Quantum Cluster Methods

An introduction

David Sénéchal

Université de Sherbrooke Département de physique

CIFAR - PITP International Summer School on Numerical Methods for Correlated Systems in Condensed Matter May 2008

Outline

- ► Exact Diagonalizations
- ► Clusters and Cluster Perturbation Theory (CPT)
- ► The Self-Energy Functional Approach
- ► The Variational Cluster Approximation (VCA)
- ► Cluster Dynamical Mean Field Theory (CDMFT)

Part I

Exact Diagonalizations

An old Persian Legend, revisited

The Hubbard Model on finite cluster

▶ Simple Hubbard model (conserves N_{\uparrow} and N_{\downarrow} separately):

$$H = \sum_{a,b,\sigma} t_{ab} c^{\dagger}_{a\sigma} c_{b\sigma} + U \sum_{a} n_{a\uparrow} n_{a\downarrow} - \mu \sum_{a} n_{a}$$

ightharpoonup Typical cluster (L sites):

Hamiltonian matrix: 2 sites

ightharpoonup Half-filled Hubbard model L=2

$$\begin{pmatrix} U - 2\mu & -t & -t & 0 \\ -t & -2\mu & 0 & -t \\ -t & 0 & -2\mu & -t \\ 0 & -t & -t & U - 2\mu \end{pmatrix}$$

Hamiltonian matrix: 6 sites

Sparse matrix structure 400×400

Hamiltonian matrix: example

► Dimension of the Hilbert space (half-filled Hubbard model):

$$d = \left(\frac{L!}{[(L/2)!]^2}\right)^2 \sim 2\frac{4^L}{\pi L}$$

 One double-precision vector means 1.23 GB of memory

L	dimension
2	4
4	36
6	400
8	4 900
10	63 504
12	853 776
14	11 778 624
16	165 636 900

Steps

- 1. Building a basis
- 2. Constructing the Hamiltonian matrix
- 3. Finding the ground state (e.g. by the Lanczos method)
- 4. Calculating the one-body Green function

Coding of the states

▶ Basis of occupation number eigenstates:

$$(c_{1\uparrow}^\dagger)^{n_{1\uparrow}}\cdots(c_{L\uparrow}^\dagger)^{n_{L\uparrow}}(c_{1\downarrow}^\dagger)^{n_{1\downarrow}}\cdots(c_{L\downarrow}^\dagger)^{n_{L\downarrow}}|0\rangle$$

▶ Binary representation of basis states:

$$|b\rangle$$
 where $b = b_{\uparrow} + 2^L b_{\downarrow}$

Example:

$$b = (0101010101111010101010) = 341 \cdot 2^{10} + 682 = 349,866$$

▶ Need a direct table:

$$b_{\uparrow} = B_{\uparrow}(i_{\uparrow}) \qquad b_{\downarrow} = B_{\downarrow}(i_{\downarrow})$$

▶ ... and a reverse table:

Coding of the states (2)

- lacktriangle Tensor product structure of the Hilbert space: $V=V_{N_\uparrow}\otimes V_{N_\downarrow}$
- ▶ dimension:

$$d = d(N_{\uparrow})d(N_{\downarrow})$$

$$d(N_{\sigma}) = \frac{L!}{N_{\sigma}!(L - N_{\sigma})!}$$

Example (6 sites):

	0	1	2	3	4	5	6
0	1	6	15	20	15	6	1
1	6	36	90	120	90	36	6
2	15	90	225	300	225	90	15
3	20	120	300	400	300	120	20
4	15	90	225	300	225	90	15
5	6	36	90	120	90	36	6
6	1	6	15	20	15	6	1

Constructing the Hamiltonian matrix

► Form of Hamiltonian:

$$H = K_{\uparrow} \otimes 1 + 1 \otimes K_{\downarrow} + V_{\text{int.}}$$
 $K = \sum_{a,b} t_{ab} c_a^{\dagger} c_b$

- ► *K* is stored in sparse form.
- $ightharpoonup V_{
 m int.}$ is diagonal and is stored.
- ▶ Matrix elements of $V_{\text{int.}}$: bit_count $(b_{\uparrow} \& b_{\downarrow})$
- ▶ Two basis states $|b_{\sigma}\rangle$ and $|b'_{\sigma}\rangle$ are connected with the matrix K if their binary representations differ at two positions a and b.

$$\langle b'|K|b\rangle = (-1)^{M_{ab}} t_{ab}$$
 $M_{ab} = \sum_{c=a+1}^{b-1} n_c$

The Lanczos algorithm

- \triangleright Finds the lowest eigenpair by an iterative application of H
- Start with random vector $|\phi_0\rangle$
- ► An iterative procedure builds the Krylov subspace:

$$\mathcal{K} = \operatorname{span}\left\{ |\phi_0\rangle, H|\phi_0\rangle, H^2|\phi_0\rangle, \cdots, H^M|\phi_0\rangle \right\}$$

