Infinite randomness at the
superconductor-metal quantum
phase transition
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Diminutive superconductivity

® A macroscopic quantum wave function can
be drastically altered by finite size effects
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Disorder in quantum systems
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What role does disorder play
near the superconductor-metal
transition in one dimension??






Fabrication of ultra-narrow wires

® Novel fabrication techniques have allowed
for the study of wires with d < 10 nm

mm@wmmufm-w (SMT’
il et

www.nanogallery.info
A. Bezryadin et al., Nature (2000)
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Transport in ultra-narrow wires

® Can tune a phase
transition between a metal
and superconductor via
wire diameter
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Pair-breaking in nanowires
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B. Spivak et. al, PRB (2001)



Pair-breaking in nanowires

-2 ® Evidence for magnetic
V <0 moments on the wire’s

R<¢ surface
A. Rogachev et al., PRL (20006)

B. Spivak et. al, PRB (2001)
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Pair-breaking in nanowires

Ll ® Evidence for magnetic
V<0 moments on the wire’s

R<¢ surface
A. Rogachev et al., PRL (20006)

B. Spivak et. al, PRB (2001)

® Pair-breaking interactions
break time-reversal
symmetry and allow for the
destruction of
superconductivityat T > 0
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A. Abrikosov and G. Gor’kov, JETP (1961)
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Dissipative Cooperon theory

© Diffusive electrons with
Ohmic dissipation coming
from decay of repulsive
Cooper pairs into gapless
fermions

Ramazashvili and Coleman; Herbut; Dalidovich and Phillips; Spivak, etc.



Dissipative Cooperon theory

© Diffusive electrons with
Ohmic dissipation coming
from decay of repulsive
Cooper pairs into gapless
fermions

particle-hole continua

Ramazashvili and Coleman; Herbut; Dalidovich and Phillips; Spivak, etc.



Superconductor-metal transition

Phys. Rev. B, (2008)
T Annals of Physics (2008)
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Superconductor-metal transition

Phys. Rev. B, (2008)
Annals of Physics (2008)
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Spatially dependent random couplings
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Hoyos, Kotabage and Vojta, PRL 2007

® Real space RG predicts the

T
flow to a strong randomness ‘
fixed point for ,
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® Real space RG predicts the
flow to a strong randomness
fixed point for




Manifestations of strong disorder

© Under renormalization, probability distributions
for observables become extremely broad

® Dynamics are highly anisotropic in space and
time: activated scaling

iln €7' O €¢

® Averages become dominated by rare events
(spurious disorder configurations)




Exact predictions from the RTFIM

D. Fisher, PRL (1992):
PRB (1995)

® For a finite size system

In(1/9) ~ LY | ji ~ In(1/Q)? |
® In the disordered phase
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Exact predictions from the RTFIM

D. Fisher, PRL (1992):
PRB (1995)

® For a finite size system
In(1/9) ~ LY | ji ~ In(1/Q)? |

® In the disordered phase

critical exponents
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Discretize to a lattice of L sites




Take the large-N limit

® Enforce a large-N constraint by solving the self-
consistent saddle point equations numerically
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Solve-Join-Patch method




Solve-Join-Patch method
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Solve-Join-Patch method
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Numerical investigation of observables

© Measure observables for | = 16, 32, 64, 128 averaged
over 3000 realizations of disorder

® Tune the transition by shifting the mean of the QL
distribution, 0 ~ a — a,.

® Equal time correlators are easily determined from the
self-consistency condition
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Equal time correlation functions

® Fisher’'s asymptotic
scaling form

C(xz) ~

exp [—(x/€) — (27x2/4)1/3(x/€)1/3]
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Equal time correlation functions

® Fisher’s asymptotic exp [—(z/€) — (272 JA)L/3 (x/€)1/3]

scaling form

C(xz) ~

(€/€)°/°

4

—2.0 —=1.5 -1.0 =0.5 0.0

%ffjn5




Energy gap statistics
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Energy gap statistics
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distribution broadens with increasing
system size near criticality



Extreme value distribution

® The minimum
excitation energy
IS due to a rare
event, an extremal
value
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Activated scaling




Activated scaling
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Dynamic susceptibilites

===

® We have direct access to real dynamical quantities
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Dynamic susceptibilites

® We have direct access to real dynamical quantities

real frequency

® The ratio of the average to local susceptiblility is
related to the average cluster moment



Activated Dynamical Scaling

a :
Can derive a
scaling form for the
cluster moment
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Activated Dynamical Scaling
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Can derive a
scaling form for the
cluster moment

Iy (w)

Rw) = p o)

~ VY9 n w|




Putting i1t all together

RTFIM --
0.53(6

Numerical confirmation of the strong
disorder RG calculations of Hoyos,
Kotabage and Vojta!



Origin of correspondence

® The physics of infinite randomness comes from
the slow dynamics and large contribution of
rare regions

space



Effective classical theories

R EIV

T. Vojta and J. Schmalian (2005); T. Vojta (2006)



Effective classical theories

rare regions
are marginal:

T. Vojta and J. Schmalian (2005); T. Vojta (2006)



Conclusions

O First dynamical confirmation of activated scaling from
numerical simulations

) SMT has an infinite randomness fixed point in the
RTFIM universality class

o Scratching the surface of transport calculations near a
strong disorder fixed point



