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Outline:

• A short review of state-of-the-art;

• DFT atomistic methods;

• The NEGF-DFT implementation;

• Applications of NEGF-DFT;

• Quantum mechanic forces during current flow;

• Summary: outlook to the near future.
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Application:  molecular transport junctions
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Can we compare with experimental data?  There are
some difficulties:

• Do not know experimental device structure;
• Do not know environmental effects;
• Do not know quality of contacts;
• Do not have reliable data on single molecule device;
• Do not have all the physics in our theory;
• …..

But progress are being made….
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Takao Ishida etal., J. Phys. Chem. B 106, 5886 (2002)

Example: resistance of molecular wires

Slope
1.76
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Another independent experiment from a different lab:
David J. Wold etal. J. Phys. Chem. B, 106, 2813, (2002)

Very similar numbers
were obtained as those
of Ishida
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Our calculations:

C.C. Kaun, B. Larade and H.G, PRB (2003)
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Planar vs rotated conformations:
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I-V curve for planar wire: linear and within a factor of 5 to experimental data

Possibilities: more than 1 molecule in the experimental device;
some device details are different.
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Resistance: order of magnitude comparison can be well made

Experimental
range:

1.7 and 2.2.

planar

rotated

The slope is independent with number of molecues
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It is a non-resonance conduction: consistent with an exponential
increase of resistance.
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Another SAM measurement:  alkanethiol
                                    (Wold and Frisbie, JACS 123, 5549 (2001)

Rather similar results from other groups:
M. Reed etal (2003); Lindsay etal
Nanotechnology, 13, 5 (2002).
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Our model:

Au electrodes

Al electrodes
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Experimental: average
slope is close to 1

Again, not
quantitatively too far
from real data.

Slope:
~1.0

Theor
y
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Au-alkanedithiol-Au wire: S-atom on both side

• Our calculation: still                                    ;

• Our calculated beta is still about 1.0;

• Our           is smaller than that of alkanethiol by about a factor of 18.
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Experiments so far:

1. Cui etal, J. Chem. Phys. 106, 8069(2002):

      one lead is a quantum dot

     Engellkes etal (Frisbie lab) (2003):

57.0=!

05.1=!Lee and Reed, J.Phys.Chem. (2004):

(Experimental ratio: 16.1 by Lee and Reed, J.Phys. Chem. (2004))

~ 1 if QD effect is
taken out
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C.C.Kaun & HG, NanoLetters 3,
1521 (2003)

Alkane has a large HOMO-
LUMO gap, ~10eV.  The Fermi
level is inside the gap, but
closer to HOMO.

There is a tiny feature near
Fermi level which
determines the resistance.
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Contact:  structural details matter

 X. D. Cui etal, Science 294,  571 (2001).   B. Xu and N. J. Tao, Science 301, 1221 (2003).

D. Wold etal. J. Phys. Chem. B, 106, 2813, (2002); T. Ishida
etal., J. Phys. Chem. B 106, 5886 (2002)

planar

rotated

While the scaling factor agrees, the value of
absolute value of resistance differs.

)exp( nRR
on

!=
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Atomistic transport: conductance of gold-BDT junction

~0.05usDelaney etal, PRL93,36805(2004)
Cluster CI + Wigner function on boundary

3-5usBauschlicher Jr. etal.  Chem. Phys. Lett
388,427(2004).  NEGF+B3PW91 or B3LYP

~20usStokbro etal. Comput. Matter. Sci
27,151(2003) .  NEGF + LDA

0.85usTao etal. Nano Lett 4, 267(2003).
Experiment: measures large number of
systems and average.

0.6 – 0.9 usNing etal., PRB72, 155403(2005)
NEGF+B3LYP + correction from UPS
reference data

1.55usVarga etal.  PRL 98,76804(2007). Closed
system with complex boundary potential

It appears to suggest
that Fermi level
alignment is critical
for this problem.
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Experimental:

G = 0.0012 g

Theory:

G = 0.0023g

Statistical analysis of about
1000 wires each having slight
different contact geometry.

Hu etal PRL 95, 156803 (2005)

Statistical analysis of many contacts:
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Summary of molecular wire:

• A non-resonance transport controls these molecular wires.
Quantitative consistency to experimental data appears to
be obtained on the exponential length scale beta.

• The values of resistance and currents are within a factor of
2~30 to the measured data. The difference is likely due to
the presence of multiple molecules in the experimental
junction, details of contacts, etc.

• Encouraging but further quantitative work are needed.
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Application: magnetic tunnel junctions

Picture from J. Akerman, Science,
308, 508 (2005).

Memory used in digital devices: S-RAM;   D-RAM;   Flash; …

We desire an “universal memory”.

Picture from W. Butler, Nature Mat., 3, 845
(2004).

