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Outline of the lectures

® Motivation and general 1deas

e A simple case study: the Ising model

® (Quantum many-body problems

1.

Discrete space and continuous time: lattice bosons

. Continuous space and discrete time: condensed Helium
. Long-ranged interactions: Diagrammatic Monte Carlo

. Applications




Monte Carlo basics

Goal of most Monte Carlo simulation of condensed matter: study
of equilibrium statistical properties (no time dependence yet)

e Evaluation of thermal averages

Multi-dimensional sums/integrals : typical dimension 1s d X N

Not factorizable due to particle interactions

Straightforward grid integration impossible

* Strategy: turn calculation into “synthetic” measurement

Generate on a computer a statistically representative sample of many-

particle configurations, drawn from the physical probability distribution
(Gibbs)

Compute desired thermal expectation value as statistical average




Monte Carlo basics (cont’d)

(M. Troyer s notes)

Statistically representative set of configurations must be generated
sequentially for any non-trivial system.

Efficiency considerations important

Random walk through configuration space

Metropolis Algorithm (N. Metropolis et al., 1953)
Key : Efficient Sampling = Small auto-correlation time
(unbiased statistics: configurations should quickly lose memory of progenitors)




Monte Carlo basics (cont’d)

e Detailed Balance

A random walk is guaranteed to sample asymptotically the desired
distribution P(c) of configurations if the following conditions are
satisfied.:

1) Ergodicity: rules that govern random walk must allow each physical
configuration to be visited (“paths from anywhere to anywhere”)

2) Detailed balance: if W(c — d) is the probability of making transition
between any two configurations, then it must be

W(c—d) P(d)
W(d—c) Plc)

e Sampling strategy

Elementary move

Simple (single-particle), fast but long auto-correlation time (ergodicity ?)
Complex (many particles), shorter auto-correlation time but slower

or... both simple and with short auto-correlation time ?




Simple case: spin-1/2 Ising model

Classical lattice spin model : E(c) = —J Z $;Sj, 8; = xl

c = {s152...sNy} generic Conﬁguratlon

7 = Z H exp(Ks;s;) Partition function (K = J/T)

® Equilibrium phase diagram known analytically in 2D (Onsager, 1944)
® Second order ferromagnetic phase transition
~ Regarded as fest bench for MC simulation methods
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Phase diagram for the Ising model as a function of temperature

{7y and magnetic field (h); dark portion of & () axis represents — (1 _ (Sinh(QJ/T) ) _4) 1/8

two-phase region; T, denotes critical point.




Monte Carlo simulation

Sampling of configurations
Local: Flip single spin in ¢, and accept with probability

P =min{l, exp[-2Ks X;5; ]}
Efficient at 7> T¢
Suffers from critical slowing down as 7' — T«
Physical reason: as system approaches critical temperature,
correlations on very long distances set in, and large “islands”

of ferromagnetically aligned spins appear.

Cluster update (Swendsen-Wang, 1987, Wolft, 1989)
Flip clusters of connected equal spins at same time
Clusters are grown from a seed site, based on a sequential
(non-Metropolis) probabilistic procedure, satisfying
detailed balance
No critical slowing down at 7
Not as efficient as single spin flip at high T’
Physical reason: cluster algorithms owe their efficiency to
the proximity to criticality




Worm Algorithm for Ising model

N. Prokof’ev, B. Svistunov and I. Tupitsyn (1991)
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Closed loops ? What loops ?

Number of times each site occurs in the product
must be even

Sum of all occupied bonds involving that site must be
even

(no bond can be invoked twice)

Consequently, bonds connecting sites necessarily must
form closed loops (not necessarily connected)

Examples




Enter “Ira” and “Masha”

Consider the 2-point spatial correlation function

gli—m) =271 3 sism X005 = 271 Qi — m)

S1...SN

Identical procedure adopted for Z expresses G as a sum over open loops, with
the same weights used for the expansion of Z. The presence of two additional
spins (¢ and m) gives rise to the two “dangling ends”

