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Motivations
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➤ Quantum Mechanics provides consistent predictions on the probability 
distribution of measurement results … but not any particular path of outcomes.

➤ Classical General Relativity generically leads to singularities inside black holes 
and at the beginning of the universe: Penrose-Hawking Singularity Theorems.



Testing QM and Gravity in the Lab …
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➤ Collapse Models, which “objectively” collapse the quantum state of the universe, 
including “Gravity Decoherence”. 

➤ Testing quantum nature of gravity. Can we formulate gravitational interaction 
classically? 

➤ Alternative formulations of quantum gravity, e.g., the Correlated World Line 
(CWL) theory. [Partly motivated by gravity decoherence] 

➤ Collaborators 

➤ Bassam Helou (Caltech) 
➤ Sabina Scully, Bram Slagmolen and David McClelland (ANU) 
➤ Philip Stamp and Jordan Wilson-Gerow (UBC)



Collapse Models
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One particular path is somehow 
chosen; wave function of the 
universe collapsed by an 
external agent

x

ψ(x)

x

ψ(x) localize randomly 
according to |ψ(x)|2

Proposed by Ghirardi, 
Rimini and Weber, studied 
extensively by Adler, Bassi, 
Diosi, et al. 
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a set of random white forces acting on a set of variables 
will cause diffusion in linear systems

➤ Lindblad Master Equation: modeling the collapse process.

➤ Can be understood in two steps

➤ Can be constrained in weak force measurement experiments 

➤ micro-cantilevers, gravitational-wave detectors, torsional pendulum 
experiments. 



Continuous Stochastic Localization
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matter distribution in our space-time 
being measured by external observers 

that enter via an extra dimension
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Each particle sources Gaussian packet (scale rCSL) 
the total field m(s) gets measured independently 
at different locations, causing decoherence strength 

characterized by λCSL

superpositions separated by less than rCSL 
does not undergo decoherence 

those separated by larger distance will 
undergo decoherence.
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[Ĥ0, ⇢̂] �
1

2~2

X

jk

⇤ jk[L̂ j, [L̂k, ⇢̂]] (1)

Dynamically, this corresponds to adding the following term
X

j

F j(t)L̂ j (2)

into the Hamiltonian, with F j stochastic forces that have the
following form of correlation functions:

hF j(t)Fk(t0)i = ⇤ jk�(t � t0) . (3)

In the frequency domain, these forces have white cross spec-
tra. This is consistent with the fact that Master Equations
model Markovian processes. In the single-sided convention
for spectral density,

S f j fk = 2⇤ jk (4)

In other words, ⇤ jk is 1/2 the single-sided cross spectrum,
and is equal to the double-sided cross spectrum. Is this true?
Needs checking. Let us emphasize that even though we have
used the master equation, this is simply to describe the e↵ect
of the additional forces due to the collapse, which are white.
In the proposed experiments, the test masses will be be un-
der colored force and sensing noise, in general. We will sim-
ply extract the white spectrum of the collapse force from the
Lindblad operator, and then combine this spectrum with the
spectra of other sources of noise.
Joint formulation of Collapse Models.– It is possible to for-
mulate both the CSL and DP models in terms of a continuous
measurement of a series of mass-density-induced fields. This
adds an Lindblad superoperator into the master equation:

L⇢̂ = �
CAB

2~2

Z
d3

s

h
�̂A(s),

h
�̂B(s), ⇢̂

ii
(5)

Here the capital A, B, are indices that indicate the fields that
are measured, while ↵AB gives a correlation at which they are
measured. Furthermore, in both models, �̂A(s) are determined
by the matter density operator µ̂(s). Note that the fields at all
spatial locations are measured, in an uncorrelated way. One
can incorporate a correlation structure into the spatial mea-
surements, by altering the dependence of �A on µ̂. There
could be a temporal correlation — that will in general intro-
duce a modification to the system’s dynamics, and we shall
not consider that in this paper.

