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I. Introduction:

Physics at surfaces has been intensively developed over the past
thirty years. Many spectacular properties due to the presence of surfaces
have been discovered and used in industrial devices.

Surface effects in those small-scale systems give rise to quite
different properties from bulk ones. In this talk, | just recall some
fundamental properties for understanding surface magnetization, surface
phase transition and surface spin transport in frustrated systems.

In the seventies, until the nineties, much efforts have been made to
look for and to understand localized surface modes in magnon, phonon,
plasmon ... spectra. In magnetic thin films, for example, we can show that
low-lying acoustic surface spin-waves reduce the Curie temperature, can
give magnetically dead surface layers, ... Optical surface spin-waves on
the other hand enhance surface magnetization, ....



In my works in general, I considered often situations near the
borders of several phases of different symmetries in the ground
state. The borders are due to competing interactions between
spins.

A family of such systems are called “frustrated systems”. These
systems are subject of investigations for more than 20 years (see
reviews in "Frustrated Spin Systems").

We have solved exactly (see reference next page) a number of
models where one finds all interesting effects: high GS
degeneracy, reentrance phenomenon, order by disorder, partial
disorder, successive phase transition, disorder lines etc.



Frustrated
Spin Systems

See the chapter
« Exactly solved frustrated models »
by H T Diep and H. Giacomini, pp. 1-60
World Scientific 2005



Of course, surface magnetism bears these effects if necessary
ingredients exist in thin films. I will show a few cases in this talk.

It has been shown a long time ago that low-lying-energy surface-localized
modes play an important role in thermodynamic properties of thin films: low
surface magnetization, reduction of T_c, .... (see Diep-The-Hung et al. Physica
Status Solidi b, 93, 352 (1979))

Since the geometry of very small systems (dots, thin films, ...) and their surface
conditions are complicated, analytical calculations are often impossible. One
needs therefore NUMERICAL SIMULATIONS.

Some problems in my interest:
Surface Elementary Excitations, Transition, Resistivity
Adsorption: Pb on Cu, ...

Effects of Surface Interaction Parameters; Surface spins, Surface
Magnetic Moment, Surface Anisotropy : magnitude, sign, orientation,
Surface Exchange Interaction



Our recent works

Reorientation transition in films with dipolar interaction
Effects of frustrated surfaces on non frustrated films
Frustrated Films

Criticality of ferromagnetic films: thickness effect

Cross-over from first to second order of the transition in FCC AF
films

Surface spin resistivity in magnetically ordered materials

Methods: GF theory, MC simulations (histogram, multi-
histogram, Wang-Landau flat histogram techniques)



Surface Spin-Waves (SW):

It is very simple to calculate the spin-wave spectrum for a semi-
infinite crystal or a thin film, by using for instance,

- Equation of motion

- Spin-wave theory

- Green’s function method

One obtains spin-wave spectrum with or without localized surface spin-
wave modes (acoustic or optical)




In the local framework:
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Spin-wave spectrum of a 8-layer ferromagnetic BCC
film



Surface Spin-Wave Mode: damping from first layer inward



Surface Magnetization:
One can calculate the layer magnetization at a given T using the
spin-wave spectrum obtained by the GF method.

Self-consistent solution should be searched for all M, (i=1,2,3, ...).
In practice, one retains only a few different magnetizations M, # M,
#M, =M, =M,=... forsimplicity
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Multiple histogram techmque for finite-size scaling

The multiple histogram technique is known to reproduce with very high accuracy the
critical exponents of second order phase transitions.

The overall probability distribution at temperature T obtained from n independent
simulations, each with N; configurations, is given by

io1 Hi(E) expE/kpT]

P(ET) = "N, exp[B/kaT, — ;) (2)
where
exp|fi] = %P(E,T:-l (3)
The thermal average of a physical quantity A is then calculated by
(A(T)) = %AF{E,T}Kz{TL (4)
in which
(T) = ;P(E,T}. (5)

Thermal averages of physical quantities are thus calculated as continuous functions

of T, now the results should be valid over a much wider range of temperature than for »

anv single histoeram.



Wang-Landau Monte Carlo Method

Recently, Wang and Landau proposed a Monte Carlo algorithm for
classical statistical models. The algorithm uses a random walk in
energy space in order to obtained an accurate estimate for the
density of states g(E). This method is based on the fact that a flat
energy histogram H(E) is produced if the probability for the
transition to a state of energy E is proportional to g(E).

