Deconfined criticality: SU(2) Dejave

Anatoly Kuklov (CSI, CUNY)
Nikolay Prokof’ev (UMASS, Amherst)
Boris Svistunov (UMASS, Amherst)
Matthias Troyer (ETH)
Munehisa Matsumoto (UC Davis)

PRL 101, 050405 (2008)
PRL 93, 230402 (2004)

“Quantum critical phenomena” Toronto, September 25-27, 2008
Why Dejavu?

\[U(1) \times U(1) \quad \text{Contributing authors} \]

\[SU(2) \quad \text{Many of the same authors} \]

Simulations of specific models

Contributing authors

Simulations of specific models

Contributing authors

claims of new criticality

Many of the same authors

Same type of models

problems with scaling for systems

Method of solution: flowgrams

\[\text{generic I-order} \quad \text{Dejavu} \]
Solid = insulator with broken translational symmetry
(integer filling excluded)

Checkerboard solid
(anti-ferromagnet)

Valence-bond solids (VBS)

- **Columnar VBS**
- **Plaquette VBS**

Density-order
\[\langle n_i n_j \rangle \]

Current (or bond) order
\[\langle J_i^2 J_j^2 \rangle \]
Superfluid and Solid orders and transitions:

\[\Psi, M, B_x, B_y, D_x, D_y, \ldots \]

order parameters:

"Naïve" Ginzburg-Landau (expansion from the generic quantum disordered phase)
\[\vec{S} = (S_1, S_2, S_3, S_4, S_5, \ldots) \]

- multi-component order parameter; the symmetry of \(S \) is always broken in the ground state \(|\vec{S}| \neq 0 \)

\(\Psi \):

O(3)-case:

- \(\vec{S} \)-sphere

Heisenberg point = exact O(3)-symmetry

Generic case; I-order SF-S transition
SF and VBS orders are deeply related … May be even self-dual at the critical point!

Deconfined criticality, does not fit the standard Landau-Ginsburg-Wilson paradigm.

Deconfined spinons = vortices in the VBS order

DCP action:

\[
S = \int d^2 r d\tau \sum_{a=1,2} \left| \left(\partial_\mu - i A_\mu \right) z_a \right|^2 + s|z|^2 + u\left(|z|^2 \right)^2 + v|z_1|^2 |z_2|^2 + \kappa \left(\epsilon_{\mu\nu\beta} \partial_\nu A_\beta \right)^2
\]
Ordered SF state for matter fields = (duality mapping) “quantum disordered” for vortex fields

Do LG expansion for vortex fields!

Filling factor 1/2 \rightarrow dual magnetic flux/plaquette 1/2 \rightarrow two species of vortexes + gauge field coupling

at the SF-VBS critical point

DCP action

$$S_\psi = \int d^2 r d\tau \sum_{a=1,2} \left(\partial_\mu - i A_\mu \right) \psi_a \left| \psi_a \right|^2 + s \left| \psi \right|^2 + u \left(\left| \psi \right|^2 \right)^2 + v \left| \psi_1 \right|^2 \left| \psi_2 \right|^2 + \kappa \left(\varepsilon_{\mu\nu\beta} \partial_\nu A_\beta \right)^2$$

$$g = [e^2 = 1/\kappa] \rightarrow g(L) = gL \quad \text{Run-away flow to strong coupling}$$
DCP action:

\[S_\psi = \sum_i \sum_{a=1,2} \left| \left(\partial_\mu - i A_\mu \right) \psi_a \right|^2 + s |\psi|^2 + u \left(|\psi|^2 \right)^2 + v |\psi_1|^2 |\psi_2|^2 + \kappa \left(\epsilon_{\mu\nu\beta} \partial_\nu A_\beta \right)^2 \]

\[S_{XY} = -J \sum_{r,\mu} \left[\cos \left(\Delta_\mu \varphi_1 - A_\mu \right) + \cos \left(\Delta_\mu \varphi_2 - A_\mu \right) \right] + \kappa \sum \left(\nabla \times A \right)^2 \]

\[S_{CP} = \sum_{i} \sum_{a=1,2} \left| \left(\partial_\mu - i A_\mu \right) \psi_a \right|^2 + \kappa \left(\epsilon_{\mu\nu\beta} \partial_\nu A_\beta \right)^2 \text{ with } |\psi_1|^2 + |\psi_2|^2 = 1 \]

\[S_J = U \sum_r F[j_{a\mu}(r)] + g \sum_{r,rr',\mu} Q(r-r') \left(j_{1\mu}(r) + j_{2\mu}(r) \right) \cdot \left(j_{1\mu}(r') + j_{2\mu}(r') \right) \]

\[Q^1(q) = \sum_\mu \sin^2(q\mu/2) \rightarrow Q(r) \sim 1/r \]
Mappings:

