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Electronic N-body problem

® Let us consider a system of N interacting electrons in an external

potential V.(r), such as the one generated by the nuclei.

® [t is completely described by its wavefunction:
Y = y(ry,ra,...1TN)

which is obtained by solving the Schrodinger equation:

1
ern_rml 'ﬁ:EW

m>n

A V2
H’ﬁ — Z _7 + Vext(rn) +



One particle approximations

If there was no electron-electron interaction, the variables could easily
be separated and the N-electrons wavefunction could be replaced by the

product of N 1-electron wavefunctions:

Y(ri,ra,....ry) = ¢1(r))d2(r2) - - - oy (ry)

which are the solutions of a 1-electron Schrodinger equation:
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One particle approximations

® By solving the 1-electron Schrodinger equation:

[_%vz i Vext(r)] 0 (r) = €,0,(r)

we obtain the band structure ¢, which can be determined experimentally

by photoemission or inverse photoemission (valence or conduction bands).
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One particle approximations

® By solving the 1-electron Schrodinger equation:

1
5V Vo) 00 (6) = 6,041
we obtain the band structure ¢, which can be determined experimentally

by photoemission or inverse photoemission (valence or conduction bands).
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Green’s functions theory

and quasiparticles



Definition of the 1-particle Green’s function

® Green’s function theory and the quasiparticle concept constitute an

elegant alternative to DFT to solve the many-body problem.
® The 1-particle Green’s function G(ry,t;,r,,%) 1S
G(r1,11,12,12) =—i(N, 0T [Yr(r1,11) ¥ (r2,12)] N, 0)

:—i<N,O lA[/(l'l,l‘l)l/[\/T 2,t2)‘N,0>9(t1 —l‘z)
—|—i<N,O l,ll\/T(rz,l‘z) I 1,1‘1)’N,0>9(l‘2—t1)

(r
(r
where T is the time-ordering operator:

0 yi(ry,n) ifty >t
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6(¢) 1s the Heaviside step function [ () =1 fort > 0 and O for r < 0 |,
 and ' are the field operators in the Heisenberg representation for

annihilation and creation, respectively.



Interpretation of the 1-particle Green’s function

® [t can be interpreted as the probability amplitude:

— to detect an electron at point r; and time #; when an electron has

been added to the system at point r, and time t, (if ; > 1,),

— to detect a hole at point r; and time #; when an electron has been

added to the system at point r, and time #, (if , > 7).
Hh>0h 1 > 1
<N,O|I/[\/(I’1,t1)l’/\ﬂ(l‘2,t2)|N, 0> <N7Olfl\ﬂ(r27t2)(\lj(r17[1)|N7 O>




Schrodinger representation

® Assuming that the Hamiltonian 1s not an explicit function of time,

A

we now move to the Schrodinger representation:
P(ry,n) =™ g(r)e
e Using the relation: H|N,0) = Ey |N,0)
the 1-particle Green’s function G(ry, t;,r;, ;) Writes:
G(r1,t1,12,1) = — ieENO1=2) (N 0| Gr(xy e H 2t (1) [N, 0Y0 (1 — 1)
+ieEno=t) (N O (ry)e 21 (v )N, 0)0 (12 — 11)

® [t is now explicitly only a function of the time difference 7 =t,— 15,

we write:
G(ry,t1,1r,1) =G(r,12;7)
= — ie™NOT(N, 0[P (r1)e T (1) |V, 0)0 (1)
+ieENOT (N, 01 (r2) e ¥ P (r1) |V, 0) 6 (— 1)



Lehman representation

® In order to remove the time operators inside the expectation values,
we introduce the complete set of states with M particles: |M,n)

where m 1s a general label to describe the possible excited states.

® Since the states form a complete set, we can write the closure relation:

). |M.n)(M,n| =1
M .n

and also:
H|M,n) = Ey ,|M,n)
® Introducing the closure relation between the pairs of exponentials in the
expression of the 1-particle Green’s function, we get:
G(r1,r2:7) = — i Y el Ex0 B (N 01y (1) M, m) (M, n| ' (12)|N, 0) (1)
M.n

i Y e BN ET (N, 017 (r2) M, ) (M n (1IN, 008 (—1)
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Lehman representation

® Most often, it 1s more convenient to work with the Fourier transform of

the 1-particle Green’s function:

| [

= — G 1 7)e'%dt
27 J o (F1, T2 7)e

G(ry,r; o)

® Thus, we have:

Gr,r0) = Y (N,0|Wr(x1)|M,n)(M,n|y (r2)|N,0)
1,12, = a)_(EM’n_END)_'_in

+ Z <N,O|I/A/T(r2)|M,n><M,n\l/7(r1)]N,O>
Mn o + (EM,n — EN,O) —1n

where the infinitesimals +i# reflect the time ordering.



