Ultra-long coherence times of spin-orbit qubits

J. Salfi Asst. Prof.

Dept of Electrical and Computer Eng. The University of British Columbia

Quantum Information: Quo Vadis?

November 13, 2019

Kobayashi, Salfi, van der Heijden, Chua, Culcer, House, Johnson, McCallum, Riemann, Abrosimov, Becker, Pohl, Simmons, Rogge, arxiv: 1809.10859.

Quantum Computing

Aim: Scalable system of atom-based qubits [this talk]

Long coherence times 🔽 High fidelity single-qubit operations 🚺

High fidelity long-distance deterministic multi-qubit operations

Frontiers: Building large systems with above properties Hybrid quantum systems

Aim: Problem-specific success with quantum simulators [a different talk] Special purpose problems to address ...Ideally that are hard for trapped ion and superconducting qubits Fermions [1,2] are hard to simulate using most systems

[1] Salfi et al, Nature Comms 2016 [2] Hensgens et al, Nature 2017

THEUNIVERSITY OF BRITISH COLUMBIA

What is special about 28Si?

Solid-state system with among the longest coherence times available

Donor ensembles $T_2 \sim 10 \text{ ms plus}$

What is special about 28Si?

Solid-state system with among the longest coherence times available

Tyryshkin et al, Nature Mat, 2011

UNIVERSITY OF COLUMBIA

Single donor $T_2 \sim 100 \text{ ms}$

Muhonen et al, Nature Nano, 2014

What is special about 28Si?

Solid-state system with among the longest coherence times available

Tyryshkin et al, Nature Mat, 2011

Muhonen et al, Nature Nano, 2014

Single quantum dot $T_2 \sim 30 \text{ ms}$

Veldhorst et al, Nature Nano, 2014

Electrical and Computer Engineering

THE UNIVERSITY OF BRITISH COLUMBIA

Donors $T_2 \sim 100 \text{ ms}$

Gates Gates SiO₂ Si

Quantum dots $T_2 \sim 30 \text{ ms}$

Muhonen et al Nature 2014

Veldhorst et al Nature Nano 2014

Donor qubit measurement (spin to charge conversion) Watson et al, Science Advances, 2016 $p_{\rm e} = 2 \times 10^{-3}$

 $\begin{array}{ll} \mbox{High accuracy single qubit gates (magnetic resonance)} \\ \mbox{Dehollain et al NJP 2016} \end{array} p_{\rm e} = 5 \times 10^{-4} \end{array}$

Two-qubit gates (exchange interaction) Huang et al Nature 2019 $p_e \sim 4 \times 10^{-2}$

Challenges: short-range interactions: electric noise, circuit density

THE UNIVERSITY OF BRITISH COLUMBIA

Donors $T_2 \sim 100 \text{ ms}$

Gates SiO₂

Ellipsoids

Direct quantum state measurements

Salfi Nature Materials 2014

Probability envelope

Donor 1

Muhonen et al Nature 2014

Donor 2

Probability envelope

g

Ellipsoids

Scalability

Objective

Coherence of atomic qubits in ²⁸Si

- Long-range noise-insensitive interconnects
 - I. Quantum electrodynamics (microwave photons)
 - 2. Acoustic phonons
 - 3. Capacitive interactions

How to accomplish this?

Activate the electric dipole for spin Maintain qubit coherence

Why is this hard in Silicon?

Si electron spin has weak intrinsic coupling to electric fields Mechanisms to engineer coupling this usually lead to decoherence

Electric Control

Intrinsic electric dipole: Electric field E(t) moves electron, and itexperiences time-varying B(t) [special relativity]Thomas, Nature 1926Strong spin decoherence [1-6] $T_2 \sim 0.1$ to 1 μ sFor electrons in Si, the effect is far too weak

[1] Nowack et al Science 2007[2] Nadj-Perge et al Nature 2010

[3] Maurand Nature Comm 2016[4] Watsinger Nature Comm 2018

[6] Hendrickx, arxiv: 1904.11443

Artificial electric dipole? E(t) moves electron x(t), B(x(t)) from magnet

First demonstrated in GaAs ^[7] Suppressed coherence for Si [9,10]

