http://itensor.org

http://itensor.org

ITENSOR http://itensor.org

C++ library for tensor networks

Tensors, matrix product states (MPS), DMRG

Usetful for “post-DMRG"” methods too:
- MPS algorithms (time evolution, METTS)
- MERA
- PEPS

Much more than a “black box"” for DMRG

http://itensor.org

ITensor website http://itensor.org/

\ V4

ﬂﬂTENSDR

/

Introduction

ITensor—Intelligent Tensor—is a C++ library for implementing tensor product
wavefunction calculations. It is efficient and flexible enough to be used for
research-grade simulations.

Features include:

Latest version is v2.0.8
Clone from github (preferred)
Download: tar.gz, zip

Report bugs: code
e Named indices; no need to think about index ordering website

Full-featured matrix product state and DMRG layer Follow: @ITensorLib
Quantum number conserving (block-sparse) tensors; same interface as

Complex numbers handled lazily: no efficiency loss if real SCEIt NEWS

Easy to install; only dependencies are BLAS/LAPACK and C++11 e Tutorial on Fermions and
Jordan-Wigner Mapping

ITensors have an Einstein summation interface making them nearly as easy
to multiply as scalars: tensors indices have unique identities and matching
indices automatically contract when two ITensors are multiplied. This type of

interface makes it simple to transcribe tensor network diagrams into correct, ¢ ITensor at 2016 Sherbrooke
efficient code. Summer School

e New Discussion Forum

e Version 2.0 released!

For example, the diagram below (resembling the overlap of matrix product
states) can be converted to code as

-

= A*B*C*D

w)- (>
OF--10

-

Selected applications of ITensor:

| I I
) U/J=4.7(1)

J/t arg(Ag)/2n arg(Ay)/27n 0.8+ o, U/J=10.3(1)
—0.0025(9) 0.327(1) A/J=8
O O 20 _0.022(5) 0.313(6) N
O) o 0-6[
) h 0.001(1) 0.322(2) 3 9
i L5 0.000(7) 0.311(7) c
O O © e 0.001(2) 0.296(2) ‘_(g 0.4
10 0.000(7) 0.305(8) Q AJ=3
O O gng —0001(2) 0.289(2) £ 024
: 0.003(7) 0.304(9)
AN . 05 —0.005(3) 0.245(3) @ A/J=0
. 4 ' 0.02(2) 0.28(1) o—éﬁékmxoo4»o_o_{f{F£Ho o0—o o
02 —0.008(4) 0.119(6) | | | | | |
01 —0.011(4) 0.065(5) 0 10 20 30
e . Time (1)
- Jiang, Mesaros, Ran, _
------------------ PRX 4, 031040 [2014] Schreiber et al., o
“Observation of many-body localization...”,
arxiv:1501.05661 [2015]
0 8 16 24 32
0.4 K logyo (A5 — Ao)
0.3+ - -9
‘E‘ 0.2 B —4 \/\/
5 |
Q 01_ / -
§] L | / | | | | | | | —6
S oag ' '
SE -8
3
S 0.3
l ~10
0.2 e=10"°
) e=10""
0.1 . . - —12 —10-7
| — Exact (DMRG) — Unrestricted LSDA — Restricted LSDA | e=10
o 1 1 P B L 5 10 15 20 n
200 208 216 224 232

X

Stoudenmire, Wagner, White, Burke,

PRL 109, 056402 [2012]

Dolgov, Khoromskij, Oseledets, Savostyanov

CPC 185, 1207 [2014]

C++
lines end with ;

Basic data types: /
int 1 = 5;‘k//////7

Real r = 2.3456;

string s = "some string";

Printing:

println(i); //prints “5”

println("r 1s ",r); //prints “r 1is 2.3456”

C++

User defined types (objects)

Construct an object of type MyClass:

auto m = MyClass("MyClass m", 5);

Objects can have methods:

m.setValue(6);

println(m.name());

C++

Some objects can be called like functions:

auto f = FType();

int j = f(5);

Other objects behave like numbers:

auto x Numerical(1.);
auto y = Numerical(2.);

auto r X + Vy;

println(r.value()); //prints 3

Structure of an ITensor C++ program:

#include “itensor/all.h”
using namespace 1tensor;

int main()

{

//
// Code will go here
//

return 0;

¥

Single Site
Wavefunction

Consider a single-site wavefunction,
for example a spin 1/2

Single-site basis:

s=1) = |1)
s=2) = ||

Most general wavefunction for a spin 1/2:
2
) = Z Vs|s)
s=1
The Vs are complex numbers.

