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Consider a protein such as this one:

∆E ~ 102 kBT (~102 H-bonds, H-φ) , 
∆S ~ 102 kB ,
∆F = ∆E –T ∆S ~ 10 kBT ~ 0.1 kT/aa
Proteins are only marginally stable
(Facilitates their degradation)

2ci2
Proteinase inhibitor
~30 nm end-to-end,
~70 aa (small)
M=10,000 Au

Size ~ 30 Å We can coarse-grain it so we can study its
folding process on a computer –(must be careful!)




CI2 is 1 member of 1 class of proteins

How many proteins are there in humans?

There are betw 30,000-40,000 genes 
in humans

Proteins are abundantly synthesized

From translation rate, 
# ribosomes/cell,
avg protein length: 
~10,000 proteins ·s-1 ·cell-1

>> metabolic requirements 
~ 100 proteins ·s-1 ·cell-1

~99% of synthesized proteins have been recycled
(prokaryotic)



For proteins the energy landscape must be largely downhill

N

~ 70N (CI2)



Paradigm: Protein dynamics occurs on a funneled energy landscape

E

“Progress Coordinate”

“Reaction coordinate”

“Foldedness”

“Q”
Wolynes, Onuchic, Dill…



Funneled, high barriers

Disconnectivity trees

Funneled, low barriers

Clusters together minima
w barriers no higher than 
a given threshold

Frustrated/Glassy
DJ Wales “Energy Landscapes” (Cambridge 2003)



“Random Heteropolymer”

DJ Wales “Energy Landscapes” (Cambridge 2003)

Protein-like Heteropolymer



Replica symmetry breaking and ultrametricity

The glass transition
represented through
the sequence avgd
tree that describes
how replica states 
are clustered
as T<Tg

Map a model
of RSB accurate
up to pair correlations
(Derrida’s GREM)
to the random heteropolymer

2 quantities in the model:

1 2( , )qP E E ( )S q,



Replica calculations for Virial expansion 
(H Orland ‘88, Shakhnovich ‘89)

Including correlations, calc
of residual polymer entropy

RSB order parameter

Plotkin, Wang, Wolynes (1996)



0.7η =

1η =

1
2 GT T≈Probability distribution of similarity q, for 

( )dx q dq=

At T< Tg, system freezes into a basin of states rather than a single one
If the system is less dense, basin be large with much entropy.



The glass temperatures for the REM and GREM are very close

So in practice the REM glass temperature may be used
for the onset of non-self averaging behavior



The glass temperature is below the folding temperature over most of the
range of the landscape.

glass T

folding T

“foldedness” (fract of native contacts)

“compactness”
(fract of total 
possible contacts)

• Free energy
landscape is 
self-averaging.

• Diffusion 
coefficient
decreases 
as the protein
folds.

• Folding 
dynamics are
non-glassy 
and fast.



A funneled landscape avoids the glassy physics that characterizes 
random sequences.

E

“Q”
Is this the only way?



One can imagine other landscapes that satisfy the thermodynamic 
and kinetic requirements of folding
Density of states could still be RHP-like
But barriers that make folding slow could be unusually small
along a particular “buffed” coordinate.
These landscapes must be rugged enough to be “glassy” at Tbio
Only weakly gapped/funneled in the conventional sense

0.5GNDP >

Plotkin, Wolynes PNAS (2003)



The buffing mechanism for folding
What are the fraction of paths below F‡?
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Diff seqs have 
different F(Ne)
to escape from
local traps

Gaussianly distributed
increment

These are 
distributed about
the mean F(Ne)
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The adiabatic approximation with ground state dominance gives
an exponentially rare fraction of buffed sequences
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Mean-field
behavior

Ruggedness
/stability

Sequence 
fluctuations

Funneled sequences are also exponentially rare in N:

( )  G Ge eT N Tf ε−∆ −∆ ≈ =



How rare are “buffed seqs” compared to funneled seqs?
Quantitatively address this by finding the probability pathways are buffed to
say 4 kT, vs. the probability a sequence is funneled enough s.t.
Plot of pfun and pbuff vs. chain length:
Funneling becomes dominant for long chains 
But there is a crossover

4 UG kT≠∆ =

A compound mechanism?
Funneling removes entropy
In reduced ensemble, 
dynamics between traps 
mediated by buffing in later 
stages of folding. 

Plotkin, Wolynes PNAS (2003)



E

“Progress Coordinate”

“Reaction coordinate”

“Foldedness”

“distance”



What quantity can tell us how far a structure is from folded? 

(N)

AND

BND

Should be a geometrical 
quantity depending only on 
the 2 structures considered.



