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Fault-tolerant quantum computation

| Classical Control Processors |

* Fault-tolerant-threshold: Using concatenation, for

Rt e a given error/noise model and code, can

I determine a threshold for the noise strength
such that the computation is still successful

| Classical Control Processors |

¢ Local, Markovian error model (Aharonov & Ben-Or 99, Knill 2004) | "
.1;1 > ||/
@ Locality: No correlations between environments of different qubits, 10)
. [0)
except 'Fhrough gatgs, | | | 0 Ul U
@ Markovian: The environment is renewed each time step, no correlations o)
between environments at different times; l)

@ threshold in terms of a probability of error at each circuit location. \. /

9 Local, non-Markovian error model (Burkhard & Terhal 05, Aliferis, Gottesman & Preskill 06)

@ Starts from a Hamiltonian formulation
@ threshold in terms of an operator norm on system-bath interaction term in Hamiltonian

¢ Long-range correlated, non-Markovian error model (Aharonoyv, Preskill & Kitaev 06)

@ Extends above to non-local environments - qubits share environments even when not interacting
@ interaction terms between environment and pairs of qubits (long-range); must decay faster than 1/TD
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Fault-tolerant quantum computation

@ Assumptions are implicit in any model: we need to know what
assumptions are physically relevant, does QEC need to be changed, &
want thresholds in a language experimentalists can understand

~» ie. system+tenvironment described by an effective Hamiltonian, based on an Uv cut-
off

H = HQC(QO) + V(Qo) + HEWU(Q())

~» the interaction which determines the threshold is dependent upon this cut-off
_ a afB ~a 0
V(QO) — ZAka —I_ZBk Tj Tk —I— .« .
k ik
@ Such questions are being addressed in Hamiltonian formulation (Novais,
Baranger, PRL 06,07/)

@ we want to understand the dynamics of decoherence from quantum
environments
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Quantum Environments

Q@ oscillator baths (delocalised modes): Feynman-Vernon/Caldeira-Leggett
N,

Hoqe = Z(iqq + MW, Ty) vl 4 *
-

q=1
@ spin baths (localised modes)' Prokofiev-Stamp ﬂ &
th O + Zka?Jga,f, & &
k,k’

not noise sources; complex bath dynamics, back-action, environment
mediated interactions - correlated errors

@ effectiveness of quantum error correction in presence of correlated
errors; qubit register interacting with common environment

@ quantum environments; entanglement & monogamy relations,
quantum phase transitions, chaotic dynamics - in case of realistic
environments (mesoscopic)

@ specific architectures relevant to spin baths: Quantum dots & NV-
centres in diamond; Two-level fluctuators (charge traps) in ion-traps.
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Quantum Walks

Originally invented as a way of developing new algorithms for quantum
iInformation processing, quantum walks are also of key interest in the
simulation of many-body systems.

Describes the dynamics of a particle on some mathematical graph.

Hamiltonians describing a ‘quantum walker’ can be mapped to a vary large
class of Hamiltonians describing quantum information processing systems.

Use as an approach to understanding the effects of quantum environments
on quantum information processing
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Quantum Walk Hamiltonians

The quantum walk is defined by the topology of the graph upon which the system walks,
and by the "on-site’ and ‘inter-site’ terms in the Hamiltonian.

|. Simple quantum walk

Each node of the graph, labeled
by an integer j, corresponds to
the quantum state denoting the
location of the “particle’

j) = é}/0)

2. Composite quantum walk

The composite walker differs in that it has internal' degrees of freedom, which can function
In various ways.

These internal variables are
assumed to be under the
control of the operator. For
example, Feynman's original
model of a quantum computer
IS a special case of a
composite quantum walk.
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A Val"iety Of maPPings APH and PCE Stamp, Phys.

Rev. A 75,062321 (2007)

Single-excitation encoding
SplIl

Q Nqubit§=Nn.odes ‘]> — ‘ ll lTl l>

© A walk in physical space
H = - ZAU (6767 +6767) +22 ) (14 67%)

& require only two-qubit operations to represent any quantum walk.