“High-T” expansion (expansion in kinetic energy)

\[
S = \sum_r U|\psi_r|^4 - \mu|\psi_r|^2 - t \sum_{rr'}(\psi^*_r \psi_{r'}, e^{iA_{rr'}} + c.c.) + \kappa \sum [\nabla \times A]^2
\]

\[
Z = \int \int DA \prod_r d\psi_r e^S
\]

\[
= \int \int DA \prod_r \int d\psi_r e^{S_r} \prod_{b=rr'} \sum_{n_b=0}^{\infty} \frac{(-t)^{n_b}}{n_b!} (\psi^*_r \psi_{r'})^{n_b} \sum_{m_b=0}^{\infty} \frac{(-t)^{m_b}}{m_b!} (\psi^*_r \psi_{r'})^{m_b} e^{iA_b (n_b - m_b)} e^{S_A}
\]

\[
= \sum_{n_b,m_b \text{ with } \{j=n_b-m_b\} \text{ loops}} \exp\{-g \sum_{rr'} Q(r-r') j_r j_{r'}\} W(\{j_b\}) = \sum_{n_b,m_b \text{ with } \{j=n_b-m_b\} \text{ loops}} e^{S_j}
\]

\[
\text{loop configurations of oriented currents}
\]

\[
\mathbf{j}_r = \mathbf{j}_{1r} + \mathbf{j}_{2r} \quad \text{(DCP)}
\]
Winding numbers = MC “blessing”

Superfluid stiffness: \[\Lambda_s = T L^{d-2} \langle W^2 \rangle \rightarrow \langle W^2 \rangle / L \]

j-current through any cross-section

Probe system properties at the largest scales; ideal for studies of critical phenomena

(Pollock, Ceperley ’87)
Continuous critical point: the entire distribution $P(W)$ is universal

$$\langle W^2 \rangle \sim 1$$

Since

$$\sum_{W \neq 0} \frac{P(W)}{P(0)} = \begin{cases} \infty & \text{in SF} \\ 0 & \text{in I} \end{cases}$$

I-order SF-S transition:

$$\langle W^2 \rangle_{SF} \sim L$$

Transition point Def:

$$\sum_{W \neq 0} \frac{P(W)}{P(0)} = \#$$

Quantity to study at the transition point:

$$\langle W^2 \rangle = f(L) \rightarrow \begin{cases} \infty & \text{I-order} \\ \text{const} & \text{continuous (scale invariance)} \end{cases}$$
Phase diagram of the U(1)×U(1) DCP action

\[gQ(r-r') \rightarrow V \delta(r-r') \]

short-range version

\[g \sim 0.5 - \text{weak I-order} \]

small \(g\) maps to \(g > 0.5\)

RG flow: \(g_{\text{eff}}(L) \propto gL\)
Flowgrams of $\left\langle W^2 \right\rangle_L$. What to expect across the tricritical point.
Flowgrams of $\langle W^2 \rangle_L$ for the run-away flow to strong coupling and I-order.

- Criticality at $g = e^2 = 0$
- Large g
- I-order divergence

$$P(S)$$
Flowgram collapse! \[\left\langle W^2 \right\rangle \]

\[\left\langle W^2 \right\rangle \]

Criticality at \(g = e^2 = 0 \)

Different \(g \) are identical on length scales \(L \geq \xi(g) >> 1 \)

\[\ln(L / \xi(g)) \]

\[\ln(L) \]

\[P(S) \]

\[S \]
$U(1) \times U(1)$ case

\[
\langle W^2 \rangle = \ln [(g + g^2) L]
\]
Proof of first-order transition at $g=0.58$

Probability distributions at the critical point for $g=0.58$

Scaling of peak positions with system size L
\textit{SU(2) case}

\[H = J \sum_{x,i} \tilde{S}_x \cdot \tilde{S}_{x+i} - Q \sum_x \left[(\tilde{S}_x \cdot \tilde{S}_{x+\hat{1}} - \frac{1}{4})(\tilde{S}_{x+\hat{2}} \cdot \tilde{S}_{x+\hat{1}+\hat{2}} - \frac{1}{4}) \right. \]

\[+ (\tilde{S}_x \cdot \tilde{S}_{x+\hat{2}} - \frac{1}{4})(\tilde{S}_{x+\hat{1}} \cdot \tilde{S}_{x+\hat{1}+\hat{2}} - \frac{1}{4}) \right] \]

A. W. Sandvik '07
R. G. Melko and R. K. Kaul '07

F.-J. Jianga, M. Nyfelera, S. Chandrasekharanb, and U.-J. Wiesea '07
$SU(2)$ case, CP^1-model
“Smoking gun” of the first-order transition
$SU(2)$ case
Conclusions:

1. So far, all 2+1 dim. models of the SF-S transitions observe either I-order, or problems with scaling in agreement with both (!!)

\[\tilde{S} = (S_1, S_2, S_3, S_4, S_5 \ldots) \neq 0 \]

GWL using \(\Psi \ S_{CB} \ B_x, B_y \)

DCP action = a continuous theory of weak I-order scenario

2. Strong renormalized pairing of vortices on large scales may be the mechanism preventing deconfined criticality from happening