MRAM
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The hope for magnetic logic:

Picture from the experimental
proposal of programmable
magnetic logic cell based on
MTJ, A. Ney etal. Natture 425,
p485 (2005).

A+B switches M1;   A+B+C switches M2.  By manipulating with these
currents, Ney showed logic operations of AND, OR, etc.
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Metal spintronics: magnetic tunnel junctions (MTJ)
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Picture from Zutic etal Rev. Mod. Phys. 76, 323 (2004).

upup up down

up-up:

up-down:

Prinz, Science, 282, 1660 (1998)

Julliere, Phys.
Lett. A 54, 225
(1975)
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Metal spintronics:  Fe/MgO/Fe MTJ

Picture from M. Coey, Nature
Mat. 4, 9(2005).

• Rapid progress on TMR
ratio in recent years
due to progress in
materials science
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Device merits for applications:

• The greater the TMR, the more sensitive the device.  The value of
TMR appears to sensitively depend on the tunnelling structure.
Theory predicted very large TMR for MgO based junctions.  There
is a need to understand these materials issues.

• The smaller the junction, the more devices can be packed per unit
area.  There is a need to understand tiny junctions made of
molecules, clusters, etc.

• All of these requires calculation schemes which take into account
material and chemical details of the device structure.  Most desired
is atomic based methods.
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Fe-MgO-Fe magnetic tunnel junctions:

Yuasa et al., Nature Mat. Vol.3, 868 (2004).

180% -
247%
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When the tunnel barrier is a molecule: molecular spintronics

K. Tsukagoshi, B.W. Alphenaar and H. Ago, Nature, 401, 572 (1999).
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Carbon nanotube TMR:
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Molecular spintronics: organic semiconductors

Xiong etal Nature, 427, p821 (2004).

TMR decreases from ~10% due
to bias voltage with a scale of
roughly 0.2V.
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Molecular spintronics: alkane-thiols

TMR decreases from ~12% due
to bias voltage with a scale of
roughly 0.01V.

Ralph etal, PRL 93, 136601 (2004)
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Fe/MgO/Fe MTJ:  Two puzzles

• Zero bias TMR ratio:
•    Theory:            many thousands percent.
•    Experiment:    several hundred percent.

• TMR versus bias voltage:
•    Theory:          either increase with bias, or  no  dependence.
•    Experiment:   reduce with bias.

Can we understand these things?
D. Waldron etal, PRL, 97, 226802 (2006).
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Careful check of basis functions:

It is crucial to have accurate LCAO basis sets.

bad
good
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Careful check of k-sampling:

• Due to resonance
states on surfaces of
Fe, huge number of k-
sample must be done.
These resonance
states give “hot spots”.
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5 layer MgO:

5-layer MgO, measured by Wulfhekel et
al APL 78, p509 (2001). STM-MgO-Fe

PC

APC
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Yuasa et al., Nature Mat. Vol.3, 868 (2004).



page 3313/07/07 CIAR Summar Workshop, June 29, 2007, Part 2

Fe-MgO-Fe: transverse momentum resolved T(E) for APC

Bias = 0 Bias = 50mV

Left lead Right lead

It is the drastic increase of APC current as a function of bias that quenches TMR.
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Zero bias TMR: effects of small structure changes

Randomly change
interface bonds by ~1%.

Also, randomly change all bonds by ~1%.

These small structure changes do vary the value of TMR, but not enough
to reduce it to the current experimental level (250%).



page 3513/07/07 CIAR Summar Workshop, June 29, 2007, Part 2

The remaining puzzle:    zero bias TMR too large

Experimental data of Yuasa etal:  ~200% (room T); Ohno etal:   ~800% (5K);

Theoretical results:                       ~3700%.

Possible reason: oxidizationlayer exists at the Fe/MgO interfaces.

100% oxidization:  TMR
dropped to 169%.  50%
oxidization: TMR dropped to
1040%.

Experimental structure: 60%
oxidization (Meyerheim etal,
PRL 87, 076102 (2001).

Results:

D. Waldron etal, PRL, 97, 226802 (2006).
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How to switch the device from PC to APC ?

J. Akerman, Science, 308, p508 (2005).
• This is rather difficult

to do from fabrication
point of view.
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The phenomenon of  spin transfer torque (STT):

STT is the torque exerted on the magnetization by spin polarized electric
current.  It has important implications on MRAM technology.

Spin current
precession

                     Co              Cu             Co               Cu

P. Haney etal., (2007).
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Spin Transfer Torque Haney etal   (2007)

The angular pre-factor of STT has been measured  experimentally in PRL
84, 3149(2000). The calculated value is within a factor of 3 if assuming bulk
Co damping factor, and agrees almost perfectly if assuming a reasonable
value of thin film damping factor.
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Summary of Fe-MgO-Fe:

• Zero bias TMR:  if there is a layer of FeO between the Fe and the
MgO, the TMR value is drastically reduced. For 50% oxidization,
TMR=1070%.