Lehman representation

® The expectation values (N,0|W(r1)|M,n) and (M, n| ' (r2)|N,0) are
different from zero only for M=N+1; while (M,n|{¥(r;)|N,0) and
(N,0| W (r2)|M,n) are different from zero only for M=N—1.

® Thus, the 1-particle Green’s function can be written as:
N,OlW(r)|N+ 1,0 (N+1,n|¥" (r)|N,0
(o eri0) — Y OOV = L) (V- Ll (r2)[N.0

n O — (Ent10—Enp) +in

_I_Z <N70’IAI/T(I.2)‘N_ 17n><N_ 17”’(\//(1.1)‘1\]7(»
- O + (EN—I,n —EN,()) —1n




Lehman representation

® Lt us consider the energy terms appearing at the denominators, they

can be rewritten as:

Eni1n—Eno= (Ent1n—Ent10)+ (En+10—ENno)

Eno—En—1n=(Eno—En—10)+ (ENn—10—ENn—11)

® The difference En,;o— Eyo represents the minimum energy needed to
add one electron to a system of N electrons.
It 1s the electron affinity (EA) :

EA=En110—Enp
® The difference Eyo— Ey_1 o represents the minimum energy needed to
remove one electron to a system of N electrons.

It is the ionization energy (IE) :

IE=FEno—ENn-10



Lehman representation

® [t can be shown that IE < EA, so that if we define:
€, = EA—IE
= (Ent1,0 — Eno) — (Eno — En—1)0)
the quantity &, 1s positive.

® In an atomic or molecular system, we have:
IE (energy of HOMO) < EA (energy of LUMO).

® In a solid, we define the chemical potential 4 such that:

IE < u <EA

In the thermodynamic limit (N, V— oo, with N/V=cst), we distinguish:
— metallic systems in which ¢, = 0 (IE~u~EA)
— 1nsulating systems in which ¢, > 0 (IE<u <EA)



Lehman representation

® Coming back to the energy terms appearing at the denominators:

>0 EA

Ve

Eni1n—Eno = (ENt1n—En+10)+ (EN+10—Enyo)

J

r N\

Eno—En—1n,=(Eno—En-10)+ (EN-10—EN—11)

\ 4 N >4
-~

IE <0

we define the excitation energies of the system:

p
EN7() _EN—I,n when g, < U
En = 4

\ EN+1,n —EN70 when g, > U



Lehman representation

® If we define the Lehman amplitudes as:

)
N —1,n|¥(r)|N,0) wheng, <
o= | - LAlP N0 u

(N,0|@(r)|N+1,n) wheneg, > pu

\

the numerators of the 1-particle Green’s function can be rewritten like:

(N0 (12) [N — 1,n) (N — 1,n[(r1)|N,0) = ¢ (r2) $u(r1)

(N0 @ (r1)|N +1,m) (N + 1,n|§' (12)|N,0) = ¢ (r1) ¢, (r2)



Lehman representation

® The 1-particle Green’s function can thus be written as :

. B ¢n(r1)¢l;k (rZ)
G(r17r27 (0) _; w—¢&,+ ln Sgn<8n — ‘U)

p
EN,Q _EN—I,n <N— l,n\l/A/(r)]N, O> when g, < U
En = ¢n(l’) — < A
Exi1n—Eno (N.O|W(E)N+1,n) when g >

\

® Its poles are thus located as follows:

(hole excitations)

XXX XXX XXX X X EA Re(w)
S

L 1
D E— >

IE ,u_m{xxxxxxxxxxx...
(particle excitations)



Spectral representation

® The 1-particle Green’s function can also be cast into the so-called
spectral representation like:

G(ry,r;0) = /

C

A(I‘l,l‘z; (x)/)
w—

do'

where the integral 1s to be taken on the contour C defined as follow:

A
u Im(w)
- .
® The is spectral function is simply given by:
A(ry,12; 0 Z% ri), (r2)o(o—g,)

¢n(r):<'< 1, n[W(r)|N,0) when g, < u

(N,0|G(r)|[N+1,n) when g, > u

\



Spectral representation

® It can be shown that the spectral function satisty the following sum-rule:
~+o0
A(ry,r;0)dow =0(r; —r3)

—0Q

® And, using the Sokhatsky-Weierstrass theorem which states that

lim / ) ZFin'/f(x)S(x)dx%—P/@dx

n—ot) x+in

where P denotes the Cauchy principal value, we have that

1
A(ry,ry;0) = - Im|[G(r{,1r5; 0)]|



Quasiparticles

® In an homogeneous and crystalline system, we have that:
G(l‘l,l‘z; a)) — G(l‘1 — I, (1))
it 1s thus more convenient to perform a momentum transformation of

the 1-particle Green’s function:
G(k, w) = / G(ri —r2;0)e ® T T2)g(r) —p,)

® Using plane-wave states as a basis for the field operators:
_ Zeik-ré\k Ze—zk r AT
k

the 1-particle Green’s function rewritten as:

|¢nk‘2
k.o) =
Gk, @) ;w—£n+insgn(£n—u)

)
" < (N —1,n|¢k|N,0) wheng, <pu
nk —

\ (N,0|ék|N+1,n) wheng, > pu



Quasiparticles

® The spectral representation thus becomes:

G(k. o) :/A(k,a)’)

/
o—w dw

with
Ak o)=Y |pux]’ (0w —¢,)

® For non-interacting electrons, we have:
é\k |N70> — ’N_|_ 17n7k>
& IN,0) = [N — 1,1, —k)

and the spectral function 1s simply: rAK,w)

Ak, 0) =Y &(0— &)




Quasiparticles

e For interacting electrons, if there is a strong overlap between (N, 0| ék
and |N + 1,n,Kk) (resp. &k |[N,0)and (N — 1,n,—k

there exists a quasi-electron (resp. quasi-hole) of energy &, (€,.x).

), we will say that

The Spectral function
(GW for jellium)

Ax(w)ep

14§

re = 2.0 16 -2

[courtesy of Martin Stankovski (Université Catholique de Louvain, Belgium)]



Utility of Green’s function
® As we have just seen, the 1-particle Green’s function contains a lot of
information about all the 1-particle excitations.

® [t also also to compute the total ground-state energy.

Indeed, using Galitskii-Migdal formula, it can be written:

1 [H 1
EN,O — %/ Tr [(w— §V2 _I_Vext) ImG(a)) dw

® In fact, we can obtain the expectation value of 1-particle operator (be it

local or non-local).



Many-Body Perturbation Theory



Equation of motion of the Green’s function

® Starting from the equation of motion for the Heisenberg annihilation
and creation field operators ({ and ' ) a hierarchy of equations of

motion for the Green’s function can be derived.

® For the 1-particle Green’s function, it gives

[lail —Ho(rl)] G(1,2) +i/d3 v(17,3)G2(1,3;2,3%) = §(1,2)

1
where Ho(rl) — ——V?4+V, and v(1,2) = ot — 1)

2

Note that we have adopted Hedin’s simplified notation:

r| — 13

1 =(r;,#;) and 17 = (ry, t; + n) where 7 is a positive infinitesimal.
n n p

® The 1-particle Green’s function depends on the 2-particles one:

G>(1,2;3,4) = (i)*(N,O| T [W(r1,01) ¥(ra,02) ¥ (r3,13) ' (r4,14)]|N,0)



Equation of motion of the Green’s function

® If we look at the structure of the equation of motion, we can distinguish:

[z(% — Ho(r )] G(1,2) +i/d3 v(17,3)G2(1,3;2,31) = 8(1,2)

— —
—~ N

non-interacting interaction terms

® Since we are specifically interested in the interaction effects, we will
assume that the non-interacting part of the equation part can always be

solved exactly:

d
i Ho(r)]Go(1.2) = 5(1.2)
® This defines the independent-particle Green function G,.
Note that
(1) the calculation of Gy 1s non-trivial for a solid (except jellium);
(11) some of the larger interaction effects, which produce an effective

