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Outline of the lectures

• Motivation and general ideas

• A simple case study:  the Ising model

• Quantum many-body problems
1. Discrete space and continuous time: lattice bosons

2. Continuous space and discrete time: condensed Helium

3. Long-ranged interactions: Diagrammatic Monte Carlo

4. Applications



Monte Carlo basics

Goal of most Monte Carlo simulation of condensed matter: study 
of equilibrium statistical properties (no time dependence yet) 

• Evaluation of thermal averages 
Multi-dimensional sums/integrals : typical dimension is d x N 
Not factorizable due to particle interactions
Straightforward grid integration impossible

• Strategy: turn calculation into “synthetic” measurement 
Generate on a computer a statistically representative sample of many-
particle configurations, drawn from the physical probability distribution 
(Gibbs)

Compute desired thermal expectation value as statistical average



Monte Carlo basics (cont’d)
(M. Troyer’s notes)

Statistically representative set of configurations must be generated 
sequentially for any non-trivial system. 

Efficiency considerations important

Random walk through configuration space

Metropolis Algorithm (N. Metropolis et al., 1953)
Key : Efficient Sampling ☞ Small auto-correlation time 
(unbiased statistics: configurations should quickly lose memory of progenitors)



Monte Carlo basics (cont’d)

• Detailed Balance
A random walk is guaranteed to sample asymptotically the desired 
distribution P(c) of configurations if the following conditions are 
satisfied:

1) Ergodicity: rules that govern random walk must allow each physical 
configuration to be visited (“paths from anywhere to anywhere”)

2) Detailed balance: if W(c ⟶ d) is the probability of making transition 
between any two configurations, then it must be

• Sampling strategy
Elementary move 

Simple (single-particle), fast but long auto-correlation time (ergodicity ?)
Complex (many particles), shorter auto-correlation time but slower
or... both simple and with short auto-correlation time ?

W (c→ d)
W (d→ c)

=
P (d)
P (c)



Simple case: spin-1/2 Ising model

 Equilibrium phase diagram known analytically in 2D (Onsager, 1944) 
 Second order ferromagnetic phase transition
 Regarded as test bench for MC simulation methods

Classical lattice spin model : E(c) = −J
∑

〈ij〉

sisj , si = ±1

c ≡ {s1s2...sN} generic configuration

Z =
∑

c

∏

〈ij〉

exp(Ksisj) Partition function

m(T ) = (1− (sinh(2J/T ))−4)1/8

(K = J/T )



Monte Carlo simulation
Sampling of configurations

 Local: Flip single spin in c, and accept with probability

Efficient at T ≥ Tc 
Suffers from critical slowing down as T ➝ Tc
Physical reason: as system approaches critical temperature, 
correlations on very long distances set in, and large “islands” 
of ferromagnetically aligned spins appear. 

  Cluster update (Swendsen-Wang, 1987, Wolff, 1989)
Flip clusters of connected equal spins at same time
Clusters are grown from a seed site, based on a sequential 
(non-Metropolis) probabilistic procedure, satisfying 
detailed balance
No critical slowing down at Tc
Not as efficient as single spin flip at high T
Physical reason: cluster algorithms owe their efficiency to 
the proximity to criticality

P = min{1, exp[-2Ks Σj sj ]}



Worm Algorithm for Ising model
N. Prokof’ev, B. Svistunov and I. Tupitsyn (1991)

Z =
∑

s1...sN

∏

〈ij〉

eKsisj =
∑

s1...sN

∏

〈ij〉

[
cosh(K)

(
1 + tanh(K)sisj

)]

i.e.

Z = cosh(K)2N
∑

s1...sN

∏

bonds

1∑

nb=0

[
tanh(K)]nbsnb

i snb
j

]
∝

∑

{nb}

tanh(K)
P

nb
∑

s1...sN

∏

bonds

snb
i snb

j

nb = 0, 1: power associated to bond 〈ij〉
∑

s1...sN

∏

〈ij〉

sn
i sn

j ≡
∏

i

∑

si

spi
i , pi total power associated to site i

For a spin-1/2 system one has
∑

s sp = 2 if p is even, zero otherwise

Hence, Z = 2N
∑

{nb}

[
tanh(K)

]P
nb

(closed loops)



Closed loops ? What loops ?

