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Abstract

We present a pedagogical discussions of the dynamical mean field (DMFA) and dynamical clus-

ter (DCA) approximations and associated Monte Carlo and entropy-based methods of Bayesian

data analysis. The DMFA and DCA methods are developed as coarse-graining approximations

and the relationship between the cluster and lattice problems are detailed. The Hirsch-Fye and

continuous time Quantum Monte Carlo (QMC) algorithms are used to solve the cluster problem.

The algorithms are discussed, together with methods for efficient measurements and the modifica-

tions required by the self-consistency of the DMFA/DCA. Then, several principles of Bayesian data

analysis are presented. When coupled with information theory, this analysis produces a precise

and systematic way to analytically continue Matsubara-time QMC results to real frequencies. We

show how to use Bayesian inference to qualify the solution of the continuation and optimize the

inputs. Besides developing the Bayesian formalism, we also present a detailed description of the

data qualification, sketch an efficient algorithm to solve for the optimal spectra, give cautionary

notes where appropriate, and present two detailed case studies to demonstrate the method.
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I. INTRODUCTION

Some of the most exotic properties of materials, including high-temperature supercon-

ductivity, magnetism, and heavy Fermion and non-Fermi liquid behaviors, are due to strong

electronic correlations. The materials which display these properties are characterized by

either narrow electronic bands or compact orbitals with large angular momentum in the

valence shell. In either case, the potential energy associated with some of these electronic

degrees of freedom is of similar magnitude or larger than their electronic kinetic energy

(bandwidth), which invalidates conventional perturbative approaches. Thus, we resort to

the construction of simplified models to study these systems.
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FIG. 1: Cartoon of the Hubbard model, characterized by a single band with near-neighbor hopping

t, and local repulsion U .

FIG. 2: Cartoon of the periodic Anderson model, characterized by two bands one with near-

neighbor hopping t with a local hybridization V to a second band with local repulsion U .

For example, the Hubbard model1 is the simplest model of a correlated electronic lattice

system. Both it and the t − J model are thought to at least qualitatively describe some

of the properties of transition metal oxides, and high temperature superconductors2. The

periodic Anderson model along with various Kondo lattice models have been proposed to

describe both the actinide and lanthanide heavy fermion systems and the Anderson insula-

tors. The Holstein model incorporates the essential physics of strongly interacting electrons

and phonons. All of these model Hamiltonians contain at least two major ingredients: a

local interaction term and a non-local hopping term. For example, the Hubbard model

Hamiltonian is

H = −t
∑

〈j,k〉σ
(c†jσckσ + c†kσcjσ) + ε

∑

j

(nj↑ + nj↓) + U
∑

j

(nj↑ − 1/2)(nj↓ − 1/2) , (1)

where c†jσ (cjσ) creates (destroys) an electron at site j with spin σ, niσ = c†iσciσ, t is the nearest

neighbor hopping which sets the unit of energy and U is the on-site Coulomb repulsion

between the electrons. The periodic Anderson model (PAM) Hamiltonian is

H = −t
∑

<ij>σ

(d†iσdjσ + d†jσdiσ) + V
∑

iσ

(d†iσfiσ + f †iσdiσ) +
U

2

∑

iσ

(nf
i,σ −

1

2
)(nf

i,−σ −
1

2
) (2)

4



FIG. 3: Quantum cluster approaches, like the DMFA and DCA, map the infinite lattice problem

onto a self-consistently embedded cluster problem.

where diσ and fiσ (d†iσ and f †iσ) destroy (create) a d- and f-electron on site i with spin σ, U

is the screened Coulomb-matrix element for the localized f-states and V characterizes the

mixing between the two subsystems, f and respectively d orbitals.

However, except for special limits, even such simplified models like Eq. 1 cannot be

solved exactly. For example, for the Hubbard model, no exact solutions exist except in one

dimension, where the knowledge is in fact rather complete3. The periodic Anderson model

is only solvable in the limit where the orbital degeneracy diverges4, and the Holstein model

is only solvable in the Eliashberg-Migdal limit where vertex corrections may be neglected.

Clearly a new approach to these models is needed if nontrivial exact solutions are desired.

Metzner and Vollhardt suggested such a new approach5–7 based on an expansion in 1/d

about the point d = ∞ to study these strongly correlated lattice models. The result-

ing formalism neglects dynamical intersite correlations while retaining the important local

dynamical correlations. The resulting formalism is called the Dynamical Mean Field Ap-

proximation (DMFA) since it may be employed in any dimension, but is only exact on

infinite dimensional lattices. In finite dimensions, the Dynamical Cluster Approximation

(DCA) is used to study systematic non-local corrections to the DMFA8,9. Quantum cluster

approaches such as the DMFA and DCA work by mapping an infinite periodic lattice onto

a self-consistently embedded cluster problem, as illustrated in Fig. 3. Correlations up to the

cluster size are treated explicitly, while those at longer length scales are treated in a mean
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field. The DMFA/DCA cluster problem may be solved by a variety of methods; however,

Quantum Monte Carlo (QMC) is the first numerically exact method employed10 and remains

the most powerful and adaptable method.

In this article, we will present a pedagogical discussion of a complete suite of QMC-

based formalisms and algorithms for the DMFA and DCA. In Sec. II we will first rederive

the DMFA as a course-graining approximation, extend this logic to derive the DCA, and

then describe how physical quantities are calculated in this formalism. In Sec. III we will

discuss two powerful QMC algorithms used to solve the embedded cluster problem of the

DMFA/DCA. Finally, in Sec. IV we will discuss entropy-based Bayesian data analysis and its

use to analytically continue the Matsubara time or frequency QMC data to real frequencies.

II. THE DYNAMICAL MEAN FIELD AND CLUSTER APPROXIMATIONS

A. The Dynamical mean-field approximation

The DMFA is a local approximation which was used by Kuramoto in perturbative calcu-

lations as a simplification of the k-summations which render the problem intractable11. But

it was after the work of Metzner and Vollhardt5 and Müller-Hartmann6 who showed that

this approximation becomes exact in the limit of infinite dimension that it received extensive

attention. In this limit, the spatial dependence of the self-energy disappears, retaining only

its variation with time. Please see the reviews by Pruschke et al12 and Georges et al13 for a

more extensive treatment.

In this section, we will show that it is possible to re-interpret the DMFA as a course

graining approximation. For a two-dimensional lattice, this is equivalent to averaging, or

coarse-graining, the Green’s functions used to calculate the irreducible diagrammatic inser-

tions over the Brillouin zone.

Müller-Hartmann6 showed that this coarse-graining becomes exact in the limit of infinite-

dimensions. For Hubbard-like models, the properties of the bare vertex are completely

characterized by the Laue function ∆ which expresses the momentum conservation at each

vertex. In a conventional diagrammatic approach

∆(k1,k2,k3,k4) =
∑
r

exp [ir · (k1 + k2 − k3 − k4)] (3)

= Nδk1+k2,k3+k4
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FIG. 4: The Laue function ∆, which described momentum conservation at a vertex (left). In the

DMFA, ∆ = 1, so momentum conservation is neglected for compact graphs (right) so that we may

freely sum over the momentum labels leaving only local propagators and interactions.

FIG. 5: The second order contribution the generating functional Φ. As we apply the DMFA

coarse-graining approximation, Eq. 4, Φ becomes a functional of the local Green’s function and

interaction.

where k1 and k2 (k3 and k4) are the momenta entering (leaving) each vertex through its

legs of G. However as the dimensionality D → ∞ Müller-Hartmann showed that the Laue

function reduces to6

∆D→∞(k1,k2,k3,k4) = 1 +O(1/D) . (4)

The DMFA assumes the same Laue function, ∆DMFA(k1,k2,k3,k4) = 1, even in the context

of finite dimensions. More generally, for an electron scatting from an interaction (boson)

pictured in Fig. 4, ∆DMFA(k1,k2,k3) = 1. Thus, the conservation of momentum at internal

vertices is neglected. We may freely sum over the internal momentum labels of each Green’s

function leg and interaction leading to a collapse of the momentum dependent contributions

leaving only local terms.

This argument may then be applied to the generating functional Φ. It is the sum over

7



all closed connected compact graphs constructed from the dressed Green’s function G and

the bare interaction. The self energy Σσ is obtained from a functional derivative of Φ,

Σσ = δΦ/δGσ, and the irreducible vertices Γσσ′ = δΣσ/δG
′
σ. The second order contribution

to Φ for a Hubbard-like model is illustrated in Fig. 5, becomes a functional of the local

interaction and Green’s function. The self energy Σ may be obtained from a functional

derivative of Φ with respect to the Green’s function G, which effectively breaks one of the

Green’s function lines.

X=0 X=0

X=0

X=0

X=0 X=0

X=0

X=0

X=0

+...+ +

FIG. 6: The DMFA self energy. Note that it contains local self energy corrections See, e.g., the

third graph. To prevent overcounting these contributions, the local self energy must be excluded,

c.f., Eq. 5 from the Green’s function line used in most cluster solvers.

The perturbative series for Φ, Σ and the irreducible vertices Γ in the DMFA are identical

to those of the corresponding impurity model, so that conventional impurity solvers may

be used. However, since most impurity solvers can be viewed as methods that sum all the

graphs, not just the skeletal ones, it is necessary to exclude Σ(iωn) from the local propagator

G input to the impurity solver in order to avoid overcounting the local self-energy Σ(iωn)

(iωn = (2n + 1)πT is the Matsubara frequency).

G(iωn)−1 = G(iωn)−1 + Σ(iωn) (5)

where G(iωn) is the full local Green’s function. Hence, in the local approximation, the

Hubbard model has the same diagrammatic expansion as an Anderson impurity with a bare

local propagator G(iωn; Σ) which is determined self-consistently.

An algorithm constructed from this approximation is the following: (i) An initial guess

for Σ(iωn) is chosen (usually from perturbation theory). (ii) Σ(iωn) is used to calculate the
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χ−,n(k)

Σ
k

G(k)
−
G=

G( ) ττ ,χ( )

Σ+−1= −G−1−1−1 GG Σ=G−

ρ(ω),χ(ω)
MEM

QMC Analysis

FIG. 7: The DMFA algorithm. QMC is used as a cluster solver. Once convergence is reached,

G = Ḡ, and the irreducible quantities are used in the analysis and Maximum Entropy Method

(MEM) codes to calculate the phase diagram and spectra, respectively.

corresponding local Green’s function

G(iωn) =
∫

dη
ρ0(η)

iωn − η − ε− Σ(iωn)
, (6)

where ρ0 is the non-interacting density of states. (iii) Starting from G(iωn) and Σ(iωn) used

in the second step, the host Green’s function G(iωn)−1 = G(iωn)−1 + Σ(iωn) is calculated

which serves as bare Green’s function of the impurity model. (iv) Starting with G(iωn),

the local Green’s function G(iωn) is obtained using the Quantum Monte Carlo method (or

another technique). (v) Using the QMC output for the cluster Green’s function G(iωn) and

the host Green’s function G(iωn) from the third step, a new Σ(iωn) = G(iωn)−1 −G(iωn)−1

is calculated, which is then used in step (ii) to reinitialize the process. Steps (ii) - (v) are

repeated until convergence is reached. In step (iv) the QMC algorithm of Hirsch and Fye14,15

may be used to compute the local Green’s function G(τ) or other physical quantities in imag-

inary time. Local dynamical quantities are then calculated by analytically continuing the

corresponding imaginary-time quantities using the Maximum-Entropy Method (MEM)16.

B. The Dynamical Cluster Approximation

In this section, we will review the formalism which leads to the dynamical cluster approx-

imation. Here, we first motivate the fundamental idea of the DCA which is coarse-graining,

we then describe the mapping to an effective cluster problem and discuss the relationship

between the cluster and lattice at the one and two-particle level.
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1. Coarse-Graining

Like the DMFA, the DCA may be intuitively motivated with a coarse-graining transfor-

mation. In the DMFA, the propagators used to calculate Φ and its functional derivatives

were coarse-grained over the entire Brillouin zone, leading to local (momentum independent)

irreducible quantities. In the DCA, we wish to relax this condition and systematically re-

store momentum conservation and non-local corrections. Thus, in the DCA, the reciprocal

space of the lattice (Fig. 8) which contains N points is divided into Nc cells of identical

linear size ∆k. The coarse-graining transformation is set by averaging the Green’s func-

tion within each cell. If Nc = 1 the original lattice problem is mapped to an impurity

problem, and we recover the DMFA. If Nc is larger than one, then non-local corrections of

length ≈ π/∆k to the DMFA are introduced. Provided that the propagators are sufficiently

weakly momentum dependent, this is a good approximation. If Nc is chosen to be small, the

cluster problem can be solved using conventional techniques such as QMC. This averaging

process also establishes a relationship between the systems of size N and Nc. A simple and

unique choice which will be discussed in Sec. II B 2 is to equate the irreducible quantities

(self energy, irreducible vertices) of the cluster to those in the lattice.

2. A diagrammatic derivation

This coarse graining procedure and the relationship of the DCA to the DMFA is illus-

trated by a microscopic diagrammatic derivation of the DCA starting again from the Baym

generating functional Φ19. The DCA systematically restores the momentum conservation at

internal vertices of Φ relinquished by the DMFA. The Brillouin-zone is divided into Nc = LD

cells of size ∆k = 2π/L (c.f. Fig. 8 for Nc = 8). Each cell is represented by a cluster mo-

mentum K in the center of the cell. We require that momentum conservation is (partially)

observed for momentum transfers between cells, i.e., for momentum transfers larger than

∆k, but neglected for momentum transfers within a cell, i.e., less than ∆k. This requirement

can be established by using the Laue function9

∆DCA(k1,k2,k3,k4) = NcδM(k1)+M(k2),M(k3)+M(k4) , (7)

where M(k) is a function which maps k onto the momentum label K of the cell containing

k (see, Fig. 8). This choice for the Laue function systematically interpolates between the
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FIG. 8: (left) Coarse-graining cells for Nc = 8 (differentiated by alternating fill patterns) that

partition the first Brillouin Zone (dashed line). Each cell is centered on a cluster momentum K

(filled circles). (right) To construct the DCA cluster (e.g. for Nc = 8) we map a generic k to the

nearest cluster point K = M(k) so that k̃ = k−K remains in the cell around K.

FIG. 9: A second-order term in the generating functional of the Hubbard model. Here the undu-

lating line represents the interaction U , and on the LHS (RHS) the solid line, the lattice (coarse-

grained) single-particle Green’s functions. When the DCA Laue function is used to describe mo-

mentum conservation at the internal vertices, the momenta collapse onto the cluster momenta and

each lattice Green’s function is replaced by the coarse-grained result.

exact result, Eq. 4, which it recovers when Nc → N and the DMFA result, Eq. 4, which it

recovers when Nc = 1. With this choice of the Laue function the momenta of each internal

leg may be freely summed over the cell.

This is illustrated for the second-order term in the generating functional in Fig. 9. Each
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FIG. 10: Screening of a propagating particle. The single particle Green’s function, which describes

the quantum phase and amplitude the particle accumulates, is poorly approximated by a small

cluster calculation. Its self energy, which describes generally short ranged screening processes, can

be well approximated by a small cluster calculation.

internal leg G(k) in a diagram is replaced by the coarse–grained Green’s function Ḡ(M(k)),

defined by

Ḡ(K) ≡ Nc

N

∑

k̃

G(K + k̃) , (8)

where N is the number of points of the lattice, Nc is the number of cluster K points, and the

k̃ summation runs over the momenta of the cell about the cluster momentum K (see, Fig. 8).

The diagrammatic sequences for the generating functional and its functional derivatives are

unchanged; however, the complexity of the problem is greatly reduced since Nc ¿ N .

As with the DMFA, the coarse-graining approximation will be applied to only the compact

part of the free energy, Φ, and its functional derivatives. Physically, this is justified by the

fact that irreducible terms like the self energy are short ranged, while reducible quantities

like G must be able to capture long length and time scale physics. This is motivated in

Fig. 10. As the particle propagates from the origin to space-time location x, the quantum

phase and amplitude it accumulates is described by the single-particle Green’s function

G(x). Consequently if x is larger than the size of the DCA cluster, then G(x) is poorly

approximated by the cluster Green’s function. However, the self energy Σ describes the

many-body processes that produce the screening cloud surrounding the particle. These

processes are generally short ranged in a strongly correlated many-body system, so the self

energy is often well approximated by the cluster quantity. Formally, we have justified this

elsewhere by exploring the ∆k-dependence of the compact and non-compact parts of the

free energy17. The generating functional is the sum over all of the closed connected compact

diagrams, such as the one shown in Fig. 9.
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The corresponding DCA estimate for the free energy is

FDCA = −kBT (Φc − Tr [ΣσGσ]− Tr ln [−Gσ]) , (9)

where Φc is the cluster generating functional. The trace indicates summation over frequency,

momentum and spin. FDCA is stationary with respect to Gσ when

−1

kBT

δFDCA

δGσ(k)
= Σcσ(M(k))− Σσ(k) = 0, (10)

which means that Σ(k) = Σcσ(M(k)) is the proper approximation for the lattice self energy

corresponding to Φc. The corresponding lattice single-particle propagator is then given by

G(k, z) =
1

z − εk − ε− Σc(M(k), z)
. (11)

A similar procedure is used to construct the two-particle quantities needed to determine

the phase diagram or the nature of the dominant fluctuations that can eventually destroy

the quasi-particle. This procedure is a generalization of the method of calculating response

functions in the DMFA10,18. In the DCA, the introduction of the momentum dependence

in the self-energy will allow one to detect some precursor to transitions which are absent

in the DMFA; but for the actual determination of the nature of the instability, one needs

to compute the response functions. These susceptibilities are thermodynamically defined as

second derivatives of the free energy with respect to external fields. Φc(G) and Σcσ, and

hence FDCA depend on these fields only through Gσ and the bare G0
σ. Following Baym19 it

is easy to verify that, the approximation

Γσ,σ′ ≈ Γcσ,σ′ ≡ δΣcσ/δGσ′ (12)

yields the same estimate that would be obtained from the second derivative of FDCA with

respect to the applied field. For example, the first derivative of the free energy with respect

to a spatially homogeneous external magnetic field h is the magnetization,

m = Tr [σGσ] . (13)

The susceptibility is given by the second derivative,

∂m

∂h
= Tr

[
σ

∂Gσ

∂h

]
. (14)
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FIG. 11: A variety of clus-

ter geometries which may

be used to tile a two-

dimensional square lattice.