Spin chains

Graph  of walk

The above Hamiltonian .
corresponding to a

corresponds to the XY-model, spin-chain  with 6
and for a |ID chain we have a spins, in 3 excitation
walk on the line in the single subspace.
excitation subspace. Considering

a higher number of excitations, This graph can be “collapsed” to a biased walk on
with each state encoding a node the line, where nodes refer to “column” subspaces.

results in interesting graphs for
the quantum walk.
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A Var’iet)l Of mappings APH and PCE Stamp, Phys.

Rev. A 75,062321 (2007)

Single-excitation encoding
Spm

@ Nqubit.s=Nn.OC|eS ‘]> — ‘ ll lTl l>

© A walk in physical space
H=-Y Ayt)(6/6; +6567) +QZ 57)

© require only two-qubit operations to represent any quantum walk.

Trotter form to simulate the Hamiltonian evolution:
H=Shy by =27y (676 , _
i hij AZJ o; 0 lon-trap implementation

—

Geometric phase gate:
alternate laser pulses upon ions

i ] generate the desired two-qubit
€_th ~ | I e_ihijt/M terms
. g ;
(4,5) | r ;
T p ] X
l g P

1 2 (1) I
|0>(1) |0>(2) |1>(1) |1>(2) |0>() |1>() |1> |0>
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. : . APH and PCE S , Phys.
Binary-expansion encoding

Q N qubits = 2"V nodes 1=0
@ A walk in information space |j) = |Z = |z122...2N), 2k = { T; 1

Example: Hypercube walk mapped to a set of qubits

1, 119

H = ANg) dej+éle

]
NI r
k

11>

Static qubit Hamiltonians to quantum walks

N oN
Z EnO' _|_5 "5’3 ZX'LJAZAZU ZVJ_AQ:ACB V;!Af E_ZAz]éjég +6Téz‘|‘Z€]é;éJ
n=l 1<J ij j=0
5@ T Zc(_l)chca if ia ?é ja and ib = jb Vb ;ﬁ a
Aij = Vs if iq # jo and 4 # jp and jo =i, Ve # a,b 1D
0 otherwise

— b
a=1 a,b 1y 1T
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Binary-expansion encoding IR CE Samp, Phys.
Circuit Simulation

Using the Trotter formula, one can construct quantum circuits to simulate an

arbitrary quantum walk 2 {
M M M U(e) — o ihelZ)Z]
cle: = |20zl = @ lau)an = Q@ Po = [ [ (1 = (-1)7) 0 y
k=1 k=1

Rev. A 75,062321 (2007)

1 % € 3V
!
M
Z) @] + o)z = | @) 61— 2 — w7 6(1 + 2 —wi)Ty, ) (O] iy o
%\;[1 : ‘ ¢ ™ a exp|—ihePI PPl 7778 721
=TI e (7 4 iz — wi)rd) =7 4 he, U Uiy
k=1 1) o O oAl d
Dynamic qubit networks to gates
4 p [111) M) @ p (111 M@ @TW
Fundamental gates in a | O | S
universal set as variants of " ® i A N 3 O @
a quantum walk on the ‘ ‘ N U o
hypercube | D : 11
| | o’ N\ o ‘/ 77777777777777 ‘/
1) 11 11 1 1] 1

RM(v) = exp(—iyif/2), Vis(x) = exp(ix7y77), R (0) = exp(—if75/2)
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Decoherence in Quantum Walks

Restricted to simple (Markovian) models; mainly discrete-time
pnt1 =1 —p)Up,UT +p Z M (Up UM

focus has been quantum-to-classical transition of walk characteristics;
“intentional” decoherence

Decoherence mechanism will depend upon how the quantum walk is
implemented; while unitary dynamics may be the same, open-system dynamics
will depend upon the system in question; how it interacts with its environment

want a use a Hamiltonian description allowing the incorporation of realistic
couplings to environments that exist in Nature

diagonal non-diagonal
Hing = Y Uj(Xa)n, Hine = Vij(Xa)[el¢; + Hecl
Jo 17,

Consider two simple examples.
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probability probability

probability

probability

probability

>
=
3
©
Qo
o
=
o

Markovian environment described by master
equation:
dp(?)

dt
the coupling to the environment is described by the M}.’s

this coupling, and the decoherence, will depend upon
how the walk is implemented.