Number of times each site occurs in the product
must be even
Sum of all occupied bonds involving that site must be 
even
(no bond can be invoked twice)
Consequently, bonds connecting sites necessarily must 
form closed loops (not necessarily connected)

Examples

NO

YES



Enter “Ira” and “Masha”

i

m

Consider the 2-point spatial correlation function

g(i−m) = Z−1
∑

s1...sN

sism eK
P

〈jl〉 sjsl = Z−1 G(i−m)

i

m

i

m

Examples

Identical procedure adopted for Z expresses G as a sum over open loops, with
the same weights used for the expansion of Z. The presence of two additional
spins (i and m) gives rise to the two “dangling ends”



Monte Carlo evaluation of g(i-m)
• Generate on a computer a set of  loops corresponding to drawing with a pencil 

along bonds of a square lattice, without ever detaching the tip of the pencil from 
the sheet. Each bond is penciled only once at the most, and there are two dangling 
ends (Ira  and Masha)

• Let the probability with which generic loop occurs be proportional to 

• When Ira and Masha are at a distance i - m, contribute +1 to G(i-m)
When i = m (closed loop), then contribute +1 to G(0) ≡ Z

• Accumulate statistics and evaluate g(i-m) as G(i-m)/G(0)

• Other quantities can be computed as well. For example, 
Average energy: -J tanh(K) [dN + 〈Nb〉/sinh2(K)], 
(Nb total number of penciled bonds)

Magnetic susceptibility χ = (1/T) Σi g(i)

[tanh(K)]Nb



Structure of Ising Worm code
Simple “draw-and-erase” procedure

Select random site and set I = M

I=M ?

y

n

Select direction (d/e)

Move M by one site in chosen direction
with probability R (draw random #)

Update averages

R = 2d [tanh(K)]±1

(“+” sign if Nb is increased)

yup... that’s it !



How well does it work ?
No critical slowing down near critical temperature

Allows to simulate the model efficiently at all temperatures

All correlation functions available on-the-fly 

Same conclusion established for a rather wide variety of other
lattice models (e.g., x-y) and/or universality classes

By now regarded as general algorithm of statistical mechanics

 Local moves only

Basic idea easily extended to quantum-mechanical systems



Worm Algorithm and Quantum 
Many-Body Physics

Worm Algorithm  is currently one of the most powerful methodology to 
study thermodynamic properties of quantum-mechanical systems 
comprising many interacting particles

Essentially exact for Bose systems (goes far  beyond previously 
existing continuum methodology)

It does not solve/alleviate the infamous “sign” problem

General Monte Carlo methodology for fermions still lacking

It does not represent a step forward toward the computation of time-
dependent properties with Monte Carlo



Worm Algorithm and Lattice Bosons

Bose Hubbard Model (BHM)

hi site-dependent external potential (e.g., disorder)
U > 0 (what happens if U < 0 ?)

BHM subject of much current research 
especially in the context of cold atoms in optical lattices

Useful minimal model and starting point for our discussion
Methodology described this morning generally applicable to lattice bosons

Ĥ = T̂ + V̂

T̂ = −t
∑

〈ij〉

(â†i âj + h.c.); V̂ = U
∑

i

n̂2
i −

∑

i

hin̂i n̂i = â†i âi



Thermodynamics of BHM

Calculation of thermal expectation values

〈Ô〉 =
TrÔρ̂

Trρ̂
, ρ = e−βK̂

β = 1/T

K̂ = Ĥ − µN̂ ”Grand Canonical” Hamiltonian

Z = Trρ̂ =
∑

c〈c|e−βK̂ |c〉, Grand partition function

|c〉 ≡ |n1 n)2 ... nN 〉 generic configuration (occupation number representation)

