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Regimes of Liquid/Glass Physics
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Plan of Talk

@ Glass phenomenology

@ Formalism — to show that the supercooled liquid (with no disorder)
near its glass transition is in the universality class of the Ising spin
glass in a field ( with quenched disorder)

@ Droplet scaling ideas: predicts behavior on long lengthscales and
timescales

@ Long lengthscales are probably not being reached in experiments.

@ Glasses are in a pre-asymptotic regime — numerical work on Ising
spin glass in a field indicates that it mimics conventional glass
phenomenology when lengthscales are modest.
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Some Glass Phenomenology

Vogel-Fulcher law
n ~ exp[DTo/(T — To)].

In truth just ‘curve-fitting’.

@ Relaxation time(s) 7 ~ 1.

@ Kauzmann Paradox: Configurational entropy per molecule apparently

goes to zero at Tk
se(T)~kp(1—Tk/T)~ACy(1—Tk/T)~(1—-Tk/T)/D.

The ratio Tk/Tp lies between 0.9-1.1 for many glass formers for
which Tk ranges from 50 K to 1000 K.

Simulations (and experiment) support existence of a growing
lengthscale L*(T); increasingly large regions have to move
simultaneously for the liquid to flow.

But at Tz, L*(T) is only a few particle diameters.

Mike Moore (Manchester) The glass transition as a spin glass problem UBC 2007 5/21



“I
50} Lo
S 40} /
v—E Ts
X 3o}
S
© . T= 175K
)] K
20r T =220K
Ty = 265K
10 T Ts = 315K
0 1 1 1
150 200 250 300

T/K

@ “Equilibrium” near Tk or Tg cannot be obtained due to freezing into
an amorphous solid on experimental time scales.

o Consequence: experimental lengthscales cannot be made large and
evidence for universality and well-defined power laws will (always?)
remain weak.
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The thermodynamic transition

The apparent divergence of 1 at Ty
The apparent vanishing of s.(T) at Tk

The closeness of Ty and Tk for many glasses

A growing lengthscale L*(T)

All the above suggest a transition as T — Ty.

We will argue the transition is in the universality class of the Ising
spin glass in a field h(T) as h(T) — 0.

(For all T < T, there is a line of critical points at h = 0 when

d < 6).

o Lengthscales get large when h(T) gets small: h(T)? ~ (T — To).

@ The spin glass transition temperature in zero field T & Tax.
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Glass theories

@ Locally geometrically frustrated systems; = an avoided transition.
Explain simply the existence of supercooling.

@ Kinetically contrained dynamical models.

@ RFOT theory of Wolynes and co-workers.
A theory at the level of molecules (a “plus”), whose underlying
physics related to that of the “p-spin” model in the infinite
dimensional limit e.g. use of the “mosaic” picture.

e Mapping to an Ising spin glass in a field. (Not a theory at the level of
molecules, (a “minus”).
The p-spin model maps to this when treated as a three dimensional
system.
It allows prediction of the universal exponents v, 6, ds etc.

T T
ds is the fractal dimension of the dynamically active regions in

a—relaxation processes.
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Effective Potential Formalism

(cf Franz and Parisi, Dzero et al.)
@ Define the overlap
pe(r) = 6p1(r)dp2(r)
between two configurations of density variations dp = p — (p) in two
copies of the liquid.
@ Compute the constrained partition function by averaging over the
density configurations in the first copy:

Z[pc(r), 0p2(r)] = (0(pc(r) = 0p1(r)dp2(r)))py-

@ The effective potential is given by averaging the free energy with
respect to the density configurations in the second copy

Qlpe(r)] = ~ TIn Z[pe, 5p2]) -

@ Use the replica trick to average the logarithm

InZ = IimO(Z” —1)/n.
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Use an integral representation of the delta function.

Q[pc(r)] = —T/HZZ‘Ta exp [iZ/dr)\a(r)pc(r)]

X <<exp [—iz / drépf{‘(r)épg(r)/\a(r)]> >
a P2l pe

Define gag(r) = Aa(r)As(r) for o # 3. Trace out the A\, p§ and py fields
using cumulant averaging (and further integral representations).

Qlp] N/Hanﬁexp[—H[q]].

a<pf

pc(r) is determined from the condition 6Q2/5p. = 0.
H[gap) is an even function of pc(r) so pc(r) = 0 is always a solution and
this describes the liquid phase. But at the “transition”, T = Ty,
0Q/dpc = 0 gives

lim < dp(r, t)dp(r, t = 0) >= qea = pc.

t—o0
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To cubic order when pc(r) =0

Hal = [ ar {55 (Vaus() + 5 3 aisle)

a<f a<f

— ST g} = 2 Y als(n)}-

a<f

@ The coefficients ¢, 7, wy and wy will be functions of the temperature
T and density of the liquid, with smooth dependence on them.

@ If one knows the correlation functions of the liquid, then in principle
one could determine these parameters.

@ The transition is usually driven by 7 changing sign as a function of
temperature. Here the growing lengthscale will arise from w, going to
zero: wyp ~ (T — Tp) in the ‘low-temperature’ regime 7 < 0.