We substitute Gσ = (G0−1
σ − Σcσ)

−1
, and evaluate the derivative,

∂m

∂h
= Tr

[
σ

∂Gσ

∂h

]
= Tr

[
G2

σ

(
1 + σ

∂Σcσ

∂Gσ′

∂Gσ′

∂h

)]
. (15)

If we identify χσ,σ′ = σ ∂Gσ′
∂h

, and χ0
σ = G2

σ, collect all of the terms within both traces, and

sum over the cell momenta k̃, we obtain the two–particle Dyson’s equation

2(χ̄σ,σ − χ̄σ,−σ) (16)

= 2χ̄0
σ + 2χ̄0

σ

(
Γcσ,σ − Γcσ,−σ

)
(χ̄σ,σ − χ̄σ,−σ) .

We see that again it is the irreducible quantity, i.e., the vertex function, for which cluster

and lattice correspond.

3. Cluster Selection

The geometry of the DCA cluster is relevant for systematic studies of phase transitions.

All cluster geometries which can be used to tile the lattice without gaps are valid (c.f.

Fig. 11). In this approximation, the lattice has long range order once the correlation length

ξ of the order reaches the linear cluster size, since then the lattice tiled with such clusters
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FIG. 12: Two sixteen (Nc = 16) site periodic clusters. Here, the neighbors to the black site are

shown different patterns.

would be ordered. A scaling ansatz for Tc which captures these ideas is20

ξ (Tc(Nc)) = N1/D
c . (17)

So for a typical transition, with ξ (T ) ∝ |T − T ∗
c |−ν (where T ∗

c is the transition temperature

of the thermodynamic lattice), the scaling formula is T ∗
c = Tc(Nc)−A(Nc)

−1/Dν , where A, ν,

and T ∗
c are fit to the data Tc(Nc). However, clearly this approach will not apply to clusters

with strange geometries, like e.g., rods in a 2D system.

Ideal clusters should properly represent all length scales up to N1/D
c , and no others.

Consider the 16-site clusters shown in Fig. 12, the number of neighbors in each neighbor

shell are shown in the adjacent tables21. On the lattice, the nth shell has 4n neighbors. Both

16A and 16B have complete near neighbor (n=1) shells with four near neighbors. However,

the conventional square cluster 16B, has 6 (not 8) sites in the n=2 shell, has 4 (not 12) in

the n=3 shell, and even on site in the n=4 shell. The cluster 16A is far better, with no site

in the n=4 shell and a nearly complete n=2 shell.

Betts21 explored different cluster geometries, and realized that there are few clusters

with the same geometry (point group) as the lattice, but far more with lower symmetry,

that are often superior. He selected clusters based on neighbors in a given shell, symmetry,

and squareness. Since for a given cluster size, one incomplete shell is usually inevitable, he

classified the imperfection of each cluster by the number of sites missing in nearer shells,

rather than the number in an incomplete one and the number of sites in farther shells. Thus,

16B has an imperfection of three while 16A has an imperfection of one. The imperfection

number is the most important selection criteria.
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C. Calculation of Physical Properties

Most experiments measure quantities which we can express theoretically as reducible one

or two-particle Green’s functions. As discussed above, the appropriate way to calculate

these quantities is to first extract the corresponding irreducible quantity from the cluster

calculation, and then use it to calculate the reducible quantity. For example, to calculate

the single-particle Green’s function (relevant for angle-resolved photoemission spectroscopy)

we first extract the cluster self energy and use the Dyson equation to construct the lattice

Green’s function. To calculate the phase diagram, we calculate the irreducible vertices in the

different scattering channels Γ, and insert them into the Bethe-Salpeter equations for the

lattice. In this subsection we will provide more details about the relationship between the

lattice and cluster two-particle Green’s functions and describe how a lattice susceptibility

may be calculated efficiently.

a. Particle-hole channel As a specific example, we will describe the calculation of the

two-particle Green’s function

χσ,σ′(q, k, k′) =
∫ β

0

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3dτ4

× ei((ωn+ν)τ1−ωnτ2+ωn′τ3−(ωn′+ν)τ4)

× 〈Tτc
†
k+qσ(τ1)ckσ(τ2)c

†
k′σ′(τ3)ck′+qσ′(τ4)〉 ,

where we adopt the conventional notation22 k = (k, iωn), k′ = (k, ω′n), q = (q, νn) and Tτ is

the time ordering operator.

χσ,σ′(q, k, k′) and Γσ,σ′(q, k, k′) are related to each other through the Bethe-Salpeter equa-

tion (Fig. 13):

χσ,σ′(q, k, k′) = χ0
σ,σ′(q, k, k′) + χ0

σ,σ′′(q, k, k′′)

× Γσ′′,σ′′′(q, k
′′, k′′′)χσ′′′,σ′(q, k

′′′, k′) (18)

where Γσ,σ′(q, k, k′) is the two-particle irreducible vertex which is the analogue of the self-

energy, χ0
σ,σ′(q, k, k′′) is the non-interacting susceptibility constructed from a pair of fully-

dressed single-particle Green’s functions. As usual, a summation is to be made for repeated

indices.

We now make the DCA substitution Γσ,σ′(q,k,k′) → Γcσ,σ′ (q,M(k),M(k′)) in Eq. 18

(where frequency labels have been suppressed). Note that only the bare and dressed two-

particle Green’s functions χ depend upon the momenta k̃ within a cell. Since χ and χ0 in
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FIG. 13: The Bethe-Salpeter equation in the DCA. We approximate the lattice irreducible vertex

Γν by the Γν
c from the DCA cluster and coarse-grain over the k̃. The remaining equation is a

function of the cluster K only and may be solved by inversion.

the product on the RHS of Eq. 18 share no common momentum labels, we may freely sum

over the momenta k̃ within a cell, yielding

χ̄σ,σ′(q,K,K ′) = χ̄0
σ,σ′(q, K, K ′) + χ̄0

σ,σ′′(q, K, K ′′)

× Γcσ′′,σ′′′(q, K
′′, K ′′′)χ̄σ′′′,σ′(q, K

′′′, K ′) . (19)

By coarse-graining the Bethe-Salpeter equation, we have greatly reduced its complexity;

each of the matrices above is sufficiently small that they may be easily manipulated using

standard techniques.

In contrast with the single-particle case where the coarse-grained quantities are identical

to those of the cluster, χcσ,σ′(q, K, K ′) is not equal to χ̄σ,σ′(q, K,K ′). This is because the

self-consistency is made only at the single-particle level. Unlike the single particle case where

both Σ(K) and Ḡ(K) are directly calculated, neither Γσ,σ′(q, K, K ′) nor the coarse-grained

susceptibility χ̄σ,σ′(q, K, K ′) are calculated during the self-consistency. Instead, the coarse-

grained non-interacting susceptibility χ̄0
σ,σ′(q,K,K ′) is calculated in a separate program after

the DCA converges using the following relation

χ̄0
σ,σ′ [(q, iνn); (K, iωn); (K′, iω′n)] = δσ,σ′δK,K′δωn,ω′n

×Nc

N

∑

k̃

Gσ(K + k̃, iωn)Gσ(K + k̃ + q, iωn + νn) . (20)

The corresponding cluster susceptibility is calculated by the cluster solver and the vertex
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function is extracted by inverting the cluster two-particle Bethe-Salpeter equation

χcσ,σ′(q, K, K ′) = χc
0
σ,σ′(q,K,K ′) + χc

0
σ,σ′′(q, K, K ′′)

×Γcσ′′,σ′′′(q, K
′′, K ′′′)χcσ′′′,σ′(q, K

′′′, K ′) . (21)

If we combine Eqs. 21 and 19, then the coarse-grained susceptibility may be obtained after

elimination of Γ(q, K, K ′) between the two equations. It reads

χ̄−1 = χ−1
c − χ0−1

c + χ̄0−1

, (22)

where, for example, χ̄ is the matrix formed from χ̄σ,σ′(q, K, K ′) for fixed q. The charge (ch)

and spin (sp) susceptibilities χch,sp(q, T ) are deduced from χ̄

χch,sp(q, T ) =
(kBT )2

N2
c

∑

KK′σσ′
λσσ′χ̄σ,σ′(q,K,K ′) , (23)

where λσσ′ = 1 for the charge channel and λσσ′ = σσ′ for the spin channel.

b. Particle-particle channel The calculation of susceptibilities in the particle-particle

channel is essentially identical to the above. The exception to this rule occurs when we

calculate susceptibilities for transitions to states of lower symmetry than the lattice sym-

metry. For example, in order to obtain the pair function of the desired symmetry (s, p, d),

the two-particle Green’s function must be multiplied by the corresponding form factors g(k)

and g(k′). In the study of the Hubbard model below, we will be particularly interested in

g(k) = 1 (s wave), g(k) = cos(kx)+ cos(ky) (extended s wave) and g(k) = cos(kx)− cos(ky)

(dx2−y2 wave). These symmetries have been evoked as possible candidates for the supercon-

ducting ground state.

These factors modify the Bethe-Salpeter equations

g(k)χ(q, k, k′)g(k′) = g(k)χ0(q, k, k′)g(k′) (24)

+ g(k)χ0(q, k, k′′)× Γ(q, k′′, k′′′)× χ(q, k′′′, k′)g(k′) .

where

χ(q, k, k′) =
∫ β

0

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3dτ4 (25)

× ei((ωn+ν)τ1−ωnτ2+ωn′τ3−(ωn′+ν)τ4)

× 〈Tτc
†
k+qσ(τ1)c

†
−k−σ(τ2)c−k′−σ(τ3)ck′+qσ(τ4)〉 .
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FIG. 14: Calculation of particle-particle projected susceptibilities. Often we want to calculate

a projected particle-particle susceptibility (e.g. d-wave, with gk = cos(kx) − cos(ky)). Here the

Bethe-Salpeter equation is rewritten in terms of the irreducible vertex F . We approximate the

lattice irreducible vertex Γν by the Γν
c from the DCA cluster and coarse-grain over the k̃. Then

the projected bare bubbles are calculated, and the remaining equation is a function of the cluster

K only and may be solved by inversion.

On the LHS, we have dropped the spin indices since we will consider only opposite-spin

pairing. Eq. 24 cannot be easily solved if it is coarse-grained, since this will partially convolve

χ(q, k, k′) with two factors of g on the LHS and one factor on the RHS. Hence for the pairing

susceptibilities, or for any situation where non-trivial form factors must be used, we use the

equivalent equation involving the reducible vertex F (instead of the irreducible vertex Γ)

g(k)χ(q, k, k′)g(k′) = g(k)χ0(q, k, k′)g(k′)

+ g(k)χ0(q, k, k′′)

× F (q, k′′, k′′′)χ0(q, k′′′, k′)g(k′) , (26)

19



where

F (q, k, k′) = Γ(q, k, k′) (27)

+ χ0(q, k, k′′)Γ(q, k′′, k′′′)χ0(q, k′′′, k′) + · · ·

We define

Πg,g(q, k, k′) = g(k)χ(q, k, k′)g(k′) (28)

Π0
g,g(q, k, k′) = g(k)χ0(q, k, k′)g(k′) (29)

Π0
g(q, k, k′) = g(k)χ0(q, k, k′) . (30)

The remaining steps of the calculation are similar to the particle-hole case. We invert

the cluster particle-particle Bethe-Salpeter equation with g = 1 for the cluster, in order

to extract Γc. We then coarse-grain Eq. 27, and use Γc to calculate the coarse-grained

F̄ = Γc (1− χ̄0Γc)
−1

. We then coarse-grain Eq. 26, and use the coarse-grained F̄ to calculate

the coarse-grained Π̄g,g

Π̄g,g(q, K, K ′) = Π̄0
g,g(q,K,K ′) (31)

+ Π̄0
g(q, K, K ′′)T̄2(q,K

′′, K ′′′)Π̄0
g(q, K

′′′, K ′) .

The pairing susceptibility of a desired symmetry is given by

Pg(q, T ) =
(kBT )2

N2
c

∑

K,K′
Π̄gg(q,K, K ′) . (32)

D. Summary

Coarse-graining methods are used to derive the DMFA, and DCA which map the lattice

onto a self-consistently embedded cluster problem. The DMFA is a local approximation,

while the DCA incorporates systematic non-local corrections. Irreducible quantities from

the cluster are used to calculate reducible lattice quantities.
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III. QUANTUM MONTE CARLO ALGORITHMS FOR THE QUANTUM CLUS-

TER PROBLEM

A. Introduction

The Hirsch-Fye and Continuous time Quantum Monte Carlo (QMC) algorithms are pow-

erful and adaptable methods which may be used to study models of impurity clusters em-

bedded in a host. As such, they are ideal cluster solvers for the embedded impurity problem

at the heart of the Dynamical Mean Field and Dynamical Cluster Approximations.

We will sketch the Hirsch-Fye QMC in Sec. III B and the weak coupling continuous

time QMC algorithm in Sec. III C. Since both methods can be considered as expansions

about the free electron limit, Wick’s theorem applies to both, so similar methods for making

and conditioning measurements described in Sec. IIID can be used for both HFQMC and

CTQMC.

B. Hirsch-Fye QMC

To derive the Hirsch-Fye algorithm, we start with the Hubbard Hamiltonian (1)

H = H0 + H1, (33)

where H0 is the noninteracting part of the Hamiltonian

H0 = −t
∑

〈j,k〉σ
(c†jσckσ + c†kσcjσ) + ε

∑

j

(nj↑ + nj↓)

(34)

and H1 describes the local interaction on a cluster C (or impurity).

H1 = U
∑

i∈C
(ni↑ − 1

2
)(ni↓ − 1

2
) . (35)

The summation in Eq.34 is taken over the entire lattice whereas in Eq.35 it is taken only over

the cluster C sites (see Fig.III B). Our derivation of the equations follows the one presented

by Hirsch and Fye for the impurity problem14,23, but we extend the derivation to treat the

embedded cluster in the DMFA and DCA15.

By dividing the imaginary time (the inverse of the temperature) β = 1
T

into L slices,

∆τ =
β

L
, (36)
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FIG. 15: Hamiltonian breakup for the

Hirsch-Fye derivation. H0 describes both

the host and non-interacting degrees of free-

dom of the cluster (impurity), while H1 de-

scribes the interactions on the cluster.

the partition function can be written as

Z = Tr(e−βH) = Tr

(
L∏

l=1

e−∆τH

)
. (37)

From the Suzuki-Trotter formula

e−∆τH = e−∆τH0/2e−∆τH1e−∆τH0/2 +O(∆τ 3) , (38)

one derives

Z = Tr(e−βH) ≈ Tr

(
L∏

l=1

e−∆τH0/2e−∆τH1e−∆τH0/2

)
, (39)

which has leading errors proportional to ∆τ 2 (since the Suzuki-Trotter formula was applied

L times and L ∼ 1/∆τ). Then due to the periodic property of the trace, it is easy to see

that this is the same as the Trotter decomposition

Z = Tr(e−βH) ≈ Tr

(
L∏

l=1

e−∆τH0e−∆τH1

)
, (40)

with leading errors still proportional to ∆τ 2.

We introduce the identity operator in the occupation number basis

I =
∑
m

|m〉〈m| (41)

between exponents of operators at adjacent imaginary time slices. The partition function

becomes

Z =
∑

mL,mL−1,..m1
〈mL|e−∆τH0e−∆τH1|mL−1〉〈mL−1|e−∆τH0e−∆τH1|mL−2〉

...〈m1|e−∆τH0e−∆τH1|mL〉 (42)
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FIG. 16: The Hirsch-Hubbard-Stratonovich transformation Eq. 43 maps an interacting systems of

electrons onto a system of non-interacting electrons interacting with a time and space dependent

Ising-like fields which coupling to the z-component of the electron spin.

With the identity due to Hirsch24

e−∆τU(ni↑ni↓− 1
2
(ni↑+ni↓)) =

1

2

∑

si=±1

eαsi(ni↑−ni↓) , (43)

with

cosh α = e∆τU/2 . (44)

It is possible to introduce an auxiliary binary (±1) field (called Hirsch-Hubbard-Stratonovich

field, or HHS field) at every cluster site and at every time point. Thereby, the interacting

problem described by Eq. 42 is replaced by a summation over all possible auxiliary field

configurations of noninteracting terms. Eq. 43 can be proved by applying both the left and

right hand sides on the four possible vectors (empty site, one electron up, one electron down

and double occupied site) which span the local Hilbert space.

For each HHS field configuration {s}, we have a noninteracting problem composed of

electrons scattering off a space and time dependent Ising-like field (c.f. Fig. 16). Therefore,

by defining

Oσ(s) =




I 0 0 ... e−∆τKeV L
σ (s)

e−∆τKeV 1
σ (s) I 0 ... 0

0 e−∆τKeV 2
σ (s) I 0 ...

...