Matrix elements of e−βK̂ in |c〉 basis not known analytically

Direct evaluation of Z unfeasible

Numerics required



Interaction representation

With ρ̂(τ) = e−τK̂ , it is

∂ρ̂

∂τ
= −K̂ρ̂ (Bloch′s equation)

Set ρ̂(τ) = e−τ V̂ Ĝ(τ), obtain

∂Ĝ

∂τ
= −T̂I(τ)Ĝ(τ), Ĝ(0) ≡ 1

with

T̂I(τ) ≡ eτ V̂ T̂ e−τ V̂



Solution by series expansion

Formal recursive solution of equation for Ĝ(β) yields series for
Partition Function:

Z =
∞∑

n=0

(−1)n
∑

c,c′,...c(n−1)

∫ β

τ=0
dτ...

∫ τ(n−1)

τ(n)=0
dτ (n)

× e−(β−τ)V (c) 〈c|T̂ |c′〉 e−(τ−τ ′)V (c′) 〈c′|T̂ |c′′〉 ...

... × e−(τ(n−1)−τ(n))V (c(n−1)) 〈c(n−1)|T̂ |c〉 e−τ(n)V (c)



Kinks

lattice

c’ 〈c|T̂ |c′〉 = −t

Matrix element of kinetic energy operator  only connects configurations differing at the 
most by the hopping of one particle to NN site

c
lattice

c’

c

〈c|T̂ |c′〉 = −
√

2 t

particle

Integrand of nth order term in Z expansion: trajectory in imaginary time with n “kinks”

space

time kink kink-antikink pair



Monte Carlo integration

Partition function Z infinite sum of multidimensional nested integrals of 
increasing order ⇒ integral over all many-particle paths featuring an 
arbitrary number of “kinks”

MC evaluation of contributions to Z  translates into sampling paths with 
arbitrary numbers of kinks at varying consecutive ordered times 

Weight of generic configuration proportional to: 

(βt)n exp
{
−

∫ β
τ=0 dτV [c(τ)]

}

Weight is positive for bosons
c(τ) piecewise many-particle path
V[c(τ)] constant between consecutive kinks



World Line (WL) representation of 〈c| ρ(n)|c〉

Example: 3 particles in one dimension (4-site lattice)
Particles are all drawn with the same color because of indistinguishability
Dashed lines represent empty lattice sites
Line thickness proportional to number of particles on site
Contribution of order 7 (number of “kinks” occurring at different times)
Between one kink and the next system propagates “unperturbed” in 
imaginary time
Initial and final configurations are identical (in occupation terms)

τ(1)
0 β

space

τ(0) τ(2) τ(3) τ(4) τ(6)τ(5)



World Line Monte Carlo

Sampling  of many-particle paths restricted to the space of closed WLs
Limited number of updates (kink-antikink creation and removal, time shifts)
Slow convergence -- size limitation
Ergodicity problematic (impossible to change winding number on large lattices)
Also generally impossible to change number of particles (add entire WLs at once)



Ira and Masha, again...

τ(1)
0 β

space

τ(0) τ(3) τ(4) τ(6)τ(5)

I
M

Generalize configuration space to allow for a single WL that ends at τI < β 
and resumes at τM < β, with  τI < τM 

Formally equivalent to sampling configurations from a probability distribution 
proportional to the single particle Matsubara Green function

g(I − M, τM − τI) = 1
Z 〈−T̂ [â†(M, τM )â(I, τI)]〉



Worm engine

Sampling of configuration occurs through simple set of local updates all 
involving I or M (other WLs are not touched) 

Identify two sectors: Z-sector (no open line, or “Worm”, i.e., I and M have 
reconnected); G-sector (one Worm is present)

Measurements taken in the G-sector contribute to g, those taken in Z-sector 
contribute to physical observables

According to the Metropolis prescription, acceptance ratios for all the 
moves are proportional to the ratio of the value of the probability 
distribution to be sampled at the proposed  over the current configurations



time shift:

space shift
(“particle”):

i

j

i

j

i

j

i

j

Ira or 
Masha  

Insert/delete
Ira and Masha:

space shift
(“hole” type):