For the CSL model, � is a scalar field. We have

�̂(s) =
Z
µ̂(z)e�(s�z)2/(2r2

CSL)d3
z (6)

and

CCSL =
�CSL

⇡3/2r3
CSLamu2

(7)

For the DP mode, � is a vector field, the gravitational accel-
eration induced by the macroscopic object, given by

� j(s) = �
Z

Gµ̂(x)
s � x

|s � x|3
d3

x , C jk
DP =

~

16⇡G
� jk (8)

We note that for point particles, µ̂ contains � functions, which
leads to divergence of � j(s). This has been treated by adding
a cut-o↵ scale in Eq. (8). Both the CSL and the DP formulas
need double checking.
Decoupling between CM and internal motions.– For a macro-
scopic object, it is necessary to separate its internal motion
and its CM motion, in a similar fashion as done by Ref. [1].
Let us write the entire object’s Hilbert space H as H =

HCM ⌦ Hint. Let us first suppose the CM motion is decou-
pled to the internal motion, so we have

⇢̂ = ⇢̂CM ⌦ ⇢̂int (9)

The fact that our Lindblad term has a translation symmetry
does preserve this decoupling. Let us evaluate

trintL(⇢̂CM ⌦ ⇢̂int) (10)

Using translational invariance, let us note that if we have a
single scalar field, then we can write it down as

�̂(s) = �̂int(s � x̂) (11)

where �̂int(s) is the field evaluated at s if CM were at 0. Here
x̂ is the operator for the CM position. For simplicity, let us
simply consider a 1-D motion first. Let us also compute the
generating function representation of the Lindblad operator,
i.e.,

LJ(µ, ⌫) = tr
h
eiµx̂+i⌫ p̂

L⇢̂
i

= �
C

2~2

Z
d3

s tr
n
eiµx̂+i⌫ p̂

h
�̂int(s � x̂), [�̂int(s � x̂), ⇢̂CM ⌦ ⇢̂int]

io

(12)

This gives

LJ(µ, ⌫) = �
C

2~2

D⇥
G(x̂ + ⌫, x̂ + ⌫) +G(x̂, x̂)

�G(x̂, x̂ + ⌫) �G(x̂ + ⌫, x̂)
⇤
eiµx̂+i⌫ p̂

E
(13)

Here

G(x, y) =
Z

ds tr
h
�̂int(s � x)�̂int(s � y)⇢̂int

i
(14)

and we have G(x, y) = G(y, x) and G(x, y) = G(x � z, y � z).
We can therefore write

LJ = �
C

2~2 F(⌫)J(⌫) (15)

where

F(⌫) = 2
Z

ds tr
h
�̂int(s)

h
�̂int(s) � �int(s + ⌫)

i
⇢̂int
i

(16)

values of a field continuously monitored

2

equation:

˙̂⇢ =
i
~
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Dynamically, this corresponds to adding the following term
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into the Hamiltonian, with F j stochastic forces that have the
following form of correlation functions:

hF j(t)Fk(t0)i = ⇤ jk�(t � t0) . (3)

In the frequency domain, these forces have white cross spec-
tra. This is consistent with the fact that Master Equations
model Markovian processes. In the single-sided convention
for spectral density,

S f j fk = 2⇤ jk (4)

In other words, ⇤ jk is 1/2 the single-sided cross spectrum,
and is equal to the double-sided cross spectrum. Is this true?
Needs checking. Let us emphasize that even though we have
used the master equation, this is simply to describe the e↵ect
of the additional forces due to the collapse, which are white.
In the proposed experiments, the test masses will be be un-
der colored force and sensing noise, in general. We will sim-
ply extract the white spectrum of the collapse force from the
Lindblad operator, and then combine this spectrum with the
spectra of other sources of noise.
Joint formulation of Collapse Models.– It is possible to for-
mulate both the CSL and DP models in terms of a continuous
measurement of a series of mass-density-induced fields. This
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Here the capital A, B, are indices that indicate the fields that
are measured, while ↵AB gives a correlation at which they are
measured. Furthermore, in both models, �̂A(s) are determined
by the matter density operator µ̂(s). Note that the fields at all
spatial locations are measured, in an uncorrelated way. One
can incorporate a correlation structure into the spatial mea-
surements, by altering the dependence of �A on µ̂. There
could be a temporal correlation — that will in general intro-
duce a modification to the system’s dynamics, and we shall
not consider that in this paper.
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We note that for point particles, µ̂ contains � functions, which
leads to divergence of � j(s). This has been treated by adding
a cut-o↵ scale in Eq. (8). Both the CSL and the DP formulas
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[dE(x)/dx]
Padé
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3

spatial states of a macro-molecule, which eventually in-
terfere with each other. From the theoretical point of
view, under the rigid-body approximation the molecule
can be treated as a single particle satisfying the collapse
dynamics as given by Eq. (1). In this case, the collapse
rate � for a single nucleon has to be replaced by a rate
⇤ associated to the center of mass, which is a function of
�, enhanced by a geometric factor depending on the ge-
ometry and number of nucleons in the molecule. This is
the mathematical description of the amplification mech-
anism [5, 6, 8].

