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Fault-tolerant quantum computation
• Fault-tolerant-threshold: Using concatenation, for 

a given error/noise model and code, can 
determine a threshold for the noise strength 
such that the computation is still successful

Local, Markovian error model (Aharonov & Ben-Or 99, Knill 2004)

Local, non-Markovian error model (Burkhard & Terhal 05, Aliferis, Gottesman & Preskill 06)

Long-range correlated, non-Markovian error model (Aharonov, Preskill & Kitaev 06)

Locality: No correlations between environments of different qubits, 
except through gates;
Markovian: The environment is renewed each time step, no correlations 
between environments at different times;
threshold in terms of a probability of error at each circuit location.

Starts from a Hamiltonian formulation
threshold in terms of an operator norm on system-bath interaction term in Hamiltonian

Extends above to non-local environments - qubits share environments even when not interacting
interaction terms between environment and pairs of qubits (long-range); must decay faster than 1/rD
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Assumptions are implicit in any model: we need to know what 
assumptions are physically relevant, does QEC need to be changed, & 
want thresholds in a language experimentalists can understand

ie. system+environment described by an effective Hamiltonian, based on an Uv cut-
off

the interaction which determines the threshold is dependent upon this cut-off

Such questions are being addressed in Hamiltonian formulation (Novais, 
Baranger, PRL 06,07)

we want to understand the dynamics of decoherence from quantum 
environments

Fault-tolerant quantum computation

H = H
QC(Ω0) + V (Ω0) + H

Env(Ω0)

V (Ω0) =
∑

k

A
α
k τ̂

α
k +

∑

jk

B
αβ
k τ̂

α
j τ̂

β
k + . . .



Quantum Information and Many-Body Physics Workshop, UBC Dec. 2007

qubit

qubit

oscillator baths (delocalised modes): Feynman-Vernon/Caldeira-Leggett

spin baths (localised modes): Prokofiev-Stamp

not noise sources; complex bath dynamics, back-action,  environment 
mediated interactions - correlated errors

effectiveness of quantum error correction in presence of correlated 
errors; qubit register interacting with common environment

quantum environments; entanglement & monogamy relations, 
quantum phase transitions, chaotic dynamics - in case of realistic 
environments (mesoscopic)

specific architectures relevant to spin baths: Quantum dots & NV-
centres in diamond;  Two-level fluctuators (charge traps) in ion-traps.

Quantum Environments
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Quantum Walks
Originally invented as a way of developing new algorithms for quantum 
information processing, quantum walks are also of key interest in the 
simulation of many-body systems. 

Describes the dynamics of a particle on some mathematical graph.

Hamiltonians describing a ‘quantum walker’ can be mapped to a vary large 
class of Hamiltonians describing quantum information processing systems.

Use as an approach to understanding the effects of quantum environments 
on quantum information processing
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Quantum Walk Hamiltonians

1. Simple quantum walk

2. Composite quantum walk

ĤS = −

∑

ij

∆ij(t)
(

ĉ
†
i ĉj + ĉiĉ

†
j

)

+
∑

j

εj(t)ĉ
†
j ĉj

= −

∑

ij

∆ij(t)
(

ĉ
†
i ĉj + ĉiĉ

†
j

)

+
∑

j

εj(t)ĉ
†
j ĉj

ĤC = −
∑

ij

(

Fij (Mij ; t) ĉ
†
i ĉj + H.c.

)

+

∑

j

Gj (Lj ; t) ĉ
†
j ĉj + Ĥ0 ({Mij ,Lj})

These internal variables are 
assumed to be under the 
control of the operator. For 
example, Feynman's original 
model of a quantum computer 
is a special case of a 
composite quantum walk.

The quantum walk is defined by the topology of the graph upon which the system walks, 
and by the `on-site’ and ‘inter-site’ terms in the Hamiltonian. 

Each node of the graph, labeled 
by an integer j, corresponds to 
the quantum state denoting the 
location of the ‘particle’

The composite walker differs in that it has `internal' degrees of freedom, which can function 
in various ways. 

|j〉 = ĉ
†
j |0〉
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Spin chains

The above Hami l ton i an 
corresponds to the XY-model, 
and for a 1D chain we have a 
walk on the line in the single 
excitation subspace. Considering 
a higher number of excitations, 
with each state encoding a node 
results in interesting graphs for 
the quantum walk.