Updates (complementary pairs)

Z ⇄ G

Two additional moves: 
Insert Worm at random lattice site (I=M)
Remove Worm when its length is zero

Together with the fact that I can advance past M, these two moves cause 
number of particles to fluctuate (grand canonical ensemble)

Canonical implementations possible



M

I I

II

M



ρS ∝ 〈W 2〉

Superfluid density and winding number
Study of superfluid response of many-body system can be performed by 
numerical simulation with periodic boundary conditions  via the computation 
of the superfluid density as a function of T

Superfluid density related to winding number W (Pollock and Ceperley, 1987)
counts number of times single-particle paths “wrap” around PBC
essentially impossible to create paths with non-zero winding without using Worms



Remarks

No time discretization or “time step errors”

Lattice simulations with a number of particles of order 106 standard (no 
unusual computational resources required)

Accurate finite-size scaling and determination of critical points possible
Realistic  simulations of experimental systems realizable in Optical Lattices

Extension to long-range interactions possible through Diagrammatic Monte 
Carlo (continuum part)

Also possible to work with  more than one worm (pairing)

Grand Canonical

Other extensions (multicomponent systems, flavor-changing interactions etc.) 
have been worked out

Similar in spirit to Stochastic Series Expansion (SSE)



Application: Supersolid phase of hard core 
Hard core bosons on triangular lattice

Supersolid Phase of Hard-Core Bosons on a Triangular Lattice

Massimo Boninsegni1 and Nikolay Prokof’ev2,3

1Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

3Russian Research Center ‘‘Kurchatov Institute’’, 123182 Moscow, Russia
(Received 26 July 2005; published 28 November 2005)

We study properties of the supersolid phase observed for hard-core bosons on the triangular lattice near
half-integer filling factor, and the phase diagram of the system at finite temperature. We find that the solid
order is always of the !2m;"m0;"m0# with m changing discontinuously from positive to negative values
at half filling, in contrast with phases observed for Ising spins in a transverse magnetic field. At finite
temperature we find two intersecting second-order transition lines: one in the 3-state Potts universality
class and the other of the Kosterlitz-Thouless type.

DOI: 10.1103/PhysRevLett.95.237204 PACS numbers: 75.10.Jm, 05.30.Jp, 67.40.Kh, 74.25.Dw

Since the supersolid state of matter was introduced to
physics nearly half a century ago and its theoretical feasi-
bility was demonstrated [1], there has been a long history
of experimental attempts to find it in nature [mostly in 4He,
see, e.g., Ref. [2] ] along with numerical simulations and
theoretical predictions for models of interacting lattice
bosons. Recent years have seen a renewed interest in this
topic. On the one hand, lattice bosons are no longer in the
realm of idealized models and can be now studied in
controlled experiments with ultracold atoms in optical
potentials [3]. On the other hand, the nonclassical moment
of inertia observed for solid 4He samples in the torsional
oscillator experiments by Kim and Chan [4] remains
largely a mystery.

Hard-core bosons on triangular lattice with nearest-
neighbor repulsion V > 0 and hopping t > 0 represent
one of the simplest (and thus most promising from the
experimental point of view) models displaying a supersolid
phase in an extended region of the phase diagram. The
model Hamiltonian is given by:

H $ "t
X

hiji
!b̂yi b̂j % H:c# % V

X

hiji
n̂in̂j "!

X
i
n̂i: (1)

Here b̂yi is the bosonic creation operator, n̂i $ b̂yi b̂i, and !
is the chemical potential. A triangular lattice of N $ L&
L sites, with periodic boundary conditions, is assumed. The
alternative formulation of (1) in terms of quantum spin-1=2
variables ŝi, namely,

H$"2t
X

hiji
!ŝxi ŝxj% ŝyi ŝ

y
j#%V

X

hiji
ŝzi ŝ

z
j"!!"3V#

X
i
ŝzi (2)

provides a useful mapping to the XXZ magnet. The super-
fluid state of Eq. (1) for t ' V corresponds to the
XY-ferromagnetic state of Eq. (2), while the solid state of
bosons is equivalent to magnetic order in the ẑ direction. At
half-integer filling factor, n!! $ 3V# $ 1=2, the model
has an exact particle-hole symmetry.