... ... ... e−∆τKeV L−1
σ (s) I




, (45)

with

H0 =
∑

i,j,σ

c†iσKijcjσ (46)
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and

V l
σ(s)ij =





ασsilδi,j i ∈ C
0 i 6∈ C

, (47)

where sil represents the value of HHS field at site i and time l, it is possible to write Eq. 42

as

Z = Tr{s} [det O↑(s) det O↓(s)] (48)

. Note that every matrix element shown in Eq. 45 is in fact a N × N sub-block, N being

the dimension of the K matrix defined in Eq. 46. Thus O is a (N × L)× (N × L) matrix.

The matrix O is the inverse of the one-particle Green’s function

G−1
σ (s) = Oσ(s) . (49)

By defining

Til;jl′ = δl−1,l′δi,j (50)

and

V l
σ(s)il;jl′ =





ασsilδl,l′δi,j i ∈ C
0 i 6∈ C or j 6∈ C

, (51)

Eqs. 45 and 49 can be written as

G−1
σ = I − Te−∆τKeVσ . (52)

In Eq. 52 and in the following equations we omit writing the explicit HHS dependence for

simplicity reasons. By multiplying Eq. 52 at right with e−Vσ (which is diagonal) the following

equation is obtained

G−1
σ e−Vσ = e−Vσ − Te−∆τK . (53)

Eq. 53 is used to establish a relation between the Green’s functions G′ and G which corre-

spond to two different field configurations {s} and respectively {s′}

G′−1
σ e−V ′σ −G−1

σ e−Vσ = e−V ′σ − e−Vσ . (54)

Using

A−1 −B−1 = C ⇐⇒ A = B −BCA , (55)
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FIG. 17: The original Hirsch-Fye algorithm involved local flips of the HHS fields.

the following equation is obtained

eV ′σG′
σ = eVσGσ + eVσGσ(e−Vσ − e−V ′σ)eV ′σG′

σ (56)

. After some easy manipulations, Eq. 56 can be written as

G′
σ = Gσ + (Gσ − I)(eV ′σ−Vσ − I)G′

σ . (57)

Another useful equation is

GσG
′−1
σ = I − (Gσ − I)(eV ′σ−Vσ − I) , (58)

obtained by multiplying Eq. 57 at right with G′−1
σ . Eq. 58 will be used in the QMC process

for calculating the transition probability form one configuration to another and Eq. 57 for

updating to the new configuration when the transition is accepted.

The QMC algorithm implies generating different field configurations with a probability

proportional to their weight, given by (see Eq. 48)

W (s) = det G−1
↑ (s) det G−1

↓ (s). (59)

In the QMC process, the HHS field configuration is updated by proposing local (in both

the cluster site and time index) flips of the HHS field (Fig. 17). We consider such two

configurations (s and s′) that differ only by a flip at point m, where m denotes both a cluster

site and a time (i.e. m ≡ il, i ∈ C). The ratio between the weights of these configurations is

R =
W (s′)
W (s)

=
det G−1

↑ (s′) det G−1
↓ (s′)

det G−1
↑ (s) det G−1

↓ (s)
. (60)

The ratio R determines the acceptance probability of the new configuration, according to

either the Metropolis25 or the heat bath rule. If the proposed configuration was accepted, the

new Green’s function should be updated accordingly to Eq. 57. This implies the following

G′
pn = Gpn + (Gpm − δpm)(eσα(s′m−sm) − 1)G′

mn (61)
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G′
mn = Gmn + (Gmm − 1)(eσα(s′m−sm) − 1)G′

mn (62)

G′
mn =

Gmn

1− (Gmm − 1)(eσα(s′m−sm) − 1)
, (63)

which results in

G′
pn = Gpn +

(Gpm − δpm)(eσα(s′m−sm) − 1)

1− (Gmm − 1)(eσα(s′m−sm) − 1)
Gmn . (64)

R =
W (s′)
W (s)

=
∏
σ

det G′−1
σ (s′) det Gσ(s) =

∏
σ

[1− (Gσmm − 1)(eσα(s′m−sm) − 1)]. (65)

Eq. 65 results directly from Eq. 58. Note that only the Green’s function defined between

FIG. 18: Whereas the HF Hamiltonian has

degrees of freedom on the cluster and in the

effective medium, the algorithm may be re-

stricted to interacting (cluster) sites only.

clusters sites is required for the QMC procedure (Fig 18). This is also enough for measuring

the cluster observables and for determining the irreducible quantities as self-energy, Σ, and

two-particle vertices, Γ’s.

In order to initialize the QMC process, first the HHS fields are set to zero and Gσ is set

to Gσ. Here, Gσ is the noninteracting Green’s function (i.e., the one obtained when U = 0)

if we mean to simulate a finite size cluster, or it is the cluster excluded Green’s function (i.e.

the one obtained when we subtract the self energy from the cluster) if we mean to simulate

an embedded cluster. Afterwards, by turn, the value of the HHS fields are changed to 1 or

−1 at all space-time points and the Green’s function is updated in accordance to Eq. 64.

The obtained Green’s function is used to initialize the QMC procedure. A “sweep” of the

QMC procedure consists of proposing a flip of the HHS field for every time slice, calculating

(Eq. 65) the ratio R between the weights of the proposed and the present configuration and

accepting the flip according to the Metropolis or the heat-bath algorithm. After a certain

number of warm-up sweeps through the space-time points (usually between twenty and one

hundred), the system reaches equilibrium and the measurements can start. It is a good
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idea to consider a few update sweeps between the measurements, in order to eliminate the

correlation between them.

Numerical round-off errors accumulate in the Green’s function during the updating pro-

cess, due to the repeated use of Eq. 64. In order to eliminate them, after a certain number

of iterations the Green’s function should be refreshed. This is done first by setting Gσ to Gσ

and afterwards updating it using Eq. 64 repeatedly until it corresponds to the present HHS

field configuration.

1. Combining HFQMC with Quantum Cluster Methods

The Hirsch-Fye algorithm naturally produces Green’s functions in Matsubara (imaginary)

time. However, the self-consistency cycle of quantum cluster methods like the DMFA and

DCA require imaginary frequency Green’s functions. Thus the algorithm requires Fourier

transforms from both the imaginary frequency to the imaginary time and from the imaginary

time to the imaginary frequency. The transform from frequency to time is given by

G(τ) =
1

β

∞∑

n=−∞
G(iωn) e−iωnτ (66)

and the inverse one, from time to frequency, by

G(iωn) =
∫ β

0
dτ G(τ) eiωnτ . (67)

The Matsubara frequencies for the fermionic Green’s function are defined as

ωn =
(2n + 1)π

β
. (68)

Due to the finite ∆τ , the numerical implementation of these transformations requires special

care. We will discuss both cases next.

a. Transform from frequency to time In Eq. 66 the frequency summation is taken from

minus to plus infinity. The contribution at large (both positive and negative) frequency is

important, thus a truncation of the sum is not possible. The trick is to subtract and add

back a function which has at large frequency the same asymptotic behavior as the Green’s

function. For example, if f(iωn) fulfills this condition, Eq. 66 can be approximated by

G(τ) ≈ 1

β

nc∑

n=−nc

(G(iωn)− f(iωn))e−iωnτ +
1

β

∞∑

n=−∞
f(iωn) e−iωnτ , (69)
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where nc is a cutoff number chosen large enough to have negligible numerical errors.

In order to determine the Green’s function behavior at large frequency we integrate Eq. 67

by parts as suggested in26

G(iωn) = 1
iωn

G(τ)eiωnτ |β0 − 1
iωn

∫ β
0 G′(τ)eiωnτdτ = (70)

= 1
iωn

G(τ)eiωnτ |β0 − 1
(iωn)2

G′(τ)eiωnτ |β0 +O((iωn)−3) .

We find that, for cutoff values of about ≈ 500, it is necessary to consider the asymptotic

behavior of G up to second order in ω−1
n . If only the first order term in ω−1

n is considered, in

order to get negligible numerical errors the cutoff number nc should be of order 106. Thus,

the second order term in Eq. 70 has a major practical importance and therefore f(iωn)

should be taken as

f(iωn) =
a1

iωn

+
a2

(iωn)2
(71)

with

a1 = −G(β−)−G(0+) = G(0−)−G(0+) (72)

and

a2 = G′(β−) + G′(0+) = −G′(0−) + G′(0+) . (73)

The last sum in Eq. 69 can be easily calculated by using the following relations

1

β

∞∑

n=−∞

e−iωnτ

iωn

=





1
2

τ < 0

−1
2

τ > 0
(74)

and

1

β

∞∑

n=−∞

e−iωnτ

(iωn)2
=




−1

4
(β + 2τ) τ < 0

−1
4
(β − 2τ) τ > 0

. (75)

The first of these relations (Eq. 74) is the well known Fourier transform of a noninteracting

Green’s function22

1

β

∞∑

n=−∞

e−iωnτ

iωn − E
=





1
eβE+1

e−Eτ τ < 0

−(1− 1
eβE+1

)e−Eτ τ > 0
. (76)

with the energy pole E = 0. Eq. 75 results from differentiating Eq. 76 with respect to E

and setting E = 0 afterwards.

The coefficients a1 and a2 in Eq. 71 can also be easily determined. Starting with the

Green’s function definition

Gij(τ) = −Tτ 〈cj(τ)c†i〉 , (77)
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where i and j are space or momentum indices and using Eq. 72, a1 becomes

a1 = 〈c†icj〉+ 〈cjc
†
i〉 = δij . (78)

Considering
dcj

dτ
= [H, cj] (79)

the coefficient a2 is

a2 = −〈c†i [H, cj]〉 − 〈[H, cj]c
†
i〉 , (80)

and can be evaluated to

a2 = Kij + KHF
ij . (81)

Kij was defined in Eq. 46 and represent the bilinear (noninteracting) part of the Hamiltonian.

KHF
ij results from the interacting part of the Hamiltonian when the corresponding Hartree-

Fock factorization is done.

b. Transform from time to frequency The difficulties associated with this transform

are related with the fact that in the QMC process the Green’s function is calculated and

stored only in a discrete set of points τi evenly spaced by ∆τ . This implies a periodic Fourier

transform with the period equal to the Nyquist critical frequency

ωc =
π

∆τ
, (82)

which is evidently unphysical, since the Green’s function goes as ω−1
n at large frequency (see

Eq. 70). Besides that, due to the fact that part of the spectral density at high frequency

(| ω |> ωc) is translated into the low frequency domain (| ω |< ωc), a phenomenon called

aliasing27, the Fourier transform is inaccurate even at frequencies smaller than the Nyquist

frequency.

In order to cure28 the pathology discussed above we again take advantage of our knowl-

edge of the Green’s function behavior at high frequency. A function which has the right

large frequency asymptotic behavior is the Green’s function Gp obtained from second order

perturbation theory (or any other method which becomes exact at high frequency). The

Fourier transform can be written as

G(iωn) = Gp(iωn) +
∫ β

0
dτ(G(τ)−Gp(τ))eiωnτ . (83)

It is important that the last term in Eq. 83 does not produce spurious high frequency

contributions. Therefore before integration the Akima spline29 is used to interpolate G(τ)−
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Gp(τ). The Akima spline produces smooth curves and therefore acts as a low-pass filter and

eliminates the high frequency noise.

C. Continuous Time Quantum Monte Carlo

1

1 2

3 3

1 2 +...+ +

FIG. 19: In contrast to

HFQMC which employs

a path-integral formalism,

CTQMC uses QMC to

stochastically sample the

graphs in the partition

function.

In this subsection, we will derive a Continuous time QMC (CTQMC) algorithm for the

Hubbard model, Eq. 1 following closely the derivation by Rubtsov30. In contrast to the path

integral formalism of HFQMC, CTQMC employs the same tricks used to derive Feynman-

Dyson perturbation theory (the interaction representation, the time-ordered S-matrix ex-

pansion, Wick’s theorem, etc.) to stochastically generate diagrams for the partition function

(Fig. 19).

Starting with

exp (−β(H0 + H1)) = exp (−βH0) S(β) , (84)

where

S(β) = Tτ exp

(
−

∫ β

0
H1(τ)dτ

)
, (85)

where Tτ is the time-ordering operator, and

H1(τ) = eτH0H1e
−τH0 (86)

is the quartic part of H in the interaction picture.

Specializing now on the Hubbard model, Eq. 1, the partition function becomes

Z = Z0

∑

k

(−U)k

k!

∫
· · ·

∫
d1 · · · dk 〈Tτn↑(1) · · ·n↑(k)〉0

〈Tτn↓(1) · · ·n↓(k)〉0 (87)
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FIG. 20: An example of a third-order (k = 3) CTQMC graph. Many graphs may be drawn to

third order in U , one example is shown.

where 1 → (x1, τ1), etc. and 〈〉0 indicates a thermodynamic average with respect to

exp(−βH0). Since H0 is noninteracting, we can apply the Wick’s theorem to evaluate the

expectation values in Eq. 87 (see, for instance,22), by evaluating and summing over all closed

Feynman graphs, see for example Fig. 20. For each order in k, there are k! graphs that can

be drawn for each of the up and down electrons. Note that the graphs can include both

connected and disconnected parts, as shown in the figure. According to Wick’s theorem,

each graph corresponds to a product of non-interacting Green’s functions G0 (i.e. Green’s

functions from the solution of H0 only) with arguments determined by the vertex labels,

etc., and sign determined by the number of line crossings. For example, the graph shown is

G0(2, 3)G0(3, 2)G0(1, 1)G0(3, 2)G0(2, 1)G0(1, 3) (88)

where G0 with the same argument are to be interpreted as having the right time argument

slightly greater. I.e., G0(1, 1) = G0(x1τ1; x1τ1+). There will be 36 such graphs for each

k = 3 vertex configuration, and the number of graphs will increase with order like k!2. For-

tunately, we may conveniently represent them as the product of up and down determinants
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det D↑(k) det D↓(k), where

Dσ(k) =




G0
σ(1, 1) G0

σ(1, 2) · · · G0
σ(1, k)

G0
σ(2, 1) G0

σ(2, 2) · · · G0
σ(2, k)

G0
σ(3, 1) G0

σ(3, 2) · · · G0
σ(3, k)

. . .

. . . .

. . . .

G0
σ(k, 1) G0

σ(k, 2) · · · G0
σ(k, k)




(89)

where, in lieu of an external field the bare Green’s function does not need a spin label,

G0
σ(k, 2) = G0(k, 2). Note that Dσ(k) is a k × k matrix.

In CTQMC, the sum of integrals in the Eq. 87 is evaluated using an importance sampling

Monte Carlo algorithm. Suppose the cluster has N sites and L = β/∆τ time locations (in

the end we may let ∆τ → 0). We will consider Monte Carlo moves of adding vertices at a

random location in space-time or subtracting existing vertices. By combining such moves,

we can clearly access all possible vertex configurations. Consider two configurations, one

with k and the other with k + 1 vertices, then the weights W of these two configurations

are given by the integrand of Eq. 87, or, in terms of the Dσ(k),

Wk = (−∆τU)k det D↑(k) det D↓(k) (90)

Wk+1 = (−∆τU)k+1 det D↑(k + 1) det D↓(k + 1) .

If we let the probability to add and remove a vertex be Pa and Pr respectively, where

Pa + Pr = 1, then the detailed balance condition requires that

Pa
1

L

1

N
WkPk→k+1 = Pr

1

k + 1
Wk+1Pk+1→k . (91)

Here 1
L

1
N

is the probability to choose a position in time and space for the vertex you intend

to add while 1
k+1

is the probability to choose one vertex you intend to remove of from the

existing k + 1 ones. If we accept or reject this change using a Metropolis algorithm25, then

we need the Metropolis ratio R.

Suppose we propose to add vertex, then

R = Pk→k+1/Pk+1→k = −UβN

k + 1

∏
σ

det Dσ(k + 1)/
∏
σ

det Dσ(k) . (92)
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We need an efficient way to calculate the ratio of determinants

det Dσ(k + 1)/ det Dσ(k) = det Dσ(k + 1)Mσ(k) (93)

= det (I + (Dσ(k + 1)−Dσ(k))Mσ(k))

where Mσ(k) = Dσ(k)−1, and we must pad the matrices Mσ(k) and Dσ(k) with an extra row

and column in the k + 1 location with all zeroes, except for a 1 in the k + 1, k + 1 location.

det (I + (Dσ(k + 1)−Dσ(k))Mσ(k)) = det (94)



1 0 · · · G0
σ(1, k + 1)

0 1 · · · G0
σ(2, k + 1)

0 0 · · · G0
σ(3, k + 1)

. . .

. . . .

. . . .

G0
σ(k + 1, i)M(k)i,1 G0

σ(k + 1, i)M(k)i,2 · · · G0
σ(k + 1, k + 1)




A cofactor expansion (first on the last column and then on the last row) yields

det Dσ(k + 1)/ det Dσ(k) = G0
σ(k + 1, k + 1)−G0

σ(k + 1, i)M(k)ijG
0
σ(j, k + 1) (95)

with an implied sum over repeated indices. Clearly, the matrices M are important for the

update, and they, not D are stored. The change is accepted if R is greater than a random

number between zero and one. Then, we need an equation used to update M which may be

derived using the Inversion by Partitioning described in Numerical Recipes27.

Mσ(k + 1) =




. . . −λ−1L1k+1

. . . −λ−1L2k+1

. Mσ
′ . −λ−1L3k+1

. . .

. . . .

−λ−1Rk+1,1 −λ−1Rk+1,2 · · · −λ−1




(96)

where the first k by k section is filled by the matrix

Mσ
′
ij = M(k)ij + Lik+1λ

−1Rk+1,j (97)
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and

Rij = G0
σ(i, n)M(k)nj Lij = M(k)inG

0
σ(n, j) (98)

and λ is given by Eq. 95.