► Lanczos three-way recursion:

$$|\phi_{n+1}\rangle = H|\phi_n\rangle - a_n|\phi_n\rangle - b_n^2|\phi_{n-1}\rangle$$

$$a_n = \frac{\langle \phi_n|H|\phi_n\rangle}{\langle \phi_n|\phi_n\rangle} \qquad b_n^2 = \frac{\langle \phi_n|\phi_n\rangle}{\langle \phi_{n-1}|\phi_{n-1}\rangle} \qquad b_0 = 0$$

The Lanczos algorithm (2)

▶ In the basis of normalized states $|n\rangle = |\phi_n\rangle/\sqrt{\langle\phi_n|\phi_n\rangle}$, the projected Hamiltonian has the tridiagonal form

$$H = \begin{pmatrix} a_0 & b_1 & 0 & 0 & \cdots & 0 \\ b_1 & a_1 & b_2 & 0 & \cdots & 0 \\ 0 & b_2 & a_2 & b_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_N \end{pmatrix}$$

- \triangleright At each step n, find the lowest eigenvalue of that matrix
- Stop when the lowest eigenvalue E_0 has converged $(\Delta E_0/E_0 < 10^{-12})$
- ▶ Then re-run to find eigenvector $|\psi\rangle=\sum_n \psi_n|n\rangle$ as the $|\phi_n\rangle$'s are not kept in memory.

Lanczos method: characteristics

- ▶ Typical required number of iterations: from 20 to 200
- ► Extreme eigenvalues converge first
- ▶ Rate of convergence increases with separation between ground state and first excited state
- ► Cannot resolve degenerate ground states : only one state per ground state manifold is picked up
- ▶ If one is interested in low lying states, periodic re-orthogonalization may be required, as orthogonality leaks will occur
- ► For degenerate ground states and low lying states (e.g. in DMRG), the Davidson method is generally preferable

Lanczos method: illustration of the convergence

100 iterations on a matrix of dimension 600: eigenvalues of the tridiagonal projection as a function of iteration step

Lanczos method for the Green function

▶ Zero temperature Green function:

$$G_{\mu\nu}(\omega) = G_{\mu\nu,e}(\omega) + G_{\mu\nu,h}(\omega)$$

$$G_{\mu\nu,e}(\omega) = \langle \Omega | c_{\mu} \frac{1}{\omega - H + E_0} c_{\nu}^{\dagger} | \Omega \rangle$$

$$G_{\mu\nu,h}(\omega) = \langle \Omega | c_{\nu}^{\dagger} \frac{1}{\omega + H - E_0} c_{\mu} | \Omega \rangle$$

Consider the diagonal element

$$|\phi_{\mu}\rangle = c_{\mu}^{\dagger}|\Omega\rangle \implies G_{\mu\mu,e} = \langle \phi_{\mu}|\frac{1}{\omega - H + E_0}|\phi_{\mu}\rangle$$

▶ Use the expansion

$$\frac{1}{z-H} = \frac{1}{z} + \frac{1}{z^2}H + \frac{1}{z^3}H^2 + \cdots$$

Lanczos method for the Green function (2)

- ► Truncated expansion evaluated exactly in Krylov subspace generated by $|\phi_{\mu}\rangle$ if we perform a Lanczos procedure on $|\phi_{\mu}\rangle$.
- ▶ Then $G_{\mu\mu,e}$ is given by a Jacobi continued fraction:

$$G_{\mu\mu,e}(\omega) = \frac{\langle \phi_{\mu} | \phi_{\mu} \rangle}{\omega - a_0 - \frac{b_1^2}{\omega - a_1 - \frac{b_2^2}{\omega - a_2 - \cdots}}}$$

- \blacktriangleright The coefficients a_n and b_n are stored in memory
- ▶ What about non diagonal elements $G_{\mu\nu,e}$?

See, e.g., E. Dagotto, Rev. Mod. Phys. 66:763 (1994)

Lanczos method for the Green function (3)

▶ Trick: Define the combination

$$G_{\mu\nu,e}^{+}(\omega) = \langle \Omega | (c_{\mu} + c_{\nu}) \frac{1}{\omega - H + E_0} (c_{\mu} + c_{\nu})^{\dagger} | \Omega \rangle$$

- $lackbox{ } G_{\mu\nu,e}^+(\omega)$ can be calculated like $G_{\mu\mu,e}(\omega)$
- ▶ Since $G_{\mu\nu,e}(\omega) = G_{\nu\mu,e}(\omega)$, then

$$G_{\mu\nu,e}(\omega) = \frac{1}{2} \left[G_{\mu\nu,e}^{+}(\omega) - G_{\mu\mu,e}(\omega) - G_{\nu\nu,e}(\omega) \right]$$