A robust confirmation of early mean-field predictions of
a supersolid phase in the ground state of (1) [5] was

obtained by means of Green function Monte Carlo
(GFMC) simulations [6]. The supersolid phases identified
in that study for densities away from half filling (i.e., for
!=V > 3 and !=V < 3) can be viewed as solids, with
filling factors " $ 2=3 and " $ 1=3, doped with holes
and particles, respectively. In what follows, we denote
them as supersolids A and B. Density correlations in
A and B have

!!!
3

p
&

!!!
3

p
ordering with the wave vector

Q $ !4#=3; 0#. In A and B the average occupation
numbers on three consecutive sites along any of the
principal axes follow the sequence !"2m;m0; m0# and
!2m;"m0;"m0#, respectively (it is conventional to count
densities from 1=2 to make connection with the magneti-
zation in the spin language, mi $ ni " 1=2); see Fig. 1.

The model (1) has been investigated in a series of re-
cent papers, making use of advanced numerical techniques
[7–9]. The proposed zero-temperature phase diagram is
similar to that of Ref. [6], with the notable addition of a
quantum superfluid-supersolid phase transition at n $ 1=2
and t=V ( 0:115 and the stable supersolid state persisting
for smaller values of t=V. In Ref. [6] the system was
thought to remain a disordered superfluid for arbitrary
t=V. The discrepancy can be attributed to known limita-
tions of the GFMC method [10].

µ/3V

t/V

superfluid
solid 

solid 

A

B

supersolid 

supersolid B

FIG. 1. Schematic phase diagram of Eq. (1) near half-integer
filling factor.
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is that A and B states phase separate and have different
average densities even at ! ! 3V], the finite-temperature
phase diagram should instead feature the normal-
superfluid KT and the liquid-solid 3-state Potts (for n !
1=2) transitions breaking U(1) and translation symmetry,
respectively. At n ! 1=2 we expect only one liquid-solid
transition. An interesting question is whether transition
lines simply intersect, or there are bicritical and tricritical
points and I-order lines as observed for the similar model
on the square lattice [15]. We performed simulations for
two representative cases, one for constant chemical poten-
tial !=V ! 2:74 (or density n " 0:44), and the other for
constant t=V ! 0:1.

In Fig. 4 we show typical data for the KT transition
between the solid and supersolid phases. The transition is
smeared by logarithmic finite-size effects, but the critical
temperature can be still determined with good accuracy by

utilizing the well-known renormalization flow and the
universal jump of the superfluid density, "s, at Tc. The
data analysis is as follows [16]: we define R ! #"s=2mT
(where m ! 1=3t is the effective mass for the triangular
lattice) and study the finite-size scaling of the data using
KT renormalization group equations in the integral form

4 ln#L2=L1$ !
Z R1

R2

dt
t2#ln#t$ % $$ & t

: (5)

The microscopic (system size independent) parameter $ is
an analytic function of temperature, and the critical point
corresponds to R ! 1 at $ ! 1. For T < Tc, the thermody-
namic curve is defined by the equation

1=R& lnR ! $#T$; (6)

with $ ! 1& $0#Tc % T$. We use different pairs of system
sizes in Eq. (5) to determine the $#T$ curve, and obtain the
location of the critical point from $#Tc$ ! 1. The results
are shown in the inset of Fig. 4. Data collapse and smooth
analytic behavior of $#T$ proves that the transition is
indeed of the KT type. We used the same protocol and
system sizes to determine other critical points.

In Fig. 5, we present our data for the transition into the
state with the long-range density order. For the threefold
degenerate B structure this transition is expected to be in
the 3-state Potts universality class. The critical exponents
are known exactly [17]: % ! 5=6 and & ! 1=9. We thus
perform the data collapse using L2&SQ ! f#'L1=%$ where
' ! #T % Tc$=t and Tc is the only fitting parameter. The
result is shown in the inset of Fig. 5. This confirms the
above-mentioned expectation, and establishes that there is
only one transition to the solid phase (there are no visible
finite-size effects below Tc).