If we propose to remove vertex at location n, then to determine whether to accept the

move, we need

det Dσ(k − 1)/ det Dσ(k) = det ((Mσ(k)−Mσ(k − 1))Dσ(k − 1) + I) . (99)

Again, using a cofactor expansion, it is easy to show that this is just Mσnn. Then if

R =
−k

UβN

∏
σ

det Dσ(k − 1)/
∏
σ

det Dσ(k) (100)

is greater than a random number between zero and one, we accept the change and must

update Mσ using

Mσij(k − 1) = Mσij(k)−Mσin(k)Mσnj(k)/Mσnn(k) . (101)

One natural question is to ask whether this QMC is convergent, which would require that

the average value of k be finite.

〈k〉 =
Z0

Z

∞∑

0

(−1)k

k!
k

∫ β

0
dτ1 · · · dτk 〈TτH1(τ1) · · ·H1(τk)〉0 (102)

= −Z0

Z

∞∑

0

(−1)k

k!
k

∫ β

0
dτ1 · · · dτkdτ 〈TτH1(τ1) · · ·H1(τk)H1(τ)〉0

= −
∫ β

0
dτ 〈H1(τ)〉

= −β 〈H1〉

where the brackets 〈〉 denote the average with respect to full interacting Hamiltonian

(Eq. 33), which is also the average value of Monte Carlo measurements. The last line

in Eq. 103 follows if H1 is independent of τ . Since 〈H1〉 is extensive, this means that

〈k〉 = −βN 〈h1〉 where h1 is the average potential energy per site.

As will be described below in Sec. III D 1, the minus sign problem emerges when the

Metropolis ratio R is not positive definite. It is easy to see from Eqs. 92 and 100 that when

U < 0 there is no minus sign problem since the up and down determinants the same and real,

so their product is positive. However, the minus sign problem can be severe when U > 0

since the sign of the sampling weight will fluctuate as k changes by ±1. Some tricks can
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be used to control the sign problem. For example, at half filling where there is particle-hole

symmetry, we rewrite the interaction as

H1 = U
∑

i

(
n↑i −

1

2

) (
n↓i −

1

2

)
(103)

then the particle-hole transformation cj↓ → c†j↓ changes the sign of U eliminating the sign

problem. Away from half filling, this trick is useless. However, here we introduce an addi-

tional Ising-like auxiliary field si = ±1 on each site and rewrite the interaction as31

H1 =
U

2

∑

i,si

(
n↑i −

1

2
− siα

) (
n↓i −

1

2
+ siα

)
. (104)

At least in 0 or 1 dimension, the choice α > 1/2 eliminates the sign problem. The cost is

that the Ising field is now associated with each point in space-time and must be sampled

using the QMC algorithm (Fig. 21).

FIG. 21: An example of a third-order (k = 3) CTQMC graph with the Rubtsov auxiliary field

used to suppress the minus sign configuration. Now each vertex also carries a field si = ±1 which

must be updated along with the vertex locations in the QMC.

Since Wick’s theorem applies to the configurations of CTQMC, most measurements are

simply accomplished by forming the appropriate Wicks contractions of the Green’s function

G↑(i, j) = −
〈
Tτc↑(i)c

†
↑(j)

〉
. (105)

corresponding to a configuration of vertices (and auxiliary fields when appropriate).

G↑(i, j) = −Z0

Z

∑

k

(−U)k

k!

∫
· · ·

∫
d1 · · · dk

〈
Tτc↑(i)c

†
↑(j)n↑(1) · · ·n↑(k)

〉
0

〈Tτn↓(1) · · ·n↓(k)〉0 . (106)
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However, this formula is very similar to the one we encountered when we added a vertex.

In fact,

G↑(i, j) = det D↑(k + 1)/ det D↑(k) , (107)

where the k × k matrix D↑(k) is given by Eq. 89 and

D↑(k + 1) =




G↑
0(1, 1) G↑

0(1, 2) · · · G↑
0(1, k) G↑

0(1, j)

G↑
0(2, 1) G↑

0(2, 2) · · · G↑
0(2, k) G↑

0(2, j)

G↑
0(3, 1) G↑

0(3, 2) · · · G↑
0(3, k) G↑

0(3, j)

. . . .

. . . . .

. . . . .

G↑
0(k, 1) G↑

0(k, 2) · · · G↑
0(k, k) G↑

0(k, j)

G↑
0(i, 1) G↑

0(i, 2) · · · G↑
0(i, k) G↑

0(i, j)




. (108)

We obtain the familiar form for

G↑(i, j) = G↑
0(i, j)−G↑

0(i, p)M↑pqG↑
0(q, j) . (109)

Of course, a similar equation holds for G↓.

All other measurements are then formed from Wick’s contractions of these Green’s func-

tions, as described in standard many-body texts22. This is worth illustrating for one example,

such as the transverse component of the spin susceptibility

χ±(i, j) = −
〈
Tτc

†
↑(i)c↓(i)c

†
↓(j)c↑(j)

〉
. (110)

The form for this is strikingly similar to what we did above for G↑(i, j), the main difference

being that we now have both spin components

χ±(i, j) =
Z0

Z

∑

k

(−U)k

k!

∫
d1 · · · dk

〈
Tτc

†
↑(i)c↑(j)n↑(1) · · ·n↑(k)

〉
0

〈
Tτc

†
↓(j)c↓(i)n↓(1) · · ·n↓(k)

〉
0

. (111)

So the estimator is

χ±(i, j) =
〈(

G↑
0(j, i)−G↑

0(j, p)M↑pqG↑
0(q, i)

)

(
G↓

0(i, j)−G↓
0(i, p)M↓pqG↓

0(q, j)
)〉

QMC
. (112)
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Similar estimators may be formed from G↑(i, j) and G↓(i, j) for the longitudinal spin and

pair susceptibilities. These will be discussed below.

In order to initialize the QMC process, the number of vertices can be simply set to zero.

Subsequent Monte Carlo steps will tend to add vertices until the configuration is thermalized.

Alternatively, one can take any other k vertex configuration and use Gσ to construct the Dσ

matrices (which are then inverted to obtain Mσ matrices). Here, Gσ is the noninteracting

Green’s function (the one obtained when U = 0) if we mean to simulate a finite size cluster,

or its the cluster excluded Green’s function (the one obtained when we subtract the self

energy from the cluster) if we mean to simulate an embedded cluster.

Numerical round-off errors accumulate in the Mσ matrices during the updating process,

Eqs. 97 and 101. In order to eliminate them, after a certain number of iterations they should

be refreshed. This may be done by recalculating the Dσ matrices and inverting for the Mσ.

1. Combining CTQMC with Quantum Cluster Methods

Quantum cluster methods generally require the Green’s function in terms of Matsubara

frequency and wavevector, G(k, iωn). However, unlike HFQMC, there is no difficulty in

performing the Fourier transform in CTQMC. In fact, this measurement may be made

efficiently directly in terms of Matsubara frequency and wavevector, simply by performing

a double Fourier transform of the Green’s function estimator in Eq. 109

G↑(Ki) = G↑
0(Ki)−G↑

0(Ki)M↑(Ki)G↑
0(Ki) , (113)

where K = (K, iωn) is now a frequency-wavevector label, and M↑ is

M↑(Ki) = M↑(K, iωn) =
∑

i,j

exp (iK · (Xi −Xj)− iωn(τi − τj)) M↑ij (114)

where i and j label the space-time locations of the vertices.

D. Making and Conditioning Measurements

The natural byproduct of the QMC algorithm are the Green’s functions. These may

be used to make measurements of most one and two-particle properties using standard

diagrammatic techniques. In doing so, several points must be remembered:
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• In the HF QMC algorithm, the Hubbard-Stratonovich transformation reduces the

problem to one of free electrons moving in a time-dependent Hubbard-Stratonovich

field. In the CTQMC, an interaction representation together with an S-matrix ex-

pansion is used. Thus, for each field configuration in the HFQMC or any vertex

configuration in the CTQMC, measurements may be formed by summing all allowed

Wick’s contractions. The full interacting quantity is recovered by QMC averaging this

over all configurations.

• It is important to use all allowed Wick’s contractions, both connected and discon-

nected, in this series.

• If your Hamiltonian is invariant under translations in space and time, and you are

performing a simulation in an unbroken symmetry phase, it is important to average

your measurement over all time and space differences in order to achieve the lowest

variance estimator.

• It is also important to average over other symmetries of the Hamiltonian, which may

not be preserved by the CTQMC or HFQMC algorithms (e.g., spin symmetry).

For example, consider the local impurity magnetic correlation function

χii(τ) ≈
〈
S+

i (τ)S−i (0)
〉

(115)

≈
〈
C†

i↑(τ)Ci↓(τ)C†
i↓(0)Ci↑(0)

〉

≈ T

2N

∑

iσ

∫ β

0
dτ ′ 〈Gσ(xi, τ + τ ′; xiτ

′)G−σ(xiτ
′; xiτ + τ ′)〉QMC

where the QMC subscript means that the Monte Carlo average over the Hubbard-

Stratonovich fields or vertex configurations is still to be performed. Note that in the last

step in Eq. 116 we form all allowed Wick’s contractions and average over all equivalent time

differences, spins, and sites to reduce the variance of this estimator.

At this point the measurements for CTQMC and HFQMC differ. For CTQMC we essen-

tially have a continuum of Matsubara time, so the time integral in Eq. 116 may be completed

very accurately. However, in HFQMC care must be used to reduce the time-step error. Due

to time translational invariance, the integral over τ ′ is not terribly sensitive to ∆τ error, so

we approximate as a sum using a rectangular approximation. For τ > 0

χ(τl) ≈ 1

2L

∑

σ,l′
〈Gσ(i, ind(l + l′); i, l′)G−σ(i, l′; i, ind(l + l′))〉QMC , (116)
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where ind(l) is the smaller nonnegative value of either l or l−L. For τ = 0 the fact that in

HFQMC we always store Gσ(l′, l′) = Gσ(τl′ +0+, τl′) requires us to modify the measurement

χ(τ = 0) ≈ 1

2L

∑

σ,l′
〈Gσ(l′, l′) (G−σ(l′, l′)− 1)〉QMC . (117)

Finally the susceptibility may be calculated by

χ(T ) =
∫ β

0
dτχ(τ) ≈ ∑

l

sf(l)∆τχ(τl) , (118)

where the Simpson factor sf(l) = 2∆τ/3 (4∆τ/3) for odd (even) l is used to reduce the

systematic error of the integral.

As a final example, consider the cluster particle-particle Green’s function matrix

χc(q, K, K ′) (K = (K, iωn)) which in the cluster space-time takes the form

χc(X1, X2, X3, X4) =
〈
Tτc↑(X1)c↓(X2)c

†
↓(X3)c

†
↑(X4)

〉
. (119)

Here Xi is in the space-(imaginary)time notation Xi = (Xi, τi), where the points Xi are on

the corresponding reciprocal cluster of K in real space.

Since the storage associated with this quantity is quite large, it cannot be measured for

many times. Thus the measurement in CTQMC and HFQMC are quite similar. First, using

Wick’s theorem, its value is tabulated for each field configuration and then transformed

into the cluster Fourier space. Second, we Monte Carlo average over these configurations.

After the first step, the expression for the above two-particle Green’s function in the cluster

momentum-frequency space becomes

χc(Q, iνn;K, iωn;K′, iωn′) =

〈 ∑

X1,X4

eiK′X1Gc↑(X1, X4)e
−iKX4

∑

X2,X3

ei(Q−K′)X2Gc↓(X2, X3)e
−i(Q−K)X3

〉

QMC

. (120)

where K is the momentum-frequency point K = (K, iωn).

The sums (integrals) over τ in Eq. 120 require special consideration. Since the Green’s

functions change discontinuously when the two time arguments intersect, the best applicable

integral approximation is the trapezoidal approximation. Using this, we will run into Green’s

functions Gc(X, τ ;X, τ) with both time and space arguments the same. In the HFQMC

algorithm, this is stored as Gc(X, τ+;X, τ) (i.e. it is assumed that the first time argument

is slightly greater than the second) and in CTQMC, the other time ordering is assumed;
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however, if we replaced the equal time Green’s function to be the average {Gc(X, τ+;X, τ) +

Gc(X, τ ;X, τ+)}/2 = Gc(X, τ+;X, τ) − 1/2 = Gc(X, τ ;X, τ+) + 1/2 then a trapezoidal

approximation of the integrals results. If we call the matrix Gc, with 1/2 subtracted (added)

from its diagonal elements as appropriate for HFQMC (CTQMC), as Ĝc (note that we can

treat one of the three independent momenta involved in χc as a variable Q outside the matrix

structure), then we can write the two-particle Green’s function in a matrix form

χcıj(Q) = (121)
〈(

F†Q=0Ĝc↑FQ=0

)
ıj

(
F†QĜc↓FQ

)∗
ıj

〉

QMC
,

where (FQ)ij = ∆τe−i(Kj−Q).Xi−iωjτi where we have chosen ı and j to index the cluster

momentum-frequency space.

This measurement may be performed efficiently if the product of three matrices in each

set of parenthesis is tabulated as two sequential matrix-matrix products and stored before

the direct product between the terms in parenthesis is calculated. When done this way,

the calculation time required for this process scales like (NL)3 rather than (NL)4 as would

result from a straight-forward evaluation of the sums implicit in Eq. 121. Greater efficiency

can be obtained if we perform the Fourier transforms as a two-step process; i.e., first doing

the transform in time and then in space. Then the measurement scales like (N + L)(NL)2,

of course, these reductions in FLOPs require an increase in memory needed to store the

intermediate results.

CTQMC presents the possibility of measuring these two-particle susceptibilities directly

in the cluster momentum-frequency space without the need to perform the discrete Fourier

transform in Matsubara time presented in Eq. 120. Again, this measurement may be made

efficiently again performing a double Fourier transform of the Green’s function estimator

Eq. 109

G↑(Ki, Kj) = G↑
0(Ki)δij −G↑

0(Ki)M↑(Ki, Kj)G↑
0(Kj) , (122)

and M↑ is

M↑(Kn, Km) = M↑(Kn, iωn;Km, iωm; ) (123)

=
∑

i,j

exp (iKn ·Xi − iωnτi)) M↑ij exp (−iKm ·Xj + iωmτj)) ,

where i and j label the space-time locations of the vertices. The last step is the numer-

ical bottleneck. However,using the methods described above of performing the Fourier
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transforming steps and storing the intermediate result, this step may be performed in

O2(L + N)k2) FLOPs. The estimator of the cluster particle-particle then becomes

χc(Q,K, K ′) = 〈G↑(K ′ + Q,K + Q)G↓(−K ′,−K)〉QMC . (124)

1. The minus sign problem

Except in a few and fortunate situations, the calculation of physical quantities with QMC

reduces to the calculation of integrals/sums with an integrand which can take both positive

and negative values. This is the origin of the sign problem in the Monte Carlo simulations.

For example, the average of the observable A is formally given by

〈A〉 =

∫
W (x)A(x)dx∫

W (x)dx
(125)

where
∫

dx is a integral over all the possible configurations x of the system of weight W (x).

For a classical system W (x) is positive definite and a Monte Carlo process consists of stochas-

tically generating configurations xi according to their weight W (xi) and taking

〈A〉 =
1

Nd

Nd∑

i=1

A(xi) . (126)

Where Nd is the number of measurements. For quantum systems W (x) is not necessarily

positive definite and therefore cannot be considered a probability distribution. The solution

is to rewrite Eq. 125 as

〈A〉 =

∫ | W (x) | A(x)s(x)dx∫ | W (x) | dx

∫ | W (x) | dx∫ | W (x) | s(x)dx
(127)

where s(x) is the sign of W (x), i.e.

W (x) =| W (x) | s(x) . (128)

Thus, we can sample the configurations space with the probability | W (x) | and

〈A〉 =

∑Nd
i=1 A(xi)s(xi)∑Nd

i=1 s(xi)
=
〈As〉|W |
〈s〉|W |

. (129)

Thus, we may use the absolute value of |W | as the sampling weight as long as we measure

the product of the sign and measurement and divide by the average sign. If the average

sign 〈s〉|W | is finite and not very small, then this approach is successful. However, a problem
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FIG. 22: Comparison of the average sign from a CTQMC and HFQMC DCA simulation of the two-

dimensional Hubbard model. (Left) Average sign versus inverse temperature for 4-site cluster with

U = W = 8t and different fillings. (Right) the average sign for 16-site cluster with U = W = 8t

versus α from Eq. 104 at fixed filling and temperature.

occurs when 〈s〉|W | is extremely small, because a small sign strongly amplifies the error bar

associated with 〈A〉|W | (∝ δs/〈s〉2). In fact, for many quantum systems 〈s〉 is found to fall

exponentially to zero with decreasing temperature or increasing cluster size55. This makes

Monte Carlo calculations impractical at low temperatures.

The average sign obtained from a simulation of the 2D Hubbard model is shown in Fig. 22.

The average sign from HFQMC and CTQMC are similar but the CTQMC result is slightly

worse. The figure on the right shows that increasing the value of α from Eq. 104 does not

help to increase the average sign significantly and it also increases the error bar on the sign

measurement due to an increase in the average order 〈k〉. The error bar increases, since the

average order 〈k〉 increases like α2 for large α as may be seen from Eq. 103, or here (for

some site i).

〈k〉 = −β 〈H1〉
= −Nβ

〈∑
si

(
n↑i −

1

2
− siα

) (
n↓i −

1

2
+ siα

)〉
(130)

On the other hand, the average sign obtained from a simulation of the 1D Hubbard model

is shown in Fig. 23. Whereas the average sign from HFQMC depends weakly with cluster

size, that from CTQMC actually increases strongly with increasing cluster size. Also studied

is an additional coupling between chains tperp/t which is a hopping between equivalent sites

on adjacent chains. A finite tperp/t causes the average sign to increase strongly.