▶ Likewise for $G_{\mu\nu,h}(\omega)$

Lehman representation

► Lehmann representation of the Green function

$$G_{\mu\nu}(\omega) = \sum_{m} \langle \Omega | c_{\mu} | m \rangle \frac{1}{\omega - E_{m} + E_{0}} \langle m | c_{\nu}^{\dagger} | \Omega \rangle$$
$$+ \sum_{n} \langle \Omega | c_{\nu}^{\dagger} | n \rangle \frac{1}{\omega + E_{n} - E_{0}} \langle n | c_{\mu} | \Omega \rangle$$

▶ Define the matices

$$Q_{\mu m}^{(e)} = \langle \Omega | c_{\mu} | m \rangle \qquad \qquad Q_{\mu n}^{(h)} = \langle \Omega | c_{\mu}^{\dagger} | n \rangle$$

► Then

$$G_{\mu\nu}(\omega) = \sum_{m} \frac{Q_{\mu m}^{(e)} Q_{\nu m}^{(e)*}}{\omega - \omega_{m}^{(e)}} + \sum_{n} \frac{Q_{\mu n}^{(h)} Q_{\nu n}^{(h)*}}{\omega - \omega_{n}^{(h)}}$$
$$= \sum_{r} \frac{Q_{\mu r} Q_{\nu r}^{*}}{\omega - \omega_{r}}$$

Alternate way: The Band Lanczos method

- ▶ Define $|\phi_{\mu}\rangle = c_{\mu}^{\dagger} |\Omega\rangle$, $\mu = 1, \dots, L$.
- Extended Krylov space :

$$\left\{ |\phi_1\rangle, \dots, |\phi_L\rangle, H|\phi_1\rangle, \dots, H|\phi_L\rangle, \dots, (H)^M|\phi_1\rangle, \dots, (H)^M|\phi_L\rangle \right\}$$

States are built iteratively and orthogonalized

http://www.cs.utk.edu/ dongarra/etemplates/node131.html

- Possible linearly dependent states are eliminated ('deflation')
- \triangleright A band representation of the Hamiltonian (2L + 1 diagonals) is formed in the Krylov subspace.
- ▶ It is diagonalized and the eigenpairs are used to build an approximate Lehmann representation

Lanczos vs Band Lanczos

- ▶ The usual Lanczos method for the Green function needs 3 vectors in memory, and L(L+1) Lanczos procedures.
- ▶ The Band Lanczos method requires 3L + 1 vectors in memory, but requires only 2 iterative procedures ((e) et (h)).
- ▶ If Memory allows it, the band Lanczos is much faster.

Cluster symmetries

Clusters with C_{2v} symmetry

Clusters with C_2 symmetry

Cluster symmetries (2)

- ► Symmetry operations form a group 𝔥
- ▶ The most common occurences are :
 - $ightharpoonup C_1$: The trivial group (no symmetry)
 - ightharpoonup C₂: The 2-element group (e.g. left-right symmetry)
 - C_{2v} : 2 reflections, 1 π -rotation
 - C_{4v} : 4 reflections, 1 π -rotation, 2 $\pi/2$ -rotations
 - C_{3v} : 3 reflections, 3 $2\pi/3$ -rotations
 - C_{6v} : 6 reflections, 1 π , 2 $\pi/3$, 2 $\pi/6$ rotations
- ► States in the Hilbert space fall into a finite number of irreducible representations (irreps) of 𝔻
- ▶ The Hamiltonian H' is block diagonal w.r.t. to irreps.

Group characters

C_2	E	C_2
A	1	1
B	1	-1

C_{2v}	e	c_2	σ_1	σ_2
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

C_{4v}	e	c_2	$2c_4$	$2\sigma_1$	$2\sigma_2$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	1	-1	1	-1
B_2	1	1	-1	-1	1
E	2	-2	0	0	0

Taking advantage of cluster symmetries...

ightarrow order of the group

- \blacktriangleright Reduces the dimension of the Hilbert space by $|\mathfrak{G}|$
- ► Accelerates the convergence of the Lanczos algorithm
- ▶ Reduces the number of Band Lanczos starting vectors by |𝒪|
- ▶ But: complicates coding of the basis states
- ▶ Make use of the projection operator:

dimension of irrep.
$$\longleftarrow$$

$$P^{(\alpha)} = \frac{d_\alpha}{|\mathfrak{G}|} \sum_g \chi_g^{(\alpha)*} g \underset{\longmapsto}{}_{\text{group character}}$$

See, e.g. Poilblanc & Laflorencie cond-mat/0408363

Taking advantage of cluster symmetries (2)

▶ Need new basis states, made of sets of binary states related by the group action:

$$|\psi\rangle = \frac{d_\alpha}{|\mathfrak{G}|} \sum_g \chi_g^{(\alpha)*} g |b\rangle \qquad g|b\rangle = \phi_g(b) |gb\rangle$$