Examples

n




Monte Carlo evaluation of g(i-m)

e Generate on a computer a set of loops corresponding to drawing with a pencil
along bonds of a square lattice, without ever detaching the tip of the pencil from
the sheet. Each bond 1s penciled only once at the most, and there are two dangling

ends (Ira and Masha)
e Let the probability with which generic loop occurs be proportional to [tanh(K)]":

e When [ra and Masha are at a distance i - m, contribute +1 to G(i-m)
When i = m (closed loop), then contribute +1 to G(0) =2

e Accumulate statistics and evaluate g(i-m) as G(i-m)/G(0)

e Other quantities can be computed as well. For example,
Average energy: -J tanh(K) [dN + (Np)/sinh?(K)],
(N total number of penciled bonds)

Magnetic susceptibility y = (1/T) X: g(i)




Structure of Ising Worm code

Simple “draw-and-erase” procedure

Select random site and set | = M

Select direction (d/e)

Move M by one site in chosen direction
with probability R (draw random #)

Update averages

R= [tanh(K)*!

(“4+” sign if N is increased)

yup... that’s it !




How well does it work ?

No critical slowing down near critical temperature
Allows to simulate the model efficiently at all temperatures
All correlation functions available on-the-fly

Same conclusion established for a rather wide variety of other
lattice models (e.g., x-y) and/or universality classes

By now regarded as general algorithm of statistical mechanics
Local moves only

Basic idea easily extended to quantum-mechanical systems




Worm Algorithm and Quantum
Many-Body Physics

Worm Algorithm is currently one of the most powerful methodology to
study thermodynamic properties of quantum-mechanical systems
comprising many interacting particles

Essentially exact for Bose systems (goes far beyond previously
existing continuum methodology)

It does not solve/alleviate the infamous “sign” problem
General Monte Carlo methodology for fermions still lacking

It does not represent a step forward toward the computation of time-
dependent properties with Monte Carlo




Worm Algorithm and Lattice Bosons

Bose Hubbard Model (BHM)

T4+V

—tZaaj—khc Z thi

(13)

hi site-dependent external potential (e.g., disorder)
U > 0 (what happens if U <0 ?)

e BHM subject of much current research
especially in the context of cold atoms in optical lattices

e Useful minimal model and starting point for our discussion
o Methodology described this morning generally applicable to lattice bosons




Thermodynamics of BHM

e Calculation of thermal expectation values

(0) = T, ¢

K=H-— uN "Grand Canonical” Hamailtonian

B=1/T

Z =Trp = Zc<c\e_5k\c>, Grand partition function

lc) = |n1 n)2 ... ny) generic configuration (occupation number representation)

Matrix elements of e #X in |c) basis not known analytically

Direct evaluation of Z unfeasible

Numerics required




Interaction representation

With p(7) = e~ 7K it is

op .
a_P = —Kp (Bloch's equation)
~

Set p(1) = e~ "V G(7), obtain




Solution by series expansion

Formal recursive solution of equation for G(3) yields series for
Partition Function:

+(n—1)

4 = i (—=1)" Z / dr... /(n) B dr(™)
n=0 —

c(n—1)
X e_(B_T)V(C) <C\Tyc> e~ (T=TIWVED) (TN
R 1 A ) <C(n—1)‘T’C> TV (e)




Kinks

Matrix element of kinetic energy operator only connects configurations differing at the
most by the hopping of one particle to NN site

—— particle

-

lattice

(c|T|e) = ~t

-

lattice

Integrand of nth order term in Z expansion: trajectory in imaginary time with n “kinks”

kink-antikink pair




Monte Carlo integration

Partition function Z infinite sum of multidimensional nested integrals of
increasing order = integral over all many-particle paths featuring an
arbitrary number of “kinks”

MC evaluation of contributions to Z translates into sampling paths with
arbitrary numbers of kinks at varying consecutive ordered times

Weight of generic configuration proportional to:

r )

(Bt)" expd — [2 drV]e(T))

\ /

Weight is positive for bosons
c(T) piecewise many-particle path
V]c(7)] constant between consecutive kinks




World Line (WL) representation of (c| p™|c)

Example: 3 particles in one dimension (4-site lattice)

Particles are all drawn with the same color because of indistinguishability
Dashed lines represent empty lattice sites

Line thickness proportional to number of particles on site

Contribution of order 7 (number of “kinks” occurring at different times)

Between one kink and the next system propagates “unperturbed” in
imaginary time

Initial and final configurations are identical (in occupation terms)




