A quantum critical point in an orbitally degenerate insulator: FeSc₂S₄

Leon Balents

Quantum Critical Phenomena, Toronto 9/08

The David and Lucile Packard Foundation

People

The original

Doron Bergman

Jason Alicea

Emanuel Gull

Simon Trebst

The next generation

the final frontier

Sungbin Lee

Gang Chen

Outline

Classical diamond lattice antiferromagnets Frustration by competing interactions Spin-orbital physics in orbitally degenerate A-site spinels A possible QCP in FeSc₂S₄ Remarkably SOI can drive spin-orbital singlet formation even for "large" S=2 spins!

AB₂X₄ spinels

cubic $Fd\overline{3}m$

 One of the most common mineral structures

Common valence:

𝔹 A²⁺,B³⁺,X^{2−}

⌀ X=0,S,Se

Deconstructing the spinel

A atoms: diamond lattice

Bipartite: not
 geometrically
 frustrated

Frustrated diamond spinels

FeSc₂S₄: θ_{CW} = 50 K T > 30 mK: no long-range magnetic order no spin-glass

 $\frac{MnSc_2S_4}{AFM \text{ transition } @ 2 \text{ K}}$

Fritsch et al., PRL 92, 116401, 2004

V. Fritsch et al. PRL **92**, 116401 (2004); N. Tristan et al. PRB **72**, 174404 (2005); T. Suzuki *et al.* (2006)

Why frustration?

 Roth, 1964: 2nd and 3rd neighbor exchange not necessarily small
 Exchange paths: A-X-B-X-B comparable
 Minimal model
 J₁-J₂ exchange

Ground state evolution

q

Spiral surfaces:

Monte Carlo

 $MnAl_2O_4$

0.1

0

 $CoAl_2O_4$

MnSc₂S₄

0.5

0.4

0.3

0.2

- 0.1

= 4 = 6

0.9

100*

0.8

0.7

0.5 5 0.4ordering temperature 0.3 0.2

111*

0.4

0.3

111

0.2

Néel

0.1

f = 11 at $J_2/J_1 = 0.85$

Ordering strongly suppressed by fluctuations amongst spirals

110

0.6

0.5

coupling J_2/J_1

Phase Diagram

- Entropy and J₃
 compete to determine
 ordered state
- Spiral spin liquid regime has intensity over entire spiral surface

Capturing Correlations

Spherical model

Predicts data collapse

MnSc₂S₄

Structure factor for one FCC sublattice

Nontrivial experimental test, but need single crystals...

Peaked near

Comparison to Expts.

Diffuse scattering

Expt.

A. Krimmel et al, 2006

 $\begin{array}{c} \begin{array}{c} -T/T_{c} = 1.1 \\ -1.5 \\ -2.9 \\ -4.7 \\ -8.9 \\ 0.5 \\ 0.75 \\ 0 \\ [2]{\pi/a} \end{array}$

Theory

Ordered state
(qq0) spiral
Specific heat?

agrees with theory for FM J₁

J.-S. Bernier, M.J. Lawler and Y.B. Kim, 2008

Other Aspects of Spin-Only Materials

Anisotropy (spin-orbit/dipolar) effects
 Choice of spin plane
 Commensurate-incommensurate transition
 Spin flop/metamagnetic transition in field
 Disorder effects
 Sensitivity to disorder near Lifshitz point (CoAl₂O₄)
 Staggered magnetization
 Unusually large spin-wave suppression
 Suppression by disorder

Lucile Savary

Orbital degeneracy in FeSc₂S₄

Chemistry:
Fe²⁺: 3d⁶
1 hole in e_g level
Spin S=2
Orbital pseudospin 1/2
Static Jahn-Teller does not appear

Atomic Spin Orbit

Separate orbital and spin degeneracy can be split! $H_{SO} = -\lambda \left(\frac{1}{\sqrt{3}} \tau^x \left[(S^x)^2 - (S^y)^2 \right] + \tau^z \left[(S^z)^2 - \frac{S(S+1)}{3} \right] \right)$

 $\hat{} \lambda$

Sector Energy spectrum: singlet GS with gap = λ

Microscopically,

Ø Naive estimate λ ≈ 25K
 Ø should be reduced by dynamic JT

 $\lambda = \frac{6\lambda_0^2}{\Lambda}$

Spin orbital singlet

 \odot Ground state of λ >0 term:

$$\left| \rightarrow \gamma \right\rangle \left| \mathsf{S}^{\mathsf{z}} = \mathsf{O} \right\rangle - \frac{1}{\sqrt{2}} \left| \rightarrow \right\rangle \left(\left| \mathsf{S}^{\mathsf{z}} = \mathsf{2} \right\rangle + \left| \mathsf{S}^{\mathsf{z}} = -\mathsf{2} \right\rangle \right)$$

Exchange

- Inelastic neutrons show significant dispersion indicating exchange
- Ø Bandwidth ≈ 20K similar order as $Θ_{CW}$ and estimated λ
- ⊘ Gap (?) 1-2K
 - Small gap is classic indicator of incipient order

Exchange

 Most general symmetry-allowed form of exchange coupling (neglecting SOI)

$$H_{ex} = \frac{1}{2} \sum_{ij} \left\{ J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j + \tilde{K}_{ij} \boldsymbol{\tau}_i^y \boldsymbol{\tau}_j^y + \left[L_{ij} \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j + \tilde{L}_{ij} \boldsymbol{\tau}_i^y \boldsymbol{\tau}_j^y \right] \mathbf{S}_i \cdot \mathbf{S}_j \right\}$$

Exchange

 Neglecting SOI, a simplified superexchange calculation gives

 $H_{ex} = \frac{1}{2} \sum_{ij} \left\{ J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} \left(4 + \mathbf{S}_i \cdot \mathbf{S}_j \right) \left(1 + 4\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \right) \right\}$

Largest coupling is AF spin interaction $S_i \cdot S_j$ More exchange processes

Ordered Phase $(J >> \lambda)$

 Ground state of H_{ex} is almost certainly ordered

Complex multi-spiral ground states possible

Inclusion of weak SOI λ favors simpler commensurate "cubic" spin arrangements

spin order leads to induced orbital order

Quantum Critical Point

 \odot Full Hamiltonian H = H_{SO} + H_{ex}

Minimal Model

1 1.6K

Indicates J₂ >> J₁

$$H_{min} = J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \langle \mathbf{S}_j \rangle + H_{SO}$$

Quantum Critical Point

FeSc₂S₄

Consequences of QCP

Power-law spin correlations • Scaling form for $(T_1T)^{-1} \sim T f(\Delta/T)$ • Specific heat $C_v \sim T^3 f(\Delta/T)$ Possibility of pressure-induced ordering Impurity effects? Behavior in field? Can triplet be made to condense?

To Do List

 \odot Effects of J₁ on QCP Transitions to incommensurate states? Phonons and Jahn-Teller effects More in-depth study of phases Higher order expansion about J=0 Spin-wave corrections for ordered states Seffects of exchange anisotropy

Summary

Rich physics in A-site antiferromagnetic spinels arises from "tunable frustration" due to complex exchange paths

We need single crystal neutron studies of spiral spin liquid!

 Orbital degeneracy and spin orbit provides an exciting route to quantum paramagnetism an quantum criticality

entangled spin-orbital singlet ground state in an S=2 magnet!