Finally, we compute the phase diagram in the #T=t; t=V$
(at constant !=V ! 2:74) and #T=t;!=V$ (at constant
t=V ! 0:1) planes and observe that KT and Potts transition
lines form a simple cross for n ! 1=2; i.e., the correspond-
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Application: two-component  lattice model 
with flavor-changing interaction 

MB and N. V. Prokof ’ev, PRB 77, 092502 (2008)

Boson t-J model
Hamiltonian of system of isotopic mixture of hard core bosons
Interaction allows mixing of species
Rich phase diagram
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small mismatch in 
temperature

left column : experiment in 
Mainz; right column : 

simulations (or was it the 
other way around? )

Temperature determined by 
keeping the entropy constant

QMC is too accurate, no noise 
from CCD, QMC can be made 

more noisy by running for a 
shorter period of time

!

!

!

!

Tc

keep S const

keep S const

keep S const

keep S const

L. Pollet, C. Kollath, K. Van Houcke and M. Troyer
ArXiv:0801.1887 (2008)



End of first part

Next: continuum

but first: coffee (lot of it)



Continuous-space Worm Algorithm

Goal: obtaining accurate thermodynamics for many-particle systems

Feynman’s Space-time formulation of quantum statistical mechanics
Statistical Mechanics: A set of Lectures, Addison-Wesley (1972)

Thermal averages of physical operators at finite temperature T = 1/β

Ĥ = − !2

2m

∑N
i=1∇2

i +
∑

i〈j v(|ri − rj |)

〈Ô〉 =
Tr(Ôρ̂)

Trρ̂
=

∫
dR O(R) ρ(R,R, β)∫

dR ρ(R,R, β)

ρ(R,R, β) = 〈R|e−βK̂ |R〉 many-body density matrix
|R〉 ≡ |r1...rN 〉 system configuration
K̂ = Ĥ − µN̂ grand canonical Hamiltonian
Z =

∫
dR ρ(R,R, β) grand partition function



Z =
∫
DR(u) exp

[
−S[R(u)]

]

(u! imaginary time)
Integration over all possible continuous, β-periodic many-particle paths with

S[R(u)] =
∫ β

0
du

{ N∑

i=1

m

2!2

(
dri

du

)2

+ V (R(u))
}

“Euclidean Action”

Path Integrals
Same basic strategy as on lattice:

Many-body density matrix not known for any non-trivial many-body system
Obtained through path integration (A.-M. Tremblay’s notes)

Action associated to path balance between kinetic (path curvature) and 
potential energy (depends on interactions) along path

Smooth, straight paths have generally higher probability
Paths of high potential energy have low probability



Quantum Statistics

x

u

β

0

Example
4 particles in 1d

Exchanges occur only 
through PBC

Paths are β-periodic, i.e., R(β)=R(0) 
However, individual particle positions can undergo exchanges
Crucial ingredient of the physics of ensembles of indistinguishable particles
Underlie phenomena such as BEC and Superfluidity

Ascribing physical content  to paths is tempting but dangerous
Least action path: solution of Newton’s EOM with reversed potential
However: imaginary-time formalism useful for studying tunneling (instanton)



Discretization: R(u) ≡ {R0, R1, ..., RM−1}, RM ≡ PR0

(P permutation of particle labels)
Mτ = β, τ is the time step
Simplest approximate action (we can do better but it is not needed now):

S[R(u)] ≈
N∑

i=1

P−1∑

l=0

m(ril − ril+1)2

2τ!2
+ τ

∑

l

V (Rl)

(Note: in the absence of interaction any discretized form is exact)

Monte Carlo strategy
Sample many-particle paths R(u) through configuration space, based on the 
probability distribution proportional to exp[-S(R(u))] -- Metropolis algorithm

Evaluate thermal expectation values as statistical averages of quantities of 
interest computed along paths