At the beginning of the simulation, the density of states (DOS) is set
equal to one for all energies, g(E) = 1. In general, if E and E’ are the
energies before and after a spin is flipped, the transition probability
fromEto Eis

p(E — E') = min [g(E)/9(E), 1]. (2)



Each time an energy level E is visited, the DOS is modified by a
modification factor f > 0 whether the spin flipped or not, i.e.
g(E) — g(E)f. In the beginning of the random walk the
modification factor f can be as large as e! ~2.7182818. A
histogram H(E) records how often a state of energy E is visited.
Each time the energy histogram satisfies a certain “flatness”
criterion, f is reduced according to f — f 2 and H(E) is reset to
zero for all energies. The reduction process of the modification
factor f is repeated several times until a final value f; ., which is

close enough to one. The histogram is considered as flat if

H(E) >x% <H(E)> (3)



for all energies, where the flathess parameter 0% < x% < 100%
controls the accuracy of the estimated g(E), with increasing
accuracy as x% approaches unity. <H(E)> is the average
histogram. Thermodynamic quantities (Wang-Landau, Brown) can
be evaluated using the canonical distribution at any temperature T

by
P(E, T)=g(E)exp(-E/k_BT)/Z

where Z is the partition function defined by

z=> g(E)exp(-E/k_BT)



Frustrated surface on non frustrated
Heisenberg film (PRB 75, 035412(2007))
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FIG. 1: Non collinear surface spin configuration. Angles be-
r — - " . . i " - 7 . .
tween spins on layer 1 are all equal (noted ), while angles py; 9. cos(a) (diamonds) and cos(3) (crosses) as functions

between vertical spins are 3. of Js. Critical value of J: is shown by the arrow.
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FIG. 3: First two layer-magnetizations obtained by the Green
function technique vs. T for J. = —0.5 with I = —J. = 0.1.
The surface-layer magnetization (lower curve) is much smaller
than the second-layer one. See text for comments.
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FIG. 5: Phase diagram in the space (J.,T") for the quantum
Heisenberg model with N, =4, I = |I.| = 0.1. See text for
the description of phases [ to IIL.
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FIG. 7: Magnetizations of layer 1 (cireles) and layer 2 (dia-
monds) versus temperature T" in unit of J/kg for J, = —0.5
with I = —1I, =0.1, L. = 36.

FIG. 10: Phase diagram in the space (J,,T') for the classical
Heisenberg model with N. =4, I = |I.| = 0.1. Phases I to
IIT have the same meanings as those in Fig. 5 .
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FIG. 16: Maximum of surface-layer susceptibility versus L
for L = 24,36,48,60 with J. = —0.5 (a,b), J. = 0.5 (c¢)
FIG. 13: Layer susceptibilities versus T for L — 36, 48, 60 with and I = |I,| = 0.1, in the In — In scale. The slope gives ’Y/U

Js=-05and I = —I, = 0.1 Left _(lfight) figure corresponds indicated in the figure for each case. See text for comments.
to the first (second) layer susceptibility.




FRUSTRATED AF FCC HEISENBERG THIN
FILMS ( .. Cond. Mat. 19, 386202 (2007))

Fully frustrated with infinite GS degeneracy
Bulk; first-order transition

Surface transition: ?77?

MODEL: NN interaction with Ising-like uniaxial anisotropy



UPPER: GS for J_s>-0.5 ] (right), J_s<-0.5 J (left)
LOWER: Layer magnetization for J_s=-0.5]
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IV. SPIN RESISTIVITY

Resistivity in crystals: from phonons, impurities
(charges, vacances, defects, magnetic impurities, ...),
magnetic ordering (spin-waves, ...), ...

p(T) :p0+aT2+bT5+cln%+pm

Phonon resistivity: T**5 atlow T, linearin T at high T

Spin resistivity, since the 50’s: spin-wave scattering
gives T**2 at low T (by spin-wave theory , mean-field
theory) (cf. Turov 1955, Kasuya 1956). Scattering in
a Fermi liquid gives also T**2

Role of spin-spin correlation in spin resistivity: de
Gennes-Friedel (1958), Langer-Fisher (1967), Haas
(1967), ...
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Fic. 2.5: Variation relative de la resistance entre 0 et 5.5 T en fonetion de la température

pour (Lay_,Y;)o 300, 3Mn0; avec 2 =0.15. (extraite de l'article de Martinez et al.[65]).