For a rigid body, when the wave function of the
molecule is delocalized more than its size, as it is the
case for the experiment under consideration, a reason-
able expression for ⇤ is [11, 25]:

⇤ =
nA

n(rC)

✓
mAn(rC)

m0

◆2

�, (4)

where n(rC) is the number of atoms (nuclei) contained in
a volume of linear size rC , while mA is the atomic mass,
nA is the number of atoms and m0 is the proton reference
mass.
The interference pattern – Collapse models predict a loss
of visibility, with respect to standard quantum mechan-
ics. This e↵ect can be used to set an upper bound on
the collapse parameters, and exclude a region of param-
eter space, where the parameters take too strong values.
Since we are interested in the order of magnitude, a �

2

minimization procedure to compare the theoretical pre-
dictions, computed using Eqs. (2), (3) and (4), to the
experimental data will su�ce. The outcome is reported
in Fig. 2.

The plot depicts two exclusion zones. The one at
the bottom comes from the requirement that the model
localizes macroscopic objects fast enough (shaded gray
zone). Specifically, using Eqs. (1), one imposes that the
o↵-diagonal elements of the density matrix ⇢(x, x0

, t) are
supressed fast enough. If this does not happen, then
the model fails to satisfy the fundamental requirement
for which it was first formulated. To be quantitative,
we required that a single-layered graphene disk of radius
' 0.01 mm (minimum resolution of the human eye) is
localized within ' 10 ms (perception time of the human
eye). The plot shows that according to our classicality
criterion the original GRW value for � is the lowest possi-
ble value (for rC ' 100 nm) for collapse models to explain
classicality. Clearly, this lower bound can be shifted also
by several orders of magnitude, depending on the chosen
criterion for classicality [23].

The exclusion zone at the top comes from compari-
son with the KDTL experiment in [3] (shaded red zone).
First we have considered the standard CSL model, which
depends only on � and rC . The exclusion zone is iden-
tified by the red line in Fig. 2. The border of the ex-
clusion zone highly depends on the shape and size of the

Adler

GRW

Far field

KDTL

Ref.[24]

Ref.[23]
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10-22
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λ
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FIG. 2: Parameter diagram for the CSL, dCSL and cCSL
models. The exclusion zone, given by the gray shaded zone
at the bottom (bordered by the red solid line), arises from
the requirement that collapse models become e↵ective for
macroscopic system. The red shaded zone at the top cor-
responds to the upper bounds set by the KDTL [3] experi-
ment discussed in the text. We have also reported the bounds
from the far field experiment [32, 33], given by the the dark
green exclusion zone, which are roughly 2 orders of magni-
tude weaker. For comparison we have included the bounds
from X-ray experiments [17], valid for the CSL model and
the cCSL model with frequency cuto↵ ⌦ � 1018Hz, given
by the light blue exclusion zone on the left, and the bounds
from LIGO, LISA Pathfinder and AURIGA [34], analyzed so
far for the CSL model only, given by the exclusion zones on
the right, shaded in light blue, light green and light red, re-
spectively. We have also included for reference, the GRW [8]
values (� = 10�16s�1

, rC = 10�7m) and the values pro-
posed by Adler [11]: (� = 10�8±2s�1

, rC = 10�7m) and
(� = 10�6±2s�1

, rC = 10�6
m). The dashed blue and purple

lines denote the KDTL bounds estimated using the analysis
from [23] and [24], respectively. We note that for values of rC
smaller than the size of the macro-molecule (' 10�8

m), the
bounds on � become less stringent.

molecule through the amplification mechanics given in
Eq. (4). In particular, the slope changes significantly
from rC = 10�10m (comparable to the atomic radius) to
rC = 10�8m (comparable to the molecular radius). The
slope of the lower bound instead changes at rC = 10�5

m

(the radius of the disk).

Next, we considered the dCSL model. Besides � and
rC , it depends also on the temperature T of the collapse
field and on the average noise field velocity parameter
u = (ux, uy, uz). These new parameters can be under-
stood by looking at the quantum linear Boltzmann equa-

[Bassi et al., 2016]  

[Helou, Slagmolen, McClelland and YC, 2016]

σDP < 4 × 10-14m

similar bounds from LISA pathfinder and 
Advanced LIGO

Collapse models can be further 
bounded, but we still need the 
microphysics underlying these 

collapses.
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If quantum information can pass from A to B through    , then gravity must be quantum. 
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However, directly confirming quantum information transfer via gravity is very hard. 
[Kafri & Taylor, 2014]
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Alternative point of view: 
If Gravity is classical, self-gravitating objects will not be completely quantum. 