This graph can be “collapsed” to a biased walk on 
the line, where nodes refer to “column” subspaces.

Graph of walk         
corresponding to a 
spin-chain with 6 
spins, in 3 excitation 
subspace.

Single-excitation encoding
N qubits = N nodes
A walk in physical space

|j〉 ≡ | ↓↓ . . . ↓↑↓ . . . ↓〉
jth spin

require only two-qubit operations to represent any quantum walk.

Ĥ = −

∑

〈i,j〉

∆ij(t)
(

σ̂
+

i σ̂
−
j + σ̂

+

j σ̂
−
i

)

+ 2
∑

j

ε(t)
(

1 + σ̂
z
j

)

A variety of mappings APH and PCE Stamp, Phys. 
Rev.  A  75, 062321 (2007)
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APH and PCE Stamp, Phys. 
Rev.  A  75, 062321 (2007)

Single-excitation encoding
N qubits = N nodes
A walk in physical space

|j〉 ≡ | ↓↓ . . . ↓↑↓ . . . ↓〉
jth spin

require only two-qubit operations to represent any quantum walk.
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


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
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Trotter form to simulate the Hamiltonian evolution:

A variety of mappings

16 CHAPTER 17. ION TRAPS.

rotation matter. In an experiment the phase space rotations are done by a time varying driving fields, with

both amplitude and phase modulation (see Exercise???). The idea of conditional phase space displacements

opens up a path to fast quantum gates for two ions[17].
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"
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Figure 17.8: The conditional phase space displacements of the vibrational degrees of freedom of two ions.

The

Exercises

1. A laser is tuned to the first read sideband transition for a single two level transition, |g〉 ↔ |e〉, with a

spontaneous emission rate of #. Ignoring all but the spontaneous emission decay channel, the master

equation ( in the interaction picture) describing this system is

d$

dt
=
%&

2
[a'+−a†'−,$]+ #D['−]$ (17.47)

where % is the Lamb-Dicke paramter, & is the Rabi frequency for the transition and a,a† are the

lowering and raising operators for the vibrational motion of the ion in the trap. Obtain equations of

motion for n̄ = 〈a†a〉, 〈a〉, 〈'±〉, 〈'z〉 by factorising all higher order moments in the equations of

motion. Assuming that the spontaneous emission rate is large enough so that the average polarisation

〈'±〉 is stationary and the vibrational motion is slaved to the atomic motion, show that the rate of

change of n̄ is given by Eq.17.13.

2. A simple mode for the heating of a trapped ion due to fluctuation potentials may be givne in terms of

the Hamiltonian

H(t) =h̄(a†a+h̄)(t)(a+a†) (17.48)

where )(t) is fluctuating force term with the following classical moments

)̄ = E()(t)) = 0

G(*) = E()(t))(t+ *)) =
D

2#
e−#|*|

Show that the heating rate is given by

d〈a†a〉
dt

=
+

2
S(() (17.49)

24 Quantum Entanglement at Dynamical Bifurcations

There has been significant work on alternative schemes not requiring the cooling of the

ions to the collective ground state [SM99, SM00, MSJ00, GRZC03, Dua04]. These schemes

use pulse sequences which eliminate the vibrational motion, such that the vibrational modes

enter only virtually [SM99]. Such can be used to implement a geometric phase gate [SM99,

SM00], achieved in practice by Liebfried et al [LDM+03].