1-particle potential, can be included in Hy



Hartree and Hartree-Fock approximations

® We first consider the 2-particles Green’s function:

G2(1,3;2,3+)5(t1+ —t3) —

(i)*(N,O|T [ (ry, 1) (s, ;)" (02, 02) ¥ (r3,17 )N, 0)

(@Qtfh >0n

I, o TIi,0h
L > ®

h
° > °
r37t?_ r3vtf“+
(b)), > 1

ry, I 1‘2., %)

® > ®
+ ++
3,1, s,

++

I, I rs3,r
e
h

_|_

ry, I r37t1

Iy, I Iy, I
h
h



Hartree and Hartree-Fock approximations

® At this stage, we do not know how the 2 particles propagate, but the
obvious first choice 1s to allow each particle to propagate independently

according to the 1-particle Green’s functions.
® Thus, we write:
G>2(1,3;2,37)6(t] —13) =
G(1,2)G(3,3")+G(1,37)G(3,2)| 6(¢] —13)

The first term is the so-called direct term and the second one is the

exchange term.



Hartree and Hartree-Fock approximations

® We first consider the direct term as an approximation to the 2-particles

Green’s function:

G>(1,3;2,37)6(t] —13) = G(1,2)G(3,37)6(¢; — 13)

The equation of motion becomes:
J : + +
i~ ()| +i [ d3v(17,3)G(3,3%) $ G(1,2) = 6(1,2
4

® It is degenerated into a simple independent-particle like equation with

an added potential, which 1s nothing but the Hartree potential:

:—l/d3v (17,3)G(3,3") :/”(r3’“)dr3

ry —rj3

[za—n —Ap(ry) — VH(l)] G(1,2) = §(1,2)



Hartree and Hartree-Fock approximations

® The next step is to take both the direct and exchange terms as an
approximation to the 2-particles Green’s function:
G12(1,3;2,37)6(t] —13) =
'G(1,2)G(3,37)+ G(1,37)G(3,2)] 6 (1, — 13)

® The direct term obviously gives the Hartree potential again, so the

equation of motion becomes:

zai — Hy(ry) — VH(I)] G(1,2) +i/d3 v(17,3)G(1,37)G(3,2) = 6(1,2)
N

® The interaction term is now a non-local operator. It can be shown that it
1s the Green’s function variation of the exchange interaction appearing

in the Hartree-Fock approximation.



The self-energy

® The obvious next step would be to carry on like this with the 3-particles

Green’s function, and so on... but this becomes rapidly far too difficult.

® The trick i1s to assume that we have solved the infinite series of

equations of motions and to look for a solution in the form:

zai _Ho(r) - V(l)] G(1,2) i/d3 5(1,3)G(3,2) = 8(1,2)
4]
where V(1)=¢(1)+ V(1) with ¢(1) being any external potential such

as an experimental probe (that will be made equal to zero at the end).

® The operator X is called the self-energy operator. It includes all the

interaction effects.



The self-energy

® To understand the physical meaning of the self-energy operator, we

transform the equation of motion in the energy domain:

(@ — Hy(r)) —V(r;,»)]G(r1,12, 0)
/Z r;,r3;0)G(r3,ry;0)drs = o(r; —r)

or adopting a matrix notation:

(w1-Hy—V)G-XG=1 =G '=wl-Hy—-V-X

® By comparing with the non-interacting (i.e. without X ) equation:

G,'=0wl-Hy—-V
we can write:

G—l _ Gal L

The poles of G are moved in energy by X compared to G,



Dyson’s equation
® The equation G ! = G, I _¥ can also be written as:
G =Gy +GoXG

which is known as the Dyson equation.

® Coming back to the time domain, we get:

G(1,2) = G0(1,2)—|—/Go(l,3)2(3,4)G(4,2)d(3,4)




Hedin’s equations

® We define the inverse dielectric function e~! as the change in §V due to

a small variation 6¢) in the external potential:

1 _ov(l)
| < (2 =50)
® We can write:
V(1) =¢(1) + fv(1,3)n(3)d3 o(1)=V(1) - fv(l,3)n(3)d3
oV(1) = do¢(1) + fv(l, 3)on(3)d3 op(l) =6V(1) — fv(l, 3)on(3)d3
oy on(3) o 6n(3)
e (1,2)=0(1,2) + fv(1,3)5¢(2)d3 e(1,2) =06(1,2) fv(1’3)5V(2)d3
—— ~——
P(3,2) P(3,2)

where we have defined the reducible and irreducible polarizability.



