Introduction to DFT
and Density Functionals

by Michel Coté
Université de Montréal
Département de physique




Examples

Carbazole molecule Inside of diamant

Réf: Jean-Francois Briére (

Réf: Mike Towler (



Condensed Matter

Schrodinger's equation:

0
h—|\VY)=H|Y

Hamiltonian for electrons and atoms with coulomb
Interaction:

Ne Ni 2
_2 A v
H==2V) ZzMV
Ne Ni ZZQ
- 3 Z

r e a ]<k

Ry

I/" (x<[3



Electrons

Using the Born-Oppenheimer approximation:
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We are looking for a solution of the type of a wave function
for many electrons:

Y(x,x,,....,xy)

The problem 1s easy to write down ...but the solution ...



Electrons system

Y(x,,x,,...,Xy)

Storage required:

x —>10x10x10=1000 data

10 electrons — 1000" data — 10 x16 bytes
=16x10* Gb

Impracticable!!!



Dirac’s quote (1929)

« The underlying physical laws necessary for the
mathematical theory of a large part of physics and the
whole of chemistry are thus completely known, and
the difficulty is only that the exact application of these
laws leads to equations much too complicated to be
soluble »

RéEf: Quantum mechanics of many-electron systems, Proceedings of the Royal
Society of London, pp.714. (1929)



Wavefunction approach: Hartree method

W(x,x,,.0xy) =0(x)0,(x,) @y (xy) = H(Pz(xz)

n(x)= Z ¢z* ()¢, (x)

Lagrange multipliers to
assure that the ¢,

E=(Y|H|¥)- N 2(9,|0,) remain orthogonal
oF —h? Y
a¢l* (x) — |: m V2 + Uion (x) + ezjdx ;l(_x;, :|¢l (X) — A’l¢l (x) =(

-1’ o, | B Same equation
|: 2m V + Uion (.X) + VH (X) q)l ()C) _ /llq)l ()C) fOr all (P[



Hartree-Fock method

P(x,x,,...xy) = \/72( 1) H¢Pl(xl) D (x;,Xy,...,%y)

¢ (x) ¢ (x)) - O (xy)
1 |0,(x)  0,(x) - B,(xy)

Oy(x) Oy(xy) o Oy(xy)

Slater determinant

Particules are not independant, change the position of one and all the
others are affected.

Pauli exclusion principle 1s respected.



Hartree-Fock method

2m

{_ gy on (X) + V' (X)}% (x)

—26ss¢< )| ax’ "” W ) 26,0

Exchange energy

Because of the exchange term, the problem 1s
much harder to resolve.

Results are better than those of the Hartree
method but still not very satisfying.



Configuration Interaction method

Y(x,x,,...,xy) =ZCiCI)i(xl,x2,...,xN)

Sum of Slater determinants
(configurations)

Must find the coefficients C;

CI = configuration interaction
CIS = CI with single excitations only

CISD = CI with single and double excitations only
Correlation energy: contribution over that of Hartree-Fock
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Wavefunction methods

Advantages:

Control approximations
Systematic approach (H, HF, CIS, ...)
Upper bound (variational principle)

Disadvantages:

Very costly numerically
(up to 20-30 electrons, forget solids!)
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Progress in theoretical methods

Nobel Prize 1998 in Chemistry:

"for his development of
computational methods in
quantum chemistry”

"for his development of the
density-functional theory”

» cfficient

« flexible

* precise
 parameter free
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Walter Kohn and Canada

Nobel Prize in 1998 for Chemistry:
Development of ab initio methods

Density Functional Theory (WK)

(efficient, flexible, precise, parameters free)

0o England j

Austria

A\t

Walter Kohn

Tor

arvard
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Milestones : first-principles approach
Precursor : Thomas-Fermi approximation (1927)

Inhomogeneous electron gas

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
Self-consistent equations including exchange and correlation effects
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965)