Slight abuse of notation, may refer to either ‘¢> or g
as the wavefunction.

Single-site wavefunction as a tensor:

S

.

% EE—

USING ITENSOR:

auto s = Index("s", 2);

auto psi = ITensor(s);

Now initialize % First choose ‘¢> — |T>

1

auto s = Index("s",2);
auto psi = ITensor(s);

psi.set(s(1), 1.0);

PrintData(psi);

Now initialize % First choose ‘¢> — |T>

-

auto s = Index("s",2);
auto psi = ITensor(s) =

ITensor r=1: (s,2,Link,273)
psi.set(s(1), 1.0) (1) 1.00

4

PrintData(psi);

Make some operators:

auto Sz = ITensor(s,prime(s)); <s>’ ;,
auto Sx = ITensor(s,prime(s)); S S

New |Tensors start out set to zero

What does “prime” do?

prime(s) returns copy of s with a “prime level” of 1

Could use different indices (say s and t),
but s’ more convenient - can remove prime later

Our operators:

auto Sz = ITensor(s,prime(s));

auto Sx = ITensor(s,prime(s));

Set their components:

Sz
Sz

SX
SX

.set(s(1),prime(s) (1),
.set(s(2),prime(s)(2),

.set(s(1),prime(s)(2),
.set(s(2),prime(s) (1),

+0.5);
-0.5);

+0.5);
+0.5);

S S
S S

Let’'s compute Sx‘¢> — ‘¢>

CAREEN 5

In code,
ITensor phi = Sx * psi;
* operator contracts matching indices.

Indices s and s’ don’t match because of different prime
levels.

What state is phi ?

CARREE 3

ITensor phi = Sx * psi;

PrintData(phi);

What state is phi ?

(Aaz)s’sws: s — ‘

ITensor phi = Sx * psi;

PrintData(phi);

phi =
ITensor r=1: (s,2,Link,273)"

(2) 0.500

More interesting 15 : choose f — 7-(/4 and

-

cos /2 f

:

Real theta = Pi/4.;

sin 6 /2

psi.set(s(1),cos(theta/2));
psi.set(s(2),sin(theta/2));

PrintData(psi);

More interesting 9’ : choose) — 71-/4 and

1

‘ = cos /2 6

2

‘ = sin 6/2

Real theta = Pi/4.;

pS1 =
psi.set(s(1),cos(thg ITensor r=1: (s,2,Link,273)
psi.set(s(2),sin(t (1) 0.92388

1 (2) 0.38268

PrintData(psi);

Diagrammatically, measurements (expectation values)

look like:
(15 |)

For convenience, make;

ITensor cpsi = dag(prime(psi)); ?

Calculate expectation values:

auto zz = (cpsi * Sz * psi).real();

auto xx = (cpsi * Sx * psi).real();

auto zz = (cpsi * Sz * psi).real();

auto xx = (cpsi * Sx * psi).real();

Printing the results,

println("<Sz> = " ,zz);

println("<Sx> !

[
X
X

—

we get the output

0.35355
0.35355

<Sz>
<Sx>

v/ (0.35355)2 + (0.35355)2 = 1/2

More slowly:

auto Zpsi = Sz * psi; Zpsl = s

Index s matches, so it's automatically contracted.