[7] Pioro-Ladrière et al Nature Physics 2008[8] Kawakami et al Nature Nanotech 2014

THE UNIVERSITY OF BRITISH COLUMBIA [9] Mi et al Nature 2018[10] Samkharadze et al Science 2018

Electrical and Computer Engineering

 $T_2 \sim 1 \ \mu s$

THE UNIVERSITY OF BRITISH COLUMBIA

Long-ranged interactions 2Qbit gate with phonons Long relaxation times

Ruskov PRB 2013

 $|e+\rangle$ $|e-\rangle$ $|\Psi_{m_J}|$ + qubit $|\Psi_{\pm 1/2}\rangle$

> from strain Δ

THE UNIVERSITY OF BRITISH COLUMBIA

Long-ranged interactions 2Qbit gate with microwave photons Long coherence times

Salfi, Mol, Culcer, Rogge PRL 2016 **Salfi**, in IOP Quantum Nanotechnology Roadmap (2019, submitted)

Spin-3/2 system in silicon, with electric quadrupole

Si valence holes, J=3/2 and L.S

Spin-3/2 system in silicon, with electric quadrupole

Si valence holes, J=3/2 and L.S

Spin-3/2 system in silicon, with electric quadrupole

Electrical and

Computer

Engineering

ece

Objective: Investigate and engineer hole spin coherence in Si:B atoms ²⁸Si, strain to engineer coherence and relaxation

Methodology: Planar superconducting resonator Technology to couple/measure/control superconducting qubits We use NbN rather than Aluminum (tolerates **B** field)

Kobayashi, **Salfi** et al, arxiv: 1809.10859

Electrical and

Computer

Engineering

Superposition preparation

Apply X($\pi/2$) pulse (input)

Refocusing

After time t, apply $X(\pi)$ pulse

Measurement

 $hf = g^* \mu_B B$ f = 6.6 GHz

After time 2t, refocusing occurs, photons can be emitted into cavity

Strained sample with m_J=1/2 eigenstates and J=3/2 has longer lifetime These states are time-reversal symmetric

Change in β from ~1 to > 2?

 T_c =correlation time of the fluctuator is changing

Kobayashi, **Salfi** et al, arxiv: 1809.10859

Strained sample: $T_2=0.9$ ms, $\beta=2.45$

Exponent β =2.45 Spectral diffusion

Dynamical decoupling $T_{2,CPMG} = 9.2 \text{ ms}$

Kobayashi, **Salfi** et al, arxiv: 1809.10859

Strained sample with m_J=1/2 eigenstates and J=3/2 has longer T₁ Reduced spin-phonon coupling

10 ms T_{2CPMG} is a close to T_1 -limited spin coherence time T_1 reasonably long but can be increased further

Kobayashi, **Salfi** et al, arxiv: 1809.10859

this work

Comparison to state-of-the-art

System	Т _{2Н}	T _{2CPMG}
Si:P e- [1]	4 ms	-
Si:P e- [2]	0.95 ms	~100 ms
Si e- QD [3]	I.2 ms	~28 ms
Si h+ QD [4]	0.25 <i>µ</i> s	-
Si:B h+ no strain	23 µs	-
Si:B h+ strain	0.9 ms	9 ms

~100 ms T₂ of electrons no electric dipole

Tyryshkin Nature Mat 2011
 Muhonen Nature Nanotech 2013
 Veldhorst Nature Nanotech 2014
 Maurand Nature Comms 2016

Kobayashi, **Salfi** et al, arxiv: 1809.10859

this work

Comparison to state-of-the-art

System	Т _{2Н}	T _{2CPMG}
Si:P e- [1]	4 ms	-
Si:P e- [2]	0.95 ms	~100 ms
Si e- QD [3]	I.2 ms	~28 ms
Si h+ QD [4]	0.25 <i>µ</i> s	-
Si:B h+ no strain	23 µs	-
Si:B h+ strain	0.9 ms	9 ms