▶ Then matrix elements take the form

$$\langle \psi_2 | H | \psi_1 \rangle = \frac{d_{\alpha}}{|\mathfrak{G}|} \sum_g \chi_h^{(\alpha)*} \phi_g(b) \langle gb_2 | H | b_1 \rangle$$

▶ When computing the Green function, one needs to use combinations of creation operators that fall into group representations. Ex (4×1) :

$$c_1^{(A)} = c_1 + c_4$$
 $c_1^{(B)} = c_1 - c_4$ $c_2^{(A)} = c_2 + c_3$ $c_2^{(B)} = c_2 - c_3$

Taking advantage of cluster symmetries (3)

Example : number of matrix elements of the kinetic energy operator (Nearest neighbor) on a 3×4 cluster with C_{2v} symmetry:

	A_1	A_2	B_1	B_2
dim.	213,840	213, 248	213,440	213, 248
value				
-2	96	736	704	0
$-\sqrt{2}$	12,640	6,208	7,584	5,072
-1	2,983,264	2,936,144	2,884,832	2,911,920
1	952,000	997, 168	1,050,432	1,021,392
$\sqrt{2}$	5,088	2,304	3,232	2,992
2	32	0	0	0

Large dimensions : need for parallelization

- ▶ Memory needs exceed single cpu capacity beyond $L \sim 14$
- ► A half-filled 16-site system has dimension 165,636,900 → 1.23 GB for a state vector.
- ▶ Need to distribute the problem over many processors
- ▶ The main task is matrix-vector multiplication:

Part II

Cluster Perturbation Theory

Clusters and superlattices

10-site cluster

Reduced Brillouin zone

Basic Idea

- ► Treat V at lowest order in Perturbation theory
- ▶ At this order, the Green function is

$$\mathsf{G}^{-1}(\omega) = \mathsf{G}'^{-1}(\omega) - \mathsf{V}$$
 \sqsubseteq cluster Green function

- C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993)
- D. Sénéchal, D. Perez, and M. Pioro-Ladrière. Phys. Rev. Lett. 84, 522 (2000)

Interlude: Fourier transforms

i, j: lattice site index

m, n: lattice site index

a, b: cluster site index

k: full wavevector

 $\tilde{\mathbf{k}}$: redcued wavevector

K: cluster wavevector

$$f_{j} = \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}_{j}} f(\mathbf{k}) \qquad f(\mathbf{k}) = \frac{1}{N} \sum_{j} e^{-i\mathbf{k}\cdot\mathbf{r}_{j}} f_{j}$$

$$f_{m} = \sum_{\tilde{\mathbf{k}}} e^{i\tilde{\mathbf{k}}\cdot\mathbf{r}_{m}} f(\tilde{\mathbf{k}}) \qquad f(\tilde{\mathbf{k}}) = \frac{L}{N} \sum_{m} e^{-i\tilde{\mathbf{k}}\cdot\mathbf{r}_{m}} f_{m}$$

$$f_{a} = \frac{1}{\sqrt{L}} \sum_{\mathbf{K}} e^{i\mathbf{K}\cdot\mathbf{r}_{a}} f_{\mathbf{K}} \qquad f_{\mathbf{K}} = \frac{1}{\sqrt{L}} \sum_{a} e^{-i\mathbf{K}\cdot\mathbf{r}_{a}} f_{a}$$

Basic Idea (cont.)

► More accurate formulation

$$\mathsf{G}^{-1}(\tilde{\mathbf{k}},\omega) = \mathsf{G}'^{-1}(\omega) - \mathsf{V}(\tilde{\mathbf{k}}) \; .$$

▶ But

$$G'^{-1} = \omega - t' - \Sigma$$

$$G_0^{-1} = \omega - t' - V$$

► Thus: lattice self-energy is approximated as the cluster self-energy

$$\mathsf{G}^{-1}(\tilde{\mathbf{k}},\omega) = \mathsf{G}_0^{-1}(\tilde{\mathbf{k}},\omega) - \Sigma(\omega) ,$$

Example : 2-site cluster (1D):

$$\mathsf{t}' = -t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \mathsf{V}(\tilde{k}) = -t \begin{pmatrix} 0 & e^{-2i\tilde{k}} \\ e^{2i\tilde{k}} & 0 \end{pmatrix}$$

Periodization

▶ CPT breaks translation invariance, which needs to be restored:

$$G_{\rm cpt}(\mathbf{k},\omega) = \frac{1}{L} \sum_{a,b} e^{-i\mathbf{k}\cdot(\mathbf{r}_a - \mathbf{r}_b)} G_{ab}(\tilde{\mathbf{k}},\omega) .$$

▶ Periodizing the Green function vs the self-energy (1D case):

Green function periodization

Self-energy periodization

One-dimensional example

Evolution of spectral function with increasing U/t:

Interlude: Relation with spectral function

$$A(\mathbf{k}, \omega) = -2 \lim_{\eta \to 0^+} \text{Im } G(\mathbf{k}, \omega + i\eta)$$

