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Where does the power in quantum computation come from?

e A prerequisite for a speed-up in quantum computation
iIs the hardness of its classical simulation.



Quantum compuation and statistical mechanics

e Characteristic state overlaps in measurement-based quantum
computation can be related to the partition function of the

Ising model.
Ising model One-way QC
I sing ~ (local state|quantum resource)
planar 4+ magn. field |cluster state)
simulation >= NP hardl universal
planar, no magn. field Iplanar code state)
simulation efficient not universal

1: F. Barahona (1982).



Talk outline

Part I. One-way quantum computer (QC¢) and cluster states

What is the one-way quantum computer?

Part II: Efficient classical simulation of MQC based on the
tree-ness of graphs
The QCe on graph states of tree graphs can be
efficiently simulated classically.

Part III: Efficient classical simulation of MQC based on
planarity of graphs
The QCe on the planar code state can be efficiently
simulated classically.



Part I:
The one-way quantum computer and cluster states



The one-way quantum computer
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measurement of Z (®), X (1), cosa X +sinaY ()

e Universal computational resource: cluster state.

e Information written onto the cluster, processed and
read out by one-qubit measurements only.

R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).



Cluster states - creation

on d-dimensional qubit

O 1
1. Prepare product state X 0)a + [1)a
acC \/§

lattice C.

2. Apply the Ising interaction for a fixed time T (conditional
phase of m accumulated).



Cluster states - simple examples

(= 1Y) = [0)1|+)2 + [1)1]—)2
Bell state

09 [¥)3 = [+)1[0)2]+)3 + [—)1[1)2]—)3
GHZ-state

@@ @ @ ). =0)+)200)5+)s +[0)1]-)2ll)s|—)a +
+ 1)1 = )210)3 4 )a + |10 |F)2l 1)al—)a

Number of terms exponential in number of qubits!



Cluster states - definition

A cluster state |¢)c on a cluster C is the single common eigenstate
of the stabilizer operators {K,},

Kalp)c = |d)c, Va, (1)
where

Ka — Xa ® Zb, \V/CL c C, (2)
beN (a)

and b € N(a) if a,b are spatial next neighbors in C.



Graph states and local complementation
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e Graph states are a straightforward generalization of
cluster states.

e Cluster states are graph states corresponding to lattice
graphs.



Graph states and local complementation

e FOor a given graph state, there exist local unitary equiv-
alent graph states corresponding to different graphs.

e [ he equivalent graph states can be reached by a graph
transformation, namely local complementation.

How local complementation works:
e Pick a vertex v in the graph.
1 ) €2 ) LG 2
e Find all its neighbors {u;}.

e Invert all edges (u;,u;).



Part II:

Classical simulation of the QCg on tree-like graph
states via tensor networks



Requirements for classical simulation

e Predict probabilities for outcomes of complete measurements.

p = |[{local state|quantum resource>|2

e Predict probabilities for outcomes of partial measurements
(subset of qubits traced over).



Tensor networks

a) quantum state b) state overlap <B|A>

tensor networks

IEDY (z Ag;;Ag}Aggg) a)1[b)2lc)3

abc \jkl



Tensor networks

Ajiimr L kIm=1.d
rank r dimension

Number of components in A:

Al =d".

e The rank of A(v) equals the vertex degree deg(v).

(3)



Tensor networks

Task: Contract edges in the network graph.

(1 k
A A

This changes the degree of the remaining vertices.

1 2 3 1 3
e a8 () — (z AgJ;Ag;Agkz) - (o ama0)
ikl Kl

L (1 1) (2
with Ac(zblzzl = Z Ac(LjIz:Algjl)

J



Graphs close to a tree

High vertex degrees in the contraction of edges in G can be
avoided for tree-like graphs.

e [ he deviation of a graph from a tree is formalized by the
treewidth.

tree: m by n grid:
treewidth =1 treewidth = min(m,n)

e MBQC can be efficiently simulated for graph states on tree
graphs and graphs close to trees.




Graphs close to a tree

Theorem 1 (Markov & Shi, 05): Consider a n-vertex graph G
of tree width T'. Then, a one-way quantum computation on |G)
can be simulated in time O(n)exp(O(T)).



Tensor networks and entanglement

3 3 3
1@2 L2 1»—%2 L3 1»—%2
4 4 4

e Problem: Local complementation on a graph G leaves the
computational power of the corresponding graph state |G)
invariant but changes the treewidth of G.

e Remedy: rank width.



Tensor networks and entanglement

Theorem 2 (SDV05, VANO6): Be x the rank width of an n-qubit
graph state |G). The complexity of classical MQC simulation on

|G) is Poly(n) exp (x).

Theorem 3 (VANO06): x is an entanglement monotone.

e Entanglement is necessary for hardness of the classical
simulation.

e Is entanglement also sufficient?