First important difference with lattice calculation:
No continuous time (yet) 
Action integral must be discretized → time step error inevitable
Reason: no expansion for kinetic energy exists in the continuum (no kinks)



P ∝ exp
[
−S[R(u)]

]
=

N∏

i=1

M−1∏

l=0

ρ◦(ril, ril+1, τ) ×
M−1∏

l=0

e−τV (Rl)

where

ρ◦(r, r′, τ) =
(

2π!2τ/m

)−1/d

exp
[
−m(r− r′)2

2!2τ

]

is the density matrix of a free particle, and

V (R) = U(R, τ)− µN

In the simplest version, U is the total potential energy, does not depend on τ
(In some approximations, it does)

Discrete Action

Probability with which a discrete path R(u) is sampled



In principle exact numerical tool to compute thermodynamics of Bose systems
D. Ceperley, Rev. Mod. Phys. 67, 295 (1995)

No adjustable parameter, approximation, a priori input 
Works directly on microscopic Hamiltonian
Direct computation of ρs(T) (superfluid density)

Sampling 
Occurs through elementary move that modifies portions of single-particle paths
Permutations are sampled by explicit construction of permutation cycles

Path Integral Monte Carlo (PIMC)



Sampling issues
In the presence of repulsive, hard core potentials, any such sampling of permutations is bound 
to become inefficient (high likelihood of rejection)

Avoid hard cores through periodic boundary conditions -- yields a vanishing contribution

Problems: 
Occurrence of nonzero winding requires macroscopic permutation cycles (length ~ N1/d)
Effort required to sample macroscopic permutation cycles scales exponentially with N
No simulation of superfluid transition in bulk systems with more than ~100 particles 
Extrapolation to thermodynamic limit  (N → ∞) often problematic
Ambiguous interpretation of results (no superfluidity or ergodicity problem ?)

Size matters: 
Some problems cannot even be properly formulated if only a few particles can be simulated
 (example: superfluid layer in solid helium at grain boundary)

Even for finite-size systems, however (e.g., quantum droplets), efficient sampling 
of permutations can be crucial to capture the physics

PIMC (cont’d)



G(r1, r2, t) =
g(r1, r2, t)

Z
= −〈T̂ [ψ̂(r1, t) ψ̂†(r2, 0)]〉

Ira and Masha go to the continuum
MB, N. V. Prokof ’ev and B. V. Svistunov, PRL 96, 070601 (2006)
MB, N. V. Prokof ’ev and B. V. Svistunov, PRE 74, 036701 (2006)

M

0

β

1            2                  3             4        
I

Generalize configuration space, from that of the partition function to 
that of the Matsubara Green function

One open path with two dangling ends (worm)
Analogously to lattice methodology, Z- and G-sectors are identified
Sampling of many-particle paths occurs through simple set of complementary 
moves, only involving the worm



Pop = min
{

1,
C m◦NM e∆U−µmτ

ρ◦(rI , rM ,mτ)

}
Pcl = min

{
1,

ρ◦(rI , rM ,mτ)e∆U+µmτ

Cm◦NM

}

(open/close update)



Pin = min
{

1, e∆U+µmτCΩMm◦

}
Prm = min

{
1,

e∆U−µmτ

CΩMm◦

}

(insert/remove update)



Pad = min
{

1, e∆U+µmτ

}

Pre = min
{

1, e∆U−µmτ

}

All new positions sampled
directly from ρ◦

(advance/recede update)



Psw = min
{

1, e∆UZi/Zl

}

Z probability table
of possible swaps

swap update (self-complementary)



Configurations with open WL contribute to the Matsubara Green function
All non-trivial topological path modifications occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

When Ira and Masha reconnect, a Z-sector configuration is obtained, and
most observables computed -- large permutation cycles automatically occur

Reconnection is one of the attempted moves (no need to wait for it !)

Number of particles fluctuate (again, canonical implementations possible)

Remarks

Can I  and M get “stuck” far away from each other ?