The key to the geometric phase gate is the use of Raman lasers which displace the ions

in phase space, conditioned on the internal state of the ion [MMKW96]; the force applied

to the ion depends upon its internal state. By the appropriate choice of Raman lasers it is

possible to realize the conditional displacement operator, on the nth ion [MMKW96]

Ĥ(n) = −i
(
αâ† − α∗â

)
σ(n)

z , (1.43)

where â is the annihilation operator for the centre-of-mass vibrational mode and for the

internal state,

σ(n)
z =

1

2
(|e〉n 〈e| − |g〉n 〈g|) (1.44)

σ(n)
x =

1

2

(
σ(n)

+ + σ(n)
−

)
(1.45)

σ(n)
y = − i

2

(
σ(n)

+ − σ(n)
−

)
(1.46)

where the raising and lowering operators are σ(n)
+ = |e〉n 〈g| and σ(n)

− = |g〉n 〈e|. This Hamil-

tonian displaces the vibrational mode by a complex amplitude α (−α) if the ion is in the

excited (ground) state.

|g>

|e>

(4)

z1J = !  +  !
z = !  +  !

(3)
z

zz

(1)

z2J
(2)

Figure 1.10: Coupled tops in a linear ion
trap. Ions are grouped together to model the
two tops, with an external laser pulse sequence
realizing the interaction term.

In Ref. [MSJ00], Milburn et al. make use

of the conditional displacements to construct

pulse sequences to simulate nonlinear collec-

tive spin models. If each ion is subject to

identical control lasers, the electronic degrees

of freedom of the ions can be described via

the collective spin operators

Ĵa =
∑

n

σ(n)
a , (1.47)

where a = x, y, z. We extend a similar pulse

sequence to that proposed in Ref. [MSJ00] –

to simulate a nonlinear top model – to achieve

a coupled tops model. The two tops are re-

alized in the ion trap by grouping the ions in

Geometric phase gate:
alternate laser pulses upon ions 
generate the desired two-qubit 
terms

Ion-trap implementation
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Binary-expansion encoding
N qubits =      nodes
A walk in information space

2
N

|j〉 ≡ |z̄ = |z1z2 . . . zN 〉, zk =

{

↓≡ 0

↑≡ 1

Example: Hypercube walk mapped to a set of qubits

Ĥ = ∆0

∑

ij

ĉ
†
i ĉj + ĉ

†
j ĉi

≡ ∆0

∑

k

σ̂
x
k

Static qubit Hamiltonians to quantum walks

tion: the longitudinal and transverse diagonal couplings V ‖
ij and V ⊥

ij , and a representative

non-diagonal χij.

It is intuitively useful, before giving the general results, to first consider just three qubits.

Using the binary expansion encoding, where the state |k〉 represents the kth node on some

graph, we have

Ĥ = [(χ21 + χ31 + ∆1) |0〉〈4| + (χ21 − χ31 + ∆1) |1〉〈5| + (χ31 − χ21 + ∆1) |2〉〈6| + (∆1 − χ21 − χ31) |3〉〈7|

+(χ12 + χ32 + ∆2) |0〉〈2| + (χ12 − χ32 + ∆2) |1〉〈3| + (χ32 − χ12 + ∆2) |4〉〈6| + (∆2 − χ32 − χ12) |5〉〈7|

+(χ13 + χ23 + ∆3) |0〉〈1| + (χ13 − χ23 + ∆3) |2〉〈3| + (χ23 − χ13 + ∆3) |4〉〈5| + (∆3 − χ23 − χ13) |6〉〈7| + H.c.]

+[V ⊥
12 (|0〉〈6| + |1〉〈7| + |2〉〈4| + |3〉〈5|) + V ⊥

23 (|0〉〈3| + |1〉〈2| + |4〉〈7| + |5〉〈6|)

+V ⊥
13 (|0〉〈5| + |1〉〈4| + |2〉〈7| + |3〉〈6|) + H.c.]

+[(ε1 + ε2 + ε3 + V ‖
12 + V ‖

13 + V ‖
23) |0〉〈0| + (V ‖

12 + V ‖
13 + V ‖

23 − ε1 − ε2 − ε3) |7〉〈7|

+(ε1 + ε2 − ε3 + V ‖
12 − V ‖

13 − V ‖
23) |1〉〈1| + (V ‖

12 − V ‖
13 − V ‖

23 − ε1 − ε2 + ε3) |6〉〈6|

(ε1 − ε2 + ε3 − V ‖
12 + V ‖

13 − V ‖
23) |2〉〈2| + (−ε1 + ε2 − ε3 − V ‖

12 + V ‖
13 − V ‖

23) |5〉〈5|

+(ε1 − ε2 − ε3 − V ‖
12 − V ‖

13 + V ‖
23) |3〉〈3| + (−ε1 + ε2 + ε3 − V ‖

12 − V ‖
13 + V ‖

23) |4〉〈4| ].