Hedin’s equations

® We also define the screened Coulomb potential W :

W(l,2) = fe_l(l,B)v(3,2)d3

W(l,2) =v(1,2) + fv(l, 3)P"4(3,4)v(4,2)d(3, 4)



Hedin’s equations

® The expression of the irreducible polarizability

on(l) — .0G(, 17)

PL2D= o) = v

can be worked out to lead to:

0G~1(3,4)
oV(1)

P(1,2) = ifG(Z, 3) G(4,27)d(3,4)

-1'(3,4,1)

-

where we have defined the vertex function I'.



Hedin’s equations
® The expression of the vertex function can also be rewritten using:

5G71(1,2)  6G5'(1,2) . =(1.2)

['(1,2,3) = - sV(3) oV(3) oV (3)

and, after some mathematics, we get:

~ 5%(1,2)
r(1,2,3) = 6(1,2)8(1,3) + f 5Ga 5, O OGT.II(6.7.3)d4,5,6,7)

i 1
= [ ] +
3 s12)8(13)
2 2




Hedin’s equations

® Finally, after some more mathematics, an expression can be obtained for

the self-energy:

2(1,2) = ifG(1,4)W(1+,3)F(4, 2,3)d(3,4)

&
2@1_2 - G 1

® Using W instead of V1s a critical to achieve a converging series.

It was the key finding of Hedin.
® Note that in the Hartree-Fock self-energy 1s simply given by:

X(1,2) = iG(1,2)v(1,2%)



Hedin’s equations

G(1,2) = Go(1,2)+/Go(l,3)2(3,4)G(4,2)d(3,4)

QG' 1=2‘G(’O) ?+2G' 4@3_G(£)_7
2(1,2)

I'(1,2,3) =4(1,2)0(1,3) +f G4,6)G(7, 5)F(6 7, 3)d(4 5,6,7)

6G(4,5)
i )
bg _5(12).503; * SG _‘T>j

P(1,2) = —ifG(2, 3)I(3,4,1)G(4,27)d(3,4)

o

W(,2) =v(1,2) + fv(l, 3)P(3,4)W(4,2)d(3,4)

/4 % 1% /4
RV VIV PR PR @VWUWI

2(1,2)=ifG(1,4)W(1+,3)r(4,2,3)d(3,4) f:q %
2@1:2 G




Hedin’s equations




Many-Body Perturbation Theory

DOUBLE BUBBLE,
PAIR BUBBLE,

PARTICLES AND HOLES,
IN SYSTEM BuBBLEJ

[From Richard Mattuck's "Guide to Feynman Diagrams in the Many-Body Problem"]



GW approximation



GW approximation

® In order to solve the Hedin’s equations, one possible strategy could be to

start from the top of the pentagon, with X=0.
® The 1-particle Green’s function simply reduces to Gy,.
® The vertex function is thus:
I'(1,2,3)=09(1,2)6(1,3)

and the irreducible polarizability becomes:

P(1,2) = —iG(1,2)G(2. 1) @ ©

® Finally, the self-energy writes:

(1,2 = iG(1.2)W(1,2%) @ &

hence the name of the approximation.



GW vs. Hartree-Fock approximation

Screened Coulomb interaction Coulomb interaction
e 1(r3, 12,1 — 1)
W(1,2) = f dry  v(1,2)= 5(11 — 1)
r; —r3| r| — 13
GW self-energy Hartree-Fock self-energy
> =iGW > =iGv
= iGv+iG(W —v)
=2, + 2. (w)
non-local non-local

non-hermitian dynamic hermitian static



Practical GW approximation

e Usually, we start from independent-particle Green function G provided

by DFT solving the Kohn-Sham equation:

Go(ry,r,®) = Z ke (U1 [$0 (r2)]
o\r1,12, — — oKS | KS
= 0—€>+insgn(e > — )

where u 1s chemical potential and # a positive infinitesimal.

