Quantum entanglement and fixed point bifurcations in circuit QED.

G J Milburn

The University of Queensland

Andrew Doherty, UQ Matthew Woolley, UQ Charles Meaney, UQ.

Jahn-Teller $E \otimes \beta$ model.

Hamiltonian maps.

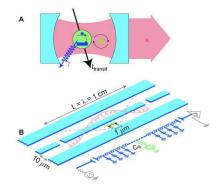
A transverse field Ising map.

Motivation.

Can we use the technology developed for quantum computing to study quantum nonlinear systems?

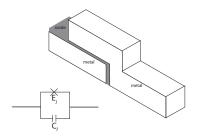
- Superconducting implementations.
- ▶ Ion trap implementations

Superconducting qubits in a transmission line.

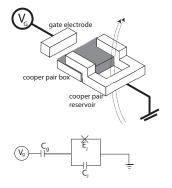


Girvin et al., (2003). and Blais, et al. (2004).

Superconducting tunnel junction.

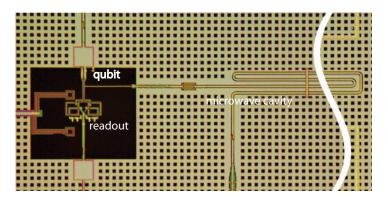


The Cooper pair box.

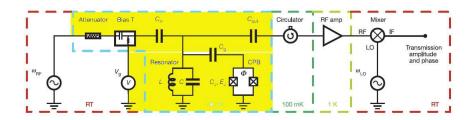


split junction $E_J(\phi_x)$.

Microwave co -planar resonators.

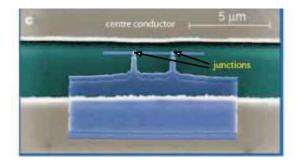


Effective Quantisation via equivalent circuit



Walraff Nature, (2004).

CQED



Walraff et al. Nature (2004)

The Hamiltonian.

$$H = 4E_c \sum_{N} (N - n_g(t))^2 |N\rangle\langle N| - \frac{E_J}{2} \sum_{N} |N\rangle\langle N + 1| + |N + 1\rangle\langle N|$$

$$E_C = \frac{e^2}{2C_{\Sigma}}$$

$$n_g(t) = \frac{C_g V_g(t)}{2e}$$

$$V_g(t) = V_g^{(0)} + \hat{v}(t)$$

The Hamiltonian

Work in subspace, N = 0, 1.

$$H = H_{CPB} - 4E_C\delta\hat{n}_g(t)(1 - 2n_g^{(0)} - \bar{\sigma}_z)$$
 $H_{CPB} = -2E_C(1 - 2n_g^{(0)})\bar{\sigma}_z - \frac{E_J}{2}\bar{\sigma}_x$
 $\bar{\sigma}_z = |0\rangle\langle 0| - |1\rangle\langle 1|, \quad \bar{\sigma}_x = |1\rangle\langle 0| + |0\rangle\langle 1|$
 $\delta\hat{n}_g(t) \approx \frac{C_g}{2a}\hat{v}(t)$

The Hamiltonian

$$H = \hbar \omega_c a^{\dagger} a + \frac{\hbar \epsilon}{2} \bar{\sigma}_z - \frac{\hbar \Delta}{2} \bar{\sigma}_x - \hbar g (a + a^{\dagger}) \bar{\sigma}_z$$

 $\hbar\omega_c a^\dagger a$: cavity field

$$\hbar\epsilon = -2E_C(1 - 2n_g^{(0)})$$

$$\hbar\Delta = \frac{E_J\cos(\phi_e)}{2}$$

$$\hbar g = e\frac{C_g}{C_T}\sqrt{\frac{\hbar\omega_c}{I_C}}$$

Rotating wave approximation: Jaynes-Cummings.

Diagonalise H_{CPB}

$$H=\hbar\omega_{c}a^{\dagger}a+rac{\hbar\Omega}{2}\sigma_{z}-\hbar g(a\sigma_{+}+a^{\dagger}\sigma_{-})$$
 $\Omega=\sqrt{\Delta^{2}+\epsilon^{2}}$

Dispersive limit:
$$\delta = \omega_c - \Omega \gg g$$

Effective Hamiltonian in the interaction picture.

$$H_I = \frac{\hbar g^2}{2\delta} a^{\dagger} a \sigma_z$$

Beyond Jaynes -Cummings: the Jahn-Teller $E \otimes \beta$ model.

Circuit QED implementation:

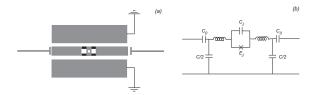


Figure: A scheme (a) and equivalent circuit (b), for a circuit QED implementation of a Jahn Teller model.

Coupling constant scales with $\alpha^{-1/2}$ (Devoret 2007).

