Quantum Criticality

H.v. Löhneysen et al., PRL 1994

Quantum Criticality & Superconductivity

Mathur et al., Nature 1998

Paglione et al., PRL 2003

Tanatar et al., Science 2007

0.0

12

Phase diagram of hole-doped cuprates

N. Mathur et al., Nature 1998

What causes superconductivity ?

What is the pseudogap phase ?

Fermi surface of hole-doped cuprates ?

A. Tyler et al., PRB 1996

What is the Fermi surface in the pseudogap phase ?

The Fermi surface of high-T_c superconductors - I

Nicolas Doiron-Leyraud David LeBoeuf Ramzy Daou J.-B. Bonnemaison

NHMFL, Tallahassee

Cyril Proust Julien Levallois

Luis Balicas

N.E. Hussey – Bristol

Canadian Institute for Advanced Research

Brad Ramshaw Ruixing Liang Doug Bonn Walter Hardy

S. Adachi – Tokyo

N. Doiron-Leyraud et al., Nature **447**, 565 (2007) D. LeBoeuf et al., Nature **450**, 533 (2007)

Hall coefficient in YBCO

p = 0.10

 $R_{\rm H} < 0$

Hall coefficient in YBCO

p = 0.10

 $R_{\rm H} < 0$

Quantum oscillations

Fermi surface includes a small electron pocket !

D. LeBoeuf et al., Nature 2007

N. Doiron-Leyraud et al., Nature 2007

Quantum oscillations in YBCO

p = 0.10

Quantum oscillations in YBCO

	Method	F (T)	Mass (m _o)
Y123 – II	SdH	530 ± 20	1.9 ± 0.1
Y123 – II	dHvA	540 ± 4	1.76 ± 0.07
Y124	SdH	660 ± 30	2.7 ± 0.3
Y124	TDO	660 ± 15	3.0 ± 0.3

Small FS a generic feature of underdoped cuprates

 $A_k \sim 3$ % of FS area of TI-2201 (p = 0.25)

Sign of R_H

D. LeBoeuf et al., Nature 2007

Summary – Part I

Fermi surface transformation :

- *p* = 0.25 *Large HOLE surface*
- *p* = 0.10 *Small ELECTRON surface*

Mechanism ?

Fermi surface reconstruction

Electron pocket
$$\rightarrow$$
 broken symmetry

Pseudogap phase : onset of "hidden" order, with broken translational symmetry

Example : Antiferromagnetic order

CeIn₃

Fermi surface reconstruction

Summary – Part I

The Fermi surface of underdoped cuprates contains an *electron* pocket

FS reconstruction by some order

Pseudogap phase = ordered phase

Nature of the order ?

Where is the QCP ?

Types of order

Part II : Cuprate with "stripe order"

 $La_{2-y-x}Nd_ySr_xCuO_4$

Chosen for two reasons :

• Long-range spin / charge order

Tranquada et al., Nature 1995

- Superconductivity can be suppressed by a DC magnetic field
 - **NB**: Eu-LSCO is very similar

The Fermi surface of high-T_c superconductors - II

Nicolas Doiron-Leyraud David LeBoeuf Ramzy Daou Olivier Cyr-Choinière Francis Laliberté Austin, Texas

Jianshi Zhou J.-Q. Yan J.B. Goodenough

R. Daou et al., arXiv:0806.2881

Charge order in Eu-LSCO

Charge order in $La_{1.8-x}Eu_{0.2}Sr_xCuO_4$ studied by resonant soft X-ray diffraction

J. Fink,^{1,2} E. Schierle,³ E. Weschke,³ J. Geck,⁴ D. Hawthorn,⁴ H. Wadati,⁴ H.-H. Hu,⁵ H. A. Dürr,¹ N. Wizent,² B. Büchner,² G.A. Sawatzky,⁴

Quantum Critical Point in Nd-LSCO

 \rightarrow Quantum critical point

Quantum criticality in Nd-LSCO

 \rightarrow Three regimes of quantum criticality

R. Daou et al. (2008)

Summary – Part II

Nd-LSCO

Fermi surface reconstruction by "stripe" order

Quantum critical point inside SC region

Pseudogap phase = "stripe" phase

Summary – Part II

Nd-LSCO Fermi surface reconstruction by "stripe" order

Quantum critical point inside SC region

Pseudogap phase = "stripe" phase

YBCO

Similar : T^* , R_H drop, $\rho \sim T$, T_c dip, ...

Pseudogap phase = fluctuating stripes ?

The End