Quantum Cluster Methods

An introduction

David Sénéchal

Université de Sherbrooke
Département de physique

CIFAR - PITP International Summer School on Numerical

Methods for Correlated Systems in Condensed Matter
May 2008



Outline

Exact Diagonalizations

Clusters and Cluster Perturbation Theory (CPT)
The Self-Energy Functional Approach

The Variational Cluster Approximation (VCA)
Cluster Dynamical Mean Field Theory (CDMFT)

vV v v v Y



Part 1

Exact Diagonalizations



An old Persian Legend, revisited
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The Hubbard Model on finite cluster

» Simple Hubbard model (conserves Ny and V| separately):

H = Z tabcjw-cbo +U Z NatNa| — M Z Na
a

a,b,o a

» Typical cluster (L sites):
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Hamiltonian matrix : 2 sites

» Half-filled Hubbard model L = 2

U—-2u -t
—t —2u
—t 0
0 —t



Hamiltonian matrix : 6 sites

Sparse matrix
structure
400 x 400




Hamiltonian matrix : example

» Dimension of the Hilbert space
(half-filled Hubbard model):

» One double-precision vector
means 1.23 GB of memory

L dimension
2 4
4 36
6 400
8 4900
10 63 504
12 853776
14 11778 624
16 | 165636900




Steps

1. Building a basis
2. Constructing the Hamiltonian matrix
3. Finding the ground state (e.g. by the Lanczos method)

4. Calculating the one-body Green function



Coding of the states

» Basis of occupation number eigenstates:

(c})"™ 1+ (ely)"™ (] )™ (e )"410)
» Binary representation of basis states:
b) where b= b + 25,

Example :
b= (0101010101|1010101010) = 341 - 219 + 682 = 349, 866

» Need a direct table:
by = By(iy) by = By(i})
» ...and a reverse table:

’—> consecutive label mod <—‘ ’—> int. division
i:IT(bT)+dNTIl(bl) iT:i%dNT il:i/dNT



Coding of the states (2)

> Tensor product structure of the Hilbert space: V' = Vi, @ Vi,

» dimension:
d = d(Ny)d(N)) d(Ny) =

» Example (6 sites):
0 1 2 3 4 5 6

6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15

6 36 90 120 90 36 6

AN Lt AW N = O



Constructing the Hamiltonian matrix

Form of Hamiltonian:

v

H=K®1+1®K| + Vi, K= tachc

» K is stored in sparse form.

» Vint. is diagonal and is stored.

» Matrix elements of Vi, : bit_count(b; & b))
>

Two basis states |b,) and |b)) are connected with the matrix K if their
binary representations differ at two positions a and b.

V1K) = (~1) Moty My= Y ne



The Lanczos algorithm

» Finds the lowest eigenpair by an iterative application of H
» Start with random vector |¢g)

» An iterative procedure builds the Krylov subspace:

= span {|¢o), H|¢o), H?|o), - H | o) }

» Lanczos three-way recursion:

|Pnt+1) = Hlon) — an|pn) — b121|¢n—1>
_ (@nlH|dn) 2 (¢nldn) _
n = <¢n|¢n> bn B <¢n71|¢n71> bO



The Lanczos algorithm (2)

» In the basis of normalized states [n) = |¢y,)/+/(Pn|dn), the projected
Hamiltonian has the tridiagonal form

a b1 0 o --- 0
bl al b2 0 0
H = 0 bg a9 bg 0
O 0 0 0O --- an

» At each step n, find the lowest eigenvalue of that matrix

» Stop when the lowest eigenvalue Ey has converged
(AEy/Ey < 10712)

» Then re-run to find eigenvector [1)) = > 1, |n) as the |$,)’s are not
kept in memory.



Lanczos method: characteristics

» Typical required number of iterations: from 20 to 200
» Extreme eigenvalues converge first

» Rate of convergence increases with separation between ground state
and first excited state

» Cannot resolve degenerate ground states : only one state per ground
state manifold is picked up

» If one is interested in low lying states, periodic re-orthogonalization
may be required, as orthogonality leaks will occur

» For degenerate ground states and low lying states (e.g. in DMRG), the
Davidson method is generally preferable



Lanczos method: illustration of the convergence

100 iterations on a matrix of dimension 600: eigenvalues of the
tridiagonal projection as a function of iteration step




Lanczos method for the Green function

» Zero temperature Green function:

