Global Coordinates for Schwarzschild
or
Lost opportunities

Over the past few years | have become interested in the
development of the understanding of the horizon.

Many of you will know much of what | am going to say, but
| hope there will be some new things for at least some.

WG Unruh
UBC-Sep 2017



Schwarzschild 1916 (while at the Eastern Front WWI)

2M dr?
ds® = (1 — T)dzt2 — —u

dQY? = df* + sin(0)*do?

— r?(dQ?)

(actually not this since he used coordinates so that |g|=1)

(Schwarzschild singularity r=2M. Total confusion )

Lancsos recognized that singularities could come from
coordinates, but lesson did not sink in

Assume 2M=1 for simplicity.



1921 both Gullstrand and Painleve found metric “regular”
atr=1

1 1
ds® = (1 — =)dt* + 2\/jdtdr —dr? — r*(dQ?)
/”3

r

but argued that this proved that Einstein’s theory was wrong
as it had too many solutions for the same physics (time
Independent spherical symmetry) .

Einstein argued that this was just an aspect of coordinate
freedom, but seems not to have actually shown it. He seems
to have dismissed this metric (which is completely regular

at r=1) because he did not like the off diagonal terms and .
did not notice it made r=1 regular.



1922 Eddington showed that there is another solution

(W?]ich | believe he recognized as a coordinate transform of
Schw.

1 2 1
ds® = (1 — =)dt* + Zdidr — (1 + =)dr?* + r*dQ?
T T T

This is not what we call the Eddington- Finkelstein coord.
which replaces dt-dr by the null coordinate du.

Neither of them wrote down the nul form of metric.

That was first done by Penrose who attributed them to first
Finkelstein (1958)and then Eddinton and Finkelstein.

Eddington did not note that these are regular coord at r=1
He was concerned with the relation to Whitehead'’s theory.

Finkelstein completely understood that his coordinates
made a horizon regular and the horizon acted as a one-
way surface

The above is also what is called the Kerr-Schild form of
Schw.



Finally in 1933, Lemaitre not only proved that the PG
system was just a coordinate transformation of Schw.
but also introduced a new set of coords. in which

ds’ = dr? — 1d02 + r2dO?
T

wln

r=[5(0+7)

In the process of deriving these coordinates, he also

went through the PG coordinates and showed they are just
a coordinate change from Schw.

Note that these coord. look regular everywhere except r=0.
But they have incomplete null geodesics at r=1, o =0

He also emphasised that these coordinates remove the
singularity at r=1, proving it is purely a coordinate artifact



Did not clear up the confusion.

1935 Einstein and Rosen (The bridge paper, which should
really be called the Flamm (1916) bridge) wrote the “well
known” metric for accelerated observer

ds® = p*dr? — dp® — dz* — dy?

IS a solution of Einstein eqgn and has zero curvature, and they
explicitly give the coord transformation which gives this

metric from the flat spacetime coordinates. They recognize the
similarity of this to Schw. and even put Schw into the form

with 2 dt? — duv?.. but do not realise that this could

remove the Schw singularity. They argue that r=1 in Schw

IS a matter sheet just as p = 0in the accelerated metric above
was a uniform matter sheet for them.



§1. A Specian Kinn oF SINGULARITY AwND ITs
ReMmovar

The first step to the general theory of relativity
was to be found in the so-called “Drinciple of
Equivalence™: If in a space free from gravitation
a reference svstem s umiflormly accelerated, the
reference aystem can be treated as being “at
rest,” provided one interprets the condition of
the space with respect to it as a homogeneous
rravitational field. As 1z well known the latter is
exactly described by the metric field!

dsfem —dr®—dxy® — doy? ol x .t (1)

The g of this held satisly in general the equations

R;EI#= u'r ':2}
and hence the equations
g 0%, =1 1)

The g, corresponcing to (1) are regular for all
finite points of space-time. Nevertheless one
cannot assert that Egs. (3) are satisfied by (1)
for ali Gnite values of 2y, --+, £ This iz due to
the fact that the determinant g of the g, vanishes
for xy=0. The contravariant g* therefore be-
come infinite and the tensors B, and fy take
on the form 0/0. From the standpoint of Egs. (3)
the hyperplane 2, =0 then represents a singn-
larity of the field.