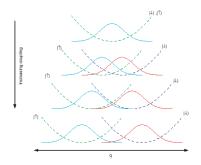
Beyond Jaynes -Cummings: the Jahn-Teller $E \otimes \beta$ model.

$$H = \hbar \omega_c a^{\dagger} a + \frac{\hbar \epsilon}{2} \bar{\sigma}_z - \frac{\hbar \Delta}{2} \bar{\sigma}_x - \hbar g (a + a^{\dagger}) \bar{\sigma}_z$$

Adiabatic potential:

$$V(x) = \frac{\omega_c^2}{2}\hat{x}^2 + \lambda \hat{x}\bar{\sigma}_z$$

Conditional displacement.



Beyond Jaynes -Cummings: the Jahn-Teller $E \otimes \beta$ model.

Semiclassical equations ($\epsilon = 0$):

$$\dot{\alpha} = -i\omega_c \alpha + igs_z
\dot{s}_x = 2g(\alpha + \alpha^*)s_y
\dot{s}_y = \Delta s_z - 2g(\alpha + \alpha^*)s_x
\dot{s}_z = -\Delta s_y$$

The Jahn-Teller $E \otimes \beta$ model.

Fixed points: $\dot{v} = 0$.

Critical value of coupling,

$$g_c = \sqrt{\frac{\Delta \omega_c}{4}}$$

If $g < g_c$ fixed points are $\alpha = 0, \;\; s_x = s_y = 0, \;\; s_z = \pm 1$

If $g > g_c$ fixed points are

$$s_y = 0$$

$$s_x = \pm \frac{g_c^2}{g^2}$$

$$s_z = \pm \sqrt{1 - \frac{g_c^2}{g^2}}$$

$$\alpha = \frac{g}{\omega_c} s_z$$

The Jahn-Teller $E \otimes \beta$ model.

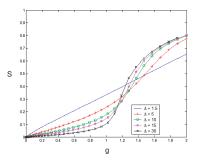
Fixed points \leftrightarrow quantum ground state.

For
$$g < g_c, \quad |gs\rangle = |0\rangle \otimes |g\rangle$$

For
$$g>g_c, \quad |gs\rangle=|-\alpha\rangle\otimes|\vec{n}_-\rangle+|\alpha\rangle\otimes|\vec{n}_+\rangle$$

The Jahn-Teller $E \otimes \beta$ model.

Quantum entanglement in the ground state:



S =entropy of reduced state of qubit.

Area preserving maps.

The King of Sweden and Professor Poincaré.

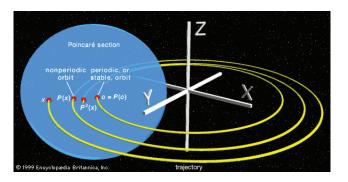
1885: Mathematical contest.

Is the solar system dynamically stable?

Poincaré: Méthodes Nouvelles de la Mécanique Céleste.

Area preserving maps.

Beyond perturbation series to new geometric methods.



Studying the Poincaré map gives a complete characterization of the dynamics in a neighborhood of a periodic orbit.

The periodic orbit of the continuous dynamical system is stable if and only if the fixed point of the discrete dynamical system is stable.

Stroboscopic maps.

Periodically driven systems with a periodic Hamiltonian

$$H(t+T)=H(t)$$

Define discrete states

$$(q_n, p_n) = (q(t_0 + nT), p(t_0 + nT))$$

and stroboscopic map

$$(q_n,p_n)=F(q_{n-1},p_{n-1})$$

Hamiltonian maps and Quantum computing.

Quantum description: unitary Floquet operator, \hat{F} , defines a unitary dynamical map:

$$|\psi_{n+1}\rangle = \hat{F}|\psi_n\rangle$$

$$H = T(\hat{p}) + V(\hat{q}) \sum_{n} \delta(t-n)$$

Floquet map:

$$F = U_T.U_V$$
$$= e^{-iT(\hat{p})}e^{-iV(\hat{q})}$$

A QC is a sequence of discrete unitary maps.

Quantum maps on a QC

Use a QC implementation, such as ion traps, to *hard wire* a quantum map.

Similar to approach of Plenio, Cirac and others to hard-wire a physical Hamiltonian flow.

Are here any *physically* interesting iterated unitary maps?

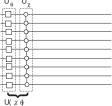
$$\begin{split} &U(\chi,\theta) = e^{-iH_\chi} e^{-iH_\theta} = U(\chi) U(\theta) \\ &H_\chi = \chi \sum_{n=1}^N \sigma_z^{(n)} \sigma_z^{(n+1)} \qquad \text{two qubit gates} \\ &H_\theta = \theta \sum_{n=1}^N \sigma_x^{(n)} \qquad \text{one qubit gates} \end{split}$$

Iterated map:

$$[U(\chi)U(\theta)]^n$$

QC can implement

$$U(\chi,\theta) = e^{-iH_{\chi}}e^{-iH_{\theta}} = U(\chi)U(\theta)$$

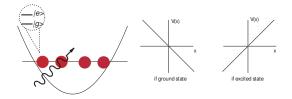


$$[U(\chi)U(\theta)]^n \neq e^{-inH_{\theta}-inH_{\chi}}$$

The iterated map is **not** an approximation to the transverse Ising dynamics.