▶ Lehmann representation:

$$G_{\alpha\beta}(\omega) = \sum_{m} \langle \Omega | c_{\alpha} | m \rangle \frac{1}{\omega - E_{m} + E_{0}} \langle m | c_{\beta}^{\dagger} | \Omega \rangle$$
$$+ \sum_{n} \langle \Omega | c_{\beta}^{\dagger} | n \rangle \frac{1}{\omega + E_{n} - E_{0}} \langle n | c_{\alpha} | \Omega \rangle$$

- ► But: $-\lim_{\eta \to 0^+} \operatorname{Im} \frac{1}{\omega + i\eta} = \lim_{\eta \to 0^+} \frac{\eta}{\omega^2 + \eta^2} = \pi \delta(\omega)$
- ► Therefore :

$$A(\mathbf{k}, \omega) = \sum_{m} |\langle m | c_{\mathbf{k}}^{\dagger} | \Omega \rangle|^{2} 2\pi \delta(\omega - E_{m} + E_{0}) + \sum_{n} |\langle n | c_{\mathbf{k}} | \Omega \rangle|^{2} 2\pi \delta(\omega + E_{n} - E_{0})$$

h-doped cuprates: Pseudogap from CPT

e-doped cuprates: Pseudogap from CPT

CPT: characteristics

- ightharpoonup Exact at U=0
- ightharpoonup Exact at $t_{ij} = 0$
- ► Exact short-range correlations
- ▶ Allows all values of the wavevector
- ▶ But : No long-range order
- ► Controlled by the size of the cluster

Part III

The self-energy functional approach

Motivation

- ► CPT cannot describe broken symmetry states, because of the finite cluster size
- ▶ Idea : add a Weiss field term to the cluster Hamiltonian H', e.g., for antiferromagnetism:

$$H'_{M} = M \sum_{a} e^{i\mathbf{Q}\cdot\mathbf{r}_{a}} (n_{a\uparrow} - n_{a\downarrow})$$

- ▶ This term favors AF order, but does not appear in H, and must be subtracted from V
- ▶ Need a principle to set the value of *M* : energy minimization?
- ▶ Better : Potthoff's self-energy functional approach

The Potthoff variational principle

▶ Variational principle for the Green function:

▶ Where $\Phi[G]$ is the Luttinger-Ward functional:

$$\Phi = \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}$$

▶ ... with the property

$$\frac{\delta\Phi[\mathsf{G}]}{\delta\mathsf{G}} = \Sigma$$

M. Potthoff, Eur. Phys. J. B 32, 429?436 (2003)

The Potthoff variational principle (2)

- ► Here, Tr means a sum over frequencies, site indices (or wavevectors) and spin/band indices.
- ▶ The functional is stationary at the physical Green function (Euler eq.):

$$\frac{\delta\Omega_{\mathsf{t}}[\mathsf{G}]}{\delta\mathsf{G}} = \Sigma - \mathsf{G}_{0\mathsf{t}}^{-1} + \mathsf{G}^{-1} = 0.$$

- ► Approximation schemes:
 - ► Type I : Simplify the Euler equation
 - ► Type II : Approximate the functional (Hartree-Fock, FLEX)
 - ► Type III : Restrict the variational space, but keep the functional exact

The Potthoff variational principle (3)

▶ Potthoff : Use the self-energy rather than the Green function

$$\Omega_{t}[\Sigma] = F[\Sigma] - \operatorname{Tr} \ln(-G_{0t}^{-1} + \Sigma)$$

$$F[\Sigma] = \Phi[G] - \operatorname{Tr} (\Sigma G)$$

ightharpoonup F is the Legendre transform of Φ :

$$\frac{\delta F[\Sigma]}{\delta \Sigma} = \frac{\delta \Phi[\mathsf{G}]}{\delta \mathsf{G}} \frac{\delta \mathsf{G}[\Sigma]}{\delta \Sigma} - \Sigma \frac{\delta \mathsf{G}[\Sigma]}{\delta \Sigma} - \mathsf{G} = -\mathsf{G}$$

► New Euler equation:

$$\frac{\delta\Omega_{\mathsf{t}}[\Sigma]}{\delta\Sigma} = -\mathsf{G} + (\mathsf{G}_{0\mathsf{t}}^{-1} - \Sigma)^{-1} = 0$$

▶ At the physical self-energy, $\Omega_t[\Sigma]$ is the thermodynamic grand potential