Guy(w) = Guy,e(w) + G,ul/,h(w)
1
T

GMV7€(w) = <Q|cﬂw _H_I_EOCI/‘Q>
1

G = (Qle) ————¢,|Q

12 7h(w) < ’cl/w_i_ EZ‘_EOCH‘ >

» Consider the diagonal element

1

[Pu) = CL|Q> — Gupe = <¢,u|w _ H—I—E0|¢M>
» Use the expansion
1 1 1 1
— 4 - H4+ _H?>4...
z2—H =z * 22 * 23 +



Lanczos method for the Green function (2)

» Truncated expansion evaluated exactly in Krylov subspace generated
by |¢,,) if we perform a Lanczos procedure on |¢,,).

» Then G, . is given by a Jacobi continued fraction:

(Pulpp)
Guu,e(w) = - b2
1
W —ag—
b3
w—a — ———
w—a2—-..

» The coefficients a,, and b,, are stored in memory

» What about non diagonal elements G ;.. ?

See, e.g., E. Dagotto, Rev. Mod. Phys. 66:763 (1994)



Lanczos method for the Green function (3)

» Trick: Define the combination

Gryelw) = (Ql(ep +ew)

pv,e

1
- - 10
w—H—i—EO(C“—i_CUH )

> G, o(w) can be calculated like Gy, (w)

> Since Gy e(w) = Gype(w), then

Gurel®) = 5 (Gl o) = Gue@) = Gnew)]

> Likewise for G, 5 (w)



Lehman representation

» Lehmann representation of the Green function

e >=Z<Q|cﬂ|m>;+E<m|ch>

+Z (Qlch|n) +E 7 ———(n]e,|)

» Define the matices

Q) = (Qc,m) Q) = (Qcl,n)
» Then
Qb Qi QU
Guw) = Z w—wy(ﬁ) + w—wy(Lh)



Alternate way : The Band Lanczos method

v

Define |¢,,) = CL\Q>, w=1,...,L.
» Extended Krylov space :

{|¢1>7 ) ‘¢L>7H’¢1>7 cee 7H‘¢L>7 )
(E)M61), .. (H) o) }

» States are built iteratively and orthogonalized
» Possible linearly dependent states are eliminated (‘deflation’)

» A band representation of the Hamiltonian (2L + 1 diagonals) is
formed in the Krylov subspace.

» It is diagonalized and the eigenpairs are used to build an approximate
Lehmann representation

http://www.cs.utk.edu/ dongarra/etemplates/node131.html



Lanczos vs Band Lanczos

» The usual Lanczos method for the Green function needs 3 vectors in
memory, and L(L + 1) Lanczos procedures.

» The Band Lanczos method requires 3L + 1 vectors in memory, but
requires only 2 iterative procedures ((¢e) et (h)).

» If Memory allows it, the band Lanczos is much faster.



Cluster symmetries
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Clusters with C,, symmetry Clusters with C'y symmetry



Cluster symmetries (2)

» Symmetry operations form a group &

» The most common occurences are :

C1 : The trivial group (no symmetry)

Cs : The 2-element group (e.g. left-right symmetry)
Cy, : 2 reflections, 1 w-rotation

Cl4y : 4 reflections, 1 w-rotation, 2 7 /2-rotations
(3, : 3 reflections, 3 27 /3-rotations

Cey : 6 reflections, 1 m, 2 w/3, 2 7 /6 rotations

vV Yy VY VY VY

» States in the Hilbert space fall into a finite number of irreducible
representations (irreps) of &

» The Hamiltonian H’ is block diagonal w.r.t. to irreps.
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Taking advantage of cluster symmetries. ..

r order of the group
Reduces the dimension of the Hilbert space by ||
Accelerates the convergence of the Lanczos algorithm
Reduces the number of Band Lanczos starting vectors by |&|

But: complicates coding of the basis states

vV v v v Y

Make use of the projection operator:

dimension of irrep. <—‘
de,
= g 2
g9

See, e.g. Poilblanc & Laflorencie cond-mat/0408363

group character



Taking advantage of cluster symmetries (2)

» Need new basis states, made of sets of binary states related by the
group action:

’—> fermionic phase

dCV Q)%
) = | D oxXEglb)  glb) = g (b)|gb)
g
» Then matrix elements take the form
(tho| H| 1) = |®|Z b)(gb2|H |b1)

» When computing the Green function, one needs to use combinations
of creation operators that fall into group representations. Ex (4 x 1):