Zpsi and cpsi share Index s’
* contracts it, leaving a scalar ITensor

cpsi
auto expect = cpsi * Zpsi; S '

expect = ,
Zpsi

auto zz = expect.real();

Review:
e Construct an Index auto a = Index("index a",4);
e Construct ITensor (indices a, b, ¢)

auto T = ITensor(a,b,c);

® Set ITensor components
T.set(a(2),c(3),b(1), 7.89);

® Prime an Index b — b’
prime(b)

* The * operator automatically contracts
matching Index pairs

Quiz:

If we * the following tensors,
how many indices remain?

b b
*~: o
bl

Quiz:

If we * the following tensors,
how many indices remain?

b C
o 4>
C d

Code hands-on session:
itensor tutorial/01 one site

1. Compile by typing “make” then run by typing “./one”

2. Change psi (line 22) to be an eigenstate of Si

1
¥) = E(ITHM)

3. Compute overlap of [¢) with |¢) = S, |1)) :

auto olap = (dag(psi)*phi).real();

Try also normalizing |¢) first using the code

phi /= phi.norm();

Two Site
Wavetunction

Most general two-site wavefunction is

V)

|
<
Va
—t
V)
\Y

VA
-

Amplitudes are a rank-2 tensor

S1 $2

G = QD

Let's make a
singlet

il
i

USING ITENSOR:

Index("s1",2,Site);
Index("s2",2,Site);

auto si
auto s2

auto psi = ITensor(sl1,s2);

psi.set(s1(1),s2(2),+1./sqgrt(2));
psi.set(s1(2),s2(1),-1./sqgrt(2));

Why Site tag in Index constructor?

Index("s1",2,Site);
Index("s2",2,Site);

auto s
auto s2

Index objects can have an optional "IndexType" tag

Useful for priming just one type of Index, for example

Default type is L1nk, physical indices of type Site

Let’s make the Heisenberg Hamiltonian H = Sy -

. 1 1
H = S;S5 + 55?32— - 551—3;

First create operators, for example S*

auto Sp1 = ITensor(sl,prime(s1));
Sp1.set(s1(2),prime(s1)(1), 1);

Multiply and add operators to make H:

auto H = Sz1*xSz2 + 0.5*%Sp1*Sm2 + 0.5*Sm1*Sp2;

Tensor form of H

44104144
=

Showing Index labels

/ /
S1 59

o

S1 S92

Compute singlet energy with this Hamiltonian:

/ /
S1 59

/ /
S1 59

s

H)

S1 $2

auto Hpsi = H * psi;
Hpsi.mapprime(1,0);

Real E = (dag(Hpsi) * psi).real();
Print(E);
//prints: E = -0.75

Compute singlet energy with this Hamiltonian:

/ /
S1 59

S1 S2

amh ;-

H)

S1 $2

auto Hpsi = H * psi;
Hpsi.mapprime(1,0);

Real E = (dag(Hpsi) * psi).real();
Print(E);
//prints: E = -0.75

Or compute energy in one shot:

dag(prime(psi))

lﬂﬂng —

Real E = (dag(prime(psi)) * H *x psi).real();

Print(E);

//prints: E = -0.75

We'll use imaginary time evolution to find this
Hamiltonian’s ground state

e~ H1210) o o)
itensor tutorial/02 two sites

1. Read through two.cc, compile and run by typing “make two"”
then run by typing “./two”

2. Open imag_tevol.cc and implement the code to make e PH

using a Taylor series (summed using a recursive formula)

3. Try increasing 3, compile, and re-run code
until it converges to the ground state

Solution for missing code (near line 120 of imag tevol.cc):

for(int ord = max_order-1; ord >= 1; --ord)
{
expH = expH * DbH;
expH /= ord;
expH.mapprime(2,1);
expH = expH + Id;

¥

SVD

The density matrix renormalization group (DMRG)
uses a variational wavefunction known as a

(MPS).

Matrix product states arise from compressing a
one-dimensional wavefunction using the

(SVD).

Let’'s see how this works...