• Large TMR is due to small APC current. A finite bias increases APC
current much faster than increasing PC current, causing TMR to
drop.

• All voltage scales are consistent with experimental data.

• Remaining:  how to reduce critical current for spin transfer torque?
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Molecular TMR junction:

±!=z

Parallel

Anti-Parallel

Ni Ni

Ni leads: infinite
cross-section in
the transverse
direction, extend
to

We wish to
compute
spin-current:

!"
II ,

Waldron etal PRL 96, 166804 (2006)
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Ni-BDT-Ni: Magneto-resistance ratio

tot
I

Although spin-currents are very different for up-up or up-down leads
configurations, the total currents are rather close to each other!

This gives rise to TMR ~ 28%.
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Applicaoin: graphene spintronics:

On the zig-zag edges of a graphene ribbon, there is some “edge magnetism” due to localized
electronic states. One may exploit this for graphene spintronics.
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Graphene can now be produced experimentally

Novoselov etal Science, 306, 666 (2004); Zhang etal Nature, 438, 201 (2005).

Single layer graphene Mobility: 2.5m2/V has been reported !
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Transport theory for bulk graphene sheets:

For charged impurity scattering V(r), Boltzmann theory gives transport
properties.  The massless fermion theory works near the Dirac point.
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Son, Cohen and Louie, Nature (2006).

Zig-zag along y-axis
(transport direction).

Electric field along x-axis,
shifting spin resolved DOS
relative to the Fermi level,
producing a half-metallic
behaviour.

Beautiful descriptions of zigzag graphene nano-ribbons (ZGNR).
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“Edge” states from DFT-LDA:

Miyamoto etal PRB 59, 9858 (1999).
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Magnetic edges from DFT-LSDA:

Plus several other papers (some are earlier)
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Dangling bonds and edge states:

V. Timochevski (2006)

LAPW calculation by WIEN2K.

Lee etal, PRB 72 (2005)
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Magnetic moment per atom for pure ribbon:
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Saturating the dangling bonds, only edge state left:
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H-graphene-H2
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DOS: spin splitting for un-passivated edge

V. Timochevski  (2006)
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DOS: spin splitting for H-passivated edge

V. Timochevski  (2006)
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H-graphene-H2

V. Timochevski  (2006)
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Total energies:

SYSTEM                         FM                      AFM                         (FM-AFM)/atom

======================================================================

graphene                  -1235.817 eV     -1235.849 eV                      +4.0 meV

-------------------------------------------------------------------------------------------------------
-

H-graphene-H          -1272.713 eV      -1272.716 eV                     +0.3 meV

-------------------------------------------------------------------------------------------------------
-

H-graphene-H2        -1288.021 eV      -1287.974 eV                     -4.3 meVAlong each edge, FM is more stable than AFM.  Across the width of ribbon, the FM and
AFM are almost degenerate.  Recent report puts this energy difference as 1/W.
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More Accurate 
Calculations?

The accuracy depends on the level of theory: but there are
always some approximations in theory.

Magnetic 
Measurement?

Magnetic measurements, e.g surface magnetic optical
Kerr effect (SMOKE) and/or electron cycle resonance
(ECR) cannot provide spatial resolution down to the
atomic scale.

Real Space
Observations?

Real space local probe by spin polarized STM may be
possible. Does the edge magnetism give enough spin
contrast in STM?

Simulation of STM spin contrast (Wei Ji etal, (2007)).

Are these correct ?  Can one measure them ?
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Spin polarized STM images on single sheet ZGNR in vacuum

We justify this simulation by: (i) we have to start from a simple case;  (ii)
we wish to get a baseline result; (iii) There is a report on experimentally
suspending graphene sheets in vacuum:

Nature, 446, 60 (2007).

We are also simulating double layer ZGNR and ZGNR sitting on SiC
crystal surface.
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W(110) tip

Bottom view

Side view



page 5913/07/07 CIAR Summar Workshop, June 29, 2007, Part 2

W(110)-Cr tip

Bottom view

Side view

W

Cr
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Simulation 1- spin polarized edge with W tip
Unitcell

-1 0 1
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0.4
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Energy

-0.32 eV -0.20 eV

-0.10 eV

0.30 eV0.10 eV

0.45 eV

Interesting Levels:
-0.32 eV,
-0.20 eV,
-0.10 eV,
+0.10 eV,
+0.30 eV,
+0.45 eV,

Two contrasts:
-0.80 eV
+0.80 eV

+0.80 V+0.45 V+0.3 V+0.1 V-0.10V-0.20 V-0.32 V-0.80 V

Spin non-resolved
W110 Tip

I: 40 pA

Spin is not resolved.

