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We want to understand:

(i) Multipartite Entanglement & Decoherence
(i) Dynamics of Quantum Ising Systems
(iit) Dynamics of real systems like Fe-8, LiHo, Y, F,

TALK in THREE PARTS

PART A: Multipartite Entanglement, Q Ising (T Cox, PCE Stamp)
PART B: Real World Q Ising & Q Computation (T Cox, PCE Stamp)

PART C: Dynamics of LiHo, Y, F, System (RD McKenzie, PCE Stamp)
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N-PARTICLE QUANTUM STATES

Here are two interesting questions

QUESTION 1 QUESTION 2
What is multiparticle What do the low-energy states
entanglement - how of a quantum computer look
do we characterize it, like? In particular, an adiabatic
& what is its dynamics? guantum computer?
STATES A pure state has a density matrix operator ﬁ = |’¢) (¢|
where |w) Is the pure state vector
For some system S the ‘reduced density matrix’ is: fs = T'T'E{P}

where P describes ‘the universe’, & trace is over ‘environmental’ modes.

QUBITS consider a system of N such qubits; p has general form

1
pi2..N = o5 (I+ (o ob?...o" Yot ab?...ohY)

We'll be dividing these into ‘correlated’ and uncorrelated parts:
2 qubits: ps = p12 = p1P2 + pio
L = = = C ~ C , = =C , = =C
3 qubits: ps = pP1P2p3 + P13 + P1P23 + P2P13 + P3P12

Let's see how this works....



EXAMPLE: PAIR of QUBITS NB: for 1 qubit

1
1 = = .
For 2 qubits: P12 = Z(l + Z (ojuyoi* + (O'lMO'QV)O']_p'O'QV) P=73 1+ (o) -0)
i=1.2
1 1 .
1 [0+ (osu)ai*) + 1 \(014020))01 02 = p1p2 + Pz
J

where  ({(01,02,)) = (014020) — (014){02,) (Correlated part)

Example 1: Cat state |¥S) = % (] M) + €| 1))  pure entangled state

density

1 .
| WSV US| = 1 (1 +cosdyy (o705 —oio3] +singy [o]o5 +oTo5] + Ui"o‘f) matrix

Example 2: Incoherent mixture (of | 11) and | =»—) states)

pa =5 (I 1+ 9o) o) = 1 [1+3@+2)- (@1 +02) + } (oF0F + ofo3)]

Now - how entangled are these states? The cat state looks pretty
entangled - what about the mixture? Note we have for this state that

((0703)) = ((0{03)) = —((06]03)) = —((0f03)) =%. (non-zero correlations)

‘Measures of Entanglement’ (concordance, entanglement cost,
entanglement of formation, relative entropy of entanglement, etc., etc.)
Entanglement witnesses, etc, are no use - they don’t necessarily agree.

So - let’s go with the correlators instead !




PARTITIONS & SUBSETS Consider a set S made from
N distinguishable ‘cells’ 0’
‘Power set’ Ps (set of all subsets): 2N members
‘Partition Set’ P. of all partitions: B, members ’
(Bell number B,, ~ n" for large n).

GOAL: To define the full density matrix for Sin terms of all the
subsidiary density matrices (for either Pg, or for ?S).

s

Sub-subset C, Subset A,
- 1 -c with m members A, with n members
ps= 3 TTo |5

ACS \jéA

where we have

o= 3 (m T o) —coa-n [T o |G

= reA? \  jed e jeAP

ey

T. Cox, PCE Stamp, Phys Rev A98, 062110 (2018)

Can do same analysis for system S
coupled to an ‘environment’ E.

(Can integrate out the environment -
or look at system-bath correlations
and/or entanglement).




DYNAMICS of ENTANGLEMENT CORRELATORS

‘Schwinger-Dyson’ hierarchy of eqtns of motion for all the correlators

Start from the general result: thd;ps = [Hs, p3] S
Now suppose a Hamiltonian of g, = Z H°+ 1 Z V.. '\
‘pairwise cell interaction’ form Y
JEA, t;&JEA [\
so that: th,ﬁAn = [‘HA;.’ ;(_)An] + Z t{kz [ng, ﬁA_.,U{f}]) A
t¢A, JEA,

Application to QUBITS

Hamiltonian: H = Z_h GI+ZZ ;w LoV

i=l j<i

We then get a hlerarchy of egtns of motion for the entanglement correlators:

%(l_[o,f#i) — Zg#iavh?<o'iv l_[ o'jf) +Zzeﬂaavvlc;l<o,£ o, 1_[ o,;‘;‘)

ieA ieA jeA\{i} icA t¢A jeA\{i}

+ Z Z SﬂxavV“M;< o; l_[ o,;k)

ieA jeA\li} ke A\{i,j}

Like any such hierarchy (Schwinger-Dyson,
BBGKY, etc.) this is awfully intimidating.

NB - All Entanglement Withesses can be written as "¢ of these correlators !