Recall:
Singular-value decomposition

Given rectangular (4x3) matrix M

M =

Can decompose as

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

0.435839 0.223707 0.10
0.435839 0.223707
0.223707 0.435839 0.10
0.223707 0.435839 -0.10

0.933 0
0.300 O
0.200

-0.10

0

0.707107 0.707107 O
-0.707107 0.707107 O
0 0 1

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

A

0.933 0 0
0 0300 O
0 0 0.200
D

0.707107 0.707107 O
-0.707107 0.707107 O
0 0 0 1

Matrices A and B are "isometries":

ATA =1
BB =1
D diagonal

Elements of D can be chosen:

(1) Real

(2) Positive semi-definite
(3) Decreasing order

Keep fewer and fewer elements of D:

1/2
1/2
1/2
1/2

n
<

A
1/2 12
1/2 -1/2

1/2 1/2
1/2 -1/2

M — M| =0

0.933
0
0

0.435839
0.435839
0.223707
0.223707

D

0 0
0.300 0

0 0.200

0.223707 0.10
0.223707 -0.10

0.435839
0.435839

0.10
-0.10

B

0.707107 0.707107 O
-0.707107 0.707107 O
0 0 0 1

Keep fewer and fewer elements of D:

A

1/2 -1/2 1/2
1/2 -1/2 -1/2
1/2 1/2 1/2
1/2 1/2 -1/2

:M2:

|My — M||* = 0.04

0.933
0
0

0.435839
0.435839
0.223707
0.223707

0.223707
0.223707
0.435839
0.435839

o O O O

B

0.707107 0.707107 O
-0.707107 0.707107 O
0 0 0 1

Keep fewer and fewer elements of D:

A D B
1/2 -1/2 1/2 0933 0 0 0.707107 0.707107 0
1/2 -1/2 -1/2 0 0 O -0.707107 0.707107 0
1/2 1/2 1/2 0 0 0 0 0 0 1
1/2 1/2 -1/2 | — - = ~

0.329773 0.329773
— Ma — 0.329773 0.329773
— 3 — 0.329773 0.329773

0.329773 0.329773

o O O O

|Ms — M| =0.13 = (0.3)* + (0.2)°

Keep fewer and fewer elements of D:

A D B
1/2 -1/2 1/2 0933 0 0 0.707107 0.707107 0
1/2 -1/2 -1/2 0 0 O -0.707107 0.707107 0
1/2 1/2 1/2 0 0 0 0 0 0 1
1/2 1/2 -1/2 | — - = ~
4)

Truncating SVD =

= My = Controlled approximation
for M

|Ms — M||* =0.13 = (0.3)* + (0.2)°

Recall:

Most general two-spin wavefunction

S1 $2

Vo = QD

Can treat as a matrix:

Vsiso = 51—

SVD this matrix:

ws]_SQ J—

USING ITENSOR:

Say we have a two-site wavefunction psi S1 82

Declare A,D,B to hold results of SVD H

auto A = ITensor(s1)
ITensor D,B;

Call SVD function

svd(psi,A,D,B);

What have we gained from SVD?

Generic two-spin wavefunction (say spin S):

S1 S92

(2S5+1)? parameters
“ Not clear which parameters

important, unimportant

Compressed wavefunction:

S1 52 SVD tells us which

parameters are important,
might be very few!

Later see that # parameters also scales much better

This form of wavefunction known as
(MPS)
S1 S2

(-0

Why? Amplitude a product of matrices:

‘\Ij> — Z AslaDaoz’Boz’52|51>‘32>

S1,0,0 .89

Schollwock, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

Canonical form

‘\Ij> — Z AslaDaa’Ba’32|51>‘32>

S1,0,0 .89

Schollwock, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

‘\Ij> — Z AslaDaa’Ba’32|51>‘32>

S1,0,0 .89

Schollwock, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

Left-canonical

W) = Z Vs1ar Barsy|51)]82)