We now ask whether the field law of gravita-
tion (and later on the feld law of gravitation and
electricity) could not be modified inoa natural
wiy without essential change =0 that the solu-
tion (1) would satisfy the field equations for all
finite points, e, also for xo=0. W. Mayer has
called our attention to the fact that one can make
R and Ry, into rational functions of the g,
and their first two derivatives by multiplying
them by suitable powers of g 1E 15 easy to show

1Tt 18 worth pointing out that this metric field does not

wesent the whole Minkowski space but only part of it.
Thus, the transfermation that converts

dit = —df T —ab? — df A

into (1) s

Eq=uy cosh eexy, £y =y,

L =W - 3] sinh N gs
Tt follows that only those points [or which £72288 corre-
spaid to points for which (1) is the metric,

Einstein Rosen:

Equivalence™: If in a space free from gravitation
a reference system s uniformly accelerated, the
reference aystem can be treated as being 'fat
rest,” provided one interprets the condition of
the space with respect to it as a homogeneous
pravitational field. As 12 well known the latter is
exactly described by the metric field!

dstm —da*—dxe® — dxy? i dla b (1)

1Tt 18 worth pointing out that this metric field does no
wesent the whole Minkowski space but only part of it.
Thus, the transformation that converts

gl = —df P =d ' —d i -dEd

inta (1) 18
£1=X) cosh axy, L=y,
LE = Ky Ed ™ & sinh el g

Tt follows that only those points lor which £==£F corre-
spand to points for which (1) is the metric.

w? =17 —2m

dit= — 4w+ 2m du’ .
1
— (02 2m) 2 (d 0 sin*ldg®) +———d*. (5a)

1+ 2




Flamm 1916

Geometry of the t=const surface.

sravitationstheorie, Physik. Zeitschr. XVII, g Plhvsik. Zeitschr. XVII, 1916.  Flamm, Beitrige =z

=
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Fig. 3.

gbene eindentip ah, und zwar unter Erhaltung
der -Malverhiltnisse. Die Merkwiirdigkeit, daB
der Massenpunkt einen endlichen Umfang be-
sitzt, elnen Aquator von der Linge zaa, wic
Schwargschild bereits betont hat, kommt
durch die Zeichnung deutlich zum Ausdruck.
Auch fiir den AuBenraum der Flissigkeits-

i kuzel, wie sie im ersten Paragraphen betrachtet
B wurde, ist das Linicnclement das gleiche wie bei
=== Vorhandensein eines zentralen Massenpunktes.
sin Der Zusammenhang zwischen dem Linienelement

dr? movie Interstellar: m<<M
— 7“2dQ2 metric completeI?/ regular everywhere.
r (1 2M) m>M, true singularity
(only pressure/tensmn needed-- no

energy)
Flamm shares with Einstein-Rosen-- mass at junction




There was another process going on.

1950-- Synge showed that there was a coordinate system
which made everything regular. Covered all of Schw, and
all geodesics either infinte or terminated at a singularity at
r=0. (Actually he thought his coordinates all provided an
analytic exptention through r=0, as well as r=1)

Far less known (completely unkown?) than the Kruscal
extention, of which more later.

Go back to Einstein Rosen.

2
ds® = qdr? — di — dz? — dy?
q

ds? = p*dr? — dp* — dx* — dy?

First to second by defining p to be proper distance to
horizon.



1 dr?
ds? = (1 — =)dt? — —

r 1 -1
-

e /1 %16?1/7“ -vred (Vﬂ aSinhi =3 1))

1 R?
1 — —- =

r r (\/F—I— asinhﬁ\_/;“—il))
4

. 2
r (\/F—F asznh(\/r—l))

— r?(dQ?)