The Reference System

- ▶ To evaluate F, use its universal character: its functional form depends only on the interaction.
- ▶ Introduce a reference rystem H', which differs from H by one-body terms only (example : the cluster Hamiltonian)
- ▶ Suppose H' can be solved exactly. Then, at the physical self-energy Σ of H',

$$\Omega' = F[\Sigma] - \operatorname{Tr} \ln(-\mathsf{G}')$$

 \triangleright by eliminating F:

$$\begin{split} \Omega_t[\Sigma] &= \Omega' + \, \mathrm{Tr} \, \ln(-\mathsf{G}') - \, \mathrm{Tr} \, \ln(-\mathsf{G}_{0t}^{-1} + \Sigma) \\ &= \Omega' + \, \mathrm{Tr} \, \ln(-\mathsf{G}') - \, \mathrm{Tr} \, \ln(-\mathsf{G}) \\ &= \Omega' - \, \mathrm{Tr} \, \ln(1 - \mathsf{VG}') \end{split}$$

The Potthoff functional

Making the trace explicit, one finds

$$\begin{split} \Omega_t[\Sigma] &= \Omega' - T \sum_{\omega} \sum_{\tilde{\mathbf{k}}} \, \mathrm{tr} \, \ln \left[1 - \mathsf{V}(\tilde{\mathbf{k}}) \mathsf{G}'(\tilde{\mathbf{k}}, \omega) \right] \\ &= \Omega' - T \sum_{\omega} \sum_{\tilde{\mathbf{k}}} \ln \det \left[1 - \mathsf{V}(\tilde{\mathbf{k}}) \mathsf{G}'(\tilde{\mathbf{k}}, \omega) \right] \end{split}$$

- ▶ The sum over frequencies is to be performed over Matsubara frequencies (or an integral along the imaginary axis at T = 0).
- ► The variation is done over one-body parameters of the cluster Hamiltonian *H'*
- In particular, the Weiss field M is to be varied until Ω is stationary

Calculating the functional I: exact form

▶ It can be shown that

$$\Pr_{poles \text{ of G}} \text{G} \qquad \qquad \\ \Pr_{poles \text{ of G}} \text{Tr } \ln(-\mathsf{G}) = -T \sum_{m} \ln(1 + \mathrm{e}^{-\beta \zeta_m}) + T \sum_{m} \ln(1 + \mathrm{e}^{-\beta \zeta_m})$$

▶ Use the Lehmann representation of the GF:

M. Potthoff, Eur. Phys. J. B. 36:335 (2003)

Calculating the functional I : exact form (2)

▶ A similar representation holds for the CPT Green function

$$\begin{split} \mathsf{G}(\tilde{\mathbf{k}},\omega) &= \frac{1}{\mathsf{G}'^{-1} - \mathsf{V}(\tilde{\mathbf{k}})} = \frac{1}{\left[\mathsf{Q}\frac{1}{\omega - \Lambda}\mathsf{Q}^{\dagger}\right]^{-1} - \mathsf{V}(\tilde{\mathbf{k}})} \\ &= \mathsf{Q}\frac{1}{\omega - \mathsf{L}(\tilde{\mathbf{k}})}\mathsf{Q}^{\dagger} \qquad \mathsf{L}(\tilde{\mathbf{k}}) = \Lambda + \mathsf{Q}^{\dagger}\mathsf{V}(\tilde{\mathbf{k}})\mathsf{Q} \end{split}$$

▶ Let $\omega_r(\tilde{\mathbf{k}})$ be the eigenvalues of $L(\tilde{\mathbf{k}})$. Then

$$\Omega(\mathbf{x}) = \Omega'(\mathbf{x}) - \sum_{\omega_r' < 0} \omega_r' + \frac{L}{N} \sum_{\tilde{\mathbf{k}}} \sum_{\omega_r(\tilde{\mathbf{k}}) < 0} \omega_r(\tilde{\mathbf{k}})$$
 variational parameters

M. Aichhorn et al., Phys. Rev. B 74: 235117 (2006)

Calculating the functional II: numerical integral

 \blacktriangleright Except for very small clusters ($L \sim 4$), it is much faster to perform a numerical integration over frequencies:

$$\Omega(\mathsf{x}) = \Omega'(\mathsf{x}) - \int_0^\infty \frac{\mathrm{d}x}{\pi} \frac{L}{N} \sum_{\tilde{\mathbf{k}}} \ln \Big| \det(1 - \mathsf{V}(\tilde{\mathbf{k}})\mathsf{G}'(ix)) \Big| - L(\mu - \mu')$$

D. Sénéchal, proceedings of HPCS 2008, IEEE (2008)

Evaluation of integrals

- ► For frequency integrals: Gaussian integration on three segments
- ► For wavevector integrals, adaptive mesh of points:
 - Start with a coarse, regular grid
 - On each plaquette, compare 4 and 9 point Gaussian integrals. Subdivide into 4 sub-plaquettes if necessary.
 - Easy with recursive calls

Part IV

The Variational Cluster Approximation

Basic Idea

- ▶ Set up a superlattice of clusters
- ► Choose a set of variational parameters, e.g. Weiss fields for broken symmetries
- ▶ Set up the calculation of the Potthoff functional:

$$\Omega_{\mathsf{t}}[\boldsymbol{\Sigma}] = \boldsymbol{\Omega}' - \frac{TL}{N} \sum_{\boldsymbol{\omega}} \sum_{\tilde{\mathbf{k}}} \ln \det \left[1 - \mathsf{V}(\tilde{\mathbf{k}}) \mathsf{G}'(\tilde{\mathbf{k}}, \boldsymbol{\omega}) \right]$$