/
S1, 892

Schollwock, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

Matrix B is “right orthogonal” (from SVD)
BT

. =D

B

BB =1

Schollwdck, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

Canonical form

‘\Ij> — Z AslaDaa’Ba’32|51>‘32>

S1,0,0 .89

Schollwock, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

‘\Ij> — Z AslaDaa’Ba’32|51>‘32>

S1,0,0 .89

Schollwock, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

Right-canonical

W)=) Asatas,|51)]s2)

S1,,592

Schollwock, Ann. of Phys. 326,96 (201 1)

MPS have different equivalent forms, or “gauges”

Matrix A is “left orthogonal” (from SVD)
AT

i - C

A
ATA =1

Schollwock, Ann. of Phys. 326,96 (201 1)

We’'ll use the SVD to study the entanglement of a
two-site wavefunction

itensor tutorial/03 svd

1. Read through svd.cc; compile; and run

2. Make a normalized wavefunction that is the sum
(1-mix)*prod + mix*sing

3. SVD this wavefunction ITensor A(s1),D,B:
auto spectrum = svd(psi,A,D,B);

3. Compute the entanglement entropy using the density
matrix spectrum returned by svd.

nth eigenvalue: spec.eig(n); //n=1,2,3,...
number of eigenvalues: spec.size();

Four Sites

Say we have a 4-site MPS.
How efficiently can we compute properties?

Depends on the gauge!

E M M? ., M., M:3t|s1525354)

1G9 xXo2(X3

Assume we know nothing about the MPS
Put it in a useful gauge:

Assume we know nothing about the MPS
Put it in a useful gauge:

“—— Contract

S1 S92 S3 S4

Assume we know nothing about the MPS
Put it in a useful gauge:

“—— Contract

S1 S2 S3 S4
—> SV

D

Assume we know nothing about the MPS
Put it in a useful gauge:

“—— Contract
S1 S2 83 54
- SV

S1 S9 S3 S4

O-O8-8 oo

D

Note that site 4 tensor now right orthogonal

Note that site 4 tensor now right orthogonal

Recall this means

3 -3

Can repeat gauge transformation (repeated SVD)

Contract,
SVD &
regroup

Can repeat gauge transformation (repeated SVD)

Contract,
SVD &
regroup

Contract,
SVD &
regroup

What have we gained?

Consider measuring an operator on site 1

DO

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

E—

)

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

(V|
A
)

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

<141> — Z 77;3’1523354 As’lsl ¢S1 525354
{s}

What have we gained?

Consider measuring an operator on site 1

First, general wavefunction:

Cost scales
exponentially!

241in this case

<141> — Z 77;33523354 As’lsl ¢S1 525354
{s}

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

What have we gained?

Consider measuring an operator on site 1

Now gauged MPS:

Use right
orthogonality

Much simpler computation!

What have we gained?

How much simpler a computation?

Choose always < m singular values
in each SVD

What have we gained?

How much simpler a computation?

Choose always < m singular values
in each SVD

)
Link index runs from 1...m

(from SVD)

What have we gained?

How much simpler a computation?

Choose always < m singular values
in each SVD

Site indices

run from 1...d<_, T

Link index runs from 1...m
(from SVD)

Computational cost ~ d? m (compared to d*)

GAUGING AN MPS USING ITENSOR:

Create lattice sites and MPS

auto sites = SpinHalf(N);
auto psi = MPS(sites);
computeGroundState(psi);

Gauge to site number 2

psi.position(2);

DO

GAUGING AN MPS USING ITENSOR:

Create lattice sites and MPS

auto sites = SpinHalf(N);
auto psi = MPS(sites);
computeGroundState(psi);

Gauge to site number 2

psi.position(2);

T

MEASURING AN MPS USING ITENSOR:

Measure Sz on second site

auto sz2 = (dag(prime(psi.A(2),Site))
* sites.op("Sz",2)
* psi.A(2)).real();

Recall:

-

MEASURING AN MPS USING ITENSOR:

Measure Sz on second site

auto sz2 = (dag(prime(psi.A(2),Site))
* sites.op("Sz",2)
* psi.A(2)).real();

Recall:

-

We'll measure the dimer order of the J1-J> model
itensor tutorial/04 mps

1. Read through j1j2.cc; compile; and run

2. Study the code [lines 46-51] which
measures Bx/o = Sn/2 - Sn/o41

3. Create similar code that measures the bond strength
on bonds (N/2-1) and (N/2+1) [lines 62 and 73]

These are combined into the "dimer order parameter”

1 1

D = (Bny2) = 5(Bny2-1) = 5 (Bny241)

4. Run the code for various sizes N and plot the results.
How does large J2/Jq differ from small J2/J1 ?

Solution for missing lines of j1j2.cc:

val += -0.5 * (dag(prime(wf2,Site)) * B2 x wf2).real();

val += -0.5 * (dag(prime(wf3,Site)) * B3 x wf3).real();

Trotter

Just as we can measure one-site operators,
can measure two-site operators

Recall:

Just as we can measure one-site operators,
can measure two-site operators

Recall:

Since two “center” sites have orthogonal
environment, ok to apply operators:

=
&6

Since two “center” sites have orthogonal
environment, ok to apply operators:

— -

Since two “center” sites have orthogonal
environment, ok to apply operators:

— -

l SVD &
regroup

e

Would NOT be ok on another bond without
regauging

—
Gy W

SVD truncation not globally optimal except at
orthogonality center

Would NOT be ok on another bond without
regauging

SVD truncation not globally optimal except at
orthogonality center

Q: What can we do with this capability?

=
&6

Q: What can we do with this capability?

=
&6

A: For short-ranged Hamiltonians, can time evolve

Trick is to use Trotter decomposition

Useful for Hamiltonians of the form

H=H, +Hy+ Hs+ ...

For example

For a small time step T

e—TH ~ 6—7H1/2€—7H2/26—7—H3/2 o

. .6—7H3/26—7H2/26—’7‘H1/2 _I_ 0(7_3)

Diagramatically,

R

Diagramatically,

R

—

5

.

5

.

5

.

Diagramatically,

R

—

5

.

5

.

IR

U U

S

.

S

.

—

Apply to MPS as follows:

—
W

Apply to MPS as follows:

e

Apply to MPS as follows:

T

Apply to MPS as follows:

—
G WA

Apply to MPS as follows:

S a——

Apply to MPS as follows:

O 8-8

Apply to MPS as follows:

—
o088

Apply to MPS as follows:

O

Apply to MPS as follows:

O--O-8

Apply to MPS as follows:

5
o008

Apply to MPS as follows:

O

Apply to MPS as follows:

8-

Apply to MPS as follows:

5
0088

Apply to MPS as follows:

e

Apply to MPS as follows:

SO0

Apply to MPS as follows:

5
oY W

Apply to MPS as follows:

OO

Apply to MPS as follows:

OO

Interesting applications:) = e T 1)

It T real (imaginary time evolution), enough steps
will give

If 7 imaginary, evolve in real time, study [1]

Evolving through imaginary time 3/2 = 1/(2T)
simulates [2]

1] White, Feiguin PRL 93, 076401 (2004)
2] White PRL 102, 190601 (2009)

We'll implement time evolution for the Heisenberg chain
itensor tutorial/05 gates
1. Read through gates.cc; compile; and run

2. Apply the gate G to the MPS bond tensor AA.
The gate G can be multiplied times AA as if it's an ITensor

3. Reset the prime level back to zero using AA's
.noprime() class method

3. Try increasing the total time “ttotal” to imaginary time
evolve toward the ground state.

(Exact energy for 20 sites: Ep = -8.6824733317)

MPO

We have seen a Hamiltonian looks like this:

We have seen a Hamiltonian looks like this:

Does a 1d Hamiltonian have a local form/
factorization like an MPS?

Want something like

Operator (H) as product of “matrices”

Focus on just one tensor

s s

Focus on just one tensor

Y

Focus on just one tensor

Specific values for horizontal bonds
gives site operator

s

Focus on just one tensor

Specific values for horizontal bonds
gives site operator

.