& Compare the

@ “physical” walk M k — ‘k></€|

e “information space” walk [/ k= TL /2



probability probability

probability

>
=
3
©
Keo]
o
=
o

probability

probability

Markovian environment described by master

equation: d
dp(t) _
H E DM

the coupling to the environment is described by the M} ’s

this coupling, and the decoherence, will depend upon
how the walk is implemented.

* Compare the

® “physical” walk M k= |k)Xk] (site)

@ “information space” walk = 77 / 92 (qubit)



Quantum walk on the hypercube

H=-00Y (elen+¢56))

7,K]
—-a03
k

Decoherence can be “useful”

# Certain decoherence can produce useful
characteristics in quantum walks - mixing times
(uniform distribution), hitting times

»

“Engineered” decoherence - non-unitary
dynamics - as opposed to an environment.

Interesting to consider: Zd D[U . O'd]p

and the effect upon the characteristics of interest
in algorithms (mixing, hitting times). This is
equivalent to changing the basis the QW s
implemented in, while the decoherence remains
the same.

Hypercube coupled to an oscillator bath

»

fa"

H:H({_Ic_l_v—I_Hosc

No pz
q 200
Hosc s Z(— + mqwqxq)
U,
q=1
No
Diagonal coupling e 2 ~Z
to qubits V U”(Q)Tnxq
q=1

Results in an extra inter-qubit coupling in the
effective Hamiltonian

N /Q" dw JZZ (W)

Vi (Qc) =
2 (Qc) - Lo




HIE =AY (éléj+He) = ) eo(p)

ij P

€

Free quantum walk, uniform hopplng, IS tr|V|aIIy solvable;
for walker initially at origin,
— H Jnu 2A0t)
pu=1

€

the occupation probability is:

& quantum evolution: classical evolution:
PY(t) oc 1/t PO(t) o 1/t4/2
(n?(t)) = 35 n°PR(t) o t2 (n2(1)) o ¢

(®

to left, results for decoherence, modeled via master
equation with M}, = |k) k|, shows classical behavior,
as decoherence increases, before we see a quantum
Zeno effect




N.Prokof'ev and
P.C.E.Stamp, PRA 74,

~ 020102(R) (2006)
We compare this with the results when we couple non-diagonally to a spin-bath:

o= A Z A2 cos Z 6% L H.e Transitions of the walker
Y ik nOp cause bath spins to flip.
(Jk) Z

decoherence strength quantified by A = ) . oz% > 1 (strong decoherence)

(‘p

(9

27
d
this system is exactly solvable: P,,% (t) = / - H J?%u (Z COS gp), z = 2Apt

(0]

characteristic behavior:

Spin-bath

(®

PP (z — 00) ox 1/t

(1)) = £ (A0t)?



N.Prokof'ev and

Quantum walk on the hyperlattice Einaae

020102(R) (2006)
We compare this with the results when we couple non-diagonally to a spin-bath:

H = A Z {éTék COS (Z a0 + H.C.) } Transitions of the walker
n

cause bath spins to flip.
(k)

e decoherence strength quantified by A = > . a% > 1 (strong decoherence)

27 d
d
= this system is exactly solvable: Pg (t) = / 290 H J2 (Z cos), z=2Apt
o d le
« characteristic behavior:
Spin-bath Free quantum Classical
0
Fy(z — 00) o< 1/t PY(t) oc 1/¢t° PY(t) o< 1/t4/?

W0) = Sdot)? (20 = SanPh) i (0 o<t
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