42



We find that the average sign depends on many things: fillings, dimensionality model

parameters, etc. It is difficult to predict a priori whether the average sign will be problematic.

2. CTQMC and real time measurements

In this section, we briefly discuss a possibility to extend CTQMC to measure real time

Green’s functions or even treat the systems out of thermal equilibrium. We start with the

same Hubbard model Hamiltonian [1], which has no time dependent terms, and proceed to

derive expressions for partition function and real time Green’s functions. In this formalism,

the partition function can be expressed as an expansion of contour ordered exponent:

Z = Z0

∞∑

k=0

(−i)k

k!

∫

c
dt1 . . .

∫

c
dtk 〈TcH1(t1) . . . H1(tk)〉0 , (131)

where

H1(t) = eiH0tH1e
−iH0t (132)

is the interaction (quartic) part of Hamiltonian in the interaction representation and Tc is

the contour-ordering operator32. The integrals are performed along the contour c, shown

in Fig. 24. By writing out the contributions to the partition function coming from lowest

orders in expansion (Eq. 131), one can see that all the terms containing H1(t) on real parts

of contour cancel out exactly and thus the partition function in this case is the same as

in Matsubara formalism. We now consider the expansion for the contour ordered Green’s

function:

Gc(t, t
′) =

〈
Tcc(t)c

†(t′)
〉

(133)

= −i
Z0

Z

∞∑

k=0

(−i)k

k!

∫

c
dt1 . . .

∫

c
dtk

〈
Tcc(t)c

†(t′)H1(t1) . . . H1(tk)
〉

0
.
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FIG. 23: Comparison of the average sign

from a CTQMC and HFQMC DCA simula-

tion of the one-dimensional Hubbard model.

The average sign of HFQMC depends weakly

on the cluster size; whereas the average sign

of CTQMC increases strongly with increas-

ing cluster size.
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FIG. 24: The contour for measuring the real time Green’s function.

In this case, however, the contributions containing H1(t) on real parts of contour do not

cancel out (as one can easily check by writing out k = 1 term in the expansion). The

application of Wick’s theorem yields CTQMC diagrams that contain vertices on both imag-

inary as well as real parts of contour (See Fig. 25). Thus, the partition function and the

Green’s function have dominant contributions coming from entirely different regions in the

k-dimensional space spanned by time coordinates along the contour. As a consequence,

it appears impossible to use the partition function as a sampling weight in Monte Carlo

algorithm to measure the Green’s function. It is still possible to use the Green’s function

FIG. 25: A k = 4 diagram for the contour-ordered spin-up Green’s function. The light continuous

and darker dotted lines represent the propagators for spin up and spin down electrons, respectively.

itself as a weight in the Monte Carlo importance sampling, and then measure it’s value as

a distribution in the space of it’s arguments (t, t′). Since the Green’s function in this case

would be a complex number, it’s modulus would be taken for the sampling weight instead.

The sign problem would now translate into the phase problem, if the average value of the

phase of the Green’s function gets too small. By looking at Eq. 134 we see that the phase

problem is likely to be very severe due to a factor of (−i) attached to every vertex on the

real part of the contour (unless one finds again a way to introduce an auxiliary field that
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remedies this problem). In any case, the oscillatory nature of real time Green’s function

implies that the phase problem would most likely restrict measurements of Green’s function

to small values of its real time arguments.

E. Summary

We describe two QMC algorithms for solving the embedded cluster (impurity) problem

used in cluster mean-field methods. In the HFQMC algorithm the interaction term is re-

placed by a summation over a set of auxiliary fields, with every field configuration defining

a noninteracting problem. In the CTQMC algorithm, an expansion in the interaction term

in the partition function is employed. The problem is reduced to an infinite sum of integrals

with different multiplicity. Measurements, the sign problem and a possible extension of the

CTQMC technique to non-equilibrium processes is discussed.

IV. ANALYTIC CONTINUATION OF QUANTUM MONTE CARLO DATA

A. Introduction

Most quantum Monte Carlo (QMC) simulations produce Green’s functions G(τ) of imag-

inary time τ = it. However, real-frequency results are crucial since most experiments probe

dynamical quantities, including transport, densities of states, nuclear magnetic resonance,

inelastic scattering, etc. Thus, the inability to extract real-frequency or real-time results

from Matsubara (imaginary) time QMC simulations presents a significant limitation to the

usefulness of the method. The relation between G(τ) and A(ω) = − 1
π
ImG(ω) is linear and

surprisingly simple

G(τ) =
∫

dωK(τ, ω)A(ω) . (134)

Nevertheless, inversion is complicated by the exponential nature of the kernel. For example,

for a Fermionic single-particle Green’s function G, K(τ, ω) = e−τω/(1+ e−βω)33. For finite τ

and large ω the kernel is exponentially small, so that G(τ) is insensitive to the high frequency

features of A(ω). Equivalently, if we approximate both G and A by equal-length vectors

and K by a square matrix, then we find that the determinant of K is exponentially small,

so that K−1 is ill-defined. Apparently, there are an infinite number of A with very different
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characters (many of them not even causal) that yield the same G.

Previous attempts to address this problem include least-squares fits, Padé approximants

and regularization. In the least squares method, Schüttler and Scalapino33 approximated

the spectrum with a set of box functions. The location and weight of these functions was

determined by minimizing the least-squares misfit between the spectrum and the QMC

data. However, as the number of box functions is increased to better resolve features in

the spectrum, the fit becomes unstable and noisy. In the Padé method34, G (or rather

its Fourier transform) is fit to a functional form, usually the ratio of two polynomials,

which is then analytically continued formally by replacing iωn → ω + i0+. This technique

works when the data G is very precise, as when analytic continuing Eliashberg equations,

or when the fitting function is known a priori. However, it is generally unreliable for the

continuation of less-precise QMC data to real frequencies. A more useful approach is to

introduce regularization to the kernel, so that K−1 exists. This method was developed

by G. Wahba35, and employed by White et al.36 and Jarrell and Biham37. They used

similar methods to minimize (G − KA)2 subject to constraint potentials which introduce

correlations between adjacent points in A and impose positivity. However, these techniques

tend to produce spectra A with features which are overly smeared out by the regularization.

With entropy-based methods of Bayesian data analysis, we employ a different philosophy.

Using Bayesian statistics, we define the posterior probability of the spectra A given the data

G, i.e., P (A|G) ∝ P (A)P (G|A) with the prior probability P (A) defined so that A has

only those correlations that are required to reproduce the data G. To define the likelihood

function P (G|A), we take advantage of the statistical sampling nature of the QMC process.

The choice P (A) is based on information theory concepts of entropy. The result is either the

most probable P (A|G) or the average of this function over free parameters. The latter has

proven to be the most effective. Collectively, these methods are colloquially called Maximum

Entropy Methods (MEM).

In this section, we will present a short pedagogical development of the MEM to analyt-

ically continue QMC data. A more detailed review has been presented previously16, and

to the extent possible, we will follow the notation used there. This section is organized as

follows: In Sec. IVB, we will present the MEM formalism including an efficient way to calcu-

late the spectra when the sign problem is present in the QMC calculations. In Sec. IVC, the

Bryan MEM algorithm will be sketched, which has been optimized for this type of problem.
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In Secs. IVD and IVE we will illustrate these techniques with the spectra of the periodic

Anderson model and Hubbard model respectively. Finally in Sec. IVF, we will conclude.

Throughout this section, we will illustrate the formalism and methods introduced with a

Dynamical Field Theory (DMFT)10,12,13 simulation of the periodic Anderson model (PAM)

(2) and a Dynamical Cluster Approximation (DCA)8,9,38 simulation of the two-dimensional

Hubbard model (1). As described in the Sec. III B, the core of both DMFT and DCA

algorithms is the Hirsch-Fye impurity algorithm23. Here the problem is cast into a discrete

path formalism in imaginary time, τl, where τl = l∆τ , ∆τ = β/L, β = 1/kBT , and L is

the number of times slices. Matsubara-time Green’s functions are measured on this discrete

time domain.

B. Formalism

1. Green’s Functions

If this system is perturbed by an external field which couples to an operator B, then the

linear response to this field is described by the retarded Green’s function

G(t) = −iΘ(t)
〈[

B(t), B†(0)
]
±

〉
(135)

where the negative (positive) sign is used for Boson (Fermion) operators B and B†, and

makes reference to the Dirac (anti)commutator. The Fourier transform of G(t), G(z) is

analytic in the upper half plane, and its real and imaginary parts are related by

G(z) =
∫

dω
−1
π

ImG(ω)

z − ω
. (136)

The Matsubara-frequency Green’s function G(iωn) is obtained by letting z → iωn in Eq. 136.

This may be Fourier transformed to yield a relation between the Matsubara-time Green’s

function produced by the QMC procedure, and −1
π

ImG(ω)

G(τ) =
∫

dω
−1
π

ImG(ω)e−τω

1± e−βω
. (137)

2. Bayesian Statistics

We use our QMC algorithm to generate a set Ḡi
l of i = 1, .., Nd estimates for the Green’s

function at each time slice τl = (l − 1)∆τ , l = 1, L. Since many A correspond to the same
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data Ḡ, we must employ a formalism to determine which A(ω) is the most probable, given

the statistics of the data and any a priori information that we have about A. To quantify

the conditional probability of A given the data, and our prior knowledge, we use Bayesian

statistics.

If we have two events a and b, then according to Bayes theorem, the joint probability of

these two events is

P (a, b) = P (a|b)P (b) = P (b|a)P (a) , (138)

where P (a|b) is the conditional probability of a given b. The probabilities are normalized so

that

P (a) =
∫

dbP (a, b) and 1 =
∫

daP (a) . (139)

In our problem, we search for the spectrum A which maximizes the conditional probability

of A given the data Ḡ,

P (A|Ḡ) = P (Ḡ|A)P (A)/P (Ḡ) . (140)

Typically, we call P (Ḡ|A) the likelihood function, and P (A) the prior probability of A (or

the prior). Since we work with one set of QMC data at a time, P (Ḡ) is a constant during this

procedure, and may be ignored. The prior and the likelihood function require significantly

more thought, and will be the subject of the next two subsections.

3. Prior Probability

We can define a prior probability for positive-definite normalizable spectra. For Bosonic

Green’s functions, we may define positive definite spectra if we redefine the kernel

K(τ, ω) =
ω[e−τω + e−(β−τ)ω]

1− e−βω
with A(ω) =

−1

πω
ImG(ω) ≥ 0 for Bosons . (141)

We modified the kernel to account for the symmetry of the Bosonic data G(τ) = G(β − τ)

and the spectrum A(ω) = A(−ω). Note that the kernel is non-singular at ω = 0 and the

spectral density A(ω) is positive definite. For Fermionic Green’s functions the spectra are

already positive definite

K(τ, ω) =
exp(−τω)

1 + exp(−βω)
with A(ω) =

−1

π
ImG(ω) ≥ 0 for Fermions . (142)
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We may also define positive definite spectra for more exotic cases, such as for the Nambu

off-diagonal Green’s function G12. Since the corresponding spectrum A12(ω) = −1
π

ImG12(ω)

is not positive definite, we enforce positivity by adding a positive real constant b

G12(τ) + b
∫

dωK(τ, ω) =
∫

dωK(τ, ω) (A12(ω) + b) . (143)

Here, we may incorporate the symmetry of the spectrum A12(ω) = −A12(−ω) and the data

G12(τ) = −G12(β − τ) by modifying the kernel

K(τ, ω) =
e−τω − e−(β−τ)ω

1 + exp(−βω)
. (144)

With this kernel, the equation takes the canonical form Eq. 134, if we identify

A(ω) = A12(ω) + b, and G(τ) = G12(τ) + b
∫

dωK(τ, ω) (145)

In each of the Bosonic, Fermionic and Anomalous cases,

∫ ∞

−∞
dωA(ω) < ∞ . (146)

These positive-definite normalized spectra A may be reinterpreted as probability densities.

Skilling39 argues that the prior probability for such an unnormalized probability density

is proportional to exp(αS) where S is the entropy defined relative to some positive-definite

function m(ω)

S =
∫

dω [A(ω)−m(ω)− A(ω) ln (A(ω)/m(ω))]

≈
Nf∑

i=1

Ai −mi − Ai ln (Ai/mi) , (147)

where Ai = A(ωi)dωi, i = 1, Nf . Thus, the prior is conditional on two as yet unknown

quantities m(ω) and α

P (A|m,α) = exp (αS) . (148)

m(ω) is called the default model since in the absence of data Ḡ, P (A|Ḡ,m, α) ∝ P (A|m,α),

so the optimal A = m. The choice of α will be discussed in Sec. IVB6.

Rather than try to repeat Skilling’s arguments here for the entropic form of P (A|m,α),

we argue that this form yields the desired effects:

1. it enforces positivity of A,
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2. it requires that A only have correlations which are required to reproduce the data Ḡ,

and

3. it allows us to introduce prior knowledge about the the spectra (i.e. exact results at

high frequencies) in the default model.

The first effect follows from the form of P (A|m,α), assuming that m is positive definite.

The third effect will be discussed in Sec. IV D5.

To illustrate the second effect, Gull and Skilling use their kangaroo argument40. Imagine

we have a population of kangaroos. We know that one third of them are left handed and

one third have blue eyes. The joint probabilities of left-handedness and eye color may be

represented in a contingency table.

Left Handed

T F

Blue T p1 p2

Eyes F p3 p4

We are given that p1 + p2 = p1 + p3 = 1/3, what is the fraction that are both blue eyed

and left handed, p1? Clearly, there is not enough information to answer this question. We

must make some additional assumptions. If we assume that there is a maximum positive

correlation between left handedness and blue eyes, then

Left Handed

T F

Blue T 1/3 0

Eyes F 0 2/3

If these events have a maximum negative correlation, then

Left Handed

T F

Blue T 0 1/3

Eyes F 1/3 1/3

However, if we are forced to answer this question without the use of further information,

a more natural assumption to make is that the events of handedness and eye color are

uncorrelated, so that 1/9 of the kangaroos are both blue eyed and left handed.
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Left Handed

T F

Blue T 1/9 2/9

Eyes F 2/9 4/9

This final answer is the one obtained by maximizing the entropy S = −∑4
i=1 pi ln pi subject

to the Lagrange constraints
∑4

i=1 pi = 1, p1 + p2 = 1/3 and p1 + p3 = 1/3. All other

regularization functions yield either positive or negative correlations between handedness

and eye color.

To relate this to the analytic continuation problem, imagine that each Ai is an inde-

pendent event. If we maximize the entropy of A, subject to the constraint of reproducing

the data G = KA, then the resulting spectrum is the one with the least correlations that

is consistent with Ḡ. If we identify a feature in the spectrum as a region of correlated Ai

(such as a peak) in deviation from the default model mi, and such a feature emerges in

the spectrum A(ω) and persists as the data Ḡ becomes more precise, then we have reason

to believe that this feature is real. The choice of any other regularization function would

produce artificial features in the data.

4. Likelihood function

The form of the likelihood function is dictated by the central limit theorem, which for

the purposes of this section may be illustrated with the following example. Suppose we use

our QMC algorithm to generate Nd measurements of the Green’s function Ḡi
l (where l is an

integer between 1 and L, and i an integer between 1 and Nd). According to the central limit

theorem, if each of these measurements is completely independent of the others, then in the

limit of large Nd, the distribution of Ḡl will approach a Gaussian, and the probability of a

particular value Gl is given by

P (Gl) =
1√
2πσ

e−χ2/2 , (149)

where χ2 = 1
σ2

(
1

Nd

∑Nd
i=1 Ḡi

l −Gl

)2
= 1

σ2

(〈
Ḡl

〉
−Gl

)2
, σ2 = 1

Nd(Nd−1)

∑
i

(〈
Ḡl

〉
− Ḡi

l

)2
and

the angular brackets indicate an average over the bins of data.

Of course, in the QMC process each of the measurements is not independent of the others.

Correlations exist between adjacent measurements (Ḡi
l and Ḡi+1

l ) in the QMC process, and
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FIG. 26: Symmetric PAM f-electron local Green’s function Ḡf (τ = β/2) plotted as a function of

the QMC step for U = 2, V = 0.6, and β = 20.

between the errors of the Green’s function at adjacent time slices (Ḡi
l and Ḡi

l+1) at the same

QMC step. The removal of these correlations is the most critical step in the MEM analytic

continuation procedure.

Correlations between adjacent measurements are illustrated in Fig. 26 where measure-

ments of Ḡf (τ = β/2) are plotted versus the QMC step. The data from adjacent QMC steps

are correlated and the data are skewed since the Green’s function is bounded from below

(Ḡi
l > 0). As a result the data are not Gaussianly distributed, as shown in Fig. 27(a). Here,

a histogram of the data is compared to a Gaussian fit. The deviations from a Gaussian are

quantified by the moments of the distribution. The most relevant ones in the present case

are the skewness (third moment) and kurtosis (fourth moment) which measure the degree

of asymmetry around the mean and the pointedness (or flatness) of the distribution relative

to the Gaussian41. The data are clearly not Gaussianly distributed, and display significant

skew and kurtosis. To deal with this difficulty, we rebin the data. For example, we set Ḡ1
l

equal to the average of the first 30 measurements, Ḡ2
l equal to the average of the next 30

measurements, etc. The distribution of this rebinned data is shown in Fig. 27b. It is well

approximated by a Gaussian fit (the solid line).

The chosen bin size (here, 30 measurements) must be large enough so that the bin averages

are uncorrelated, but small enough so that sufficient bins remain to calculate the likelihood

function. To determine the smallest bin size that yields uncorrelated data we quantify the

deviation of the distribution from a Gaussian by measuring moments of the distribution.
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FIG. 27: Distribution of the data shown in Fig. 26 (a) and after rebinning (b). The solid line is a

Gaussian fit. In (b) the data was processed by packing it sequentially into bins of 30 measurements

each.