Define F(r) =

r—1
T = Rsinh(t/2)

() = Rcosh(t/2)
The metric becomes

ds® = F(T(R))R2d(%)2 — dR* — r(R)*d)?

2 2

t t
= (F(r(R)) — 1)R2d5 + R2d§ — dR* — r(R)?*d?



ds®> = (F(r(R)) — )(QAT — TdQ)? + dT? — dQ* — r(\/Q? — T?2)%d)?

The first term is O near the horizon. The others are just “flat”
spacetime

All of the terms are analytic for r>0 despite the apparent
branch point at r=1. All terms are actually functions of r-1.

This metric was the first global covering of the whole of the
analytic extended Schw. geometry. And almost noone knows

about it (7). It could easily have been discovered by Einstein
and Rosen 18 years eatrlier.



Publication of Kruscal metric (1960)-- [from Charlie Misner]

It was discovered by Kruscal in the mid to later 50’s, but not

written up. He mentioned it to Wheeler over lunch one

day. Wheeler wrote it into his big book

(Wheeler constantly carried abound a large ledger book

iInto which he would write talks, conversations, etc. It would
be great if we could ally with his repositories (Am. Phil Soc
Philadephia, and Dolph Briscoe Center for Am. History

In Austin to get at least digital copies here.)

(Note that another live person who does the same Is

Don Page)

A while later Finkelstein sent Misner a copy of his paper

on the horizon of Schw. and the one way membrane, which
Misner showed to Wheeler. Wheeler remembered the
Kruskal conversation. Kruscal had gone off on sabatical,

so Wheeler wrote up the paper with Kruscal as author and
sent if off to Phys Rev. Apparently, the first Kruscal knew he
had written the paper was when he received the

page or galley proofs.



Derivation: can follow a similar procedure to that of Synge:

Write
1
ds® = G(p)(;p°dt* — dp*) = r(p)*dQ’
b _ 1 p
dr 21-1
—7r/2 ¢
ds? = ° <p205(—)2 - dpQ) —r(p)2d¥?
-
e
= psinh(=
T=0p 9 02 =72 2
t Tr
X = pcosh(§) p?=(r—1)e
—7/2
ds? = © (dr? — dx?) + r(p)*dQ?



1965- Israel, 1971-Newman Pajerski

New global coordinate transformation which allowed the new
coordinates and metric to be explicit (rather than implicit)
function of coordlnaztes.
ds? = Z-dU? +2dUdz — r2dQ?
T
r = 142U

U const hy|oersurfaces are null (closely related to the
Kruscal null coordinate), while z const are timelike (and are

the affine parameter along the U=const )

These are also complete coordinates with cover the whole
spacetime, and have the advantage of algebraic simplicity.



For both of the coordinates: Painleve Gulistrand (PG), and
Lemaitre, one can choose the surfaces

(flat constant time In the case of PG ) and define a global
set of coordinates which cover all of the Schw analytically
extended spacetime

GRAPHS: In each case we graph the constant coordinate
surfaces in the Kruscal set of coordinates.



PG coordinates

Each surface is a spatially flat surface



Synge coordinates




Lemaitre Coordinates.




Israel Newman coordinates




Eddington Finkelstein constant time surfaces




Trying to understand the Schwarzschild singularity (r=2M)
was a major goal in the early days of General Relativity.

From our viewpoint pow, that understanding was so so close
at hand, and many people had all of the tools needed

to understand that horizon. But somehow they all failed until
30-40 years after that solution was found.

One of the puzzles is why? When they were tripping over
the answers, why did they fail to see them? Especially
Einstein who continually said the right things, and then
wandered off onto tangents which took him away.

At the very latest, Einstein and Rosen should have had
the Synge solution 15 years before Synge.

What are we not seeing today?
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