Ceperley, Alder (1980); Perdew, Zunger (1981) : computation and
parametrization of the exchange and correlation energy
needed 1n the local density approximation
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Most cited papers

Papers published in APS journals (PRL, PRA, PRB, .. RMP),
most cited by papers published in APS journals

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003

PR 140, A1133 (1 965]| 3227

PR 136, B8b4 (1964) 2460
PRB 23, 5048 (1981) 2079

PRL 45, 566 (1980) 1781
PR 108, 1175 (1957) 1364
PRL 19, 1264 (1967) 1306
PRB 12, 3060 (1975) 1259
PR 124, 1866 (1961) 1178
RMP 57, 287 (1985] 1055
RVIP 54, 437 (1982) 1045

Publication # cites Av. age Title Author(s)
26.7 Self-Consistent Equations Including Exchange and Carrelation Effec W. Kohn, L. ). Sham
28.7 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn
14.4 Shﬁg\l;‘-téreacct?oo: s?y(:gsncgion to Density-Functional Appraximations for ). P. Perdew, A. Zunger
15.4 Ground State of the Electron Gas by a Stochastic Method D. M. Ceperley, B. J. Alder
20.2 Theory of Superconductivity ). Bardeen, L. N. Cooper, ). R. Schrieffer
15.5 A Model of Leptons S. Weinberg
18.4 Linear Methods in Band Theory | O.K Anderson |
28.0 Effects of Configuration Interaction of Intensities and Phase Shifts U. Fano
9.2 Disordered Electronic Systems P. A. Lee, T. V. Ramakrishnan
10.8 Electronic Properties of Two-Dimensional Systems
20.8 Special Points for Brillouin-Zone Integrations I H. ). Monkhorst, ). D. Pack I

PRB 13,5188 (1976) 1023

PR, Physical Review: PRB, Physical Review B; PRL, Physical Review Letters; RMFE. Reviews of Modern Physics.
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A basic reference on DFT
and applications to solids

Richard M. Martin

Electronic Structure

3asic Theory and Practical Methods

Richard M. Martin

Cambridge University Press, 2004

Electronic Structure : Basic Theory and
Practical Methods

(ISBN: 0521782856)

For details, see

http : //www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521782856
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Functionals of the density



What is a functional?

It 1s a quantity that depends non on a variable but on a
function.

f(x)=Ax’ function

/ [n]z jn(x)v( x)dx functionnal

Derivative
() _ . Sx+a)—f(x)
ax oa—0 o
ofln] _ . flnGH+adG"—0) |- fln(x)]
on(x) a-0 o

\\v function of x
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Density functional theory:

First Hononberg-Kohn theorem
Honenberg et Kohn, Physical Review, vol 136, B864, (1964)

Vir) %Y — n(r)

Assume: V() = W = n(r)

E' = (W H'|W) < (| H'|W) = (| H = V(r) + V()| )
E'<E+ j[V’(r) —V(H)n(r)dr

Samething but starting from £

E<E + j V()= V' ()n(r)dr
Combine:
E'+E < E'+E Contradiction!!!

nryVi Vv

19



First Hohenberg-Kohn theorem

The ground state density n(r) of a many-electron system

determines uniquely the external potential V(r), modulo one
global constant.

Consequence : formally, the density can be considered as the
fundamental variable of the formalism, instead of the potential.

Wi({r})

Veat(r) @ no(r)
U )

= Wo({r})

No need for wavefunctions
or Schrodinger equation !
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The constrained-search approach to DFT

M. Levy, Proc. Nat. Acad. Sci. USA, 76, 6062 (1979)

Use the extremal principle of QM.
E, - min{(w| /1, W)} - mm{glig{wmvmo}}

= mm{mm 1IJ|T +V.  + ‘7|‘P>}}

Y—pn

_ {%13{<qf|f+ W)+ fn(r)V(r)dr}}

{F ]+ fn(r)V(r)dr} min{ £, [n]}
|-

min
mm{(‘P|T +V._ |‘P>} is a universal functional

where F [n
Y—-pn

of the density ...
Not known explicitely !
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The Kohn & Sham approach