@ The wy term breaks time-reversal invariance.

@ The physical significance of g,3 = Ao Ag is not simple!
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Properties of the Functional

@ The same replica functional arises in studies of the p-spin model (and
also Potts models).

o If wa/wy > 1 there are two transitions at mean-field level, a dynamic

transition at T4 and a first-order thermodynamic glass transition at
Tk (below which pc(r) becomes non-zero).

0 Tk Ta

@ Glass phase (T < Tk) has one-step replica symmetry breaking
(1RSB) order.

@ Above T4, dynamics parallels that in mode-coupling theory.
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Beyond the mean-field approximation

@ Qutside mean-field theory no true dynamical transition T4 exists as
true metastable states do not exist in finite dimensions.

@ Qutside mean-field theory the 1RSB phase below Ty does not exist.
It is destroyed by thermal excitation of large droplets: the free energy
cost of a droplet of linear extent L falls as exp(—L/§).

@ Numerical studies of the 10-state Potts models in three dimensions:
no sign of MCT like effects or a glass transition or growing
lengthscales. (All visible at mean-field level).

@ When wy/wy < 1 a continuous transition to a glass state with full
RSB exists at mean-field level.

Moore and Drossel (2003), Moore and Yeo (2006) showed that this
transition was in the same universality class as that of an Ising spin
glass in a field.

'H:—ZJUS;SJ'—/]ZS;, W2Nh(T)2

<ij>
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Ising spin glass in a field

o de Almeida-Thouless (AT) line at which there is a continuous ‘replica
symmetry breaking transition’. Exists at mean-field level and possibly
for all d > 67

e No AT transition for d < 6 (Moore 2005) where the loop expansion
around the mean-field theory fails.

e For d < 6, a transition arises only if h(T) — 0. The whole line
T < T. is critical i.e. the correlation length is infinite.
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Droplet scaling

@ The lengthscale L(T) is the size of a compact region, (containing
~ L9 spins) in which the spins flip to lower their magnetic energy.

Domain wall energy ~ L%, § ~ 0.2 when d = 3.
Magnetic field energy gained ~ h(T)L9/2

Equating these two energies — the Imry-Ma argument

1 o= 1 P 1 0.4
L(T)N[h(ry] N[T—TJ N[T—To]

Contrast with the mosaic picture: v(T)L(T)9™t ~ s.(T)LC.
Barrier against flipping B(T) ~ BoL(T)¥, v not yet determined.
From Arrhenius

B(T) DTy 1%
T T0 EXpP kBT To EXp T—Tg
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The broken symmetry of the glass transition

@ The transition arises from taking the field h(T) to zero as T — Ty.
At h = 0, the Ising spin glass Hamiltonian has time-reversal invariance
(up-down symmetry).

@ At the level of molecules the transition is driven by wy going to zero
at Tg. There must be an extra symmetry in the system at this
temperature.

@ What is it? Particle-hole symmetry?
@ Notice that < go3 >=< AqAg > is non-zero at all T.
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Relation to RFOT theory and MCT theories

@ The p-spin version of the RFOT and the Ising spin glass in a field
have the same starting functional.

@ The mapping to the Ising spin glass in a field applies when the loop
corrections destroy the mean-field character of the transition.

@ The RFOT and mosaic pictures will be OK in a regime not too close
to To where loop corrections might be small.

@ The existence of such a regime would seem to require the existence of
“long-range” interactions.

@ This does not imply that the intermolecular interactions have to be
long-ranged, but just that the parameters ¢, 7, wy, wo in the
functional are such as to make loop corrections small and wy/w; > 1
when T = Ty

@ ‘Success' of MCT and RFOT theories suggest that this might be the
case! Then only as T — Ty would the crossover to Ising spin glass
behaviour in a field emerge.
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Numerical Studies of Ising Spin Glass in a Field

3d spin glasses in a field are being studied by Peter Young.
One-dimensional Ising spin glass — useful illustration of some points:

H=-) JiSiSu1—h)_ S

In d =1 there is no spin glass phase. h(T) was kept temperature
independent, (so entropies are too low to be “realistic”).

Glass-like features emerge because of a growing lengthscale as T is
reduced.

Size of domains saturates at a lengthscale: £ at T = 0: J&? ~ hed/2
Ford=16=—1,s0&~ h2/3

&(T) and S can be exactly calculated by RG decimation.
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Relaxation time 7: (S;(tw)Si(t + tw))e ~ exp(—(t/7)")

7k

)

@ Vogel-Fulcher fit 7 = 19 exp[A/(T — Tp)] with Tp similar to Tk

works!

‘
40

@ Streched exponential exponent [ arises because there is a range of

relaxation times.
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Conclusions

@ A functional can be derived from liquid state theory which maps the
glass transition problem onto the Ising spin glass problem in a field.

@ Droplet arguments predict that lengthscales should increase as the
temperature decreases, but at T, lengthscales may not be large
enough for asymptotic droplet scaling formulae to be appropriate.

e Conventional fits, (Vogel-Fulcher, Kauzmann, Adams-Gibbs) may
‘work’ in this pre-asymptotic region as well as (possibly) RFOT ideas.
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