World Line Monte Carlo

Sampling of many-particle paths restricted to the space of closed WLs
Limited number of updates (kink-antikink creation and removal, time shifts)
Slow convergence -- size limitation
Ergodicity problematic (impossible to change winding number on large lattices)
Also generally impossible to change number of particles (add entire WLs at once)




Ira and Masha, again...

e Generalize configuration space to allow for a single WL that ends at 7; <
and resumes at Tv < 3, with 71 < v

e Formally equivalent to sampling configurations from a probability distribution
proportional to the single particle Matsubara Green function

(L, 71)])




Worm engine

e Sampling of configuration occurs through simple set of local updates all
involving I or M (other WLs are not touched)

e Identify two sectors: Z-sector (no open line, or “Worm”, 1.e., I and M have
reconnected); G-sector (one Worm 1s present)

e Measurements taken 1n the G-sector contribute to g, those taken 1n Z-sector
contribute to physical observables

e According to the Metropolis prescription, acceptance ratios for all the
moves are proportional to the ratio of the value of the probability
distribution to be sampled at the proposed over the current configurations




Updates (complementary pairs)

time shift: Insert/delete
\ Ira and Masha:

space shift

space shift
(“hole” type):

(“particle™):

- Two additional moves:
Insert Worm at random lattice site (I=M)
Remove Worm when its length is zero

- Together with the fact that 7 can advance past M, these two moves cause

number of particles to fluctuate (grand canonical ensemble)
Canonical implementations possible







Superfluid density and winding number

e Study of superfluid response of many-body system can be performed by
numerical simulation with periodic boundary conditions via the computation
of the superfluid density as a function of T

e Superfluid density related to winding number W (Pollock and Ceperley, 1987)
counts number of times single-particle paths “wrap” around PBC
essentially impossible to create paths with non-zero winding without using Worms

ps o< (W?)

W = fractional




Remarks

e No time discretization or “time step errors”

e Lattice simulations with a number of particles of order 100 standard (no

unusual computational resources required)

Accurate finite-size scaling and determination of critical points possible
Realistic simulations of experimental systems realizable in Optical Lattices

e Extension to long-range interactions possible through Diagrammatic Monte
Carlo (continuum part)

e Also possible to work with more than one worm (pairing)

e Grand Canonical

e Other extensions (multicomponent systems, flavor-changing interactions etc.)
have been worked out

e Similar 1n spirit to Stochastic Series Expansion (SSE)




Application: Supersolid phase of hard core
Hard core bosons on triangular lattice

MB and N.V. Prokof’ev, PRL 95, 237204 (2005)

Goal: search and characterization of Supersolid phase
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Application: two-component lattice model
with flavor-changing interaction

MB and N.V. Prokof’ev, PRB 77, 092502 (2008)

Boson 7-J model
Hamiltonian of system of 1sotopic mixture of hard core bosons
Interaction allows mixing of species
Rich phase diagram

normal

Phase sep.




L. Pollet, C. Kollath, K.Van Houcke and M.Troyer
ArXiv:0801.1887 (2008)

B =0.09 + 0.01

keep S const

Tini =28.25nK

B =0.45 +0.21

keep S const

Tini = 18.96nK

keep S const

>

Tini = 15.30nK

B=093+0.11

keep S const

Tini=7.92nK

left column : experiment in
Mainz; right column :
simulations (or was it the
other way around? )
Temperature determined by
keeping the entropy constant

QMC is too accurate, no noise
from CCD, QMC can be made
more noisy by running for a
shorter period of time




End of first part

Next: continuum

but first: coffee (lot of 1t)




Continuous-space Worm Algorithm

- Goal: obtaining accurate thermodynamics for many-particle systems
7 _ _ RN w2
H=—5->,21V;+ Zi(j v(|r; —rj))

- Feynman’s Space-time formulation of quantum statistical mechanics
Statistical Mechanics: A set of Lectures, Addison-Wesley (1972)

- Thermal averages of physical operators at finite temperature 7 = 1/5

Tr(Op) _ [dR O(R) p(R, R, B)
Trp [dR p(R, R, 3)

(0) =

p(R, R, 3) = (Rle P¥|R) many-body density matrix
|R) = |ry..ry) system configuration

K=H- ,uN grand canonical Hamiltonian

Z = [dR p(R, R, ) grand partition function




Path Integrals

- Same basic strategy as on lattice:
Many-body density matrix not known for any non-trivial many-body system
Obtained through path integration (A.-M. Tremblay’s notes)