Focus on just one tensor

Specific values for horizontal bonds
gives site operator

s s

—> Each tensor a matrix of site operators!

—> Each tensor a matrix of site operators!

Hamiltonians can be written

—> Each tensor a matrix of site operators!

Multiply out

—> Each tensor a matrix of site operators!

Multiply out
I I 1
| | N A N A
| 0 1 | o°] o°] 0
]
| ~ | N
L1

—> Each tensor a matrix of site operators!

Multiply out
I I 1
| | N A N A
| 0 1 | o°] o°] 0
]
| ~ | N
L1

o ®f2-|—f1®(3§

This Hamiltonian is

H=) 67

~>

More complicated example

More complicated example

More complicated example

More complicated example

More complicated example

More complicated example

® —

I I
5% 0 6 0
~he® 6% I | |-h&" 6°

Hamiltonian is

L Az s o /\:%:‘
H = 0;0:11 — ho

N~

New AutoMPQO feature of ITensor:

auto sites = SpinOne(N);

auto ampo = AutoMPO(sites);
for(int j = 1; j < N; ++j)
{
ampo += 0.5,"S+",3,"S=-",j+1;
ampo += 0.5,"S-",3,"S+" j+1;
ampo +: l|SZ“’j’“SZ“’j+1;
J
auto H = MPO(ampo);

auto psi = MPS(sites);

dmrg(psi,H, sweeps);

DMRG

DMRG is typically the best method for finding
ground states of 1d Hamiltonians

Want to solve H|\If> — E‘\I/>

Think of H as MPO

GGG
O-O-O-0-0-C

Important: MPS should be in definite gauge
l.e. most tensors unitary

GGG
O-O-O-0-0-C

Important: MPS should be in definite gauge
l.e. most tensors unitary

GGG
HO-0-8-0

This way, tensors left/right of center define
orthonormal bases

This way, tensors left/right of center define
orthonormal bases

This way, tensors left/right of center define
orthonormal bases

Can project Hamiltonian into this basis

44

Can project Hamiltonian into this basis

44

Doing the same on the right gives

Doing the same on the right gives

Doing the same on the right gives

Can efficiently multiply effective H times |\I~I>

Order important!

2 ~m
3 ~m
4 ~m

5~m

@

@

e
b

®

Use Lanczos/Davidson to solve
(sparse matrix eigensolver)

-G
i

Noack, Manmana, AIP Conf. Proc. 789, 93 (2005)

Now, with improved wavefunction,
shift orthogonality center (using SVD)

Important to truncate to m singular values
(“number of states kept” in DMRG)

@R et S

Now, with improved wavefunction,
shift orthogonality center (using SVD)

Important to truncate to m singular values
(“number of states kept” in DMRG)

008

Grow projected Hamiltonian

Grow projected Hamiltonian

Grow projected Hamiltonian

Grow projected Hamiltonian

Recover older projected Hamiltonian
saved in memory

-

lterating leads to sweeping procedure

lterating leads to sweeping procedure

1. Solve eigenproblem

lterating leads to sweeping procedure

1. Solve eigenproblem

2. SVD wavefunction

lterating leads to sweeping procedure

1. Solve eigenproblem

2. SVD wavefunction

3. Grow effective H L [:] [:]

lterating leads to sweeping procedure

lterating leads to sweeping procedure

lterating leads to sweeping procedure

lterating leads to sweeping procedure

lterating leads to sweeping procedure

lterating leads to sweeping procedure

We'll implement a key missing step of the DMRG algorithm

itensor tutorial/06 DMRG

1. Read through dmrg.cc; compile; and run

2. (Line 65) SVD the two-site tensor phi into
factors A, D, B. The last argument to svd should be
"args" in order to pass truncation parameters:

svd(...,args);

3. (Lines 75, 85) Multiply the singular-value tensor D back
into A or B as appropriate to shift orthogonality center

of MPS

4. Add code to print out the energy at each step (or even
to measure other local operators).