We get a little intuition by looking at the lowest orders: _
Interaction

i i d ~ ) ~
1-qubit dynamics: Z(.r;l) =(h; +V) x (o) with V= Z Vl‘?(o}) with other

£#£1 qgubits
2-qubit dynamics: This couples pairs of qubits to triplets of them
d Q o i"': “ﬁ“’.r ﬁ ,u_,
dt 0'1#’10'2“'2 Z gti B h“ ( ﬁ )_I_ V12 J Z )
J#£j'=1,2 £#£1,2

ENTANGLEMENT CORRELATOR SUPERVECTOR: The components of this
vector are ALL POSSIBLE correlation functions for a system.

Example: pick a 2-qubit system - there are 15 such correlators.
The supervector X is

Eqgtn. of motion: diX My (linear

) ODE!)
(0 (r1)
y T
?\ (le) written out: — (T2)
Xi (i) dt (71 ® 72)
Xs <’2y) (T1) L, 0 Uy, (11)
X=|x|=| &) |=| = |lo L, U,|| @
X7 (‘L’zz) (11 ® 12) Up1 Uy L, (11 ® 12)
X X_x
_8 (rl Tz) Crucial Point: the matrix M is in
\ : ) {rfrzy) general extremely SPARSE
\ : } - Solution to eqgtns of motion



EXACTLY SOLVABLE EXAMPLE

A really simple show some of what
happens (later on we look at a

n=0

more complex ‘Real World’ example).

We pick the Hamiltonian (a
dumbed down ‘central spin
model’):

H = 30T + E swioi T
ieB
with initial condition:

p(0) = 3(1+7)s
and look at the =
n+1 spin correlator: <T ‘T:Z>
i—1
Parameters are: '

= 0.05A0, N =100

Colour coding:

AT AP (T

The results show correlations
‘cascading’ towards higher
numbers of entangled spins.

n=5

n=30

n=35

(r)

o & § B B .




The REAL WORLD

"A theory is not a theory until it produces a number” R.P. Feynman (Lectures on Physics, 1965)

Only wimps specialize in the general case. Real scientists pursue examples. MV Berry: Ann NY Acad Sci 755, 303 (1995)

We will look at

QUANTUM ISING SYSTEMS

LiHo, Y, .F, Fe, MOLECULE




CORRELATIONS in Fe-8

1(c)

Histogram of hyperfine
couplings in Fe-8 for

H, Fe nuclei
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Below 0.3K this entire molecule behaves
like a qubit, with effective Hamiltonian

Ho (’?_) (Ao’?_m + Eoé\_z)

However the qubit couples to 215 nuclear
spins inside the molecule (H, O, Br, N, Fe)

Coupling strengths: 1-100 MHz (50 uK-5 mK)

0.015

0.01 |-

PREDICTIONS for entanglement
correlators in the Fe-8 molecule

Here we show:
(Pojop) =(rYojo]):
(rofo]) = (r*ala?)

for 2 of the 120 protons in Fe-8
(amongst the 213 nuclear spins)

('m'ia'j)

=0.01 |-

-

-0.015
0

t (ms)

Quantities like this will be a future topic for experimentalists — we are
entering a new era of multipartite entanglement - aka qguantum computation



The LiHo, Y, F, System

(1) KEY THEORETICAL FACTS ’ ‘

Ignoring Nuclear Spins & phonons, we have effective spin-8
Ho ions, with a very complicated crystal field (see figure).

At low energy (<< 10K) we can truncate to Ising doublet states,
with Hamiltonian _ 2777
H= =Y Virin ~ So(H)Y
LJ -80 -
Dipolar interaction strength: |VZZ ~ (.3 K (for nearest neighbor pair)

Thus typical dipolar coupling energy scale is ~ 1-1.5K
Without nuclear spins, ‘tunneling’ energy is Ay~ Y(wgH | )?/Q, 160-
with ‘Q'O = 10.5 K -200]

=120 -

Effect of nuclear spins is profound 240
H
Each Ho nuclear spin has [ = 7/2 o, (1)
Each electronic Ising level split into 8 states.
b b
—1n - — ) ] ] .
— . One cannot flip an Ising spin without
|—€: —}7* also flipping the nuclear spin through
L — e 6 intermediate states. This is very
a a hard!
) . _ 7.7 Should radically alter both phase
Bare hyperfine coupling: Hye = A;> ; 1; +J; diagram & the dynamics.
Bare hyperfine coupling is huge - separation
“ Phys Rev B78 054438 (2008)

Hyperfine energies span a range ~ 1.4K



(2) EXPECTED LOW-ENERGY PHYSICS A E'_\__,_
Imagine some finite quantum system, with a i
\

coupling constant g we can vary. We can get

an ‘avoided crossing’, where the 1st excited \
state |1> and ground state |0> approach each il

other around g = g,

Tl

\ ’
I
LY P

‘\ . ’
\Classical /
\ s

!

]
‘) Quantum

LY L
\r

A
Quantum i

For some systems, this close approach between |1>
& |0> persists as we go to the “thermodynamic limit”.
In this limit the gap goes to zero, at the “Quantum
Critical Point” (QCP), where we have a Quantum
Phase Transition.