(A)

=c +c c =cC —cC ~ ~
1 4 1 1 4 1 5 3 1
(B)

A
():CQ+03 Cy = =C2—C3



Taking advantage of cluster symmetries (3)

Example : number of matrix elements of the kinetic energy operator
(Nearest neighbor) on a 3 x 4 cluster with C5, symmetry:

A1 A2 B 1 BQ

dim. 213,840 213,248 213,440 213,248
value

-2 96 736 704 0

-2 12,640 6,208 7,584 5,072

—1| 2,983,264 2,936,144 2,884,832 2,911,920
1 952,000 997,168 1,050,432 1,021,392
V2 5,088 2,304 3,232 2,992
2 32 0 0 0




Large dimensions : need for parallelization

» Memory needs exceed single cpu capacity beyond L ~ 14

» A half-filled 16-site system has dimension 165,636,900
— 1.23 GB for a state vector.

» Need to distribute the problem over many processors

» The main task is matrix-vector multiplication:




Part II

Cluster Perturbation Theory



Clusters and superlattices

€9 /,/"——
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10-site cluster Reduced Brillouin zone



Basic Idea

lattice Hamiltonian <—‘ ’—> cluster Hamiltonian

H=H+V
L inter-cluster hopping terms
hopping matrix <—‘ ’—> cluster hopping matrix

t=t +V

L inter-cluster hopping
» Treat V' at lowest order in Perturbation theory

» At this order, the Green function is

G l(w)=G"Y(w) -V
L cluster Green function
C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993)

D. Sénéchal, D. Perez, and M. Pioro-Ladriére. Phys. Rev. Lett. 84, 522 (2000)



Interlude : Fourier transforms

i, : lattice site index
m,n : lattice site index

a,b: cluster site index
fi=> e*mif(k)
k

f =3 e £ (k)
k

_i iK-rg
fa* \/E;e fK

k : full wavevector

k : redcued wavevector

K : cluster wavevector
1 —ik-r;
f(k) = N Z e S
J

F) = o Yook,

1 —iK-rq
fK_\/Z;e K fa



Basic Idea (cont.)

» More accurate formulation
Gk ,w) = G Hw) — V(K).
» But

Gl=w-t-%
Goflzw—t/—v,

» Thus : lattice self-energy is approximated as the cluster self-energy
Gil(kaw) = G()il(f{,W) - Z(W) ’

» Example : 2-site cluster (1D):

0 1 . 0 e 2k
t=—t V(k)=—t| .



Periodization

» CPT breaks translation invariance, which needs to be restored:

cht k w L Z —ik-(rq— I‘b b(f{ﬂ*})-

» Periodizing the Green function vs the self-energy (1D case):

Green function periodization Self-energy periodization



One-dimensional example

Evolution of spectral function with increasing U /¢:

J




Interlude : Relation with spectral function

Ak,w) = -2 lim Im G(k,w +in)

n—0+t
» Lehmann representation:
Gaplw) = Z<Q|ca|m>El+E<m|c;Q>
+ S in) (ol

» But: — lim Im lim
n—0+  w+in na0+ w? + n?
» Therefore :

Alkw) = > [(m]ef]Q)|*2md(w — Ep + Eo)

=7(w)

+3 " [(nfer| Q)20 (w + B, — Eo)



h-doped cuprates : Pseudogap from CPT

Sénéchal and Tremblay., Phys. Rev. Lett. 92, 126401 (2004)



e-doped cuprates : Pseudogap from CPT

Sénéchal and Tremblay., Phys. Rev. Lett. 92, 126401 (2004)



CPT : characteristics

ExactatU =0

Exactat¢;; =0

Exact short-range correlations
Allows all values of the wavevector
But : No long-range order

Controlled by the size of the cluster



Part 111

The self-energy functional approach



Motivation

» CPT cannot describe broken symmetry states, because of the finite
cluster size

» Idea : add a Weiss field term to the cluster Hamiltonian H’, e.g., for
antiferromagnetism:

— ()
! 'L'(Q-r,1 o
Hy = MZe (a1 — nay)

» This term favors AF order, but does not appear in H, and must be
subtracted from V'

» Need a principle to set the value of M : energy minimization?

» Better : Potthoff’s self-energy functional approach



The Potthoff variational principle

» Variational principle for the Green function:

= Tr(4) =, o Aaa(w)
%[G] = @[G] — Tr ((Gg;' — G 1)G) + Tr In(—G).