The exchange-correlation energy

F[n] : large part of the total energy, hard to approximate

Kohn & Sham (Phys. Rev. 140, A1133 (1969)) :
mapping of the interacting system on a non-interacting system

‘P)}

If one considers a non-interacting electronic system :

int

Fln]= m1n{<‘P|T +V,

Y—p

T.|n]= gnn{(lll|f|ll’>} Kinetic energy functional of the density

Exchange-correlation functional of the density :

Exc[n] = s f

n(r, )n(r,)

dr,dr, Not known explicitely !

But let’s suppose
we know it

-]
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The Kohn-Sham potential

SO, we have to minimize: (under constraint of total electron number)

n(r; )n(r, )

|r1 —r2|

E [n]=T +fV(r)n(r)dr + —f drdr, + E,[n]

Introduction of Lagrange multipliers

0= 6( {fn(r)dr N}) f(éT(S’E ]+V(r)+f‘ L+

O, [n]

on(r)

— }L) on(r)dr

If one considers the minimization for non-interacting electrons
n a potential V(r), with the same density n(r), one gets

0= f( +VKS(r) A) on(r)dr

oF
Identification : Vi (r)=V(r)+ f |:(r12| dr, + WEI;]

The Kohn-Sham potential
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The Kohn-Sham orbitals and eigenvalues

Non-interacting electrons in the Kohn-Sham potential :

(37 + Vw0 = e, @)
Density  7(r)= 3, (F),(r)
et 2 D

r -r| on(r)
Hartree potential  Exchange-correlation potential

To be solved self-consistently !

Note : by construction, at self-consistency, and supposing the exchange-
correlation functional to be exact, the density will be the exact density, the
total energy will be the exact one, but Kohn-Sham wavefunctions and
eigenenergies correspond to a fictitious set of independent electrons, so they
do not correspond to any exact quantity.
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Minimum principle for the energy

Using the variational principle for non-interacting electrons,
one can show that the solution of the Kohn-Sham self-consistent
system of equations 1s equivalent to the minimisation of

n(r, )n(r

drdr, + E_ [n]

Eas [{w}]= Sl 3V [w) + [ Vo omeyar + f

l

under constraints of orthonormalization <l/)l. ‘1/} j> =90,

for the occupied orbitals.
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Density Functional Theory :
approximations



An exact result for the
exchange-correlation energy

(without demonstration)

The exchange-correlation energy, functional of the density
1s the integral over the whole space of the density times the
local exchange-correlation energy per particle

E |n]-= fn(rl)exc(rl;n)drl

while the local exchange-correlation energy per particle is the

electrostatic interaction energy of a particle with 1ts DFT
exchange-correlation hole.

1 n™(r,|r;n)

2 |r1 - r2|

sxc(rl;n)=f

Sum rule : fnxc(r2|r1;n)dr2 = -1
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The local density approximation (I)

Hypothesis :

- the local XC energy per particle only depend on the local density
- and 1s equal to the local XC energy per particle of an
homogeneous electron gas of same density
(in a neutralizing background - « jellium » )

e (r;n) = efd™(n(r;))
Gives excellent numerical results | Why ?
1) Sum rule 1s fulfilled

2) Characteristic screening length indeed depend on local density

29



The local density approximation (II)

Actual function : exchange part (x) + correlation part (c)

e (n) = Cn'” with C = —i(3n2)1/3
47

for the correlation part, one resorts to accurate
numerical simulations beyond DFT (e.g. Quantum Monte Carlo)

Corresponding exchange-correlation potential V. () = n(r)

d(nefc’fpmx (n))
dn

VPP (r) = (n(r)) u_(n)=

4 4
n =C_n1/3=_8hom n
u.(n) 3 3 & (n)