® The irreducible polarizability is given by the independent-particle or

Random Phase Approximation (RPA) polarizability:
P()(l‘1 I, (0) — 2;7; /G()(l’l ,I2, 0 — a)/)G()(l‘z, I, a))e_i”“’/da)’

Po(r,r2,0) = ) (fuk — fo') ok (TD[000 (r)] (90 (r2)]* ¢, (12)

nk,mK’ W — (grlzis o gnljl?’) - ”7 Sgn(eﬁ(s — 8;7151?/)

Fo(ry,r3, o
8(1’1,1’2,0)):5(1'171'2)—/ ’(1,3_1,2’ )

dl‘3




Practical GW approximation

® The screened Coulomb interaction is given by:

8_1(1’3,1’2,0))
r| —r3)

Wo(ri,12, @) :/ drs

® Finally, the self-energy 1s given by:
Y(ri,rm,0) = ﬁ /Gg(rl,rz,(o— a)’)Wo(rl,rz,a))e_i"“’/d(x)’

® In principle, this process should be iterated until full self-consistent

resolution of Hedin’s equations is reached.
® In practice, this is very cumbersome...

® Often, real calculations stop after one round.
This i1s the non-self-consistent GW approximation or GyW,

approximation.



Quasiparticle equation

® Often, rather than computing the 1-particle Green’s function, we try to

solve the quasiparticle equation:

5V Vealr) + Va(e1) | D1, @)

+/Z(l‘1,l’2,60) Onk (T2, ®)dry = €k (@) Pk (1, @)

for w=¢,x(w).
® In general, the eigenvalues ¢, are complex. Their real part can be
interpreted as a quasiparticle energy QP whereas their imaginary part 1s
related to the lifetime of the quasi artlckle
qUasip Im g (@) = 1/7%

® An intuitive picture of the quasiparticle concept consists in considering
that when a “bare” particle (an electron or a hole) enters 1n a system of
interacting electrons, it perturbs the other particles in 1ts neighborhood
and hence it gets “dressed” with a charged (positive or negative) cloud
and hence becomes a quasiparticle.
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Quasi-horse
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[From Richard Mattuck's "Guide to Feynman Diagrams in the Many-Body Problem"]
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Spectral function
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In practice...

® The similarity between the quasiparticle equation:

1

=57 Vo) + V()| 00

+/era)—8nk)q) ()dr’ = Q79" (r)

and the DFT Kohn-Sham one:

[‘%Vz Vo (1) + vH<r>] 055 (1) + Vie (0) 9153 () = €550 /5 (1)

suggests to treat the difference between X and V. as a perturbation with
respect to the Kohn-Sham calculations.
® In fact, the approximation ‘PQP (r) KS( ) 1s very reasonable for many

nk
materials so that we can write:

P_ KS, [/KS : P KS
Ex = €k T <¢nk Zr v, = €)= Vie() ¢nk>



In practice ...

® Since the self-energy 2 operator depends on the energy:

KS
nk

this non-linear equation should in principle be solved self-consistently.

—KS >

QP _ KS KS y . _ QP
€. = € T <¢nk ‘Z(r,r ,w=¢€1 )=V

In practice, the self-energy operator 2 1is linearized:

o= ) = (= ) + (5 - ) 22

® Hence, defining the renormalization constant Z, as:

3 {gKS IE( gES)Y
ow

Zix = |1 -

the linearized equation to solve becomes:

QP KS KS ‘ ’ .

)




In practice ...

YuiE) (eV)

60 -40 -20 0 20 40 60
E (eV)



— . Q <03\
. . O H<—0®r)
i z% m|wv O ° N -

puowreIp IVO |

Uz NeD Ouz > nv @ o -
- 1gqn)‘egu7
| SPO'IV'DIS'd®D w§<1nvww

H:1LDA
O:GW(LDA)

0TnD'9S N
ASTV'OLPD'SVED' duT w@v@‘ .

OPD‘qseD @D z&&W@ |

SYuI' g qsul <m ~

OISH —> O |

_
o0 Ne <t o

(A@) de3 peajemore))

® The agreement with experiments 1s in much better!

The band gap within GW
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Experimental gap (eV)

[adapted from van Schilfgaarde et al., PRL 96, 226402 (2006)]
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The band gap within GW

® The calculated band structures are in excellent agreement with those
measured experimentally.

15
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[from Aulbur et al., Solid State Physics 54, 1 (2000)]



Self-consistency in the GW approximation

® It may happen that the DFT wavefunctions are not adequate, these need
to be updated as well in the self-consistent cycle by diagonalizing the
self-energy operator. The problem is that the self-energy operator 1s not
hermitian and energy dependent.