Quantum Annealing & Adiabatic Quantum Computation
involve a slow passage through the QCP.

Classic Example: QUANTUM ISING MODEL

The big question is: will the coupling
to the spin bath of nuclear spins mess
up the Quantum Phase Transition?



(2) KEY EXPERIMENTAL FACTS 60-2
! LiftoF, In dilute systems 401 g
Paramagnet (LiHo, Y, F, with x << 1) zo_g
P ' the hysteresis & &
z relaxation controlled 0-
®f  Ferromagnet by cross-relaxation via dH/dt<0
nuclear spins (with 13 150 -75 ubH (m';"l? 150 235
T R R different transitions 2=
° o T":Q H e R. Giraud et al., PRL 87, 057203 (2001)
a , PRL 91, 257204 (2003)
The quantum phase transition
exists - transition line strongly i
influenced by nuclear spins. Looking for Quantum Annealing

Is found - this was
the soft mode the 1st experimental

observation of this

M Neutron scattering O A AR
£o03 experiments are Zoso
g’fa.zz designhed to see o2sf
% low-E excitations poli
Ehe 3

- e . " w —w Butwhereis the =

: Field [kOe] )
Q=(h,0,0) soft mode? This

H.M. Ronnow et al., Science 308, 389 (2005) one i S GAP P E D

¥ (cm3/mol Ho)

of
0 10 20 30 40 50
Time (Hours)

Preliminary conclusion from this expt — a spin bath
. . J. Brooke et al.,
gaps the soft mode, leads to new kind of transition Science 284, 779 (1999)




IN SEARCH OF THE SOFT MODE:
LOW-ENERGY EXCITATIONS in LiHoF,

The full effective low-energy Hamiltonian is

Transverse field
Zeeman coupling

‘/potential / 1 —
H = Z Ve(Ji) — gLpB Z B, J; — §JD Z Dy Ji I}

1#]
1 — — — —
+ §Jnn E Ji . Jj + A Ez Ii - Jj

.. -—
Exchange coupling / (27)
between Ho spins

which we recall gives the truncated “interacting qubit” Hamiltonian

1
7

Dipolar coupling

Crystal field :
between Ho spins

Hyperfine coupling
to Ho nuclei

1#£]
Interaction between Effective Hyperfine coupling
Ising spins transverse field to Ising spins

with characteristic energies

Typical dipolar coupling energy scale: ~ 1-1.5K
Hyperfine energies span a range ~ 1.4K
Effective transverse field A is varied in experiments



()]

SINGLE ION EXCITATIONS Electronic Levels Split into
| Multiplets by 1=7/2 nucleus//7~

v

y 4
With the known crystal field ol 77
Parameters and hyperfine -
couplings for the Ho ions in the §3
system, we find the 15 lowest S 51
energy modes (Ising doublet _
split by hyperfine coupling 1F
0 :
0 1 2 3 4 5
B, (T)
8 -
If we now add in the dipolar coupling
between Ising spins in a very naive
uniform mean field approximation,
Hyp = — ZVO(T)TZ — AT + Hpyp we get the picture shown at left
2 1#]
—
0 1
0 2 4 6



COLLECTIVE EXCITATIONS of ENTIRE SYSTEM

The true collective modes are coherent extended wave modes.
How do we find theoretical expressions for them?

The Random Phase Approximation (RPA) does this by ignoring
iInteractions between collective modes - to give a propagator:

ng Zn>m |Cmn|2pmn2Enm l-.[t>s;énm (Etgs - (iwf)z)
Hn>m(E1%m - (iwr)z) - Vk En>m |cmn|2Pmn2Enm Hts;ﬁmn(Egs - (iw‘!‘):‘))

~

RPA Spectrum Sums are over all the different
- . mean field single ion states

7
° k\/
5F | Q: Why should RPA work?

A: Renormalization group
calculations show that
intermode coupling is
weak at low energies

G(k,iw,) =

The mode seen by neutron
Scattering experiments !

0 : ' RD McKenzie, PCE Stamp,
0 2 4 6 Phys Rev B97, 214430 (2018)




LOW-ENERGY COLLECTIVE MODES Low Energy Modes

1.5

Now let’s focus on low energies.
At right, the zero temperature modes

Energy (K))

Energy (K)

Lolenergy Modesl B.(T)
02}
We show the frequencies
0.15 12 & spectral weights for
0l the different low energy
ol transitions, as they would
01 =2 be seen in experiment.
g °
£ 4}
005 2 These have now
° been seen in
0 experiment (see
0

talk of Silevitch)




CONCLUSIONS

- One can characterize Multiparticle states & multi-qubit entanglement

- One can solve for their dynamics - this opens up a new way of doing
many-body physics

- Application to real world systems like Fe-8 and LiHo, Y, F, is feasible

- LiHo, Y, F, is the archetypal quantum critical system (showing
guantum annealing). But where is the soft mode?

- RPA theory shows it should be there, as one of 15 different
‘electronuclear’ modes.

- EXxperiments have now found them

This will have important implications for real world
guantum computers - which also couple to spin baths
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