Dynamics of Polymer Glasses Under Active Deformation

Mark Ediger, Hau-Nan Lee, Stephen Swallen, and Keewook Paeng

University of Wisconsin-Madison

In collaboration with:

Jim Caruthers, Rebecca Martin, Grisha Medvedev (Purdue) Ken Schweizer, Kang Chen (Illinois)

Juan de Pablo, George Papakonstantopoulos, Rob Riggleman (UW-Madison)

NSF NIRT

Why are polymer glasses tough?

Polycarbonate = bullet-proof glass

High modulus + Large strain prior to fracture + Low energy input in molding

Fig. 6. True stress-strain curves at different temperatures (extension rate=0.5 in./min in all cases).

Allison,... J.Appl. Phys.38, 4164 (1967)

a)The thermodynamic answer - create two equilibrium surfaces ≈ 10⁻⁵ J

- a)The thermodynamic answer create two equilibrium surfaces ≈ 10⁻⁵ J
- b)The chemist's answer break all the polymer chains in one plane $\approx 10^{-4} \, \text{J}$

- a)The thermodynamic answer create two equilibrium surfaces ≈ 10⁻⁵ J
- b)The chemist's answer break all the polymer chains in one plane $\approx 10^{-4} \, \text{J}$
- c) The solid-state physicist's answer elastic solid to 2% strain $\approx 10^{-1}$ J

- a)The thermodynamic answer create two equilibrium surfaces ≈ 10⁻⁵ J
- b)The chemist's answer break all the polymer chains in one plane $\approx 10^{-4} \, \text{J}$
- c) The solid-state physicist's answer elastic solid to 2% strain $\approx 10^{-1}$ J
- d)The real answer ≈ 20 J

One viewpoint: deformation induces mobility and transforms the glass into a very viscous liquid

Fig. 6. True stress-strain curves at different temperatures (extension rate=0.5 in./min in all cases).

Allison,... J.Appl. Phys.38, 4164 (1967)

Above T_q, small force, mobility allows flow, have molecular theories

Below T_q, large force, mobility allows flow?, no molecular theory

Broader context: Jamming

Liu and Nagel, Nature 1998

NMR experiments on nylon (Loo, Gleason, Cohen: Science 2000)

MD simulation on polyethylene (Capaldi, Boyce, Rutledge: PRL 2002)

Mechanical "tickle" measurements are controversial (Yee, Gacougnolle, McKenna, Zapas)

- Quantify deformation-induced mobility
- Fundamental understanding of mechanism
- Better predictions of non-linear mechanical properties
- Extend to composite systems

Key concept for our experiments: Probe reorientation reports on polymer dynamics

Deformation Cell (Creep Experiment)

Top view of sample

Dye reorientation measured with photobleaching technique

Strain and mobility are measured locally

Stretch the film

Measure mobility of polymer in these small regions

Local creep measurements agree well with standard creep measurements during homogeneous deformation

Symbols: Optical creep measurement : $T = 375.8 \text{ K} (T_g-24.3 \text{ K})$

Solid lines: Standard creep measurement (Caruthers) $\tilde{T} = 368.1 \text{ K} (T_g-25 \text{ K})$

Evolution of mobility during creep and recovery

Evolution of mobility during creep and recovery

Evolution of mobility during creep and recovery

- Quantify deformation-induced mobility
- Fundamental understanding of mechanism
- Better predictions of non-linear mechanical properties
- Extend to composite systems

Can free volume explain these results?

MD simulations of creep (Riggleman/de Pablo)

- MD Simulations of a coarse-grained polymer melt at $Tg(T_g* = 0.37)$
- Polymer: 32 Lennard-Jones sites connected by harmonic springs
- Creep simulations in NσT ensemble under compression and tension
- Four system sizes studied:
 - \bullet Lx = {8.8; 11.7; 17.7; 39.9}
 - Lx / ξ = {1.1; 1.46; 2.21; 4.24}

NoT ensemble

Pure polymer glass before deformation

Dynamics are enhanced during creep ($\sigma_{zz} = 0.54$)

- Strain and dynamic response of LJ polymer melt under tensile stress
- Dynamics measured separately for individual configurations
- All configurations show significant enhancement

Evolution of τ_c with the strain rate (MD)

Evolution of τ_c with the strain rate at 377 K (expt)

Simple free volume cannot explain enhanced dynamics

Plan to do experiments in compression also

Preliminary comparison with "molecular level Eyring theory" (Chen and Schweizer)

Modelling the evolution of τ_c during creep

Medvedev and Caruthers, March 2007 APS Meeting

- Thermoviscoelastic model
- •PMMA, 358 K
- Moderate stress has little effect
- Large stress has big effect

Mobility in different regions of necked film

- ➤ Local strain in neck area (B) is ~ 1.70 and strain rate is $\sim 5 \times 10^{-5}$ /s
- ➤ Local strain in non-necked are (A) is ~ 0.30 and strain rate is $\sim 10^{-5}/\text{s}$

Largest mobility changes occur in regions with locally high strain rates

- Quantitative determination of mobility changes during deformation and recovery.
- Huge effect! A dominant contribution to non-linear deformation behavior.
- > Simulations argue against free volume interpretation
- Critical for theory/modelling.
- Local measurement of mobility useful for understanding inhomogeneous deformation.