- ▶ Use an optimization method to find the stationary points
- Adopt the cluster self-energy associated with the stationary point with the lowest Ω and use it as in CPT

Example: Néel Antiferromagnetism

▶ Used the Weiss field

$$H'_{M} = M \sum_{a} e^{i\mathbf{Q} \cdot \mathbf{r}_{a}} (n_{a\uparrow} - n_{a\downarrow})$$

▶ Profile of Ω for the half-filled, square lattice Hubbard model:

Example: Néel Antiferromagnetism (2)

Best scaling factor:

$$q = \frac{\text{number of links}}{2 \times \text{number of sites}}$$

Example clusters

Superconductivity

Need to add a pairing field

$$\mathcal{O}_{\rm sc} = \sum_{ij} \Delta_{ij} c_{i\uparrow} c_{j\downarrow} + \text{H.c}$$

- s-wave pairing: $\Delta_{ij} = \delta_{ij}$
- ▶ $d_{x^2-y^2}$ pairing:

$$\Delta_{ij} = \begin{cases} 1 & \text{if } \mathbf{r}_i - \mathbf{r}_j = \pm \hat{\mathbf{x}} \\ -1 & \text{if } \mathbf{r}_i - \mathbf{r}_j = \pm \hat{\mathbf{y}} \end{cases}$$

 $ightharpoonup d_{xy}$ pairing:

$$\Delta_{ij} = \begin{cases} 1 & \text{if } \mathbf{r}_i - \mathbf{r}_j = \pm(\hat{\mathbf{x}} + \hat{\mathbf{y}}) \\ -1 & \text{if } \mathbf{r}_i - \mathbf{r}_j = \pm(\hat{\mathbf{x}} - \hat{\mathbf{y}}) \end{cases}$$

Superconductivity (2)

- ▶ Pairing fields violate particle number conservation
- ► The Hilbert space is enlarged to encompass all particle numbers with a given spin
- ▶ In practice, on uses the Nambu formalism, i.e., particle-hole transformation on the spin-down sector :

$$c_a = c_{a\uparrow}$$
 and $d_a = c_{a\downarrow}^{\dagger}$

Then the Hamiltonian looks like it conserves particle number, but not spin.

Superconductivity and Antiferromagnetism in the cuprates

One-band Hubbard model for the cuprates: t' = -0.3, t'' = 0.2, U = 8:

Thermodynamic consistency

 \triangleright The electron density n may be calculated either as

$$n = \operatorname{Tr} \mathsf{G}$$
 or $n = -\frac{\partial \Omega}{\partial \mu}$

▶ The two methods give different results, except if the cluster chemical potential μ' is treated like a variational parameter:

 2×2 cluster U = 8 normal state

Optimization procedure

- Need to find the saddle points of $\Omega(x)$ with the least possible evaluations of $\Omega(x)$
- ▶ Use the Newton-Raphson algorithm:
 - Evaluate Ω at a number of points at and around x₀ that just fits a quadratic form
 - ▶ Move to the stationary point x_1 of that quadratic form and repeat
 - ▶ Stop when $|x_i x_{i-1}|$, or the numerical gradient $|\nabla \Omega|$, converges
- ► The NR method is not robust: it converges fast when started close enough to the solution
- ▶ Proceed adiabatically through external parameter space (e.g. as function of U or μ)

Example: Homogeneous coexistence of dSC and AF orders

Example: dSC on a 4×4 cluster, spectral function

Example: dSC on a 4×4 cluster, Fermi surface plot

VCA vs Mean-Field Theory

- ▶ Differs from Mean-Field Theory:
 - ▶ Interaction is left intact, it is not factorized
 - Retains exact short-range correlations
 - Weiss field \neq order parameter
 - More stringent that MFT
 - Controlled by the cluster size
- Similarities with MFT:
 - ► No long-range fluctuations (no disorder from Goldstone modes)
 - Yet : no LRO for Néel AF in one dimension
 - ▶ Need to compare different orders
 - yet : they may be placed in competition / coexistence

Part V

Cluster Dynamical Mean Field Theory

Basic Idea

➤ To add variational degrees of freedom in the form of a bath of uncorrelated 'sites'

$$\begin{split} H' = & -\sum_{\mu,\nu} t_{\mu\nu} c_{\mu}^{\dagger} c_{\nu} + U \sum_{a} n_{a\uparrow} n_{a\downarrow} \\ & + \sum_{\mu,\alpha} \theta_{\mu\alpha} (c_{\mu}^{\dagger} a_{\alpha} + \text{H.c.}) + \sum_{\alpha} \varepsilon_{\alpha} a_{\alpha}^{\dagger} a_{a} \\ & \stackrel{}{ } \mapsto \text{hybridization matrix} \quad \stackrel{}{ } \mapsto \text{bath energies} \end{split}$$