» Where ®[G] is the Luttinger-Ward functional:

0
00

» ...with the property

M. Potthoff, Eur. Phys. J. B 32, 4297436 (2003)



The Potthoff variational principle (2)

» Here, Tr means a sum over frequencies, site indices (or wavevectors)
and spin/band indices.

» The functional is stationary at the physical Green function (Euler eq.):

082 [G]
0G

» Approximation schemes:
» Type I : Simplify the Euler equation
» Type II : Approximate the functional (Hartree-Fock, FLEX)
» Type III : Restrict the variational space, but keep the functional exact

=Y -Gy +G ' =0.



The Potthoff variational principle (3)

» Potthoff : Use the self-energy rather than the Green function

W[X] = F[¥]— Trin(-Gy! + %)
F[¥] = ®[G] - Tr(XG)

» F'is the Legendre transform of ®:

SF[T] _ §2[G] 6G[T] _ IG[z]

oY oG ox 5y =6

» New Euler equation:

5 [Z]

5y = G+ (Gl —T) =0

> At the physical self-energy, (2;[¥] is the thermodynamic grand
potential



The Reference System

» To evaluate F', use its universal character : its functional form
depends only on the interaction.

» Introduce a reference rystem H’, which differs from H by one-body
terms only (example : the cluster Hamiltonian)

» Suppose H’ can be solved exactly. Then, at the physical self-energy >
of H',
Q' =F[E] - TrIn(-G)

» by eliminating F":
N[Z] = Q4 Tr In(—~G') — Tr In(—Gy;' + X)
=Q + Tr In(-G') — Tr In(-G)
=Q — Tr In(1 — VG)



The Potthoff functional

» Making the trace explicit, one finds
Qg =2-7YY ol [1 — V(k)G'(k, w)}
w ok
-7 Indet [1 - V(R)G’(R,w)}
w ok

» The sum over frequencies is to be performed over Matsubara
frequencies (or an integral along the imaginary axis at 7' = 0).

» The variation is done over one-body parameters of the cluster
Hamiltonian H’

» In particular, the Weiss field M is to be varied until €2 is stationary



Calculating the functional I : exact form

» It can be shown that

’—> poles of G ’—> zeros of G

Trln(~G) = -7y In(1+ e *m) £ 7Y In(1 + ¢ %m)
m m
» Use the Lehmann representation of the GF:

! T ;7‘ 1
Guu(w) = Z Cju_cde G(w) = Q“}f/\Q]L

L, diagonal(w;)
M. Potthoff, Eur. Phys. J. B, 36:335 (2003)



Calculating the functional I : exact form (2)

» A similar representation holds for the CPT Green function

GlRw) = — = !
’ G-t —V(k) {QﬁQT}_I — V(k)
_ 1 t S (i
Q5@ L =A+QVEG

» Let w, (k) be the eigenvalues of L(k). Then

L ~
Q(x) = Q' (x) — E Wl + N E E wr (k)
L w}, <0 K w(k)<0
variational parameters
M. Aichhorn et al., Phys. Rev. B 74 : 235117 (2006)



Calculating the functional II : numerical integral

» Except for very small clusters (L ~ 4), it is much faster to perform a
numerical integration over frequencies:

Q00 =0 [ d“zln\detl V(K)G (i)~ L(u— 1)

0

-1.67348 T T T

-1.548471
Orpm oB
-1.67352 L . o
» a
* o = o
-1.67356
o C ° NI (fixed) m
NI (adapt) @
1.67360 1.548472 Al (fixed) O
Al (adapt) ©
-1.67364
NI (fixed) =
NI (adapt) o
1. .
167368 ° Al (fixed) O o]
Al (adapt) ©
-1.67372 - - -1.548473 . . -
0.01 0.1 1 10 100 0.1 1 10 100 1000
execution time (s) execution time (s)

D. Sénéchal, proceedings of HPCS 2008, IEEE (2008)



Evaluation of integrals

» For frequency integrals:
Gaussian integration on
three segments

» For wavevector integrals,

adaptive mesh of points:

» Start with a coarse, regular
grid

» On each plaquette, compare
4 and 9 point Gaussian
integrals. Subdivide into 4
sub-plaquettes if necessary.

