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Overview

- Single-molecule magnets:

- Single-molecule electronics

- Kondo effect in SMMs

- Berry-phase blockade in single molecules



Single-molecule electronics:

1 - 10 nm
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- fast operation
- large energy scales (eV)
- quantum effects at high temperatures ?!

Potential advantages:



Fabrication of the nano gaps: Electromigration and breaking of nanowires
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Multiwire chip:  Trial and error approach

6µm

70 nm



Single-electron transistors:  What is actually measured?
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Early experiments:  Non magnetic molecules

Coulomb blockade and the Kondo
effect in single-atom transistors
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Several other groups around the world have also observed similar effects in molecular transistors



A recent but extensive literature on this technique already exists.

Alternative route to molecular transistors: STM of molecules

(Photo credit: Ben Utley)
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Advantages: fabrication, control

Drawbacks: no gating



How to increase the functionality of a molecular transistor ?

 Combine electronics with magnetism:

Our Motivation:

(i) Use magnetic molecules

(ii) Use magnetic contacts



How do QTM and Berry phase interference 

manifest themselves in electronic transport 

through a single SMM? 

 - Spin-current blockade

 - Kondo effect
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 Berry-phase blockade:

fully polarized leads partially polarized leads

G. Gonzalez and M. Leuenberger [PRL 98, 256804 (2007)]

tunneling

tunneling

controlled by 
the Berry phase
(transversal field)

G. Gonzalez, M. Leuenberger, ERM [PRB 78, 054445(2008)]



Dan Ralph (Cornell)
Herre van der Zant (Delft)

Enrique del Barco (UCF)

Recent experiments (Mn12):   Still not very conclusive...

No experiment has yet 
seen a unambiguous 
manifestation of QTM,
much less Berry phase
interference...



Kondo effect:  The case of quantum dots and molecules attached to leads
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no Coulomb blockade!

The Kondo effect in a non-magnetic single-electron transistor
has already been observed by several groups...

Another way of probing QTM:  Kondo effect 

... but not yet for SMMs.



Unconventional Kondo effect in SMMs:  How it happens

(suppressed at zero bias)
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local exchange term

HKondo =
∑
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Kondo effect in SMMs:  detailed theory
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Kondo effect in SMMs:  microscopic derivation of coupling constants
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Kondo effect in SMMs: poor man’s Renormalization Group
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Kondo effect in SMMs:  Conductance
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Kondo effect in SMMs:  Berry phase oscillations

The tunnel splitting is an oscillating function of
the transverse magnetic field due to the Berry
phase interference.

two-fold degeneracy
points (Kondo effect)
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1) The Kondo peak splitting is a non-monotonic
   function of the transverse magnetic field.

Consequences:

2) The period of Berry oscillations is renormalized by the Kondo effect
   (strongly temperature dependent, with a universal function form).



Kondo effect in SMMs:  Ni4 , the best candidate
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Some estimates (Ni4):

TK ≈ D exp
[

−arctanh
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ν(Jz − J±) ≈ 0.15

∆E = D =
∣

∣A
[

S
2
− (S − 1)2

]
∣

∣ ≈ 9.3 K

TK ≈ 1.2 K (m = ±4)

crucial requirements:
i) large spin tunnel splitting

ii) large coupling to states in the leads

See also related work by the Aachen group (H. Schoeller).

issues under investigation: i) quantitative theory for transport (NRG, DMRG?)

ii) spin/angular momentum relaxation in isolated molecules

M. Leuenberger and ERM [PRL 97, 126601 (2006)]



Some Questions and Challenges for the STM group:

(1) How does the SMM bind to metallic surfaces?

(2) Where does the additional electron go in a SMM?
chemistry/electronic structure

(3) Can the SMM be manipulated by the SMT tip?
      (move it, flip it, and extract or modify ligands) technical challenge

(4) Does the tip position change the electric response
     of the SMM?

(5) Can a SP-STM measure the magnetization curve of
     a SMM (quantum tunneling, coherent oscillations, 
     decoherence)?

physics

SMM

SP!tip

nonmagnetic substrate

magnetic island

SMMs have intrinsically large
magnetization and strong
anisotropy, so a magnetic
island may not be necessary.



The End