Monroe et al. Science, 1996.

Linear potential seen by atom depends on internal state.



Effective Hamiltonian

$$H = \frac{\hat{p}^2}{2m} + \frac{m\nu^2}{2}\hat{x}^2 + \chi(t)\hat{x}\sigma_z$$

$$\sigma_z = |e\rangle\langle e| - |g\rangle\langle g|$$

Geometric phase gate.

pulse sequence eliminates vibrational motion.

- Sorenson, Molmer, (1999,2000),
- ► GJM, James and Schneider 2000,
- ► Lienfreid et al. 2003,
- ► Garcõa-Ripoll, Zoller, and Cirac, 2003

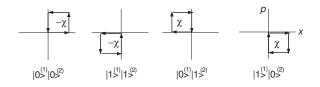
Key: use conditional displacements in phase space.

Use pulse sequence:

$$U_{int} = e^{i\kappa_{x}\hat{X}\sigma_{z}^{(1)}}e^{i\kappa_{p}\hat{P}\sigma_{z}^{(2)}}e^{-i\kappa_{x}\hat{X}\sigma_{z}^{(1)}}e^{-i\kappa_{p}\hat{P}\sigma_{z}^{(2)}}$$
$$= e^{-i\chi\sigma_{z}^{(1)}\sigma_{z}^{(2)}}$$

$$\chi = \kappa_{\mathsf{X}} \kappa_{\mathsf{p}}.$$

No reference to vibrational degrees of freedom! Effective Ising interaction.



$$area = \pm \chi$$

Find \bar{H} where,

$$U(\chi,\theta) = e^{-iH_{\chi}}e^{-iH_{\theta}} = e^{-i\bar{H}}$$

Show that in the thermodynamic limit \bar{H} is in the same universality class as the transverse field Ising model.

Use a Jordan-Wigner transformation on each unitary operator separately.

Step 1: define a_n ,

$$\sigma_x^{(n)} = 1 - 2a_n a_n^{\dagger}
\sigma_z^{(n)} = a_n^{\dagger} + a_n
\sigma_y^{(n)} = -i(a_n - a_n^{\dagger})$$

where

$$\{a_n^{\dagger}, a_n\} = 1, \qquad a_n^2 = 0, \qquad a_n^{\dagger^2} = 0,$$

$$[a_m^{\dagger}, a_n] = 0, \quad [a_m^{\dagger}, a_n^{\dagger}] = 0, \quad [a_m, a_n] = 0, m \neq n$$

Step 2.

$$c_n = e^{i\pi \sum_{j=1}^{n-1} a_j^{\dagger} a_j} a_n$$

$$c_n^{\dagger} = a_n^{\dagger} e^{-i\pi \sum_{j=1}^{n-1} a_j^{\dagger} a_j}$$

which obey fermionic anti-commutation relations.

$$ar{H} = \Lambda_1 + \Lambda_2 + \Lambda_3$$
 $\theta \sin \chi [a_0(c_n^{\dagger}c_{n+1}^{\dagger} - c_nc_{n+1})]$

$$\Lambda_{1} = \cos \theta \sin \chi [a_{0}(c_{n}^{\dagger}c_{n+1}^{\dagger} - c_{n}c_{n+1}) + \sum_{n,l} \frac{(a_{l+1} - a_{l-1})}{2} (c_{n}^{\dagger}c_{n+l}^{\dagger} - c_{n}c_{n+l})]$$

$$\Lambda_{2} = \dots$$

$$\Lambda_{3} = \dots$$

This has effective non-nearest neighbor interactions.

Does \bar{H} fall into the same universality class as the transverse field Ising in thermodynamic limit?

YES! can show,

$$a_I \le ke^{-\mu I} \to 0$$
 as $I \to \infty$

where $\mu = |\ln(\sin\theta\sin\chi)|$.

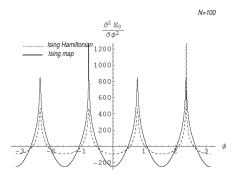
Ising criticality occurs for $\theta = \pm \chi$.

- ▶ Find the ground state of the effective hamiltonian.
- Look at second derivatives of the corresponding eigenvalue (quasi-energy)
- ► Singularities at Ising criticality points as *N* becomes large.

A many-body unitary map with a quantum phase transition, implemented on an ion trap QC.

Consider ground state of effective Hamiltonian, \bar{H} .

$$\phi = \arctan\left(\theta/\chi\right)$$



See Barjaktarevic, GJM, McKenzie Phys. Rev. A 70, (2004)

Conclusions.

- Circuit QED as a test-bed for quantum measurement and control.
- Circuit QED for quantum bifurcations in nonlinear Hamiltonian systems.
- Unitary maps are just as interesting as Hamiltonian flows.
- Ion traps to simulate interacted maps on many spins.