The hybridization function

► If we trace over the bath degrees of freedom, the cluster Green function takes the form

$$G'^{-1} = \omega - t - \Gamma(\omega) - \Sigma(\omega)$$

ightharpoonup $\Gamma(\omega)$ is the hybridization function:

$$\Gamma_{\mu\nu}(\omega) = \sum_{\alpha} \frac{\theta_{\mu\alpha}\theta_{\nu\alpha}^*}{\omega - \varepsilon_{\alpha}}$$

The hybridization function (2)

▶ Proof: (U = 0)

$$\mathsf{G}_{\mathrm{full}}^{-1}(\omega) = rac{1}{\omega - \mathbf{T}} \qquad \mathbf{T} = egin{pmatrix} \omega - \mathsf{t} & oldsymbol{ heta} \\ oldsymbol{ heta}^\dagger & \omega - oldsymbol{arepsilon} \end{pmatrix}$$

• Given $A = \mathsf{G}_{\mathrm{full}}^{-1}$, need to find B_{11}^{-1} :

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}^{-1}$$

► Simple manipulations lead to

$$(A_{11} - A_{12}A_{22}^{-1}A_{21}) B_{11} = 1 \rightarrow \mathsf{G}^{-1} = \omega - \mathsf{t} - \theta \frac{1}{\omega - \varepsilon} \theta^{\dagger}$$

 $ightharpoonup U \neq 0$: simply add the free energy (by definition)

The hybridization function (3)

▶ $\Gamma(\omega)$ embodies the effect of the rest of the lattice on the cluster, in some effective dynamics. The action would take the form

$$S = -\int_0^\beta d\tau \int_0^\beta d\tau' \sum_{\mu\nu} c_\mu^*(\tau) \mathcal{G}_{\mu\nu}^{-1}(\tau - \tau') c_\nu(\tau') + U \int d_0^\beta \tau \sum_a n_{a\uparrow}(\tau) n_{a\downarrow}(\tau)$$

where

$$\mathcal{G}(i\omega_n) = \int_0^\beta e^{i\omega_n \tau} \mathcal{G}(\tau)$$
$$\mathcal{G}_{\mu\nu}^{-1}(i\omega_n) = i\omega_n \delta_{\mu\nu} - t_{\mu\nu} - \Gamma_{\mu\nu}(i\omega_n)$$

Baths and the SFA

- ► The Potthoff functional approach carries over unchanged in the presence of a bath
- ▶ The bath makes a contribution to the Potthoff functional:

$$\Omega_{\rm bath} = \sum_{\varepsilon_{\alpha} < 0} \varepsilon_{\alpha}$$

- ▶ On can in principle use the same methods as in VCA
- ► The presence of the bath increases the resolution of the approach in the time domain, at the cost of spatial resolution, for a fixed total number of sites (cluster + bath).

The CDMFT Procedure

- 1. Start with a guess value of $(\theta_{\mu\alpha}, \varepsilon_{\alpha})$.
- 2. Calculate the cluster Green function $G(\omega)$ (ED).
- 3. Calculate the superlattice-averaged Green function

$$\bar{\mathsf{G}}(\omega) = \sum_{\tilde{\mathbf{k}}} \frac{1}{\mathsf{G}_0^{-1}(\tilde{\mathbf{k}}) - \mathsf{\Sigma}(\omega)} \quad \text{and} \quad \mathscr{G}_0^{-1}(\omega) = \bar{\mathsf{G}}^{-1} + \mathsf{\Sigma}(\omega)$$

4. Minimize the following distance function:

$$d = \sum_{\omega,\nu,\nu'} \left| \left(\omega + \mu - \mathsf{t}' - \mathsf{\Gamma}(\omega) - \mathscr{G}_0^{-1}(\omega) \right)_{\nu\nu'} \right|^2$$

over the set of bath parameters.

5. Go back to step (2) until convergence.

The CDMFT Procedure (2)

Example: the 1D Hubbard model

Example: the 1D Hubbard model (2)

Example: dSC and AF in the 2D Hubbard model

- ▶ Nine bath parameters
- lacktriangle Homogeneous coexistence of $d_{x^2-y^2}$ SC and Néel AF

Example: The Mott transition

- ► The CDMFT is well suited to detect the Mott transition
- ► This transition manifests itself as a jump in the double occupancy $\langle n_{\uparrow}n_{\downarrow}\rangle$
- ► In an exact SFA solution : discontinuity in the bath parameters (first order transition).
- in CDMFT: hysteresis is possible, because of the method's own dynamics for finding solutions

B. Kyung and A.-M. S. Tremblay. Physical Review Letters. 97 :046402 (2006)

QUESTIONS?