[e.g., Feynman, Lectures on Gravitation, 1957]
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Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern
physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum
entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas
yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for
such a test based on the principle that two objects cannot be entangled without a quantum mediator. We
show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of
two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even
when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for
witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin
correlation measurements.

DOI: 10.1103/PhysRevLett.119.240401

Quantizing gravity is one of the most intensively pursued
areas of physics [1,2]. However, the lack of empirical
evidence for quantum aspects of gravity has lead to a debate
on whether gravity is a quantum entity. This debate
includes a significant community who subscribe to the
breakdown of quantum mechanics itself at scales macro-
scopic enough to produce prominent gravitational effects
[3–7], so that gravity need not be a quantized field in the
usual sense. Indeed it is quite possible to treat gravity as a
classical agent at the cost of including additional stochastic
noise [8–11]. Moreover, oft-cited necessities for quantum
gravity (e.g., the big bang singularity) can be averted by
modifying the Einstein action such that gravity becomes
weaker at short distances and small time scales [12]. Thus it
is crucial to test whether fundamentally gravity is a
quantum entity. Proposed tests of this question have
traditionally focused on specific models, phenomenology,
and cosmological observations (e.g., [2,13–16]) but are yet
to provide conclusive evidence. More recently, the idea of
laboratory probes (proposed originally by Bronstein
[17,18] and Feynman [19]) that emphasize the interaction
of a probe mass with the gravitational field created by
another mass [20–25], has started to take hold. However,
this approach does not yet clarify how the possible quantum
coherent nature of gravity can be unambiguously certified
in an experiment. In this Letter, we present the scheme for
an experiment that not only would certify the potential

quantum coherent behavior of gravity, but would also offer
a much more prominent witness of quantum gravity than
existing laboratory-based proposals.
We show that the growth of entanglement between two

mesoscopic test masses in adjacent matter-wave interfer-
ometers [Fig. 1(b)] can be used to certify the quantum
character of the mediator (gravitons) of the gravitational
interaction—in the same spirit as a Bell inequality certifies
the “nonlocal” character of quantum mechanics. We make
two striking observations that make the test for quantum
gravity accessible with feasible advances in interferometry:
(i) For mesoscopic test masses ∼10−14 kg (with which
interference experiments might soon be possible [26])
separated by ∼100 μm, the quantum mechanical phase
E τ=ℏ induced by their gravitational interaction (with E
being their gravitational interaction energy, and τ ∼ 1 s
their interaction time) is significant enough to generate an
observable entanglement between the masses; (ii) if we use
test masses with embedded spins and a Stern-Gerlach
scheme [27,28] to implement our interferometry, then, at
the end of the interferometry, the gravitational interaction of
the test masses actually entangles their spins which are
readily measured in complementary bases (necessary in
order to witness entanglement). Additionally, although our
approach is independent of the specifics of any quantum
theory of gravity (in the same spirit as using entanglement
to study the nature of unknown processes [29,30]), we
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Gravitationally Induced Entanglement between Two Massive Particles is Sufficient
Evidence of Quantum Effects in Gravity
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All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the
gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental
reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine
structure constant, which governs light-matter interactions. For example, detecting gravitons—the
hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals—is deemed
to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach
to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by
probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a
field) mediating entanglement between two quantum systems must be quantum. This argument is general
and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement
generated between two masses via gravitational interaction. By our argument, the degree of entanglement
between the masses is a witness of the field quantization. This experiment does not require any quantum
control over gravity. It is also closer to realization than detecting gravitons or detecting quantum
gravitational vacuum fluctuations.

DOI: 10.1103/PhysRevLett.119.240402

Contemporary physics is in a peculiar state. The most
fundamental physical theories, quantum theory and general
relativity, claim to be universally applicable and have been
confirmed to a high accuracy in their respective domains.
Yet, it is hard to merge them into a unique corpus of laws.
We still do not have an uncontroversial proposal for
quantum gravity. Some approaches are based on applying
a quantization procedure to the gravitational field [1], in
analogy with the electromagnetic field; some others are
based on “geometrizing” quantum physics [2], while others
modify both into a more general theory (e.g., string theory
[3]) containing both quantum physics and general relativity
as special cases. All of them are affected by acute technical
and conceptual difficulties [4–6].
There is, however, an even more serious problem.