Of course, because the data are a finite set, each of these measured moments has some

standard deviation (proportional to 1/
√

Nbins). Thus, one way to determine if the skewness

and kurtosis of a distribution are acceptably small is to measure these values relative to

what is expected from a Gaussian distribution. We will use such relative values.

As the bin size increases, the relative kurtosis and skewness decrease monotonically,

indicating the convergence of the distribution to a Gaussian. This behavior is shown in

Fig. 28a for the G(τ = β/2) data.

In addition, Fig. 28b shows that the error estimate also converges as the bin size increases.

Here, the error estimate is given by

σ =

√(〈
Ḡ2

〉
− 〈Ḡ〉2

)
/(Nbins − 1) (150)

where angular brackets indicate an average over the bins of data. Because correlations

between successive Monte Carlo measurements always make this error estimate smaller than

the actual value, this error estimate should initially increase monotonically with bin size,

as shown. This behavior is easily understood by considering a perfectly correlated sample

where the data in each bin is identical. Clearly, for this perfectly correlated sample, the

error estimate would be zero. As the bins become uncorrelated, the error estimate increases.

With independent data and a large number of equally sized bins, eventually σ2 ∼ 1/Nbins.

However, with a fixed amount of data, as is typical with a QMC simulation, increasing the

bin size decreases Nbins proportionally, and the error estimate can saturate as illustrated in

Fig. 28b. Thus, the saturation of the error estimate indicates that the correlations between

Monte Carlo measurements, i.e., between bin averages, have been removed. The point at

53



0

100

200

300

m
om

en
ts

relative skew
relative curtosis

1 10 100
bin size

7

8

9

10

σ 
[x

10
−

5 ]

(b)

(a)

FIG. 28: Relative kurtosis and skew (a) and error bar (b) of the data shown in Fig. 26 as a

function of bin size. Here the total amount of data is fixed, so increasing the bin size decreases

Nbins proportionately. As the bin size increases to about 30, the relative kurtosis and skew decrease

to roughly zero and the error bar saturates, indicating that the bins are uncorrelated samples and

that the data has become Gaussianly distributed.

which saturation occurs in a plot like Fig. 28b provides a useful first estimate of the minimum

bin size required to remove correlations between the bins. In general, one should perform

this test for the Green’s function at all times τl; however, we have found it is often sufficient

to perform this test at only a few times. For the remainder of this section, we will assume

that the bin size is sufficiently large so that both the error estimate and the moments of

the distribution have converged to values which indicate that the data are both statistically

independent and Gaussian-distributed.

Now, only the errors in the Green’s function Ḡ at adjacent time slices remain correlated.

This correlation may be seen by comparing the results from a single measurement with

those essentially exact values obtained from averaging over many measurements. Such a

comparison is shown in Fig. 29 where if the result from a single measurement differs from

the essentially exact result at a certain value of τ , then the results at adjacent values of τ

also tend to deviate from the exact results in a similar way. These correlations of the error

in Matsubara time are characterized by the covariance

Clk =
1

Nbins(Nbins − 1)

Nbins∑

j=1

(
〈
Ḡl

〉
− Ḡj

l )(
〈
Ḡk

〉
− Ḡj

k) . (151)
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FIG. 29: Ḡf (τ) from one measurement compared to Ḡf (τ) obtained from the average over 800 bins

of data, each containing 1520 measurements. If the result from a single measurement at a certain

point differs from the essentially exact result obtained by averaging over many bins, then the results

at adjacent points also deviate from the exact results.

If C is diagonal, then according to the central limit theorem, the likelihood function is

P (Ḡ|A) = exp[−χ2/2] where

χ2 =
L∑

l=1

(
Ḡl −∑

j Kl,jAj

σl

)2

, (152)

and σ2
l are the diagonal elements of C. However, in general, the covariance matrix Cij is

not diagonal because errors at different values of τ are correlated. To define a meaningful

measure of how well Ai reproduces the data, we must find the transformation U which

diagonalizes the covariance matrix

U−1CU = σ′2i δij . (153)

Both the data and kernel are now rotated into this diagonal representation

K′ = U−1K Ḡ′ = U−1Ḡ , (154)

and each measurement Ḡ′
i is statistically independent. Therefore, we can use

χ2 =
∑

l

(
Ḡ′

l −
∑

j K ′
l,jAj

σ′l

)2

(155)

to measure the misfit between the spectrum and the data and to define the likelihood

function.
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FIG. 30: Eigenvalue spectra of the covariance matrix of Gf for different numbers of bins of data.

Each bin contains 100 measurements and L = 41. When Nbins ∼ 2L, σ′2l develops a sharp break.

a. Cautionary Notes We find that proper preparation of the data, removing correla-

tions, is the most critical step in the MEM procedure. If the data are uncorrelated and the

covariance is calculated and diagonalized correctly, then the resulting spectra will be reliable

(however, for weak data, it will show a significant bias towards the default model). If not,

then the Gaussian form of the likelihood function is unjustified and the resulting spectra

will generally have spurious features.

However, care must be taken when calculating and diagonalizing the covariance. First,

Since the set of data is finite, it is necessary to balance the need of removing the correlations

in imaginary-time with the need of removing the correlations between Monte Carlo steps. To

remove the correlations in Monte Carlo steps the bin size must be large; however, to calculate

the covariance accurately, many bins of data are required. If there are not enough bins of

data, then the covariance and (as shown in Fig. 30) its eigenvalue spectrum can become

pathological. The reason for this pathology is that when we diagonalize the covariance

matrix, we are asking for L independent eigenvectors. We must have enough bins of data to

determine these directions so that Nbins must be greater than or equal to L. In fact, since

the information contained in a given bin of data is not completely independent from the

other bins, we must have Nbins > L. Otherwise, as shown in Fig. 30, where L = 41, the

eigenvalue spectrum displays a sharp break when Nbins < L, indicating that only a finite
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number of directions, less than L, are resolved. The small eigenvalues after the break are

essentially numerical noise and yield artifacts in the spectra. Simply throwing away the

small eigenvalues and their associated eigenvectors does not cure the difficulty since the

small eigenvalues and eigenvectors contain the most precise information about the solution.

Thus, the only reasonable thing to do is to increase the number of bins. Empirically, we

find that we need

Nbins ≥ 2L (156)

in order to completely remove the pathology of the sharp break in the eigenvalues42. Second,

as illustrated in Fig. 29 adjacent data in time tend to be highly correlated. These correlations

grow as the time step used in the QMC calculation is reduced, making the rows and columns

of the covariance more correlated. Eventually, the covariance becomes ill conditioned and

cannot be diagonalized. Such severe oversampling of the Green’s function data does not

provide more information, but a small time step may be useful for other reasons (such as

reducing Trotter errors). In this case we can fix the problem by eliminating some fraction

of the data (i.e. taking the data from every other time step).

5. Data produced by QMC simulations with sign problem

a. Sign problem in QMC simulations The nature of the sign problem in QMC calcula-

tions was discussed in IIID 1. When the average sign is small the Monte Carlo calculations

become impractical. Even a moderate sign problem, for which the computation of the static

quantities described in Eq. 129 is still possible, introduces additional problems in the calcu-

lation of the dynamical spectra including especially strong correlations of the data resulting

in non-gaussian distributions, such as those shown in Fig. 31 c) and d). However, these can-

not be removed by standard techniques due to the strong correlation between the data and

the averaged sign of the configurations which produce these data. This makes it essentially

impossible to calculate spectra long before the minus sign problem makes the calculation

of the static properties impractical. In this section we address this problem and describe a

solution which greatly increases the resolution of MEM when calculating spectra from such

poorly conditioned data.

Nevertheless, we should mention that we do not attempt to improve the sign problem

in general. We only introduce a proper way to compute the dynamical spectra when the
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average sign is small, but still large enough to allow the computation of the static quantities.

b. Analysis of QMC data with sign problem The difficulty in obtaining good data for

Gi can easily be understood from the measurement process when the sign is not always

positive. Then, to obtain the Green’s function, we no longer measure Gi but rather the

product of it and the sign s of the configuration, Gsi ≡ Gi ∗ s, and the sign s. At the end

of the simulation, i.e. after a large number of measurements, we then obtain

〈Gl〉 =
〈Gsl〉
〈s〉 =

∑Nd
i=1 Gsi

l∑Nd
i=1 si

. (157)

However, besides the means (i.e. the average 〈Gl〉), in order to employ MEM we need to

generate uncorrelated and independent Ḡ
(i)
l points normally distributed around the mean

(see Eq. 151). Generating these points is problematic if the sign problem is present, as we

discuss below.

First, in order to obtain good estimates of Ḡi
l (i.e. to have a good statistics), we need to

average a large number of Gsi
l and si

Ḡi
l =

Ḡs
i
l

s̄i
=

∑Bs
i=1 Gsi

l∑Bs
i=1 si

. (158)

Here Bs = Nd

Nbins
is the bin size or the number of points in the bin i, thus Ḡs

i
l and s̄i are

averages over the measurements that form the bin i. This large number of measurements

for every Ḡi
l requires large computational effort.

Second, even if the bin size is chosen large enough to produce good estimates of the Ḡi
l, the

distribution of these will not be Gaussian. This can be easily understood if one notices that

the Ḡi
l distribution is a ratio of two normal distributions, Ḡs

i
l and si respectively. However,

the ratio distribution of two normal distributions is not a normal distribution. Therefore in

order to obtain a normal distribution for Ḡi
l data one has, in the virtue of the central limit

theorem, to further rebin the points Ḡi
l. Of course, this rebinning will result in an additional

computational effort.

Third, as within the same bin i there is a strong correlation between different data points

Ḡs
i
l corresponding to adjacent time slices, there is also a strong correlation between data

Ḡs
i
l and s̄i. The Ḡi

l are a result of a nonlinear operation between two correlated quantities.

Thus the average of Ḡi
l

Gl =
1

Nbins

Nbins∑

i=1

Ḡi
l (159)
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FIG. 31: a) and b) histograms representing the distribution of Ḡs(τ = β/16) and respectively sign

s̄ for 3000 measurements per bin. c) histogram representing the distribution of Ḡ(τ = β/16) when

a Ḡ point is obtained as a ratio of 3000 averaged Ḡs and 3000 averaged s̄ points. d) histogram

representing the distribution of Ḡ(β/2) when every Ḡ point is obtained by rebinning 30 initial G

points obtained as a ratio of 600 averaged Ḡs and s̄ points. The dashed lines represent the best

Gaussian fit to the data.

will be different from 〈Gl〉 obtained in Eq. 157. Therefore, one ends with a set of Gl data

normally distributed around Gl which is not a good estimation for Gl if the correlations are

strong.

In order to exemplify the problems discussed above, we employed a QMC based DCA

algorithm to produce a very large amount of data for the single-particle Green’s function of

the two-dimensional Hubbard model (Eq. 1) on a square lattice. We choose t = 0.25 so that

the bandwidth W = 2 and set U = W . To make the sign-problem worse, we add a next-

nearest neighbor hopping t′ = −0.3t to frustrate the lattice. We perform calculations on a

16-site 4× 4 cluster at 15% doping, down to temperatures T = 0.125t where we experience

a severe sign-problem, s̄ = 0.051. We calculated 8000 data points (bins) (Ḡs
i
l, s̄

i), and for

every data point we averaged 600 QMC measurements.

In Fig. 31 a) and b) we show histograms of the Ḡs(τ = β/16) and respectively s̄ when

the bin size is increased five times, which corresponds to an average of 3000 measurements

per bin. It can be seen that the data are normally distributed to a very good approximation.

This is unlike the situation shown in Fig. 31 c) where the Ḡ(τ = β/16) distribution, obtained

as a ratio distribution of the previous Ḡs(τ = β/16) and s̄, is shown. The Ḡ(τ = β/16) data

are strongly peaked, being characterized by a large positive kurtosis. Similar distributions
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of data are observed (not shown) for the other values of the imaginary time. The worst

situation is observed at imaginary times close to β/2 which affects mainly the low-energy

properties of the spectra. In Fig. 31 d) we show the distribution of Ḡ(τ = β/2) when

every point is obtained after rebinning 30 initial Ḡ(τ = β/2) points, with each initial point

being obtained as a ratio of 600 averaged Ḡs and s̄ points. Even if now a large number

of measurements (18, 000) is used for producing one data point, the distribution is still not

Gaussian. However, this is mainly because we used a small amount of measurements (only

600) for obtaining the initial Ḡ points (i.e. the ones before rebinning). We found that

much better data can be obtained if initially one uses a large number of measurements to

calculate the Ḡ points and afterwards a rebinning of a few successive Ḡ points is employed.

Nevertheless the number of measurements necessary to obtain normal distributed Ḡ points

is much larger than the one required to obtain normal distributed Ḡs and s̄ points. In

our case this number is about five times larger but this value is dependent on the problem

considered, being determined by both the magnitude of the correlations and the value and

the distribution of the sign.

We propose the following modified approach to MEM for QMC data with sign problem.

i) Rebin (Ḡs
i
l, s̄) until they become normal distributed. As it was shown in Fig. 31 a)

and b) this can be achieved with a relatively small amount of data. ii) Employ a rotation

in the space (Gsl, s) in order to obtain the statistically independent vectors. iii) Calculate

χ2 in the space spanned by (Gsl, s). The calculation of χ2 in a space which now includes

the extra sign dimension will be discussed below in Sec. IVB5 c.

c. Modified likelihood function Denoting h ≡ (Gsl, s), the modified likelihood function

is defined as P [h|A], since the measured quantities in the QMC process are the h points (and

not G). As we showed in the previous section, for acceptable values of the bin size, the data

h are to a good approximation Gaussianly distributed. Therefore, the modified likelihood

function also will have the usual form as e−χ2/2, with

χ2 =
L+1∑

l,k=1

(h̄l − hl(A))[C−1
h ]lk(h̄k − hk(A)) (160)

The new covariance matrix has the dimension (L + 1)× (L + 1),

Chlk =
1

Nbins(Nbins − 1)

Nbins∑

i=1

(〈h〉l − h̄i
l)(〈h〉k − h̄i

k) . (161)
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The only problem which remains to be solved is finding an equation for h(A), since Eq. 134

only provides a relation for G(A). In order to achieve this we do the following: First we

absorb the sign into the spectrum, i.e. we define A as

A(ω) = sA(ω) . (162)

Instead of searching for a spectrum A which satisfies Eq. 134 we search for A which satisfies

Gs(τ) =
∫

K(τ, ω)A(ω)dω . (163)

Second, we consider the spectrum normalization sum-rule

B =
∫

A(ω)dω, (164)

which implies

s =
∫ 1

B
A(ω)dω . (165)

Here B is a constant, equal to one for the the one-particle spectra and equal to the static

susceptibility χ(T ) for the two-particle case. We relate the sign fluctuations to the norm of

the new spectrum because of the sign s was absorbed into the definition of A.

Both Eq. 163 and Eq. 165 can be written as

〈hl〉 =
Nf∑

ν=1

KhlνAν , Khlν =





Kiν l ≤ L

1
B

l = L + 1
. (166)

This is the basic equation which relates h to A and determines the likelihood function

P [h|A] ≡ P [h|A]. MEM will produce the most probable spectrum A normalized to 〈s〉
which minimizes the χ2 function in Eq. (160) subject to the entropy constraint.

We note that for the one-particle case, where B = 1, Eq. 165 is equivalent to

Gs(0) + Gs(β) = s . (167)

By using Eq. 165 in the calculation of the likelihood function we impose

G(0) + G(β) =
Gs(0)

s
+

Gs(β)

s
= 1 (168)

at every measurement. Since Eq. 168 results solely from the anti-commutation relation of

the one-particle operators it should be satisfied in every possible configuration and implicitly

in every measurement. Therefore, this way of implementing the normalization sum-rule is
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more natural than the usual way based on Lagrange multipliers where the constraint is

globally imposed, i.e. not at every measurement but only for the final Green’s function

obtained at the end of the QMC process.

For the two-particle case, where B = χ(T ), the sum-rule Eq. 164 is not an independent

equation as in the one-particle case, but merely an integration over τ of Eq. 137. Therefore it

is essential to treat B as a constant (equal to the final, averaged over all QMC configurations,

〈χ(T )〉) and to disregard measurement dependent fluctuations in χ(T ). This way we relate

the norm of A only to the fluctuation of the sign s.

6. Details of the MEM Formalism

We will now construct the formalism to locate the most likely spectrum Â and set the

value of α. The first step is to normalize the likelihood function P (Ḡ|A) and the prior

P (A|α, m). Here it will be necessary to integrate over the space of all spectra Ai. This is

done with Gaussian approximations to the integrals. Following Skilling and Bryan43, we

employ a measure dNA/
∏

i

√
Ai which amounts to a change of variables to a space where S

has no curvature16.

For example, the normalized prior probability is

P (A|α, m) =
1

ZS

exp
{
α

(
−∑

Ai ln Ai/mi − Ai + mi

)}
, (169)

where

ZS =
∫ dNA

∏
i

√
Ai

exp
{
α

(
−∑

Ai ln Ai/mi − Ai + mi

)}
. (170)

The integrand is maximized when S = 0, i.e. when A = m. We approximate the integral

by expanding the argument of the exponent to second order around this maximum, S ≈
1
2
δAT ∇∇S|A=m δA = −1

2
δAT {1/m} δA, where {1/m} is the diagonal matrix with finite

elements composed of 1/mi, and δA is the vector A−m.