Part III:
Classical simulation of MQC on planar code states




Goals of Part III

e MQC with the planar code state can be efficiently simulated
classically, by mapping to the planar Ising model.

e \WWhat about entanglement in these states?

e MQC with a universal 2D cluster state can also mapped to
the Ising model: planar 4+ magnetic field.

S. Bravyi and R. Raussendorf, PRA 76, 022304 (2007).



Definition of the planar code state
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e Qubits live on the edges.

e [ he planar code state is a stabilizer state. Stabilizer opera-
tors associated with the sites and plaquettes of the lattice.



Why consider a planar code state?

e Planar code states and cluster states are closely related.
e |K) obeys entropy area law.

e |K) shows topological order.



2D local FTQC

Combine cluster states and planar code states to obtain this:

C Z,
Z, D 14
AN 7
In Out

e Fault-tolerant universal quantum computation in 2D local
architecture.

e Threshold: 0.75 x 10~2 for each source in an error model
with preparation, gate, storage and measurement errors.

R.Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).



Our Results

Theorem 4A: Complete local measurements on a planar code
state can be simulated efficiently classically.

Theorem 4B: Suppose that at each step 3 of MQC the sets of
measured and unmeasured qubits Ej, Ej are connected. Then,
partial local measurements on a planar code state can be simu-
lated efficiently classically.

S. Bravyi and R. Raussendorf, PRA 76, 022304 (2007).



Connection with Ising model

Task: compute overlap between |K) and local state |W) = (X) |Dik)-
(i7)
|K) written in the computational basis {|z1, %, ..,zn), T = £1}:
Ky =} |=);
x€Lg
where Lo ={x: Bpl|x) = |z),Vp}. Then

(WIK) =N ) exp (Z @k%‘l«) )

€Ly (Jk)
where exp(QBz-j) = <¢U| -+ 1>/<¢’le — 1>.



Connection with Ising model

Task: compute overlap between |K) and local state |W) = (X) |Dik)-
(i7)
|K) written in the computational basis {|z1, %, ..,zn), T = £1}:

Ky = ) |z);

x€Lg
where Lo ={x: Bpl|x) = |z),Vp}. Then

(WIK)=A ) exp (Z ﬁjkxjk) ,
€Ly (Jk)
where exp(QBz-j) = <¢U| -+ 1>/<¢’le — 1>.

Now solve the constraint z € Lg:

ri; = 0;05, (o = £1 for all sites k).



Connection with Ising model

Task: compute overlap between |K) and local state [W) = ) o) -

(25)
|K) written in the computational basis {|z1,xp,..,zn), T = £1}:
= > |=);
xeLl

where Lo ={x: Bpl|x) = |z),Vp}. Then

(W|K) = Z exp (Z ﬁjkazﬂj) =: Z[B],
{0} (Jk)

Z[B] is the partition function of the Ising model.



Connection with the circuit model

Compute partition function by transfer matrix method:

/\ T 4 T A z T z T
(WIK) = FHITE T2, 17 1T T 3.
+

R
+> Planar code
lattice

— Tl(,;’;) = exp (5h(l,p)XP)v I ; Tl(,;) = exp (’Yv(l,p)Zpr—l-l)



Mapping to non-interacting fermions

Map Pauli operators X, Zp® Z,41 to Majorana fermions ¢;, with
{cp, 1} = 20,1 (Jordan-Wigner transformation):

X1X2..Xp_ 1Y,
X1X2..Xp_17Zp,

C2p—1

Then,
1 Tl(,z) = exp (iﬁCQp—ICQp)r I ) Tl(,;) = exp (i762p02p+1)

7, 7(2) are quadratic in {c¢;} — efficiently simulatable.



Entanglement in surface code states
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e In surface code states bi-partite entanglement proportional
to length of boundary between parties, thus large.

e Classical simulation nevertheless efficient.

LLarge entanglement not sufficient for hardness of classical
simulation.



The 2D cluster state

e 2D cluster state |C) is universal for MQC.
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2D cluster state corresp. Ising interaction graph

(Wic) ~ Y exp > Bjgojor+ ) Bjooy
{ojliFvo} (Jk)| j,k#vg J#vo

e Planar Ising model with magnetic fields.
(Barahona 82: > NP-hard)



Summary

e MQC on planar code state can be efficiently simulated clas-
sically, by mapping to the planar Ising model.

e MQC on a universal 2D cluster state also described by the
Ising model, but interaction graph is non-planar.

e Large entanglement in the resource state is necessary but
not sufficient for universal MQC & hardness of classical sim-
ulation.

+ Base camp for exploring graph theory from a quantum infor-
mation perspective.



Open problems

Potts model Ising Model === one-way QC

-

- -

Jones Polynomial — Knots — Gauss codes — Circle Graphs

Find the missing links!