which is a quantum walk over a cubic lattice, with the addition of the diagonal connections,

on the faces, as well as on-site potentials, as shown in figure 6. If we generalise now to an

FIG. 6: Graph for the quantum walk given by the Hamiltonian (37). The nodes are labelled as in

figure 1. The diagonal edges correspond to the two-qubit terms in the Hamiltonian. The τ̂ z
i terms

add on-site potential terms.

N -qubit Hamiltonian of the form above, we have a quantum walk on a hypercube, with the

21

∆ij =







δa +
∑

c(−1)jcχca if ia "= ja and ib = jb ∀b "= a
V ⊥

ab if ia "= ja and ib "= jb and jc = ic ∀c "= a, b
0 otherwise

εj =
N∑

a=1

(−1)jaεa +
∑

a,b

(−1)ja+jbV
‖
ab.

Ĥ =
N∑

n=1

(εnσ̂z
n + δnσ̂x

n) −
∑

i,j

χij σ̂
z
i σ̂x

j +
∑

i<j

V ⊥
ij σ̂x

i σ̂x
j + V

‖
ij σ̂

z
i σ̂z

j ≡ −

∑

ij

∆ij ĉ
†
i ĉj + ĉ†j ĉi +

2
N∑

j=0

εj ĉ
†
j ĉj
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Binary-expansion encoding

Using the Trotter formula, one can construct quantum circuits to simulate an 
arbitrary quantum walk

The multiply-controlled-NOT gates can be constructed using 3-qubit Toffoli gates, addi-

tional ancilla (M − 1 gates and ancilla for Mcontrol qubits) and a single controlled-NOT

(see [27] page 184).

For the hopping terms, we must simulate unitaries which implement evolution according

to some product of τx’s and τ y’s on some subset of walker qubits, if the other qubits are

in some given state – a multi-qubit controlled operation. Firstly, the evolution by the

Hamiltonian consisting of a product over τ z operators can be simulated using controlled-

NOT gates and a phase gate with a single ancilla [27],

• •
|ψ〉 • •

• •
|↓〉 !"#$%&'( !"#$%&'( !"#$%&'( Aε

!"#$%&'( !"#$%&'( !"#$%&'(



which outputs exp [−i!ετ z
1 τ z

2 τ z
3 ] |ψ〉. Using U exp[−iV ]U † = exp[−iUV U †] for unitaries U

and V , we can use single qubit gates and the circuit above to simulate any product of τx’s

and τ y’s. Since controlled-NOT is its own inverse, the controlled evolution is implemented

by simply making the Aε a controlled gate, i.e.

•)*+,-./0
•

|ψ〉 U • • U †

V • • V †

U • • U †

|↓〉 !"#$%&'( !"#$%&'( !"#$%&'( Aε
!"#$%&'( !"#$%&'( !"#$%&'(






gives exp[−i!εP↑
1P

↓
1P

↑
1τ̂

x
4 τ̂ y

5 τ̂x
6 ] for U τ̂ zU † = τ̂x and V τ̂ zV † = τ̂ y.

The complexity of the circuit to simulate a quantum walk will depend upon the graph,

and how the nodes are labelled. One simplification is to minimize the Hamming weight

(number of different bits) between connected nodes, which we use below for the walk on

the line and hyperlattice.

14

where Pk = |k〉〈k|. Continuing this process, we obtain

Ĥ = −2∆
(
τ̂+ ⊗ Î ⊗ Î + Î ⊗ τ̂+ ⊗ Î + Î ⊗ Î ⊗ τ̂+ + H.c.

)
, (17)

= −4∆
(
τ̂x ⊗ Î ⊗ Î + Î ⊗ τ̂x ⊗ Î + Î ⊗ Î ⊗ τ̂x

)
, (18)

which is simply a sum of single qubit terms.