Statistics of spatial distances between I  and M given by one-body density matrix
Decaying exponentially in a non-BEC
Going to a constant in a BEC (but high acceptance probability of reconnection)



exp
[
−

∑

j !=i

v(rij)
]

v(r) = vHC(r)− vLR(r)

v (r)

v (r)

LR

SR

Diagrammatic Monte Carlo: a trick to 
deal with long-range interactions

In MC, updates require the calculation of 
(omit β for simplicity for a few slides)
Scales as the number of particles
For rapidly decaying potentials, much time spent computing small quantities

Pair potential with repulsive core and long-range attractive tail 
e.g., Lennard-Jones

both functions are non-negative



Diagrammatic Monte Carlo (cont’d)

Simply re-write

Sum of positive contributions
Can be treated probabilistically

exp
[
vLR(r)

]
=

[
1 +

(
exp[vLR(r)]− 1

)]

Switch “on” and “off” interaction between pairs of particles 
interaction switched on with probability proportional to 
with probability proportional to 1, particles do not interact

Trick: treat short-range part explicitly, long-range one is sampled

(exp[vLR(r)]− 1)

Each particle interacts on average 
with few nearest neighbors and few 
linked  distant particles. Links are 
created and removed dynamically
Overall scaling is linear with N
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Application: Superfluid transition in 4He
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Superfluid transition in 4He (cont’d)
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Superfluid transition in 4He (cont’d)
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Superfluid transition in 4He (cont’d)
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Application: Search for BEC in solid 4He

0 5 10
-10

-8

-6

-4

-2

0

ρ=0.0292 Å-3

ρ=0.0359 Å-3
T=0.2 K, N=800

ρs=0

Exponential decay of 
one-body density matrix
seen at low T, large r for
perfect hcp 4He crystal

Absence of BEC
Independent of pressure

Absence of SF
No long permutation cycles

MB, N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006)
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Activation energy for vacancies and interstitials can be obtained straightforwardly 
from exponential decay of  Matsubara Green function 

G(k=0,τ) ~ e-|τ|Δ ,  long τ

too large for thermal activation at 
T < 1 K

Consistent with no vacancies (nor 
interstitials) in solid He

Application: vacancies in solid 4He
MB,  A. Kuklov, L. Pollet, N. Prokof’ev, B. Svistunov and M. Troyer, PRL 97, 080401 (2006)



By direct simulation, evidence is obtained that a 
grain boundary in direct contact with a superfluid 
at the melting pressure is thermodynamically 
stable. 

Simulations performed on systems including as 
many as 13000 particles (that many are needed)

Superfluid behavior of a generic GB at 
temperatures of the order of 0.5 K is observed. 
Indeed, a generic GB is found to be superfluid, 
although insulating GBs exist as well, for 
particular relative orientations of the crystallites

Application: superfluidity at grain 
boundaries in solid 4He

L. Pollet, MB, A. Kuklov, N. Prokof ’ev, B. Svistunov and M. Troyer, Phys. Rev. Lett. 98, 135301 (2007).



Simulations of single screw dislocation inside hcp 4He crystal show evidence of 
spatially modulated Luttinger liquid  (1d supersolid ?)
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Application: superfluidity in the core 
of a screw dislocation in solid 4He

MB, A. Kuklov, L. Pollet, N. Prokof ’ev, B. Svistunov and M. Troyer, Phys. Rev. Lett. 99, 035301 (2007).



Other applications

Phase diagram of dipolar systems 
(H.-P. Buchler et al., PRL 98, 060404 (2007))

Superfluid properties of para-hydrogen clusters 
(F. Mezzacapo and MB, PRL  97, 045301 (2006); PRL 100, 145301 (2008))

Momentum distribution of liquid para-hydrogen
(MB, (2008))



Open issues

Sign problem (neither improved not worsened by WA)

Continuous time (is there any way of avoiding the time step 
error in continuos space ?)

Can run into problems whenever multi-particle updates are 
needed (e.g., at first order phase transitions) 

Dynamical information (linear response theory and analytic 
continuation)



lunch... ?