Current proposals for quantum gravity lead to seemingly
untestable predictions [7,8]. On this ground, some have
even argued that quantizing gravity is not needed after all
[9] or that gravity may not even be a fundamental force
[10,11]. Ronsenfeld summarized the problem as follows:
“the incorporation of gravitation into a general quantum
theory of fields is an open problem, because the necessary
empirical clues for deciding the question of the quantiza-
tion of the gravitational fields are missing. It is not so much
a matter here of the mathematical problem of how one
should develop a quantum formalism for gravitation, but
rather of the purely empirical question, whether the
gravitational field—and thus also the metric—evidence
quantumlike features” [12].

How would one confirm experimentally that the gravi-
tational field has “quantumlike features”? A good starting
point, though not sufficient, is a thought experiment
Feynman proposed during the Chapel Hill conference on
gravity [13]. A test mass is prepared in a superposition
of two different locations and then interacts with the
gravitational field.
Then, the gravitational field and the mass would pre-

sumably become entangled (Feynman used different ter-
minology, but that is what a fully quantum treatment would
imply). To conclude that the field must be quantized,
Feynman proposed to perform a full interference of the
mass. If the mass did interfere, Feynman’s reasoning goes,
gravity would be quantum since remerging the two spatial
branches would then reverse the coupling to gravity,
confirming the unitary dynamics in quantum theory. Of
course, Feynman also acknowledged that quantum theory
could stop applying at a certain scale. This would then
presumably constitute a new law of nature—for instance,
see the existing “gravitational collapse” literature [9,14,15].
Even if successful in showing the full interference of a

single macroscopic mass, Feynman’s thought experiment is
not enough to conclude that the gravitational field is
quantum. This is because his proposed interference only
requires that the two spatial states of the mass acquire
different phases during the experiment. These phases could
simply be induced by interaction with an entirely classical
gravitational field, without ever requiring entanglement
between the mass and the field. There is indeed a long
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Quantum correlation of light mediated by gravity
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We consider using the quantum correlation of light in two optomechanical cavities, which are coupled to each
other through the gravitational interaction of their end mirrors, to probe the quantum nature of gravity. The
optomechanical interaction coherently amplifies the correlation signal, and a unity signal-to-noise ratio can be
achieved within one-year integration time by using high-quality-factor, low-frequency mechanical oscillators.
Measuring the correlation can test classical models of gravity, and is an intermediate step before demonstrating
the gravity-mediated entanglement which has a more stringent requirement on the thermal decoherence rate.

Introduction.—Constructing a consistent and verifiable
quantum theory of gravity is a challenging task of mod-
ern physics [1–3], which is partially due to the di�culty in
observing quantum e↵ects of gravity. This, to certain ex-
tents, motivates some theoretical models that treat gravity as
a fundamental classical entity [4–11] or being emerged from
some yet-to-known underlying microphysics [12–15]. Prob-
ing the quantum nature of gravity experimentally is there-
fore essential for providing hints towards constructing the cor-
rect model [16, 17]. Recently, there are two experimental
proposals about demonstrating gravity-induced quantum en-
tanglement between two mesoscopic test masses in matter-
wave interferometers [18, 19], motivated by an early sugges-
tion of Feynman [20]. The setup involves two interferom-
eters located close to each other and their test masses are
entangled through the gravitational interaction. There are
some discussions regarding whether the gravity-mediated en-
tanglement in the Newtonian limit proves the quantumness
of gravity or not [21–25], because the radiative degrees of
freedom—graviton, are not directly probed in these exper-
iments. Given the lack of experimental evidence, such ex-
periments are important steps towards understanding gravity
in the quantum regime. Interestingly, they are also sensi-
tive to gravity-induced decoherence models for explaining the
quantum-to-classical transition [26–31].

The key to demonstrate the entanglement is a low thermal
decoherence rate, so the quantum coherence from the gravi-
tational interaction can build up significantly. As shown by
Eq. (25) and also Appendix A, there is an universal require-
ment on the thermal decoherence rate that is independent of
the size of the two test masses:

�mkBT  ~G⇢ . (1)

Here �m is the damping rate and also quantifies the strength
of the thermal Langevin force according to the fluctuation-
dissipation theorem [32, 33]; kB is the Boltzmann constant; T
is the environmental temperature; G is the gravitational con-
stant; ⇢ is the density of the test mass. For test masses that are
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mechanical oscillators with resonant frequency !m, it implies

T
Qm
 1.5 ⇥ 10�18K

 
1 Hz
!m/2⇡

!  
⇢

19 g/cm3

!
, (2)

where Qm ⌘ !m/�m is the mechanical quality factor and a
density close to Tungsten or Gold is assumed. This require-
ment is beyond the state-of-the-art, and needs further experi-
mental e↵orts.

