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Quantum annealing (QA)
A heuristic method that harnesses phase transitions in quantum spin systems: Si → σz
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Superconducting circuit implementation

I Bistable rf SQUIDs act as �ux qubits and monostable rf SQUIDs act as tunable
couplers.

H = Hquantum +Hclassical = −Γ(s)∑
i

σx
i + J (s)

[
∑

i
hiσ

z
i + ∑

<i,j>
Jijσ

z
i σz

j

]

Harris et al. Phys. Rev. B, 82 024511 (2010).
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Scalable general-purpose QA processor

Bunyk et al., Trans.Appl.Supercond. 24, 1700110 (2014).
Whittaker et al., J.Appl.Phys. 119, 014506(2016).
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Annealing a single qubit

bias = 0
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8-qubit ferromagnetic chain

minimum
gap
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Example results: Jij = 0.2

quasistatic
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Cubic lattice problems

4 knobs to tune problem hardness:
I System size L× L× L.
I FM disorder density p.
I Energy scale 0 <

∣∣Jij
∣∣ < 1.

I Number of missing sites.

L→coarse knob, p→�ne knob
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Example results: L = 6, p = 0.35

11 / 13



Copyright © D-Wave Systems Inc.

Example results: L = 6, p = 0.35

11 / 13



Copyright © D-Wave Systems Inc.

Example results: L = 6, p = 0.35

11 / 13



Copyright © D-Wave Systems Inc.

Example results: L = 6, p = 0.35

11 / 13



Copyright © D-Wave Systems Inc.

Is coherence advantageous?

co
h
e
re
n
t quasistaticdecoherent

12 / 13



Copyright © D-Wave Systems Inc.

Is coherence advantageous?

co
h
e
re
n
t quasistaticdecoherent

12 / 13



Conclusions



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)

I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)

I quasistatic quantum annealing
I The best performance on genuinely hard spin glass problems is seen near the

CQA/DQA boundary.
I The presence of di�erent dynamical regimes will change the perceived scaling

of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13



Copyright © D-Wave Systems Inc.

Conclusions

I New fast anneal tools have revealed three dynamical regimes within existing
D-Wave QPUs:

I coherent quantum annealing (CQA)
I decoherent quantum annealing (DQA)
I quasistatic quantum annealing

I The best performance on genuinely hard spin glass problems is seen near the
CQA/DQA boundary.

I The presence of di�erent dynamical regimes will change the perceived scaling
of QA.

Quo vadis?
I Higher coherence QPUs.
I Comparison to dynamical models.

13 / 13


	Quantum annealing (QA)
	QA of single qubits
	QA of multi-qubit systems
	Conclusions

