Density Functional Theory and Quantum Phase Transitions

Authors:	Lianao Wu, U Toronto,
PRA 74, 052335	Marcelo Sarandy, U Fed Fluminese, Rio Daniel Lidar, USC
(2006)	Lu J. Sham, UCSD

A simple discussion of key conceptual ideas

- 1. Quantum Phase Transition
- 2. Density Functional Theory
- 3. Entanglement by DFT to detect QPT

Supported by NSF, ARO/NSA-LPS, DARPA/AFOSR

L J Sham 11/30/07

Quantum Phase Transitions

- What is QPT?
 - Hamiltonian H = $H_0 + H_1(\lambda)$
 - QTP across $\lambda = \lambda_c$, a non-analytic point of GS E(λ).
- Reasons for interest in QPT
 - Limit of thermal or classical phase transition
 - (QPT may not always be such a limit.)
 - Suits simulation with optical lattices of atoms
 - QPT in d dimen <==> Scaling in CPT in d+1
 - Scaling solutions in d+1 Ising model ==> QPT in d
 - Imagine quantum computation of d quantum Ising model
 => CPT scaling in d+1
 - Adiabatic quantum computation (a hindrance?)

L J Sham 11/30/0 Sachdev, Quantum Phase Transitions (CUP, 1999) 2

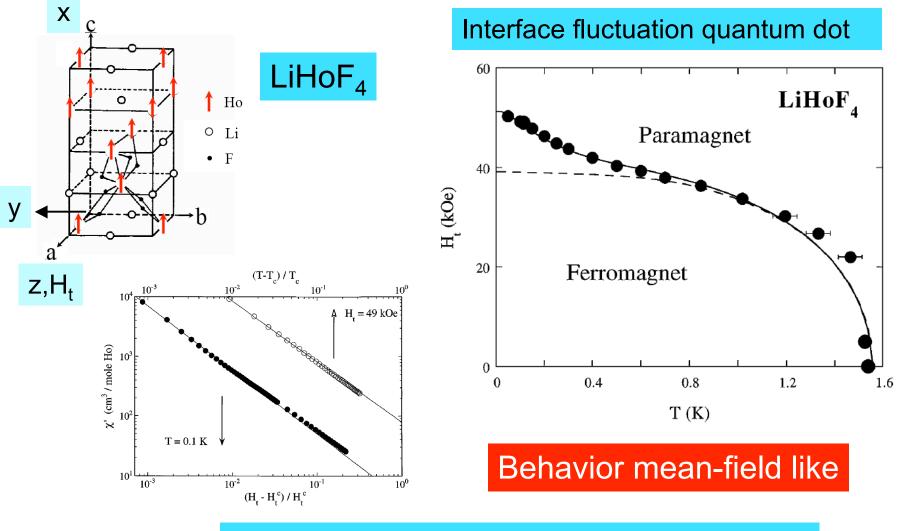
Theoretical example: transverse field Ising model

- $H_0 = -J \sum_i \sigma_i^x \sigma_{i+1}^x$
 - Ising model with ferromagnetic interaction along $\pm x$
- $H_1 = -\lambda J \sum_i \sigma_i^z$
 - in the transverse field +z direction.
- Quantum critical point at $\lambda_c = 1$ (exact solution).
- λ < 1, two degenerate magnetically ordered states
- λ > 1, quantum paramagnet with short range correlation

L J Sham 11/30/0 Sachdev, Quantum Phase Transitions (CUP, 1999) 3

Experimental Example of Transverse Ising Model + Dipolar

Bitko, Rosenbaum & Aeppli, PRL 77, 940 (1996)



^{L J Sham 11/30/07} Critical behavior from susceptibility meas⁴

Density Functional Theory - I

Legendre transformationE = U - HM; dU = TdS + HdM; dE = TdS - MdHDensity Functional TheoryHohenberg, Kohn, Sham

System of interacting particles $\mathbf{H} = \mathbf{H}_0 + \int d\mathbf{r} \, \mathbf{v}(\mathbf{r}) \, \hat{\mathbf{n}}(\mathbf{r})$