~ 5Exc[n]

30



The local density approximation (11I)

To summarize :

n(r,)n(r,)

drdr, + EX”*[n]

XC

E*[n]= Ts[n]+fVext(r)n(r)dr+ f

-]
or

LA [{UJ }] E@, |_—V ¥,) +fot(r)”(r)dr+_f”(l' Dn(r, )

-,

+fn(r )eP (n(r,))dr,
and

(0 n + u" (n(r))

Ve = Va0 [

dr,dr,
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Beyond the local density approximation

Generalized gradient approximations (GGA)

EX™ [n]= [n@)ed™ (n(r,).

Va(r,)

,V’n(r,))dr,

No model system like the homogeneous electron gas !
Many different proposals, including one from Perdew,
Burke and Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996),
often abbreviated « PBE ».

Others : PW&86, PWO91, LYP ...

Also : « hybrid » functionals (B3LYP),
« exact exchange » functional,

« self-interaction corrected » functionals ...
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HfSiO4 ZrSiOy4

Th. Expt. Th. Expt.
a 6.61 6.57 6.54 6.61
c 5.97 5.96 5.92 6.00
u 0.0672  0.0655 0.0645  0.0646
, , v 0.1964  0.1948 0.1945  0.1967
Charge density of graphite Volume 13042  128.63 126.60  131.08
d(Si-0) 1.62 1.61 1.61 1.62
d(M-0) 2.14 2.10 2.10 2.13
2.27 2.24 2.24 2.27
/(0-8i-0) 97° 97° 97° 97°
116° 117° 116° 116°
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Accuracy, typical usage.

If covalent bonds, metallic bonds, ionic bonds :
2-3% for the geometry (bond lengths, cell parameters)

0.2 eV for the bonding energies (GGA)
problem with the band gap

For weak bonding situations (Hydrogen bonding, van derWaals), worse

Treatment of a few hundred atoms is OK on powerful parallel computers
Up to 50-100 atoms is OK on a PC.
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The band gap problem



The DFT bandgap problem (I)

 DFT 1s a ground state theory

=>no direct interpretation of Kohn-Sham eigenenergies ¢, 1n

[ 1, (r,) )
V'+V _(r)+ dr, +V _(r)|y.(r)=¢y,(r)
2 im0

* However { ¢ } are similar to quasi-particle band structure :
LDA / GGA results for valence bands are accurate ... but

NOT for the band gap E;” =¢, - ¢

1%

e The band gap can alternatively be obtained from total energy
dlfferences [ correct expression ! |

E, = E(N+1) + E(N-1)- 2 E(N) = {E(N+1) - E(N)} - {E(N) - E(N-1)}

in the limit N — «
(where E(N) 1s the total energy of the N - electron system)
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The DFT bandgap problem (II)

e For LDA & GGA, the XC potential 1s a continuous functional of
the number of electrons

E
g = 9L [Janak's theorem]
of;
= E,° =¢,-¢, = E,=EN+I)+E(N-1)-2E(N)

N—x

* In general, the XC potential might be discontinuous with the

number of particle

e.g. xOEP E?S = E,

N electrons N+1 electrons

1AV,

_ KS c” %y
e.-¢, = E,

PN O\
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The DFT bandgap problem (I1I)

Ener gy relative to VBM (aV)

15
E— Si
10 b ——— LDA
5| et
RS S E 3/“’0“.
et T ¢ 0“’“
*400 544
o S d._._._—a-_-ﬂ—.‘ti\
AT ) T
[ y, Y \ﬁ_..
5L [ — size of '
typical
expenmsental
arror bar
-10 L
-15
L A r A
Wave vector

Comparison of LDA and GW band
Structures with photoemission and
Inverse photoemission experiments
for Silicon.

From "Quasiparticle calculations in solids",
by Aulbur WG, Jonsson L, Wilkins JW,

in Solid State Physics 54, 1-218 (2000)
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