ZS ≈
∫ dNA

∏
i

√
Ai

exp
{
α

(
−1

2
δAT {1/m} δA

)}
. (171)

We define a change of variables, so that dyi = dAi/
√

Ai and find

ZS ≈
∫

dNy exp
{
α

(
−1

2
δyT{m}1/2 {1/m} {m}1/2δy

)}
= (2π/α)N/2 (172)
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The likelihood function must also be normalized

P (Ḡ|A) = e−χ2/2/ZL , (173)

where

χ2 =
∑

l

(
Ḡ′

l −
∑

i K
′
liAi

)2

σ′2l
. (174)

where K ′ and Ḡ′ are the kernel and data rotated into the data space where the covariance

is diagonal, and σ′2l are the eigenvalues of the covariance. If we let Gl =
∑

i K
′
liAi, then

ZL =
∫

dLG exp





1

2

L∑

l=1

(
Ḡ′

l −Gl

)2

σ′2l





= (2π)L/2
∏

l

σ′l . (175)

Using Bayes theorem, we find

P (A,G|m,α) = P (G|A,m, α)P (A|m,α)

= P (A|G, m, α)P (G|m,α) (176)

or

P (A|G,m, α) ∝ P (G|A,m, α)P (A|m,α) =
exp(αS − χ2/2)

ZSZL

. (177)

Since the normalization factors ZS and ZL are independent of the spectrum, for fixed α and

data, the most probable spectrum Â(α) is the one which maximizes Q = αS − χ2/2. An

algorithm to find this spectrum is discussed in Sec. IVC. However, the question of how to

select α and the default model remains.

a. Selection of α The selection of α strongly effects the choice of the optimal

spectrum44 since α controls the competition between S and χ2. If α is large, then the

entropy term is emphasized and the data cannot move the spectrum far from the model. If

α is small, then the least square misfit between the spectrum and the data is minimized so

that χ2 ¿ L. The numerical error in the QMC data then begins to dominate the solution

and the spectra displays random oscillations and noise. Thus, it is important to find a

sensible way of selecting α. Typically, α is selected in one of three ways described below.

b. Historic MEM In the historic method43,45, α is adjusted so that χ2 = L. The

justification for this is that if the spectrum is known and the data was repeatedly measured,

then the misfit between the data and the spectrum χ2 = L on average. However, the data

are only measured once and the spectrum is not known a priori. Also, setting χ2 = L tends
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to under fit the data since good data can cause structure in the spectrum which reduces χ2

from L. Thus, there is little reason to believe that α can be chosen without input from the

data itself.

c. Classic MEM A more appropriate method44 of setting α is to choose the most

probable value, defined by maximizing

P (α|Ḡ,m) =
∫ dNA

∏
i

√
Ai

P (A,α|Ḡ, m) . (178)

The integrand

P (A,α|Ḡ,m) = P (A|Ḡ,m, α)P (α) ∝ exp(αS − χ2/2)

ZSZL

P (α) (179)

involves the prior probability of α. Jeffreys46 argues that since χ2 and S have different units,

α is a scale factor. He asserts that in lieu of prior knowledge, it should have the simplest

scale invariant form P (α) = 1/α. Thus,

P (α|Ḡ,m) =
∫ dNA

∏
i

√
Ai

exp(αS − χ2/2)

ZSZLα
=

ZQ

ZSZLα
. (180)

ZQ is calculated in a similar fashion to ZS. We expand about the maximum of Q at A = Â

so that exp{αS−χ2/2} ≈ exp{Q(Â)+ 1
2
δAT ∇∇Q|Â δA} = exp{Q(Â)+ 1

2
δAT{1

2
∇∇χ2|Â−

{α/Â}}δA}. We again make a Gaussian approximation to the integral, and if λi are the

eigenvalues of 1
2
{A1/2} ∇∇χ2|Â {A1/2}, then

P (α|Ḡ,m) =
1

Wα

∏

i

(
α

α + λi

)1/2 eQ(Â)

α
, (181)

where

Wα =
∫ dα

α

∏

i

(
α

α + λ

)1/2

eQ(Â) . (182)

The optimal α, α̂ may be determined by the condition

∂P (α|Ḡ,m)

∂α
= 0 . (183)

For strong data, P (α|Ḡ, m) is dominated by the product and exp Q(Â) so that

−2α̂S ≈ ∑

i

λi

α̂ + λi

. (184)

Each λi which is much greater than α̂ contributes one to the sum and hence one to the

number of good observations in the data. If the number Ngood = −2α̂S is large, then

P (α|Ḡ,m) is very sharp the spectra corresponding to α = α̂ is a good approximation of the

spectra which has been properly averaged over P (α|Ḡ,m).
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FIG. 32: The posterior probability P (α|Ḡ,m) as a function of α for the periodic Anderson model

data presented in Fig. 1. Since P (G|I) is unknown, the magnitude of the ordinate is also unknown.

The distribution is wide, so many reasonable values of α exist. The distribution is also skewed, so

the value of α at the peak is not representative of the mean.

d. Bryan’s Method However, typically we find that Ngood ¿ L. Then P (α|Ḡ,m) is a

broad and highly skewed distribution. For example, P (α|Ḡ,m) for the data shown in Fig. 26

is plotted in Fig. 32. The distribution is wide, so many reasonable values of α exist. The

distribution is also skewed, so the value of α at the peak is not representative of the mean.

To deal with this, Bryan49 calculates the optimal spectrum Â(α) for each α. The solution

is taken to be

Ā =
∫

dαÂ(α)P (α|Ḡ,m) . (185)

These three MEM methods will produce essentially identical results if the data are un-

correlated and precise. However, when the data are less precise but still uncorrelated, the

method suggested by Bryan, averaging Â(α) weighted by P (α|G,m), generally produces

more acceptable results and converges to a good result faster than the classic method and

much faster than the historic method as the data is improved. A further advantage of

the averaging is that it allows an accurate relative assessment of the posterior probability

(
∫∞
0 dαP (m|G,α)) of the default model. This information is invaluable in determining which

default model yields the most likely A.

e. Cautionary Notes Classic MEM and Bryan’s method both rely on the accuracy of

Eq. 181 for P (α|Ḡ, m), which is calculated with a Gaussian approximation. This is only
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accurate if Q is a sharply peaked function in the space of all images. This approximation

clearly fails when α → 0. Here there is no regularization and infinitely many spectra will

produce the same Q. In this case, the algorithm can reach a run-away condition where it

tends toward small values of α, the approximation for P (α|Ḡ,m) fails causing the calculation

to tend towards ever smaller values of α. This condition is easily identified in the calculation,

and it can be cured by choosing a better default model (a Bryan or classic MEM calculation

with a perfect default model will always tend toward a solution with large α), using the

methods described below, or the annealing method described in the example Sec. IVD5.

7. Model Selection

Bayesian statistics may also be employed to select the default model. If we must choose

between different models, or set parameters used to define a default model function, then

we choose these models or parameters based upon the posterior probability of the model

P (m|Ḡ) =
∫

dαP (α|m, Ḡ)P (m) . (186)

We see no a priori reason to favor one default model over an another, so we typically set

the prior probability of the model P (m) =constant. Then the integrand in Eq. 186 is given

by Eq. 181 so that

P (m|Ḡ) ∝ Wα . (187)

Since the prior probability of the model is unknown, P (m|Ḡ) determines only the relative

probability of two models, and by inference the relative probability of their corresponding

spectra.

a. Cautionary Notes It can be tempting to try very informative models, such as the

uncorrelated spectrum with sharp distinct features. Such default models will often have

high posterior probabilities P (m|Ḡ) but should nevertheless be avoided unless one can be

certain that the sharp features are real. For example, a model with a delta function peak,

has a huge amount of information, whereas the information from the QMC data is quite

finite an may not be able to correct a wrong delta-function feature in the model. In this

respect, again, the annealing technique described later is ideal.
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8. Error Propagation

To absolutely qualify the spectrum, we need to assign error bars to it. In the quadratic

approximation, the probability of the spectral density is

P (A|Ḡ,m, α) ∝ e−
1
2
δAT ·∇∇Q|Â·δA , (188)

thus the covariance of the spectral density is

〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â)−1 . (189)

It is not possible to assign error bars to each point in the spectral density since this matrix

is generally not diagonal. Thus errors between different points are strongly correlated. Also,

Ai represents the spectral probability within some region of finite width and hence lacks

meaning at a specific value of ω. However, it is possible to assign error bars to integrated

functions of the spectral density such as47,

H =
∫

dωA(ω)h(ω) , (190)

where h(ω) is an arbitrary function of ω. The error of H may be associated with the

covariance of the spectral density 〈δA(ω)δA(ω′)〉
〈
(δH)2

〉
=

∫ ∫
dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 . (191)

The matrix ∇∇Q|Â is readily available because it is used as the Hessian of the Newton

search algorithm typically used to find the optimal spectral density.

a. Cautionary Notes Care should be taken in the interpretation of the error bars,

especially if a highly informative default model is used. Suppose for example the data is

weak, but a default model in essentially exact agreement with the data is used, then as

discussed above, a large α solution will be found corresponding to a Q with small curvature

in the space of images, and hence very small error bars. This does not necessarily mean

that the resulting spectra is accurate, just that the default model is one of many which is

consistent with the weak data. Unless the information in a default model is known to be

accurate (such as the spectra from a higher temperature, or one which becomes exact at

high frequencies), such highly informative default models should generally be avoided.
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FIG. 33: MEM may be integrated into the DMFA/DCA loop. After each QMC step, MEM is

used to calculate the cluster Green’s function, and the Dyson equation relating G and G is used to

extract the self energy. This eliminate the need to invert the course-graining equation in order to

solve for Σ.

9. Integration of MEM with DMFA/DCA

a. Cautionary Notes A few problems can emerge when MEM is used to analytically

continue DMFA and DCA data.

For example, in multiband models, such as the periodic Anderson model Eq. 2 it may

be difficult to extract the real-frequency self energy. In such models where only a subset

of bands are correlated, we typically integrate the uncorrelated band (in this example, the

d-band) out of the action and only sample the Green’s functions of the correlated bands

(i.e. Gf (τ)). In principle, the self energy may be extracted by inverting the coarse-graining

equation. That is, for DMFA solution to the PAM

Gf (ω) =
∑

k

Gf (k, ω) (192)

where the DMFA cluster Green’s function Gf (ω) is calculated with MEM. However, this can

be very problematic since there are as many roots to this equation as there are bands, except

at very high and low frequency, it can be difficult to disentangle the physical solutions from

the unphysical ones. There are two ways to deal with this problem. First, we may directly

sample the Green’s functions for the uncorrelated bands, using the methods described in

the chapter on DMFA and DCA. Second, we may build the real spectra calculation into

the DMFA/DCA loop as illustrated in Fig. 33. Using MEM, we analytically continue the

cluster DMFA or DCA Green’s function. Of course this method requires that the real and

68



FIG. 34: The DCA algorithm. QMC is used as a cluster solver. Once convergence is reached,

G = Ḡ, and the irreducible quantities are used in the Maximum Entropy Method (MEM) codes

to calculate the spectra. However, conventional error estimating techniques, only account for the

error in the last iteration.

Matsubara frequency self energies used to initialize the DMFA correspond (i.e. you may set

Σ = 0 to initialize or use the self energies from a previous combined DMFA/DCA-MEM

run).

Another problem, specific to self consistent methods like DCA and especially DMFA, is

that the error estimate for the data described above only accounts for the error from the

last DMFA/DCA iteration, but not the error in the host Green’s function G coming from

the previous iteration (Fig. 34). The simplest way to deal with this, is to make sure that

the penultimate iteration is rather precise. Another way is to sample the DCA procedure.

I.e. performing thirty or so statistically independent DMFA/DCA simulations with different

random number seeds and then use jackknife or bootstrap48 statistical methods to calculate

the covariance.

C. Bryan’s Method: a MEM algorithm

We will now sketch Bryan’s numerical algorithm to find the optimal spectrum. For a more

detailed description, we refer the reader to his paper49. We have found his algorithm to be

very appropriate for the numerical analytic continuation problem for two reasons: First,

due to the exponential nature of the kernel which relates A to the data Ḡ, we typically

have L À Ngood. Thus, the problem is usually “oversampled.” Bryan tailored his numerical

algorithm49 to this type of problem by working in a reduced space whose dimension is
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determined by singular-value-decomposition of the kernel K and is equal to the largest

possible number of good singular values (i.e., numerically significant) which may parametrize

the solution. The dimension of this space is usually much less than the number of Ai, and

we found the computational advantage over methods that use the entire space determined

by the number of Ai to be significant. Second, for the analytic continuation problem, the

approximation of setting α equal to its optimal value is questionable because of the wide

range of reasonably acceptable values of α. Bryan deals with this by calculating a result

which is averaged over P (α|G,m).

1. Typical Algorithms

What distinguishes Bryan’s numerical algorithm from its predecessors is the way in which

the space of possible solutions is searched. Typical algorithms search for an optimal A by

stepping through the entire space of A

A → A + δA (193)

with

δA = −(∇∇Q)−1∇Q . (194)

The Hessian (∇∇Q)−1 is

(∇∇Q)−1 = (α∇∇S −∇∇L)−1 =
(
α{A}−1 −∇∇L

)−1
, (195)

where {A} is a diagonal matrix with the elements of A along its diagonal. It may conceptu-

ally be expanded using the binomial theorem so that (∇∇Q)−1 may be written as a power se-

ries in {A}∇∇L. Thus, δA may be written as a combination of {A}∇Q = {A} (α∇S −∇L),

and powers of {A}∇∇L acting on {A}∇S and {A}∇L. Each of these vectors defines a di-

rection in which the search can precede. Typically, between three and ten directions are

used; however, these directions are often inappropriate for the problem at hand, because as

mentioned earlier, the space of all possible solutions is too large for such oversampled data.

2. Singular-Space Algorithm

To alleviate this problem, Bryan performs a singular-value decomposition (SVD) of the

kernel K, i.e., K = V ΣUT where U and V are orthogonal matrices and Σ is a diagonal
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matrix, and works in the resulting singular space. To see that this space still contains the

solution, we consider

∇L =
∂F

∂A

∂L

∂F
= KT ∂L

∂F
(196)

where F = KA. We see that ∇L lies in the vector space defined by the columns of KT . We

next perform a SVD on K and assume the diagonal elements of Σ are ordered from largest

to smallest. The smallest elements are essentially zero (to the numerical precision of the

computer) since the kernel is effectively singular. However, s of the elements are assumed

finite. Now the vector space spanned by the columns of KT is the same as the space spanned

by the columns of U associated with the non-singular values. Bryan calls this reduced space

the singular space. Thus, to the precision that can be represented on the computer, {A}∇L

and all of the search directions formed by acting with {A}∇∇L lie in the singular space

spanned by the columns of {A}Us, where Us is the singular space projection of U . The

only direction not in this space is {A}∇S. Thus, Bryan’s algorithm works in at most an

s + 1-dimensional subspace of the N -dimensional space of A.

In this singular space, the condition for an extremum of Q, ∇Q = 0, is

α∇S −∇L = 0 → −α ln (Ai/mi) =
∑

j

Kji
∂L

∂Fj

. (197)

Thus, the solution may be represented in terms of a vector u

ln (A/m) = KT u . (198)

Unless K is of full rank, so that s = N , the components of u will not be independent.

However, since KT and U share the same vector space and since most of the relevant search

directions lie in the singular space, Bryan proposes that the solution be represented in terms

of U and u as

Ai = mi exp
∑
n

Uinun . (199)

Thus, to the precision to which it may be represented on the computer and determined by

SVD, the space u must contain the solution defined by ∇Q = 0, and the search can be

limited to this s-dimensional space.

Bryan’s algorithm precedes by first reducing all the relevant matrices to the singular

space. With the definitions K = V ΣUT and log(A/m) = Uu, the condition for an extremum

becomes

−αUu = UΣV T ∂L

∂F
, (200)
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or

−αu = ΣV T ∂L

∂F
≡ g , (201)

where each of these matrices and vectors has been reduced to the singular space. (u is now

a vector of order s, Σ is an s×s diagonal matrix etc.) Bryan then uses a standard Newton’s

search to find the solution in the singular space, starting from an arbitrary u. The increment

at each iteration is given by

Jδu = −αu− g , (202)

where J = αI + ∂g/∂u is the Jacobian matrix, I the identity matrix, and

∂g

∂u
= ΣV T ∂2L

∂F 2

∂F

∂A

∂A

∂u
. (203)

With the definition W = ∂2L/∂F 2 (which is just the diagonal matrix with elements 1/σ′2l ),

M = ΣV T WV Σ, and T = UT AU . M and T are symmetric s × s matrices, the Jacobian

J = αI + MT , and

(αI + MT ) δu = −αu− g . (204)

At each iteration δu must be restricted in size so that the algorithm remains stable. Thus,

another parameter µ (a Marquart-Levenberg parameter) is added

[(α + µ)I + MT ] δu = −αu− g (205)

and adjusted to keep the step length δuT Tδu below some the limit

δuT Tδu ≤ ∑

i

mi (206)

so the search is within the range of validity of a local quadratic expansion of Q.

This search can be made more efficient if Eq. 205 is diagonalized, so that of order s

operations are required for each α µ pair. First, we diagonalize T

TP = PΓ (207)

where P is an orthogonal matrix and Γ is diagonal with finite elements γi. Then we define

B = {γ1/2}P T MP{γ1/2} (208)

and solve the second eigenvalue equation

BR = RΛ (209)
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where R is orthogonal and Λ the diagonal matrix with finite elements λi. Finally, to diago-

nalize Eq. 205 we define

Y = P{γ−1/2}R . (210)

Then Y −T Y −1 = T , and Y −1MY −T = Λ, so that

Y −1 [(α + µ)I + MT ] δu = [(α + µ)I + Λ] Y −1δu = Y −1 [−αu− g] (211)

which yields s independent equations for Y −1δu. Again, as these equations are iterated, µ

must be adjusted to keep the step length

δuT Tδu =
∣∣∣Y −1δu

∣∣∣
2 ≤ ∑

i

mi . (212)

3. Selection of α

The value α is adjusted so that the solution iterates to either a fixed value of χ2 (for

historic MEM) or to a maximum value of P (α|G,m) given by Eq. 181 (for classic MEM).