Non-degenerate ground state: energy $E = \int dr v(r) n(r) + F[n]$

n(r) = ground state density distribution

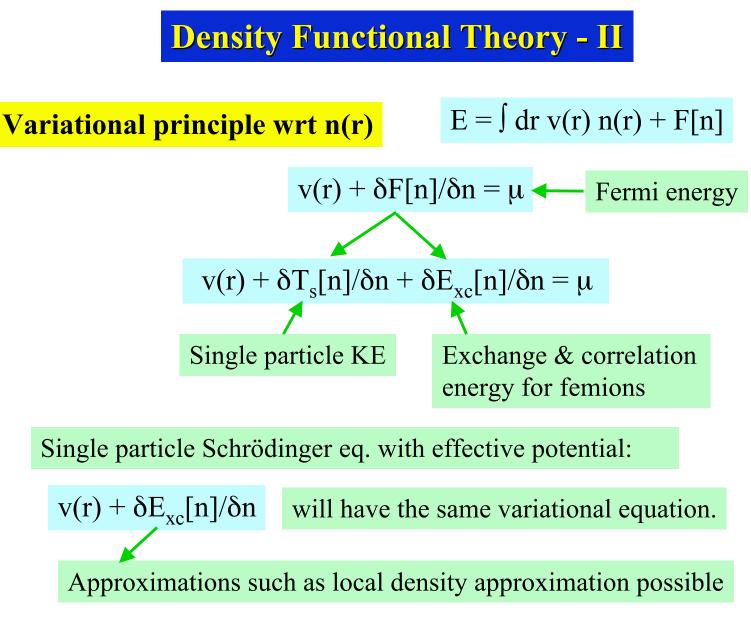
F[n] determined entirely by n(r)

Any property as a functional of v(r) may be transformed to a functional of n(r).

If the ground state is degenerate,

find the responsible symmetry and break it before applying DFT.

Generalization of Density Functional TheoryHamiltonian
$$H_0 + H_1 = H_0 + \sum_i \lambda_i \hat{A_i}$$
Observable ~ $\hat{n}(r)$ Interacting particles or spinsExternal field parameter ~ $v(r)$ $i = lattice site index$ Local observables $[\hat{A_i}, \hat{A_k}] = 0$ but $[\hat{A_i}, \hat{B_i}] \neq 0$ is OK $\hat{A_i} \hat{A_{i+k}}$ is "local" for a fixed kGround state expectation values $a_i = \langle \psi | \hat{A_i} | \psi \rangle$ A property is a function of the whole set of parameters λ_i .It may be transformed to a function of the set $\{a_i\}$.Instead of generating the QP diagram by varying the fields $\{l_i\}$, one may vary the "magnetizations" $\{a_i\}$.L J Sham 11/30/07 $\frac{\partial E}{\partial \lambda_l} = \langle \psi | \frac{\partial H}{\partial \lambda_l} | \psi \rangle = \langle \psi | \hat{A_l} | \psi \rangle = a_l$



Entanglement and QPT

In the vicinity of the quantum critical point

Correlation length scales with the coupling parameter, $\xi \propto |\lambda - \lambda_c|^{-\nu}$

Entanglement is a quantum correlation. It may scale near QCP.

DFT to compute entanglement: valid local terms

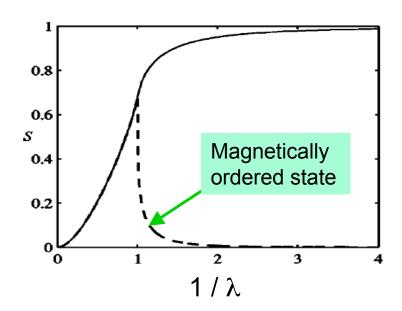
Transverse field Ising model
$$H = -J(\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + \lambda \sum_{i} \sigma_{i}^{z})$$
XXZ $H(\Delta) = \sum_{l} [\sigma_{l}^{x} \sigma_{l+1}^{x} + \sigma_{l}^{y} \sigma_{l+1}^{y} + \Delta \sigma_{l}^{z} \sigma_{l+1}^{z}]$ field parameterNOT for XYX(z) $H = \sum_{\langle ij \rangle} [S_{i}^{x} S_{j}^{x} + \Delta S_{i}^{y} S_{j}^{y} + S_{i}^{z} S_{j}^{z}] - h \sum_{i} S_{i}^{z}$ QPT of disordered systemsLocal density type approximations may be useful here.L J Sham 11/30/07The approach remains to be explored.8

Entanglement & QPT: Transverse field Ising chain

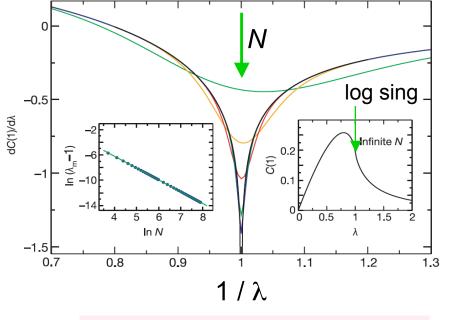
$$H = -J \left(\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + \lambda \sum_{i} \sigma_{i}^{z} \right)$$

Bipartite entanglement entropy of one spin and the rest

Entanglement meas. of nearest neighbors - concurrence $C(\lambda)$ (Wootters, PRL 98)



Osborne & Nielsen, PRA 66, 032110 (2002)