Some heuristic distance measures widely used:

Q = fraction of native ‘contacts’ present

1Fp �

1 3Q =

N 1Fp ∼

0Q =



Another heuristic distance measure widely used is

N
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α

works better for these structures:

However it is not a true “distance”

Real (minimal) distance beads could move would be:
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Both RMSD, MRSD fail to give the proper distance a partly folded
protein needs to move if chain non-crossing is important.

e.g.

0MRSD ≈



Can we generalize the notion of distance between 2 points to calculate
the distance between 2 curves?   (Plotkin PNAS (2007) in press).

The distance between 2 points is obtained from the variational
minimization of the functional:
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Usually this action is written non-parametrically: 

2 21
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x
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D dx y z′ ′= + +∫
dyy
dx

′ =

But for the general problem we have no guarantee y,z are simple 
functions of x.

Minimization

( )* tr( )* *D D t⎡ ⎤= ⎣ ⎦r

2

0

0
T

D dtδ δ= =∫ r� gives the distance

and , the minimal transformation

Ba 1D object.

A
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Straight-line motion results



s.t satisfies B.C.’s  A, B is a solution.( ) ( )0 ˆt v t=v vHowever any ( )tr

( ) ( )0
0

ˆ
t

t v t= + ∫r A v

We could have fixed a gauge from the outset, or we can fix it at the end
(easier).



We want to generalize this treatment to find the distance
between  any two space curves ( ) ( ),  A Bs sr r




First, write the distance functional in the same way as before:

( ) 2

0 0

[ , ]
L T

D s t ds dt= ∫ ∫r r�

is the accumulated ‘area’ of the minimal transformation
,a 2-D object, with B.C.s

( ) ( ),  A Bs sr r

( )* ,s tr (

The distance between 2 space curves

) ( ) ( ) ( )* *,0 ,   ,A Bs s s T s= =r r r r



It is not a 3-D “soap-film” area:

L

d

0soapA =

ABD Ld=

Is it a 4-D space-time area, as in classical relativistic string theory?
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The “simplest” example:

( )A sr

( )B sr

The minimal transformation is not a simple rotation!



x
y

x y L
y x L
+ =
= − + 2 2D L=

x y



Our action does not map to the world-sheet area of the 
classical relativistic string. 

static string 
still accumulates
area



( ) 2

0 0

[ , ]
L T

D s t ds dt= ∫ ∫r r�Minimizing the action:

results trivially in straight line motion- the MRSD.

Inextensible strings must include 
the constraint:

s
∂′ =
∂
rr( )2 , 1s t′ =r

“rubber band”

Minimize:
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0
L tδ
δ τ
⎡ ⎤⎣ ⎦ =
r
r

The extremum gives the Euler-Lagrange equation:

( )* ,s trSolve for , the minimal transformation. 

ˆˆ λ λ′= +v κ t�recast EL eqn:

unit velocity curvature
tangent

whether an extremal transformation is a minimum can be determined
from the second variation:
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( ) ( ) ( ) ( )* *,0 ,   ,A Bs s s T s= =r r r rB.C.s at t=0,T are given by

String ends are free at  s=0,L, so conjugate momenta must vanish:

0,

0s
s L
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∂
∴ = =
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p

r

( )2 2,L s tλ ′= −r r�but for our

ˆ 0s λ= =p t

( ) ( )  0, , 0t L tλ λ∴ = = (string tension vanishes)



Boundary conditions

ˆˆ λ′=v t�But then EL eqn
end pts

ˆˆ λ λ′= +v κ t�
simplifies to

And since v̂� is ˆ ⊥ v
ˆˆ   0λ′∴ ⋅ =v t

ˆ 0⋅ =v tso either ->  pure rotation

ˆ 0=v�0λ′ = and thereforeor -> straight line motion

Also trivial soln 0=v



For numerical solutions, discretize the chain  (method of lines)
EL PDE becomes a set of coupled ODEs

Similar to the analysis of B.C.s, the ODEs for particle i have solutions:

->  pure rotation

-> straight line motion

-> trivial soln 0=v

Simplest case:

Weierstrass-
Erdmann
corner conditions

Mohazzab, Plotkin







To apply the theory, additional terms may be included 
in the Lagrangian:

•Curvature constraints – persistence length
•Non-crossing - Edwards constraint:

( ) ( ) ( )( )1 2 1 2
0 0

[ , ]  , ,
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0RMSDD ≈
2D = A
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Applications to proteins.
Structures with  , MIN MAXD D

Does ?FDk
( )Does ?i

iN FD p



Research opportunities!
in the Plotkin Group

1 PDF
1 Grad student