® A smart method has thus been devised, the Quasiparticle Self-
consistent GW (QSGW), which allows to overcome these problems
[S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 93, 126406 (2004)]:

(610)) = ST [(6115(60)10;) + (0115(e,) )

where R means that one only retains the hermitian part of the matrix.
Along with self-consistency, the diagonal elements of the self-energy
are better and better approximations to the true GW diagonal terms, as

each of them 1s finally evaluated for the correct GW energy.



Self-consistency in the GW approximation

® The QSGW band gap i1s slightly bigger than the experimental one.
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Self-consistency in the GW approximation

PHYSICAL REVIEW LETTERS week ending

PRL 99, 246403 (2007) 14 DECEMBER 2007

Accurate Quasiparticle Spectra from Self-Consistent GW Calculations with Vertex Corrections

M. Shishkin, M. Marsman, and G. Kresse

Faculty of Physics, Universitit Wien and Center for Computational Materials Science, Sensengasse 8/12, A-1090 Wien, Austria
(Received 21 June 2007; published 12 December 2007)

Self-consistent GW calculations, maintaining only the quasiparticle part of the Green’s function G, are
reported for a wide class of materials, including small gap semiconductors and large gap insulators. We
show that the inclusion of the attractive electron-hole interaction via an effective nonlocal exchange
correlation kernel is required to obtain accurate band gaps in the framework of self-consistent GW
calculations. If these are accounted for via vertex corrections in W, the band gaps are found to be within a
few percent of the experimental values.
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Self-consistency in the GW approximation

Self-consistent GW calculations for semiconductors and insulators

M. Shishkin* and G. Kresse
Institut fiir Materialphysik and Centre for Computational Materials Science, Universitit Wien, A 1090 Wien, Austria

(Received 22 November 2006; revised manuscript received 5 April 2007; published 4 June 2007)

We present GW calculations for small and large gap systems comprising typical semiconductors (Si, SiC,
GaAs, GaN, ZnO, ZnS, CdS, and AIP), small gap semiconductors (PbS, PbSe, and PbTe), insulators (C, BN,
MgO, and LiF), and noble gas solids (Ar and Ne). It is shown that the G,W,, approximation always yields too
small band gaps. To improve agreement with experiment, the eigenvalues in the Green’s function G (GW;)) and
in the Green’s function and the dielectric matrix (GW) are updated until self-consistency is reached. The first
approximation leads to excellent agreement with experiment, whereas an update of the eigenvalues in G and W
gives too large band gaps for virtually all materials. From a pragmatic point of view, the GW,, approximation
thus seems to be an accurate and still reasonably fast method for predicting quasiparticle energies in simple
sp-bonded systems. We furthermore observe that the band gaps in materials with shallow d states (GaAs, GaN,
and ZnO) are systematically underestimated. We propose that an inaccurate description of the static dielectric
properties of these materials is responsible for the underestimation of the band gaps in GW,,, which is itself a
result of the incomplete cancellation of the Hartree self-energy within the d shell by local or gradient corrected
density functionals.
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Frequency dependence of W

® Within GW, the frequency dependence of the dynamically screened
Coulomb potential W 1s most often approximated using various plasmon

pole models (PPMs):
QZ
wz _ 5)2

Re e H(w) = Ad(w — @) Ime l(w) =1+

— M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986),
— W. von der Linden and P. Horsch, Phys. Rev. B 37, 8351 (1988),
— R.W. Godby and R.J. Needs, Phys. Rev. Lett. 62, 1169 (1989),
— G.E. Engel and B. Farid, Phys. Rev. B 47, 15931 (1993).

® The advantage 1s not only to reduce the computational load, but also to

obtain an analytic expression for the self-energy.



Frequency dependence of W

® Alternatively, the explicit frequency dependence can be obtained using

the deformed contour integration technique

[S. Lebegue, B. Arnaud, M. Alouani and P.E. Bloechl, Phys. Rev. B 67, 155208 (2003)].

® The integral along the real axis can be calculated from the integral over

the contour depicted below: the integral along the imaginary axis

requires less points (2 1s smoother) and the sum of the poles of X2 can be

evaluated exactly.

W(w')

Glw + o) )
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| 3
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