7 — / DR(u) exp{—S[R(U)]}

(uh imaginary time)
Integration over all possible continuous, 3-periodic many-particle paths with

& . om [dr;\’
/0 du {Zﬁ<d;> +V(R(u))} “Fuclidean Action”

1=

- Action associated to path balance between kinetic (path curvature) and
potential energy (depends on interactions) along path
Smooth, straight paths have generally higher probability
Paths of high potential energy have low probability




Quantum Statistics

Example
4 particles in 1d
Exchanges occur only
through PBC

X

- Paths are B-periodic,i.e., R(8)=R(0)
However, individual particle positions can undergo exchanges

Crucial ingredient of the physics of ensembles of indistinguishable particles
Underlie phenomena such as BEC and Superfluidity

- Ascribing physical content to paths 1s tempting but dangerous
Least action path: solution of Newton’s EOM with reversed potential
However: imaginary-time formalism useful for studying tunneling (instanton)




Monte Carlo strategy

- Sample many-particle paths R(u) through configuration space, based on the
probability distribution proportional to exp[-S(R(u))] -- Metropolis algorithm

- Evaluate thermal expectation values as statistical averages of quantities of
interest computed along paths

- First important difference with lattice calculation:
No continuous time (yet)

Action integral must be discretized — time step error inevitable
Reason: no expansion for kinetic energy exists in the continuum (no kinks)

Discretization: R(u) ={Ro, R1,..., Ryp—1}, Ry = PRy
(P permutation of particle labels)
Mt = 3, T is the time step

Simplest approximate action (we can do better but it is not needed now):

P-1

S[R(U)] ~ Z mir;; — ril+1)2 4+ TZV(RZ)
[

: 21 h?
1=1 [=0

(Note: in the absence of interaction any discretized form is exact)



Discrete Action

- Probability with which a discrete path R(u) 1s sampled

—1

P  exp {—S[R(u)]} =11 MH

1=1 [=0

M—1

_7V(R

Po(Til, Tita1,T) X H e~V (R
1—0

where

—1/d N2
po(r, v’ 7) = <2wh27/m) exp {—m(;#:) ]

is the density matrix of a free particle, and
V(R)=U(R,7) — uN

In the simplest version, U is the total potential energy, does not depend on 7
(In some approximations, it does)




Path Integral Monte Carlo (PIMC)

o In principle exact numerical tool to compute thermodynamics of Bose systems
D. Ceperley, Rev. Mod. Phys. 67, 295 (1995)

No adjustable parameter, approximation, a priori input

Works directly on microscopic Hamiltonian

Direct computation of @s(7) (superfluid density)

o> Sampling
Occurs through elementary move that modifies portions of single-particle paths

Permutations are sampled by explicit construction of permutation cycles

[ [




PIMC (cont’d)

> Sampling issues
In the presence of repulsive, hard core potentials, any such sampling of permutations 1s bound
to become 1nefficient (high likelihood of rejection)

Avoid hard cores through periodic boundary conditions -- yields a vanishing contribution

> Problems:
Occurrence of nonzero winding requires macroscopic permutation cycles (length ~ N1/2)

Effort required to sample macroscopic permutation cycles scales exponentially with NV
No simulation of superfluid transition in bulk systems with more than ~100 particles
Extrapolation to thermodynamic limit (N — o) often problematic

Ambiguous interpretation of results (no superfluidity or ergodicity problem ?)

> Size matters:
Some problems cannot even be properly formulated 1t only a few particles can be simulated

(example: superfluid layer in solid helium at grain boundary)

Even for finite-size systems, however (e.g., quantum droplets), efficient sampling
of permutations can be crucial to capture the physics




Ira and Masha go to the continuum

MB, N.V. Prokof’ev and B.V. Svistunov, PRL 96, 070601 (2006)
MB, N.V. Prokof’ev and B.V. Svistunov, PRE 74, 036701 (2006)

\

o Generalize configuration space, from that of the partition function to
that of the Matsubara Green function

g(r17r27t) 7

G(ry,ra,t) = 7 = —(T[(ry,t) P (re,0)])

~ One open path with two dangling ends (worm)
Analogously to lattice methodology, Z- and G-sectors are identified
Sampling of many-particle paths occurs through simple set of complementary
moves, only involving the worm




(open/close update)




(insert/remove update)




(advance/recede update)




swap update (self-complementary)




Remarks

Configurations with open WL contribute to the Matsubara Green function
All non-trivial topological path modifications occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

When Ira and Masha reconnect, a Z-sector configuration 1s obtained, and
most observables computed -- large permutation cycles automatically occur

Reconnection 1s one of the attempted moves (no need to wait for it !)