~0.25 μ s T_2 of hole QD with electric dipole

[1] Tyryshkin Nature Mat 2011
[2] Muhonen Nature Nanotech 2013
[3] Veldhorst Nature Nanotech 2014
[4] Maurand Nature Comms 2016

Kobayashi, **Salfi** et al, arxiv: 1809.10859

in the second

Comparison to state-of-the-art

System	Т _{2Н}	T _{2CPMG}
Si:P e- [1]	4 ms	-
Si:P e- [2]	0.95 ms	~100 ms
Si e- QD [3]	I.2 ms	~28 ms
Si h+ QD [4]	0.25 µs	-
Si:B h+ no strain	23 µs	-
Si:B h+ strain	0.9 ms	9 ms

Si:B holes

- ~ I ms T_2
- ~ 10 ms T_{2CPMG} with electric dipole

[1] Tyryshkin Nature Mat 2011
[2] Muhonen Nature Nanotech 2013
[3] Veldhorst Nature Nanotech 2014
[4] Maurand Nature Comms 2016

Intrinsic electric dipoles are compatible with long coherence times 10⁴ to 10⁵ times improvement over previous spin-orbit systems

Kobayashi, **Salfi** et al, arxiv: 1809.10859

Electrical and Computer Engineering

this work

Conveniently, T_1 is a good measure of the strain-induced gap

THE

BRITISH

COLUMBIA

UNIVERSITY OF

Kobayashi, Salfi et al, arxiv: 1809.10859

Electrical and

Computer

Engineering

Direct strain measurement by Cryo-XRD

Strain inhomogeneity simulation

Si:B devices : single and coupled atoms

Single-atom transistor

van der Heijden et al, Nano Letters 2014

Gate-based spin readout

van der Heijden et al, Science Advances 2018

Summary

Summary of experiment: Holes in 28Si

A J=3/2 system nearly as coherent as a S=1/2 (28Si) or S=1 (Diamond)

Nontrivial: L.S coupling

10⁴ to 10⁵ coherence improvement over other spin-orbit systems Strain increases T_1 by reducing spin-lattice coupling Strain increases T_2 by reducing sensitivity to electric noise Opportunities: long-range coupling, electric control + coherence New experiments

CQED : deterministic gates, cavity optimized for atom qubits Aim: 5 MHz spin-photon coupling, <1 kHz linewidth, sweet spot

> Kobayashi, **Salfi** et al, arxiv:1809.10859 van der Heijden et al, Science Advances, 2018 **Salfi** et al, PRL 2016

Thank you!

@UNSW

Takashi Kobayashi Cassandra Chua Sven Rogge

Materials

H Riemann N Abrosimov P Becker HJ Pohl

New Lab @ UBC (QMI)

Theory Dimi Culcer (UNSW) Bill Coish (hyperfine) (McGill)

B Johnson (Melbourne) J McCallum (Melbourne)

Kobayashi, **Salfi** et al, arxiv:1809.10859 van der Heijden et al, Science Advances, 2018 **Salfi** et al, PRL 2016

Electrical and Computer Engineering

THE UNIVERSITY OF BRITISH COLUMBIA

Thank you!

@UNSW

Takashi Kobayashi Cassandra Chua Sven Rogge

Materials

H Riemann N Abrosimov P Becker HJ Pohl

Postdoctoral openings

Hybrid spin-3/2 devices"
 "Quantum simulators"

Theory Dimi Culcer (UNSW) Bill Coish (hyperfine) (McGill)

B Johnson (Melbourne) J McCallum (Melbourne)

Kobayashi, **Salfi** et al, arxiv:1809.10859 van der Heijden et al, Science Advances, 2018 **Salfi** et al, PRL 2016

Engineering hole spin coherence

Comparison: same T_1 , better T_2 for time-reversed system

Kobayashi, **Salfi** et al, arxiv: 1809.10859