It is simple to extend this free walk to M -dimensions,where M -qubits are required. Each

qubit represents one of the M orthogonal directions the quantum walker may move in from

each node,and the value of the qubit corresponding to that direction gives at which end

of that direction the walker is located. The corresponding qubit Hamiltonian for the M -

dimensional free quantum walk is thus

H = −2∆0

D∑

i=1

τx
i . (19)

The quantum circuit to simulate this Hamiltonian is simply single qubit rotations on each

qubit, the angle determined by the time of the walk. Scaling of resources for the simulation

is trivial – the number of nodes N = log M , while the number of gates is the number of

qubits, all of which can be applied simultaneously.

Interactions between qubits are inevitably associated with a ‘potential’ εj defined over

the nodes, weighted edges, and/or next-nearest-neighbour couplings (in section IV below we

derive the relation between the εj and ∆ij on the hypercube and the parameters of a general

qubit Hamiltonian).

2. General walks and circuit constructions

From the simple example of the hypercube, we can see how to construct the multi-qubit

Hamiltonian corresponding to the general quantum walk Hamiltonian using this encoding.

Each vertex/node is now labeled by a bit string z̄ = z1 . . . zM , with↑≡ 1, ↓≡ 0. A given

on-site term in the general quantum walk Hamiltonian (1) becomes

c†z̄cz̄ ≡ |z̄〉〈z̄| =
M⊗

k=1

|zk〉〈zk| =
M⊗

k=1

Pzk
=

M∏

k=1

(1− (−1)zk τ̂ z
k ) , (20)

where Pzk
denotes a projection operator.

12

For the hopping terms, we have

c†
z̄cw̄ + c†

w̄cz̄ ≡ |z̄〉〈w̄| + |w̄〉〈z̄| =
M⊗

k=1

|zk〉〈wk| +
M⊗

k=1

|wk〉〈zk| . (21)

For each term in the tensor product, either the bit values are equal, and we have a projection

operator, or the values are opposite, and we have a ladder operator, (τ+, τ−), such that

|z̄〉〈w̄| + |w̄〉〈z̄| =
M∏

k=1

(Pzk
k )δ(zk−wk)δ(1 − zk − wk)τ

+
k δ(1 + zk − wk)τ

−
k , (22)

=
M∏

k=1

(Pzk
k )δ(zk−wk) (τx

k + i(zk − wk)τ
y
k )1−δ(zk−wk) + h.c., (23)

where δ(x) is the delta function. Expanding the tensor product in terms of Pauli x and y

operators, such that the addition of the Hermitian conjugate terms ensure only products

with even numbers of τ y
k survive i.e.

|↑↓↑↑↑↓〉〈↑↓↑↓↓↑|+ |↑↓↑↓↓↑〉〈↑↓↑↑↑↓| = P↑
1P

↓
2P

↑
3 (τx

4 τx
5 τx

6 + τx
4 τ y

5 τ y
6 + τ y

4 τx
5 τ y

6 − τ y
4 τ y

5 τx
6 ) . (24)

To simulate the evolution of a general quantum walk on a (qubit) quantum computer

using this encoding, we again make use of the Trotter formula (11), meaning we must be

able to implement unitaries corresponding to evolution according to each term in the total

Hamiltonian. For the onsite/potential terms, this corresponds to unitaries of the form

U(ε) = e−i!ε|z̄〉〈z̄|. (25)

A simple circuit to implement this unitary [27] uses a single ancilla qubit, initialized in the

|↓〉 state, and a multi-qubit gate which takes all qubits as input and flips the ancilla qubit if

the walker qubits are in the state |z̄〉. An example is shownbelow for the state with z̄ =↑↑↓,

• •
|z̄〉 • •!"#$%&'( !"#$%&'(
|↓〉 )*+,-./0 Aε

)*+,-./0



where the solid/hollow cirlces indicate control on ↑ / ↓, and

Aε =



 1 0

0 e−i!ε



 . (26)

13

The multiply-controlled-NOT gates can be constructed using 3-qubit Toffoli gates, addi-

tional ancilla (M − 1 gates and ancilla for Mcontrol qubits) and a single controlled-NOT

(see [27] page 184).