Then, A is obtained from

Ai = mi exp

(
s∑

n=1

Uinun

)
. (213)

Alternatively, Bryan suggests that one may start the algorithm with a large α for which

P (α|Ḡ,m) is negligibly small, and then iterate to α ≈ 0 so that the averaged spectrum may

be approximated

〈A〉 =
∫ ∞

0
dαP (α|G,m)Â(α) (214)

where Â(α) is the optimal spectrum (that for which ∇Q = 0) for the value of α specified in

the argument. This latter step may be necessary when P (α|G, m) is not a sharply peaked

distribution. In fact this is usually the case, as may be seen in Fig. 32.

4. Error Propagation

As discussed in Sec. IVB8, it is possible to assign error bars to integrated functions of

the spectrum H =
∫

dωA(ω)h(ω)

〈
(δH)2

〉
=

∫ ∫
dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 , (215)
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where

〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â)−1 . (216)

This is the inverse of the Hessian of the algorithm discussed above. ∇∇Q|Â and is easily

calculated in terms of singular-space quantities

− ∇∇Q|Â = {1/A}UY −T{αI + Λ}Y −1UT{1/A} . (217)

Its inverse

− (∇∇Q|Â)−1 = {A}UY
{

1

α + λ

}
Y T UT{A} (218)

may be used to calculate the error of H,
√

(δH)2 for any α. In principle, one should average

the error over P (α|m, Ḡ); however, we find that it is generally adequate to calculate the

error of the spectrum at the optimal α̂.

We close this section with several practical comments: On a workstation, finding the

optimal spectrum by searching in the singular space requires only a few minutes of computer

time. This efficiency is in sharp contrast with the amount of computer we needed50 even

on a “supercomputer” for standard Newton algorithms43 or simulated annealing methods

that use the full space of A. We found it essential to use 64 bit arithmetic to obtain stable

results. Also, we use LINPACK’s51 singular-value decomposition routine to do the SVD and

also to compute any eigenvalues and eigenvectors. The SVD routine in Numerical Recipes27

and the EISPACK52 eigenvalue-eigenvector routine RS are not as stable.

D. Case Study I

In this section, we will demonstrate that it is possible to extract spectral densities from the

quantum Monte Carlo data that are essentially free from artifacts caused by over fitting to

the data and have only small and controllable amounts of statistical error. We will use as an

example the electronic spectral densities of the infinite-dimensional periodic Anderson model

(PAM). We have already qualified the local Greens function data to remove correlations using

the procedure discussed in Sec. IV B4, so we can begin to process the data to obtain the

single-particle density of states spectral function.

For the majority of this section, we will consider particle-hole symmetric data G(τ) =

G(β−τ), and spectra A(ω) = A(−ω). This prior information may imposed on the solution by
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FIG. 35: A sequence of spectral densities generated with increasingly accurate data. Every time

the number of bins of data is doubled, the error is reduced by 1/
√

2. A Gaussian default model, the

dashed line, was used. Nbins increases beyond 2L = 82, spurious structures are quickly suppressed.

constructing a symmetric kernel and default models. We will use three symmetric default

models: two non-informative models — the flat model m(ω) = constant and a simple

Gaussian

m(ω) =
1

Γ
√

π
exp[−(ω/Γ)2] (219)

and also a third one obtained from second-order perturbation theory in U53,54. The kernel

for symmetric Fermionic Green’s functions may be modified to reflect the symmetry and the

associated integral restricted to positive frequencies

G(τ) =
∫ ∞

0
dωA(ω)

e−τω + e−(τ−β)ω

1 + e−βω
. (220)

1. Convergence of the Spectra

To minimize the effects of statistical error, the accuracy of the data needs to be increased

until the spectral density has converged. This is demonstrated in Fig. 35, where the accuracy

of the data are improved by increasing the number of bins of data. Here, a Gaussian default

model is used whose width Γ = 1.6 (chosen by an optimization procedure to be discussed

below). Each time the number of bins of data is doubled, the accuracy of the data increases

by 41%. The spectral densities corresponding to smallest number of bins of data have

spurious features associated with over fitting. These features are associated with difficulties

in calculating the covariance matrix, as discussed in Sec. IV B4. As Nbins increases beyond
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FIG. 36: Dependence of the spectral density upon the default model. The width Γ of the Gaussian

default model (a) is varied, producing a series of spectral densities (b). In the inset to (a) is the

posterior probability of the default model P (m|Ḡ), produced by integrating the joint probability

P (A,α,m|Ḡ) over α and A, is plotted as a function of Γ. The normalization of P (m|Ḡ) is unknown

because it depends upon the probability of the data and the prior probability of the default model

which are unknown.

2L = 82, the spurious structure is quickly suppressed. By the time 800 bins of data have

been used, the spectral density appears to be converged to several line widths.

2. Default Model Selection

One may also test the dependence of the spectral density on the default model by changing

its parameters or by using different models. The best model is the one with the largest

posterior probability, calculated by assuming that the prior probability of the default model

is flat, so that P (A,α, m|Ḡ) ∝ P (A,α|Ḡ,m). Then P (m|Ḡ) is obtained by integrating

P (A,α, m|Ḡ) over A and α. The effects of varying the default model parameters are shown

in Fig. 36a where the same data set is analytically continued with Gaussian default models

whose widths satisfy 1.0 < Γ < 2.4. The posterior probability P (m|Ḡ) of these default
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models, shown in the inset, is peaked around Γ ≈ 1.6. (We note that the normalization of

P (m|Ḡ) is unknown, since the prior probability of the default model and data are unknown).

The resulting spectral densities are shown in Fig. 36b and are found to depend only weakly

upon the default model. It is also possible to optimize the perturbation theory default

model and hence to optimize the corresponding spectral densities. In the optimization of

the default for the PAM spectra, the df-hybridization V may be treated as a variational

parameter.

3. Error Propagation

In Fig. 37, we compare the optimal spectral densities obtained with the optimal perturba-

tion theory, Gaussian, and flat default models. (The flat default model, with no adjustable

parameters, is not optimized.) The posterior probabilities for each result indicate that

the perturbation theory default model produces by far the most probable spectral density.

However, we note that the qualitative features of the spectral density change little with the

default model even though a large variety of default models were used. This independence

is one signature of good data!

As a final test of the quality of the spectral density, one can evaluate its error in different

intervals of frequency. In Fig. 37, we chose to assign error bars to the integrated spectral

density (h(ω) = 1) over different non-overlapping regions. The width of the region centered

at each error bar is indicated by the horizontal spread of the error bar, the spectral weight

within this region is indicated by the value of the data point, while the estimate of the

uncertainty is indicated by the vertical spread. The perturbation theory default model

yields the most precise spectra at all frequencies, consistent with the posterior probabilities

of the models.

4. Two-Particle Spectra

There are special difficulties associated with the calculation of spectral densities associ-

ated with two-particle Green’s functions. These difficulties include noisier and more cor-

related data and the lack of a good default model. The latter problem stems from the

traditional difficulties of performing perturbation theory for two-particle properties.
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FIG. 37: The f-electron density of states Af (ω) generated using (a) a perturbation theory, (b) a

Gaussian, and (c) a flat default model. These models are shown as insets to each graph. The data

points indicate the integrated spectral weight within 10 non-overlapping regions of width indicated

by the horizontal error bar. The vertical error bar indicates the uncertainty of the integrated weight

within each region.

As an example, we will analytically continue the local f-electron dynamic spin suscep-

tibility χ′′(ω) of the symmetric PAM. As discussed in Sec. IV B, the Monte Carlo data

χ(τ) = 2 〈S−(τ)S+(0)〉 is related to χ′′(ω) by

χ(τ) =
∫ ∞

0
dω

ω[e−τω + e−(β−τ)ω](χ′′(ω)/ω)

1− e−βω
. (221)

To construct a model we will employ an alternative to perturbation theory, and construct

a default model from different moments of the spectral function. They will be used as

constraints to the principle of maximum entropy. The moments used to generate the default

model are

1

2
χ(ω = 0) =

∫ ∞

0
dω(χ′′(ω)/ω) (222)
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FIG. 38: χ′′(ω)/ω for V = 0.6, U = 2 and β = 20 for the PAM generated using a default model

defined by two moments of the spectral density. The data points indicate the integrated spectral

weight within 10 non-overlapping regions of width indicated by the horizontal error bar. The

vertical error bar indicates the uncertainty of the integrated weight within each region.

χ(τ = 0) =
∫ ∞

0
dω (χ′′(ω)/ω) ω coth(βω/2). (223)

The (unnormalized) model is then generated by maximizing the entropy subject to these

constraints imposed with Lagrange multipliers λ0 and λ1 and is easily found to be

m(ω) = exp[λ0 + λ1ω coth(βω/2)] (224)

where λ0 and λ1 are determined by the constraint equations above.

Clearly this procedure may be generalized to utilize an arbitrary number of measured

moments and often provides a better default model than perturbation theory. However, as

shown in Fig. 38, the final spectral density can differ significantly from the default model

when defined in this way. Nevertheless, the error bars indicate that the spectral density is

trustworthy.

5. Annealing Method

Occasionally we have reason to calculate a series of spectra for a variety of temperatures

(i.e., for the calculation of transport coefficients). If this set is sufficiently dense, then starting

from a perturbation theory default at high temperature, we may use the resulting spectra
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FIG. 39: The evolution of the d-electron density of states of the asymmetric PAM when U = 1.5,

V = 0.6 nd = 0.6, and nf = 1.0. At high temperatures, as shown in the inset, the spectra is

in essentially exact agreement with second-order perturbation theory. In addition, the d-electron

states far from the Fermi surface are weakly renormalized by the strong electronic correlation on

the f-orbitals. Thus, as the temperature is lowered, the low-frequency spectra change continuously,

whereas the high frequency features change very little.

as a default model for the next lower temperature. As far as we know, this procedure has no

Bayesian justification; however, it has significant physical motivation. At sufficiently high

temperatures, perturbation theory often becomes exact. Thus, this annealing procedure

may be initialized with an essentially exact result. Furthermore, as the temperature is

lowered, we expect the high frequency features of many spectra to freeze out (this is an

essential assumption behind the numerical renormalization group method). Thus, the QMC

is only required to supply information about the low-frequency features. Since QMC is a

discrete sampling procedure in Matsubara time, according to Nyquist’s theorem QMC only

provides information below the Nyquist frequency ωN = π/∆τ . Thus, the perturbation

theory provides the high-frequency information, the QMC the low-frequency information,

and MEM provides a natural method for combining these information sources.
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FIG. 40: One-particle spectra at K = (π, π/2) calculated with different amounts of data using a)

the new method and b) the old method.

For example, the evolution of the d-electron density of states of the asymmetric PAM is

shown in Fig. 39. At high temperatures, as shown in the inset, the spectra is in essentially

exact agreement with second-order perturbation theory. In addition, the d-electron states

far from the Fermi surface are weakly renormalized by the strong electronic correlation

on the f-orbitals. Thus, as the temperature is lowered, the low-frequency spectra change

continuously, whereas the high frequency features change very little.

E. Case Study II

1. Spectra form data with sign problem

Here we present a comparison between the spectra obtained with the conventional (old)

approach which does not consider the sign covariance, and the (new) method described in

Sec. IVB5 c. With the old method, Eq. 158 is used to calculate the binned data when the

sign is not always one, and Eq. 151 is used to calculate its covariance. In the new method,

the sign is incorporated into the data and Eq. 161 is used to calculate the covariance. In this

example, we calculate the the one-particle spectrum. At the highest temperature, the model

m(ω) used in the entropy functional is chosen to be a Gaussian function. The annealing

procedure is then used to obtain the spectrum at lower temperatures.
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In Fig. 40 (a) and (b) we show the one-particle spectra of the Hubbard model at K =

(π, π/2) calculated for different amounts of data with the new and respectively with the old

method. In both cases, when a large amount of data is used (8000 data points) the spectrum

(thick continuous line) is converged. Moreover the two methods produce the same spectrum.

However, notice that with the new method a reasonably good spectrum, i.e., a spectrum

close to the converged one, can be obtained with an amount of data as small as 100 data

points (see the double-dotted dashed line in Fig. 40 (a)). On the other hand, the old method

requires at least 600 data points for a spectrum of comparable quality (see the dotted line

in Fig. 40 (b)). Thus, for the case under investigation, we find that the new method reduces

the computational cost of calculating the one-particle spectra about six times. For other

problems characterized by stronger correlations the improvement is even more significant.

If the sign is not very small, some experience is needed to decide whether to use the old

or the new method. Clearly, the old method will fail when the sign is exactly one since

the covariance, Eq. 161, will be pathological since the sign has no error. As a rough rule

of thumb, we tend to use the old method when the sign is greater than 0.8 and the new

method when it falls below this value.

F. Summary

The Maximum Entropy Method is a precise and systematic way of analytically continuing

Matsubara-time quantum Monte Carlo results to real frequencies. Due to the exponential

nature of the kernel which relates the spectra and the data, there are many A with very

different character which correspond to the same Ḡ. With the MEM we employ Bayesian

statistics to determine which of these is most probable. Bayesian inference is also used to

assign error bars to integrals over the spectrum and optimize the default model.

The posterior probability of the spectrum is given by the product of the prior probability

and the likelihood function. The entropic nature of the prior insures that the only corre-

lated deviations from the default model which appear in the spectrum are those which are

necessary to reproduce the data. The form of the likelihood function is determined by the

central limit theorem, assuming that the data are statistically independent and Gaussianly

distributed. Insuring these preconditions is the most critical step in the MEM procedure,

and requires that the data be systematically rebinned and that the data and the kernel be
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rotated into the space in which the covariance of the data is diagonal.

Once the data has been properly characterized, we calculate the optimal spectrum using

Bryan’s algorithm which searches for a solution in the reduced singular space of the ker-

nel. Bryan’s method is more efficient than conventional techniques which search the entire

spectral space. For any search algorithm three different techniques can be employed to set

the Lagrange parameter α which determines the relative weight of the entropy and misfit:

the historic, classic or Bryan’s averaging technique. With precise uncorrelated data, each

returns essentially the same spectrum, but with less-precise uncorrelated data, Bryan’s tech-

nique yields the best results. Also, as the QMC data are systematically improved, images

produced with Bryan’s technique appear to converge more quickly than those produced by

the other techniques.

While the systematic preparation of the data as described in Sec. IVB4 and the qualifi-

cation of the spectrum described in later subsections is time-consuming, we believe that it

is as important to quality of the final result, as is an accurate MEM code.

Together, the techniques discussed in this section provide a powerful, accurate, and sys-

tematic approach to the analytic continuation problem. In each case where we have employed

these techniques we have been able to produce spectra that are precise at low frequencies,

and free from spurious (unjustified) features at all ω.

1. Steps to ensure a robust MEM calculation.

In this section we have summarized the proper implementation of MEM and given a

number of cautionary notes. As a parting discussion, these will be summarized here along

with a few other common sense rules of thumb.

1. Rebin your data to remove correlations in QMC time.

2. Generate sufficient bins of data so that Nbins
>∼ 2L where L is the number of time

slices used.

3. If DMFA/DCA is used to generate the data, be sure that the error in G from the

previous iteration is negligible.

4. Calculate the covariance of the data making sure that: (1) the eigenvalue spectrum is

continuous (if not, increase Nbins), and (2) that the covariance matrix is well enough
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conditioned to allow it to be diagonalized (if not, the data is oversampled in Matsubara

time).

5. Diagonalize the covariance and rotate the data and kernel into the diagonal frame.

6. Choose a good default model, hopefully you can use the annealing technique. Always

use a non-informative default model unless you are certain that the information in the

model is exact.

7. When possible, use Bryan’s MEM for marginalizing over α.

8. Systematically improve your data until the calculated spectrum converges.

9. When the annealing method is used, if the temperature step appears large (i.e. the

spectrum changes abruptly) you may want to introduce data at additional intermediate

temperatures.

10. If the annealing method is not used, try different non-informative default models. A

reliable result is independent of the model. You may also want to use the model with

the highest posterior probability (calculated when Bryan’s method is used).

11. If the sign problem is present in the QMC calculations relate the fluctuations in sign

to the norm of the spectra and treat the correlations between the sign and the data

by including the sign in the covariance matrix as discussed in Sec. IV B5.

V. CONCLUSION

We have presented a pedagogical introduction to the dynamical mean field and dynamical

cluster approximations, and described two quantum Monte Carlo methods as cluster solvers

with the Maximum entropy method used to obtain real frequency spectra. The DMFA is a

very powerful method for the study of correlated systems, while DCA incorporates non-local

corrections. Both the DMFA and DCA map the lattice onto a self-consistently embedded

impurity problem, so that conventional cluster solvers, like Hirsch-Fye or Continuous time

QMC, may be used. Both techniques are straightforward, but are limited by the minus

sign problem to the study of relatively small clusters at high temperatures. The maximum

entropy method is used to affect the Wick rotation of the QMC data from Matsubara time
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or frequency to real frequency. Although MEM is a reliable and systematic method, great

care must be taken in the application of MEM to ensure that the best possible spectra is

found devoid of spurious features. Together, DMFA/DCA with QMC and MEM provide

the state-of-the-art for the study of correlated model systems.
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