McGuire et al. PRB78(2008), LaFeAsO
Tetra-Ortho Struct. Transition T_c= 160 K, SDW T<T_c (AF order)

MCGUIRE et al.
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FIG. 6. (Color online) Effects of the phase transitions on the
electrical transport of LaFeAs(. (a) The temperature dependence of
the electrical resistivity with no applied magnetic field and with an
applied field of 8 T. The inset in (a) shows the magnetoresistance
calculated from the resistivity data. (b) The temperature derivative
of the measured resistivity on cooling and warming illustrating the
absence of thermal hysteresis. The effect of the structural transition
at 160 K is shown. The peak in dp/dT is near the magnetic transi-
tion temperature at 143 K.



X. H. Wang et al. PRL (2009), superconducting BaFe2As2
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FIG. 2 (coloronling). Temperature dependence of in-plane and
out-of-plane resistivity [ pas(T) (squares) and p(T) (circles)] for
single crystal BaFesAss. The inset shows that the resistivity
anisotropy (p./pas). pe/ pap 18 independent of temperature,
indicating that transpor in the ab plane and along the c-axis
direction share the same scattering mechanism.
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FIG. 4 (color onling).  Temperature dependence of in-plane and
out-of-plane resistivity under magnetic hield (Hyof O and 65 T
with H || to the ab plane and along the ¢ axis, respectively. Zero-
field resistivity (circles); H || ab plane (squares); and H || c-axis
direction (triangles). Insets show the plot ol low temperature g4,
and g, vs T 1n log scale.



Our motivation:

Abundance of recent experiments on spin
resistivity

Existing theories involving too many

approximations (parabolic band, relaxation-time
approximation, ...)

Absence of Monte Carlo (MC) simulations in this
subject

Monte Carlo simulations can study complicated
systems where theories cannot

Our purpose:

Investigation of the effect of the magnetic
ordering and the phase transition on the spin
resistivity by MC simulations

Our model:

- Classical spin models with most important
interactions



Monte Carlo Simulation Method

Lattice sample: thin film of dimension N; X N, X N,
Classical spins (Ising, XY, Heisenberg)

Choice of Hamiltonian and parameters:

Periodic boundary conditions in xy, reflecting condition in z
Equilibrating the lattice spins before injecting itinerant
spins, at a given T

Itinerant spins travelling across the lattice, with different
interactions

Averaging physical quantities after stationnary regime is
reached

Multi-step averaging procedure
Resistivity

p=m/ne’r



EFFECT OF MAGNETIC FIELD
(FCC FERROMAGNET)
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Fig. 4. Resistivity R in arbitrary unit versus temperature T, for different magnetic
fields B: 0 (black circles), 0.25 (void circles), 0.5 (black triangles), 0.75 (void
triangles ). Iy = 2 and other parameters taken the same as in Fig. 2.



W. Szuszkiewicz, E. Dynowska, B. Witkowska and B. Hennion: Phys. Rev. B 73 (2006) 104403,

Hexagonal NiAs-type MnTe: magnetic interactions



X. Hel, Y.QQ. Zhang and Z.D. Zhang
J. Mater. 5ci. Technol., 2011, 27(1), 64-68.
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FIG. 5: Resistivity of thin film of size N, = N, = 20 and N, = 8 for Ny = 1600 itinerant spins
versus T for Dy = a (black circles) and Dy = 1.25a (white circles), a being the lattice constant.
Case of the first degenerate state. Js =J = 1.0, {p = Kg = 0.5, D = 0.35.
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FIG. 11: Resistivity versus temperature T in the case shown in Fig. 10. There are two anomalies

occurring respectively at the surface transition temperature and at the bulk one.




Effect of surfaces
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V. Conclusion

Monte Carlo simulation is a very good tool: easy tuning of
parameters for comparison with experiments.

Recent works on spin resistivity:

Temperature Dependence of Spin Resistivity in Ferromagnetic Thin
Films, Phys. Rev. B 77, 165433 (2008)

Monte Carlo Study of the Spin Transport in Magnetic Materials,
Computational Materials Science 49, S204-5209 (2010).

Theory and Simulation of Spin Transport in Antiferromagnetic
Semiconductors: Application to MnTe, Phys. Rev. B (2011).

?chl)q Besistivity in Frustrated Antiferromagnets, Phys. Rev. B 83

(Szp(l)nl Besistivity in the Frustrated J_1-J_2 Model, Mod. Phys. L. B

Spin Transport in Magnetically Ordered Systems: Effect of the Lattice
Relaxation Time, Modern Phys. Letters B (2011).

Monte Carlo Simulation of Spin Resistivity in Semiconducting MnTe,
PRB (2012)