For the hopping terms, we must simulate unitaries which implement evolution according

to some product of τx’s and τ y’s on some subset of walker qubits, if the other qubits are

in some given state – a multi-qubit controlled operation. Firstly, the evolution by the

Hamiltonian consisting of a product over τ z operators can be simulated using controlled-

NOT gates and a phase gate with a single ancilla [27],

• •
|ψ〉 • •

• •
|↓〉 !"#$%&'( !"#$%&'( !"#$%&'( Aε

!"#$%&'( !"#$%&'( !"#$%&'(



which outputs exp [−i!ετ z
1 τ z

2 τ z
3 ] |ψ〉. Using U exp[−iV ]U † = exp[−iUV U †] for unitaries U

and V , we can use single qubit gates and the circuit above to simulate any product of τx’s

and τ y’s. Since controlled-NOT is its own inverse, the controlled evolution is implemented

by simply making the Aε a controlled gate, i.e.

•)*+,-./0
•

|ψ〉 U • • U †

V • • V †

U • • U †

|↓〉 !"#$%&'( !"#$%&'( !"#$%&'( Aε
!"#$%&'( !"#$%&'( !"#$%&'(






gives exp[−i!εP↑
1P

↓
1P

↑
1τ̂

x
4 τ̂ y

5 τ̂x
6 ] for U τ̂ zU † = τ̂x and V τ̂ zV † = τ̂ y.

The complexity of the circuit to simulate a quantum walk will depend upon the graph,

and how the nodes are labelled. One simplification is to minimize the Hamming weight

(number of different bits) between connected nodes, which we use below for the walk on

the line and hyperlattice.

14

For the hopping terms, we have

c†
z̄cw̄ + c†

w̄cz̄ ≡ |z̄〉〈w̄| + |w̄〉〈z̄| =
M⊗

k=1

|zk〉〈wk| +
M⊗

k=1

|wk〉〈zk| . (21)

For each term in the tensor product, either the bit values are equal, and we have a projection

operator, or the values are opposite, and we have a ladder operator, (τ+, τ−), such that

|z̄〉〈w̄| + |w̄〉〈z̄| =
M∏

k=1

(Pzk
k )δ(zk−wk)δ(1 − zk − wk)τ

+
k δ(1 + zk − wk)τ

−
k , (22)

=
M∏

k=1

(Pzk
k )δ(zk−wk) (τx

k + i(zk − wk)τ
y
k )1−δ(zk−wk) + h.c., (23)

where δ(x) is the delta function. Expanding the tensor product in terms of Pauli x and y

operators, such that the addition of the Hermitian conjugate terms ensure only products

with even numbers of τ y
k survive i.e.
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1P

↓
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↑
3 (τx

4 τx
5 τx

6 + τx
4 τ y

5 τ y
6 + τ y

4 τx
5 τ y

6 − τ y
4 τ y

5 τx
6 ) . (24)

To simulate the evolution of a general quantum walk on a (qubit) quantum computer

using this encoding, we again make use of the Trotter formula (11), meaning we must be

able to implement unitaries corresponding to evolution according to each term in the total

Hamiltonian. For the onsite/potential terms, this corresponds to unitaries of the form

U(ε) = e−i!ε|z̄〉〈z̄|. (25)

A simple circuit to implement this unitary [27] uses a single ancilla qubit, initialized in the

|↓〉 state, and a multi-qubit gate which takes all qubits as input and flips the ancilla qubit if

the walker qubits are in the state |z̄〉. An example is shownbelow for the state with z̄ =↑↑↓,

• •
|z̄〉 • •!"#$%&'( !"#$%&'(
|↓〉 )*+,-./0 Aε

)*+,-./0



where the solid/hollow cirlces indicate control on ↑ / ↓, and

Aε =



 1 0

0 e−i!ε



 . (26)
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For the hopping terms, we have
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Circuit Simulation

Dynamic qubit networks to gates

Fundamental gates in a 
universal set as variants of 
a quantum walk on the 
hypercube

R(1)
x (γ) = exp(−iγτ̂x

1 /2), V ⊥
23(χ) = exp(iχτ̂x

2 τ̂x
3 ), R(2)

z (θ) = exp(−iθτ̂ z
2 /2)

FIG. 7: Fundamental gates as variants of a quantum walk on the hypercube.