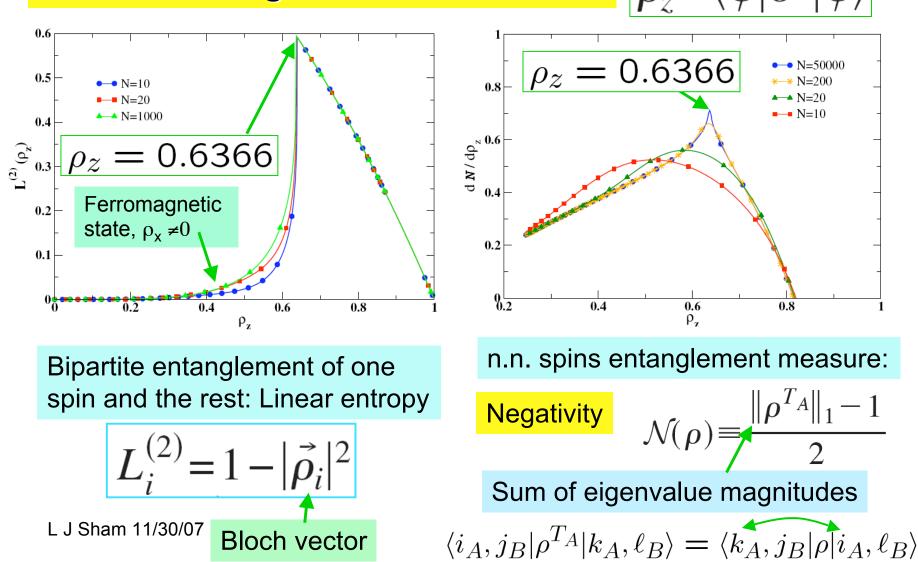


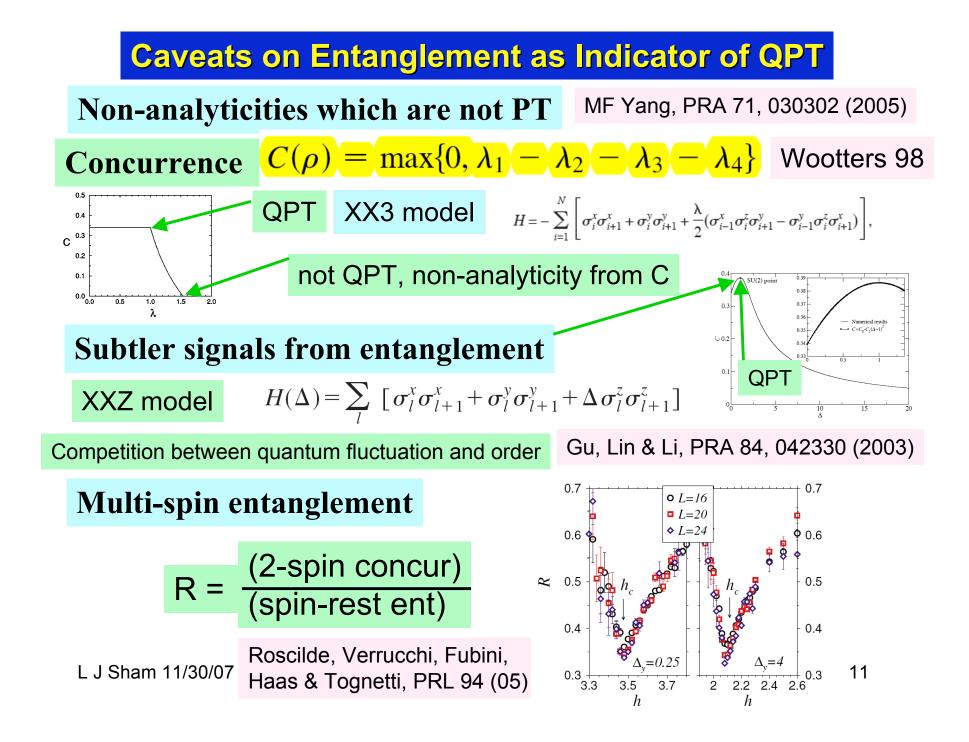
Osterloh, Amico, Falci & Fazio, Nature 416, 608 (2002)

L J Sham 11/30/07

Application of DFT to Transverse Field Ising Chain

Transverse magnetization as variable





Summary

- Quantum phase transition is driven by quantum fluctuations around a critical region of the field parameters of the Hamiltonian.
- Dominance of correlation over long distances is usually a measure of QPT.
- Entanglement in the critical region may be a quantum signal of QPT but 3 CAVEATS. (A complete theory does not yet exist.)
- DFT: replace the functional dependence on the field parameters with the functional dependence on the corresponding "polarizations"