» Easy with recursive calls

g

i

Vi




Part IV

The Variational Cluster Approximation



Basic Idea

» Set up a superlattice of clusters

» Choose a set of variational parameters, e.g. Weiss fields for broken
symmetries

» Set up the calculation of the Potthoff functional:
fE] =~ T3 Indet [1 - V()G (k)]
t N : ’
Wk

» Use an optimization method to find the stationary points

» Adopt the cluster self-energy associated with the stationary point with
the lowest €2 and use it as in CPT



Example : Néel Antiferromagnetism

» Used the Weiss field

— (mm)
!/ iQ-ra .
HM—MZQ (naT nal)

» Profile of € for the half-filled, square lattice Hubbard model:

0 444
445
2002 F—
4.46
0.04 447
Q0 Q
-0.06 -4.48
-4.49
-0.08

4.5

-4.51



order parameter

—
* \\\\%
ordering energy -
0 ! : :

o
=
NS
—
ot

Best scaling factor :

number of links

9= 5 X number of sites

20

Order Parameter

0.25

0.20-

0.15-

0.10-

: Néel Antiferromagnetism (2)
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Example clusters

B :




Superconductivity

» Need to add a pairing field
O = Z AijciTle +H.c
ij

> s-wave pairing: A;; = ;5

> d,2_ 2 pairing:

A — 1
1] _1

> dg, pairing:

if rj—r;==+Xx

if I'Z'—I'j::i:y

if ri—rj:i(fc—i—}‘f)
if I‘i—rj::i:(f(—y)

extended s-wave

a- Lo 7
~
18k deryp N — /\,
1811 2 x 2 cluster swave ]
U=8 p=12
-1.82 : ‘ e
0.0 0.1 0.2 0.3
A



Superconductivity (2)

» Pairing fields violate particle number conservation

» The Hilbert space is enlarged to encompass all particle numbers with
a given spin

» In practice, on uses the Nambu formalism, i.e., particle-hole
transformation on the spin-down sector :

Cq=Cqr and d, = Cju

Then the Hamiltonian looks like it conserves particle number, but not
spin.



Superconductivity and Antiferromagnetism in the cuprates

» One-band Hubbard model for the cuprates: ¢’ = —0.3, t” = 0.2,

U=8:

0.8 T T T T T T T T T
0.7 pure Néel § _
L N S 4
g 0.6 j \‘o %o% coex. Néel i
0.5 o ‘% -
= r pure d,2_,»2 b
z 04 ° .
¥ L g ol |
03[, w%=e, 8 0% =
B 0.2 1 ° s ' ;
=T ‘o ', T OQ;% ]
0.1 . % -
L -8 coex. dy2_ 2 ]

0 1 1 - 1 1 1 1 1

0.6 0.7 08 09 10 1.1 12 13 14 15 16
n

M. Guillot, MSc thesis, Univ. de Sherbrooke (2007)



Thermodynamic consistency

» The electron density n may be calculated either as

o0

n=TrG or n:—@

» The two methods give different results, except if the cluster chemical
potential y' is treated like a variational parameter:

0.9
2 x 2 cluster 08—
U=28 "

0.7

normal state

 Optleons
0.6

0.5




Optimization procedure

» Need to find the saddle points of 2(x) with the least possible
evaluations of Q(x)
» Use the Newton-Raphson algorithm:

» Evaluate ) at a number of points at and around x that just fits a quadratic
form

» Move to the stationary point x; of that quadratic form and repeat

» Stop when |x; — x;_1], or the numerical gradient | V|, converges

» The NR method is not robust : it converges fast when started close
enough to the solution

» Proceed adiabatically through external parameter space (e.g. as
function of U or )



Example: Homogeneous coexistence of dSC and AF orders

sweep
Omega Newton-Raphson (M & D) x
Newton-Raphson (D) *

647 Newton-Raphson (M) o

-6.48
-6.49

-6.5
-6.51
-6.52
-6.53
-6.54




Example: dSC on a 4 x 4 cluster, spectral function

(0505)

1.0

(105)

@y

(0505)

©0)

(050)

spectral function : 4x4_C2v, U=8, mu=L15, tx=1, Dx=0035, (spin up) (27/5/2008)

T

T

T




Example: dSC on a 4 x 4 cluster, Fermi surface plot

(1L
T

o
[ IE] S
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VCA vs Mean-Field Theory

» Differs from Mean-Field Theory:

Interaction is left intact, it is not factorized

Retains exact short-range correlations

Weiss field # order parameter

More stringent that MFT

Controlled by the cluster size

» Similarities with MFT:

No long-range fluctuations (no disorder from Goldstone modes)
Yet : no LRO for Néel AF in one dimension

Need to compare different orders

yet : they may be placed in competition / coexistence

vV vy vy VvYy

v vy VvYyy



Part V

Cluster Dynamical Mean Field Theory



Basic Idea

» To add variational degrees of freedom in the form of a bath of
uncorrelated ‘sites’

H =— ZtWCLCV + UZ”@Tnal
8% a

+ Z HW(CLaa +H.c)+ Z aaagaa
201ed ‘—» hybridization matrix « L path energies

E2 E2 E2 E2
|
Q\\tQ tgl,’p Q to ta
o @ ® @ @ @
‘t t) t t




The hybridization function

» If we trace over the bath degrees of freedom, the cluster Green
function takes the form

Gl=w—-t-T(w)—X(w)

» [(w) is the hybridization function:



The hybridization function (2)

» Proof: (U = 0)

_ 1 w—t 0
Gfuh(w):w_T TZ( HT w—s)

» Given A = Gf_u%l, need to find Bl_l1 :

-1
A11 A12 _ Bll 312
A21 A22 BQl B22

» Simple manipulations lead to

1
w—€

of

(AH — A12A2_21A21) Bi1=1 — Gl=w—-t—0

» U # 0 : simply add the free energy (by definition)



The hybridization function (3)

» [(w) embodies the effect of the rest of the lattice on the cluster, in
some effective dynamics. The action would take the form

8 6
= — T N (NG —1)ey, (7
5= /od/od E#Vj;x Gl (r — )en()
+U/d€¢ 3" 101 (7)1 (7)

where 5
g(iwn):/ ei“’"T%(T)
0

G (iwy,) = iwnOpy — tuy — T (iwn)

ju2



Baths and the SFA

» The Potthoff functional approach carries over unchanged in the
presence of a bath

» The bath makes a contribution to the Potthoff functional:

Qpath = Z €a

£a<0

» On can in principle use the same methods as in VCA

» The presence of the bath increases the resolution of the approach in
the time domain, at the cost of spatial resolution, for a fixed total
number of sites (cluster + bath).



The CDMFT Procedure

W =

Start with a guess value of (6,,q,€q)-
Calculate the cluster Green function G(w) (ED).

Calculate the superlattice-averaged Green function

_ 1 _ _
G(w):zﬁj%_l(k)_z(w) and 9, (w) =G+ Z(w)

Minimize the following distance function:

-y

w,v, V!

2
(w +u—t —T(w)— go_l(w))w/

over the set of bath parameters.

Go back to step (2) until convergence.



The CDMFT Procedure (2)

[Initial guess for r}

Cluster Solver:

Compute G

G = i[Go ' (k) — Z(w)] ™
Gt=G1l+x

Y
[update I by minimizing d ]

No I converged? Yes @




Example : the 1D Hubbard model

0.95

0.9

0.85
0.85 095 105 115 1.25 135 145
1



Example : the 1D Hubbard model (2)

| | | 0.4 | | |

0 .
0.85 1.05 1.25 1.45 0.85 1.05 125 1.45
f p




Example : dSC and AF in the 2D Hubbard model

» Nine bath parameters

» Homogeneous coexistence of d,2_,» SC and Néel AF

|- .* ‘ ‘ ‘ 4

07? i ... .dSC(XS) i 7 8

. o AF ] g

Soof
€05tk o | o - 11 @i o
5 | ;
go4p v | 1 |
E{ 0.3 e % : 820, - :
So2f . | e *oc, | 9 Crerie
L o : ° '-..L, E E

01¢ . . . s i s

() base%0es® | -é‘ oo | e | 5 6

0.9 1 1.1 1.2



Example : The Mott transition

» The CDMEFT is well suited to detect the
Mott transition

» This transition manifests itself as a jump
in the double occupancy (nyn|)

» In an exact SFA solution : discontinuity
in the bath parameters (first order
transition).

» in CDMFT : hysteresis is possible,

because of the method’s own dynamics
for finding solutions

0.2

0.15 -

0O 01 -

0.05 -
solid: t'/4=0.7

dashed: t'/t=1.0

B. Kyung and A.-M. S. Tremblay. Physical

Review Letters, 97 :046402 (2006)



QUESTIONS ?
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