Similarly, a V ⊥
jk (χ) pulse ‘switches on’ connections along the diagonals of faces deter-

mined by the qubits acted upon, resulting in a different restricted quantum walk, for a time

corresponding to χ (figure 7(2)).

On the other hand, a R(j)
z (θ) pulse does not connect any nodes, but rather applies a

relative phase to half of the nodes, i.e.

Rz(θ)(a |0〉+ b |1〉) = e−iθ(a |0〉+ bei2θ |1〉). (45)

This relative phase is applied to the nodes on a ‘face’ of the hypercube, dependent upon the

qubit acted upon (see figure 7(3)). A quantum computation will correspond to a series of

these pulses, of varying time – the analogous quantum walk will be over a hypercube with

time-dependent edges, potentially connecting both nearest and next-nearest neighbor nodes.

As an example, we consider the quantum Fourier transform (QFT), the essential element of

Shor’s factoring algorithm.

The QFT on an orthonormal basis |0〉 , |1〉 , . . . , |N − 1〉 is defined by the linear operator,

|j〉 → 1√
N

N−1∑

k=0

ei2πjk/N |N − 1〉 , (46)

which on an arbitrary state acts as

N−1∑

j=0

xj |j〉 →
N−1∑

k=0

yk |k〉 , (47)
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Restricted to simple (Markovian) models; mainly discrete-time 

focus has been quantum-to-classical transition of walk characteristics;  
“intentional” decoherence

Decoherence mechanism will depend upon how the quantum walk is 
implemented; while unitary dynamics may be the same, open-system dynamics 
will depend upon the system in question; how it interacts with its environment

want a use a Hamiltonian description allowing the incorporation of realistic 
couplings to environments that exist in Nature 

Consider two simple examples.

Decoherence in Quantum Walks

ρn+1 = (1 − p)ÛρnÛ† + p
∑

k

M̂k(ÛρnÛ†)M̂†
k

Hint =
∑

jα

Uj(Xα)nj Hint =
∑

ij,α

Vij(Xα)[ĉ†i ĉj + H.c.]

diagonal non-diagonal
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Markovian environment described by master 
equation:

the coupling to the environment is described by the      

dρ(t)

dt
= −i[Ĥ, ρ(t)] + γ

∑

k

D[M̂k]ρ(t)

Mk’s

this coupling, and the decoherence, will depend upon 
how the walk is implemented.

Quantum walk on the hypercube

Compare the
 “physical” walk

“information space” walk              

M̂k = |k〉〈k|

M̂k = τ̂z
k /2

Ĥ
HC =−∆0

∑

[j,k]

(

ĉ
†
j ĉk + ĉj ĉ

†
k

)

=−∆0

∑

k

τ̂
z
k
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equation:

the coupling to the environment is described by the      

dρ(t)

dt
= −i[Ĥ, ρ(t)] + γ

∑

k

D[M̂k]ρ(t)

Mk’s

this coupling, and the decoherence, will depend upon 
how the walk is implemented.

Quantum walk on the hypercube

Compare the
 “physical” walk

“information space” walk              

M̂k = |k〉〈k|

M̂k = τ̂z
k /2

P!z0(t) = cos2n↓(2∆ot) sin2n↑(2∆ot)

(site)

(qubit)

Alagic & Russell, PRA, 72, 062304 (2005)
APH & Stamp, to appear, CJP.
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Quantum walk on the hypercube
Ĥ =−∆0

∑

[j,k]

(

ĉ
†
j ĉk + ĉj ĉ

†
k

)

=−∆0

∑

k

τ̂
z
k

Interesting to consider:

and the effect upon the characteristics of interest 
in algorithms (mixing, hitting times). This is 
equivalent to changing the basis the QW is 
implemented in, while the decoherence remains 
the same.

∑
d
D[!v · !σd]ρ

Decoherence can be “useful”
Kendon & Tregenna, PRA, 67, 042315 (2005)
Drezgic, APH & Sarovar, in preparation.