Number of particles fluctuate (again, canonical implementations possible)

Can I and M get “stuck” far away from each other ?

Statistics of spatial distances between I and M given by one-body density matrix
Decaying exponentially in a non-BEC
Going to a constant in a BEC (but high acceptance probability of reconnection)




Diagrammatic Monte Carlo: a trick to
deal with long-range interactions

e In MC, updates require the calculation of  exp {— Z v(rij)}
(omit B for simplicity for a few slides) J#1
Scales as the number of particles
For rapidly decaying potentials, much time spent computing small quantities

e Pair potential with repulsive core and long-range attractive tail

e.g., Lennard-Jones
v(r) =vgo(r) —vLr(T)

both functions are non-negative




Diagrammatic Monte Carlo (cont’d)

e Trick: treat short-range part explicitly, long-range one 1s sampled

e Simply re-write exp {ULR(T)} = {1 + (exp[vLR(r)] -~ 1)}

Sum of positive contributions
Can be treated probabilistically

Each particle interacts on average
with few nearest neighbors and few
linked distant particles. Links are
created and removed dynamically
Overall scaling is linear with N

e Switch “on” and “off” interaction between pairs of particles
interaction switched on with probability proportional to (explvrr(r)] — 1)
with probability proportional to 1, particles do not interact




“He in two dimensions, 7=0.6 K




Application: Superfluid transition in *He
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Superfluid transition in “He (cont’d)

N=64 to 2048




Superfluid transition in “He (cont’d)

2048 §,

3D
T.=2.193(6) K

1024 1

N

N\

N
N
N
N
N\
N
~
~
~
~

~

~

2.16




Superfluid transition in “He (cont’d)

p(r)Te
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Application: Search for BEC in solid ‘He

MB, N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006)

T=0.2 K, N=800
ps=0

p=0.0359 A-*

5

10

Exponential decay of
one-body density matrix
seen at low T, large r for
perfect hcp “He crystal

Absence of BEC
Independent of pressure

Absence of SF
No long permutation cycles




Application: vacancies in solid ‘He

MB, A. Kukloy, L. Pollet, N. Prokof’ev, B. Svistunov and M.Troyer, PRL 97,080401 (2006)

Activation energy for vacancies and interstitials can be obtained straightforwardly
from exponential decay of Matsubara Green function
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Application: superfluidity at grain
boundaries in solid ‘He

L. Pollet, MB, A. Kuklov, N. Prokofev, B. Svistunov and M. Troyer, Phys. Rev. Lett. 98, 135301 (2007).

By direct simulation, evidence 1s obtained that a
grain boundary in direct contact with a superfluid
at the melting pressure i1s thermodynamically
stable.

Superfluild behavior of a generic GB at
temperatures of the order of 0.5 K 1is observed.
Indeed, a generic GB is found to be superfluid,
although 1nsulating GBs exist as well, for
particular relative orientations of the crystallites

Simulations performed on systems including as
many as 13000 particles (that many are needed)




Application: superfluidity in the core
of a screw dislocation in solid *He

MB, A. Kuklov, L. Pollet, N. Prokofev, B. Svistunov and M.Troyer, Phys. Rev. Lett. 99, 035301 (2007).
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Simulations of single screw dislocation inside hcp “He crystal show evidence of
spatially modulated Luttinger liquid (1d supersolid ?)




Other applications

e Phase diagram of dipolar systems
(H.-P. Buchler et al., PRL 98, 060404 (2007))

o Superfluid properties of para-hydrogen clusters
(F. Mezzacapo and MB, PRL 97, 045301 (2006); PRL 100, 145301 (2008))

e Momentum distribution of liquid para-hydrogen
(MB, (2008))




Open issues

Sign problem (neither improved not worsened by WA)
Continuous time (is there any way of avoiding the time step
error in continuos space ?)

Can run into problems whenever multi-particle updates are
needed (e.g., at first order phase transitions)

Dynamical information (linear response theory and analytic
continuation)







