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Motivation 

• Evaluating the time-evolution of magnetic 
structures at finite temperatures. 

 

• Conventional dynamic simulations are limited 
to micro-second time scales. 

 

• What is the warranty on your Magnetic Hard 
Drive? 



• The Wait-time Monte-Carlo Algorithm 
– Use Arrhenius-Neel arguments 

– Start with non-interacting particles 

– Add Interacting Particles 

 

• Results and checks 
– Thermal Decay of a Ferromagnetic system 

– M-H loops 

– SNR of bit patterns 

Outline 



Monte-Carlo scheme 

A similar method by Charap, Pu-Ling Lu,and Yanjun He in 1997. 



Magnetic thermal transitions 
using Arrhenius-Néel 
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Represent a magnetic media as a collection of 
single domain magnetic grains. 

K 

m

Ms 

H 

h

V = the volume of the grain. 
 
K =  the uniaxial anisotropy constant. 
 
M =  the saturation magnetization. 
 
H =  the effective field the particle is in. 
 
θm =  the angle between the 
 magnetization and the anisotropy 
 axis. 
 
θh =  the angle between the effective 
 field and the anisotropy axis. 



Every particle has an Energy Landscape 

ΔE2 ΔE1 

Energy Barrier 



The probability of looking at a particle at it 
being “up” depends on the energy barrier 
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With the decay rate… 
We have the probability of a member of the 

ensemble being “up” 
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63.21 % of tw  
occur here. 

The remaining 
36.79% happen 
over here. 

OR.. We have the distribution of wait times. 



The toy model.. 

• Consider a collection of  identical 
grains. 

 



The toy model.. 

tw1 tw2 tw3 tw4 

• Consider a collection of  identical 
grains. 

 

• Based on the wait time distribution, 
randomly choose a wait time for each 
particle. 
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The toy model.. 

tw1 tw2 tw3 tw4 

tw2 = 
shortest 

tw2 

• Consider a collection of  identical 
grains. 

 

• Based on the wait time distribution, 
randomly choose a switching time 
for each particle. 

 

 

• Choose the particle with the 
shortest wait time and flip it. 

 

 



The toy model.. 
• Consider a collection of  identical 

grains. 

 

• Based on the wait time distribution, 
randomly choose a switching time 
for each particle. 

 

 

• Choose the particle with the 
shortest wait time and flip it. 

 

 

• Increase time by the chosen wait 
time and repeat with the remaining 
“up” particles. 

t = t + tw2  

tw2 = 
shortest 

tw1 tw2 tw3 tw4 

tw2 



Collecting random Dwell Times based 
on the decay rate. 
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Stochastic wait time 
distribution. 



Unique particles 

A complicated system of Stoner-Wohlfarth-like 
particles that all have different parameters. 



Based on the Energy for a Stoner-Wohlfarth particle, 
each member of this collection have energy minima in 
their energy landscape. 



ASSUMPTION: The system is a punctuated 
equilibrium. The system remains unchanged for 
periods of time until a rare thermal event takes place. 



Each individual particle has an energy barrier between 
their local minimums. 

ΔE1 ΔE2 ΔE3 ΔE4 ΔE5 

ΔE6 

ΔE7 ΔE8 



We cannot treat the system as an 
ensemble of IDENTICAL particles. 



Each individual particle will have its own distribution of 
wait times and will randomly have a wait time selected 
based on its own distribution. 

tw1 tw2 tw3 tw4 tw5 tw6 tw7 tw8 
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tw1 tw2 tw3 tw5 tw6 tw7 tw8 

The particle with the shortest  
wait time is chosen. 

tw4 



tw4 

t = t + tw4 

That particle makes a transition to 
another energy minimum, and time is 
advanced. 



tw4 

t = t + tw4 

ASSUMPTION: The switching times are much smaller 
than the wait times, and are ignored. 



Wait-time Monte-Carlo Algorithm (WMCA): 

1) Look at all particles and find a stable state for ZERO 
temperature. This includes evolving the fields of the 
structure through a relaxation method. 

 

2) Consider the wait time distribution for each individual 
particle. 

 

3) Generate a wait time “guess” for each particle based on its 
own distribution. 

 

4) Choose the particle with the shortest wait time and flip it. 

 

5) REPEAT. 

 



Interactions? 

• Exchange and Magnetostaic interactions can be 
added by including them as an effective field. 



Does it work? 
• Compare with dynamic simulations… 
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Ho=5 kOe 

System with distributions and interactions. 

Ms =  500 emu/cc 
K  =  3.75 x 106 erg/cc 
A  =  5 x 10-8 erg/cm 
T = 300 K 
σθ  = 3o 
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After 10 microseconds 

LLG simulation 

WMCA 



Time Event method out to 1 milliseconds 
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The LLG simulations took about 2 days to go 10 microseconds. 
The WMCA ran for about 30 seconds to go to 1 millisecond. 
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System with distributions and interactions. 

α = 0.05 
Ms =  550 emu/cc 
K  =  3.50 x 106 erg/cc 
A  =  5 x 10-8 erg/cm 
T = 300 K 
σθ  = 3o 
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M-H loop for 
T = 0 



Compared with a dynamic simulation 
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T = 300 K  
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Compared with a dynamic simulation 

dynamic  
simulation WMCA 

T = 300 K  



-18 -15 -12 -9 -6 -3

-1.0

-0.5

0.0

0.5

1.0

M
a
g
n
e
ti
z
a
ti
o
n

Applied Field (Oe)

10 Oe
sweep rate 1 10

s
 

Conclusion: 
WMCA method only works 
for longer time scales. 

Compared with a dynamic simulation 

dynamic  
simulation 

WMCA 

T = 300 K  



Bit pattern decay: Signal to noise ratio 
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Conclusions about WMCA 
• Promising: Good agreement with other theoretical results. 

 

• Fast: Calculations are very quick, leaving plenty of room to include complexity 

 

• Works at Long time scales: In a short-time scale, the dynamics of the 

processes become more important and this method breaks down.  

– But it shows agreement with dynamic simulations on a MEDIUM 
time scale. 

 

• FUTURE WORK:  

– Better calculations of ΔE’s 

– Field/temperature/damping dependence fo. 

– Layered media 