Certain decoherence can produce useful 
characteristics in quantum walks - mixing times 
(uniform distribution), hitting times

“Engineered” decoherence - non-unitary 
dynamics - as opposed to an environment.

Hypercube coupled to an oscillator bath

H = H
HC
o + V + Hosc

Hosc =
No∑

q=1

(
p2

q

mq

+ mqω
2

qx2

q)

V =
No∑

q=1

vz
n(q)τ̂z

nxq
Diagonal coupling 
to qubits

Results in an extra inter-qubit coupling in the 
effective Hamiltonian

V
zz
nm(Ω̃C) =

∫ Ωo

Ω̃C

dω

π

Jzz
nm(ω)

ω
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classical evolution: 
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Quantum walk on the hyperlattice

to left, results for decoherence, modeled via master 
equation with                   , shows classical behavior, 
as decoherence increases, before we see a quantum 
Zeno effect   

M̂k = |k〉〈k|

Free quantum walk, uniform hopping, is trivially solvable; 
for walker initially at origin, 
the occupation probability is: P

0

n(t) =
d∏

µ=1

Jnµ
(2∆0t)

quantum evolution: 

P 0

0 (t) ∝ 1/td

〈n2(t)〉 =
∑

!n
n2P 0

!n
(t) ∝ t2 〈n2(t)〉 ∝ t

P 0

0 (t) ∝ 1/td/2

Ĥ
HL
o = −∆o

∑

ij

(ĉ†i ĉj + H.c.) ≡

∑

p

εo(p)ĉ†
p
ĉp
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We compare this with the results when we couple non-diagonally to a spin-bath:

Ĥ = ∆0

∑

〈jk〉

{

ĉ
†
j ĉk cos

(

∑

n

αnσ̂
x
n + H.c.

)}

this system is exactly solvable: P 0

!n(t) =

∫ 2π

o

dϕ

2π

d∏
µ=1

J2

nµ
(z cos ϕ), z = 2∆0t

Quantum walk on the hyperlattice

characteristic behavior: 

P 0

0 (z → ∞) ∝ 1/t

〈n2(t)〉 =
d

2
(∆0t)

2

Spin-bath

Transitions of the walker 
cause bath spins to flip.

decoherence strength quantified by                                  (strong decoherence)λ =
∑

k
α2

k
! 1
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N.Prokof'ev and 
P.C.E.Stamp, PRA 74, 

020102(R) (2006)
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Quantum walk on the hyperlattice

P 0

0 (z → ∞) ∝ 1/t

〈n2(t)〉 =
d

2
(∆0t)

2

Spin-bath Free quantum Classical

P 0

0 (t) ∝ 1/td

〈n2(t)〉 =
∑

!n
n2P 0

!n
(t) ∝ t2 〈n2(t)〉 ∝ t

P 0

0 (t) ∝ 1/td/2

This exact solution shows that the density matrix has one component showing 
quasi-localization with another showing coherent ballistic dynamics, far from 
the origin!

We compare this with the results when we couple non-diagonally to a spin-bath:

Ĥ = ∆0

∑

〈jk〉

{

ĉ
†
j ĉk cos

(

∑

n

αnσ̂
x
n + H.c.

)}

this system is exactly solvable: P 0

!n(t) =

∫ 2π

o

dϕ

2π

d∏
µ=1

J2

nµ
(z cos ϕ), z = 2∆0t

Transitions of the walker 
cause bath spins to flip.

decoherence strength quantified by                                  (strong decoherence)λ =
∑

k
α2

k
! 1

characteristic behavior: 

N.Prokof'ev and 
P.C.E.Stamp, PRA 74, 

020102(R) (2006)
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Final thoughts

The graph over which the quantum walk takes place can be 
represented using different sets of basis states; 

there is no general principle forcing environmental couplings to 
distinguish different nodes or transition directions in these 
different encodings. 

In the design of quantum computers and certain search 
algorithms, the above result shows the importance of investigating 
quantum walks for which environmental couplings do not 
distinguish different ‘position’ (or ‘nodal’) states in the information 
space in which the quantum walk is encoded.

motivate considering encodings which couple non-diagonally to 
the environement.