VASP+BSKAN, Hofer
(2003).
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-0.2
1

32

+0.1 +0.2

Spin non-polarized edge
Spin polarized edge

Simulation 2- spin non-polarized edge with W & Cr tips

-0.2 -0.1
-0.2

30

1
+0.1 +0.2

Spin non-resolved tip Spin resolved tip Spin non-resolved tip
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Simulation 3 - spin polarized edge with Cr tip

•Spin resolved Cr tip on W(110) base
•Bias Voltage: +0.1 V (Largest contrast among all interesting voltages)
•Tunneling Current: 40 pA (typical current for molecular systems at low T)
•Sample-tip Coupling: from FM to AFM (non-collinear spin polarization)

00˚ 180 ˚135 ˚90˚45˚
Sample:

Tip:

Phi:

•Contrast reversal
between FM and AFM
coupling only occurs at
edges
•The spin (non)-
polarized edge states
can be resolved by
changing of tip
polarizations.
•Features in the out
side of edges

31

11
??
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Corrugation height of spin-polarized image

This height difference should be resolvable.
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Summary of single layer ZGNB:

• There appears to be large enough spin contrast, detectable
using a good spin polarized STM in UHV at low temperature T.

• How low a T?   We don’t know yet, but we are trying to
estimate (Tao Ji at McGill, suggested by Allan MacDonald).

• Experimental challenge: produce stable single layer ZGNB
hanging in vacuum  



page 6513/07/07 CIAR Summar Workshop, June 29, 2007, Part 2

Graphene transport junction (GTJ):

Normal
metal lead

Graphene ribbon Normal
metal lead

Let’s compute spin polarized current through this transport junction.

Bin Wang etal. (2007).
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Ribbon with width 5, length 10 rings:
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Width 5, length 12:
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Width 5, length 15 rings:

Features become sharper as L is increased.
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Only one spin channel contributes to I-V:

Almost half metallic:  a good spin filter.



page 7013/07/07 CIAR Summar Workshop, June 29, 2007, Part 2

Experimental situation

Melinda Y. Han etal.
Preprint (2007).

The corresponding resistance
of these ribbons is 106 - 104

Ohm.
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Summary of graphene spintronics

• DFT-LSDA predicts a magnetic edge for zigzag edged graphene
ribbon at zero temperature. The exchange energy can be 1eV or
more.

• Thermal fluctuation will destroy 1d magnetism in the thermal
dynamic limit. But for a nanoscale (or mesoscale) system, one may
still obtain some magnetic moment.  Work needed to determine this
length scale.

• Spin polarized STM suggests enough spin contrast.

• Interesting anyway!
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Application: Non-equilibrium charge--- capacitance
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Note: charge is induced everywhere.

P. Pomorski etal. PRB (2003,2004).
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Charging outer tube:                             charging inner
tube:
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Charge and characteristic potential

charge

Potential
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Capacitance as the two tubes approaching each other

(12,12)-(5,5) nanotube junction

C21 per unit length at
large penetration is
0.012aF.

For (5,5)-in-(12,12)
periodic two-wall
system:
C21=0.014aF.
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Classical values:

)ln(
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Classical capacitance formula would predict 0.14aF or more, at
least 10 times greater than quantum result --- very wrong indeed.
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Junction with conductance gap:

(12,0) tube                        (6,6) tube

This is a strange junction: both tubes are metal, they contact
perfectly, but conductance is zero due to wave-function mismatch.
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(12,0)/(6,6) junction:

Rather large
capacitance---of
course!
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Example: C of tunnel junctions:

J.Wang etal PRL 80, 4277
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Can we observe it ?

From WKB analysis, neglecting tunneling,
Christen & Buttiker derived a formula:

qe CC

R
C

11
+

=

DOSC

d

A
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e

!

= " usual electrostatic C

quantum C due to finite DOS of plates

For C(d) to increase with d,  must have 0>
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             (cont.) :
0>

!

!

d

C

We know                                                    where L depends

on the barrier and other system parameters, and L is
usually

a few angstroms.   Our analysis concludes that we can

observe the non-classical phenomena when

But

)exp(1)(
L

d
dR !!"

Ldd !=<
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)1(O!" for atomic plates

3
104

!
"#$ for macroscopic plates
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Experimental evidence: (J.G.Hou etal PRL 86, 5321 (2001))

Measure capacitance
from charging energy
in the Coulomb
Blockade regime, for
Au atomic clusters.
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Experiments (Hou etal PRL 86, 5321(2001)

Non-classical behavior!
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Summary of capacitance

• Quantum corrections to non-equilibirum charge can be very important at nano-
scale due to small DOS.

• Electro-chemical capacitance of molecular scale systems has non-classical
behavior due to DOS, tunneling, bias, and DC coupling.

• By measuring C=C(V) we found a way to deduce the local density of states of a
nanosystem.

• Experimental work is possible, a direct dynamic measurement will be very much
desired.


