:

SVD &
regroup

Would NOT be ok on another bond without
regauging

SVD truncation not globally optimal except at
orthogonality center

Would NOT be ok on another bond without
regauging

SVD truncation not globally optimal except at
orthogonality center

Q: What can we do with this capability?

Q: What can we do with this capability?

A: For short-ranged Hamiltonians, can time evolve

Trick is to use Trotter decomposition

H = H1 + H2 + H3 + . . .

Useful for Hamiltonians of the form

For example

H =
X

j

Sj · Sj+1

= (S1 · S2) + (S2 · S3) + (S3 · S4)

For a small time step

e�⌧H ' e�⌧H1/2e�⌧H2/2e�⌧H3/2 · · ·

· · · e�⌧H3/2e�⌧H2/2e�⌧H1/2 + O(⌧3)

⌧

Diagramatically,

'

Diagramatically,

'

Diagramatically,

'

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Apply to MPS as follows:

Interesting applications:

If real (imaginary time evolution), enough steps
will give ground state

⌧

| 0i = e�⌧H | i

If imaginary, evolve in real time, study dynamics [1]⌧

Evolving through imaginary time
simulates finite temperature [2]

�/2 = 1/(2T)

[1] White, Feiguin PRL 93, 076401 (2004)
[2] White PRL 102, 190601 (2009)

itensor_tutorial/05_gates

2. Apply the gate G to the MPS bond tensor AA.
 The gate G can be multiplied times AA as if it’s an ITensor

3. Reset the prime level back to zero using AA’s
 .noprime() class method

1. Read through gates.cc; compile; and run

We’ll implement time evolution for the Heisenberg chain

3. Try increasing the total time “ttotal” to imaginary time
 evolve toward the ground state.
 (Exact energy for 20 sites: E0 = -8.6824733317)

05 MPO

We have seen a Hamiltonian looks like this:

We have seen a Hamiltonian looks like this:

Ĥ| i

Does a 1d Hamiltonian have a local form/
factorization like an MPS?

Want something like

Operator (H) as product of “matrices”
matrix product operator

Focus on just one tensor

Focus on just one tensor

Focus on just one tensor
Specific values for horizontal bonds
gives site operator

21

Focus on just one tensor
Specific values for horizontal bonds
gives site operator

Focus on just one tensor
Specific values for horizontal bonds
gives site operator

Each tensor a matrix of site operators!

Î

�̂z
Î

Each tensor a matrix of site operators!

Hamiltonians can be written

Î

�̂z
Î

1

010

Î

�̂z
Î

Each tensor a matrix of site operators!

Multiply out

Î

�̂z
Î

1

010

Î

�̂z
Î

Each tensor a matrix of site operators!

Multiply out

Î

�̂z
Î

1

010

�̂z
Î

Î

�̂z

Î

�̂z
Î

Each tensor a matrix of site operators!

Multiply out

Î

�̂z
Î

1

010

�̂z
Î

Î

�̂z

�̂z
1 ⌦ Î2 + Î1 ⌦ �̂z

2

Î

�̂z
Î

This Hamiltonian is

Î

�̂z
Î

1

010

H =
X

i

�̂z
i

Î

�̂z

�̂z�h�̂x Î

0
Î

�̂z

�̂z�h�̂x Î

0

3

1

More complicated example

0

0

1

T
1

0

0

Î

�̂z

�̂z�h�̂x Î

0
Î

�̂z

�̂z�h�̂x Î

0

3

�̂z

1

More complicated example

0

0

1

T
1

0

0

Î

�̂z

�̂z�h�̂x Î

0
Î

�̂z

�̂z�h�̂x Î

0

3

2

2

1

�̂z �̂z

1

More complicated example

0

0

1

T
1

0

0

More complicated example

0

0

1

T
1

0

0

Î

�̂z

�̂z�h�̂x Î

0
Î

�̂z

�̂z�h�̂x Î

0

3

1

�h�̂x

Î

More complicated example

0

0

1

T
1

0

0

Î

�̂z

�̂z�h�̂x Î

0
Î

�̂z

�̂z�h�̂x Î

0

3

1

�h�̂x

Î

More complicated example

0

0

1

T
1

0

0

Î

�̂z

�̂z�h�̂x Î

0
Î

�̂z

�̂z�h�̂x Î

0

3

1
1

�h�̂x Î

1
1

Hamiltonian is

0

0

1

T
1

0

0

Î

�̂z

�̂z�h�̂x Î

0
Î

�̂z

�̂z�h�̂x Î

0
�h�̂x

Î

Ĥ =
X

j

�̂z

j

�z

j+1 � h�̂x

j

auto sites = SpinOne(N);

auto ampo = AutoMPO(sites);
for(int j = 1; j < N; ++j)
 {
 ampo += 0.5,"S+",j,"S-",j+1;
 ampo += 0.5,"S-",j,"S+",j+1;
 ampo += "Sz",j,"Sz",j+1;
 }
auto H = MPO(ampo);

auto psi = MPS(sites);

dmrg(psi,H,sweeps);

New AutoMPO feature of ITensor:

05 DMRG

DMRG is typically the best method for finding
ground states of 1d Hamiltonians

Want to solve H| i = E| i

Think of H as MPO

Important: MPS should be in definite gauge
I.e. most tensors unitary

Important: MPS should be in definite gauge
I.e. most tensors unitary

This way, tensors left/right of center define
orthonormal bases

This way, tensors left/right of center define
orthonormal bases

This way, tensors left/right of center define
orthonormal bases

↵0

↵

= �↵0

↵

Can project Hamiltonian into this basis

Can project Hamiltonian into this basis

=

Doing the same on the right gives

Doing the same on the right gives

Doing the same on the right gives

H̃| ̃i = Ẽ| ̃i

Can efficiently multiply effective times

Order important!

1

3 4

5

2 ~ m3

2
3 ~ m2
4 ~ m2

5 ~ m3

| ̃iH̃

Use Lanczos/Davidson to solve
(sparse matrix eigensolver)

Noack, Manmana, AIP Conf. Proc. 789, 93 (2005)

Now, with improved wavefunction,
shift orthogonality center (using SVD)

Important to truncate to m singular values
(“number of states kept” in DMRG)

Now, with improved wavefunction,
shift orthogonality center (using SVD)

Important to truncate to m singular values
(“number of states kept” in DMRG)

Grow projected Hamiltonian

Grow projected Hamiltonian

Grow projected Hamiltonian

Grow projected Hamiltonian

Recover older projected Hamiltonian
saved in memory

Iterating leads to sweeping procedure

Iterating leads to sweeping procedure

1. Solve eigenproblem

Iterating leads to sweeping procedure

1. Solve eigenproblem

2. SVD wavefunction

Iterating leads to sweeping procedure

1. Solve eigenproblem

2. SVD wavefunction

3. Grow effective H

Iterating leads to sweeping procedure

Iterating leads to sweeping procedure

Iterating leads to sweeping procedure

Iterating leads to sweeping procedure

Iterating leads to sweeping procedure

Iterating leads to sweeping procedure

itensor_tutorial/06_DMRG

2. (Line 65) SVD the two-site tensor phi into
 factors A, D, B. The last argument to svd should be
 "args" in order to pass truncation parameters:

1. Read through dmrg.cc; compile; and run

We’ll implement a key missing step of the DMRG algorithm

3. (Lines 75, 85) Multiply the singular-value tensor D back
 into A or B as appropriate to shift orthogonality center
 of MPS

4. Add code to print out the energy at each step (or even
 to measure other local operators).

svd(...,args);