In this paper, we propose an intermediate step before
demonstrating the entanglement by using optomechanical de-
vices [34, 35] to realise gravity-mediated quantum correlation
of light, which is not constrained by Eq. (1). The setup is
shown schematically in Fig. 1. Two optomechanical cavities
are placed close to each other with their end mirrors (as the
test masses) interacting through gravity. Di↵erent from the
single-photon nonlinear regime studied by Balushi et al. [36],
we are considering the linear regime with the cavity driven
by a coherent laser, and having the light (optical field) and
the mirrors (mechanical oscillators) in Gaussian states. The
quantum correlation of light is measured by cross-correlating
the homodyne readouts of two photodetectors. With the sys-
tem being in a steady state, the signal-to-noise ratio (SNR) for
the correlation measurement grows in time. As shown later in
Eq. (18), the integration time for achieving a unity SNR is

⌧ ⇡ 1.0 year
 

n̄th/C
0.4

!  
!m/2⇡
1 Hz

!3  
106

Qm

!  
19 g/cm3

⇢

!2

, (3)

where n̄th is the thermal occupation number, and C is the op-
tomechanical cooperativity. To constrain the integration time

FIG. 1. Schematics showing the setup of two optomechanical cav-
ities with their end mirrors coupled to each other through gravity.
The quantum correlation of light is inferred by cross-correlating the
readouts of two photodiodes.
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When a massive quantum body is put into a spatial superposition, it is of interest to consider
the quantum aspects of the gravitational field sourced by the body. We argue that in order to
understand how the body may become entangled with other massive bodies via gravitational
interactions, it must be thought of as being entangled with its own Newtonian-like gravitational
field. Thus, a Newtonian-like gravitational field must be capable of carrying quantum information.
Our analysis supports the view that table-top experiments testing entanglement of systems
interacting via gravity do probe the quantum nature of gravity, even if no “gravitons” are emitted
during the experiment.
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We consider using the quantum correlation of light in two optomechanical cavities, which are coupled to each
other through the gravitational interaction of their end mirrors, to probe the quantum nature of gravity. The
optomechanical interaction coherently amplifies the correlation signal, and a unity signal-to-noise ratio can be
achieved within one-year integration time by using high-quality-factor, low-frequency mechanical oscillators.
Measuring the correlation can test classical models of gravity, and is an intermediate step before demonstrating
the gravity-mediated entanglement which has a more stringent requirement on the thermal decoherence rate.

Introduction.—Constructing a consistent and verifiable
quantum theory of gravity is a challenging task of mod-
ern physics [1–3], which is partially due to the di�culty in
observing quantum e↵ects of gravity. This, to certain ex-
tents, motivates some theoretical models that treat gravity as
a fundamental classical entity [4–11] or being emerged from
some yet-to-known underlying microphysics [12–15]. Prob-
ing the quantum nature of gravity experimentally is there-
fore essential for providing hints towards constructing the cor-
rect model [16, 17]. Recently, there are two experimental
proposals about demonstrating gravity-induced quantum en-
tanglement between two mesoscopic test masses in matter-
wave interferometers [18, 19], motivated by an early sugges-
tion of Feynman [20]. The setup involves two interferom-
eters located close to each other and their test masses are
entangled through the gravitational interaction. There are
some discussions regarding whether the gravity-mediated en-
tanglement in the Newtonian limit proves the quantumness
of gravity or not [21–25], because the radiative degrees of
freedom—graviton, are not directly probed in these exper-
iments. Given the lack of experimental evidence, such ex-
periments are important steps towards understanding gravity
in the quantum regime. Interestingly, they are also sensi-
tive to gravity-induced decoherence models for explaining the
quantum-to-classical transition [26–31].

The key to demonstrate the entanglement is a low thermal
decoherence rate, so the quantum coherence from the gravi-
tational interaction can build up significantly. As shown by
Eq. (25) and also Appendix A, there is an universal require-
ment on the thermal decoherence rate that is independent of
the size of the two test masses:

�mkBT  ~G⇢ . (1)

Here �m is the damping rate and also quantifies the strength
of the thermal Langevin force according to the fluctuation-
dissipation theorem [32, 33]; kB is the Boltzmann constant; T
is the environmental temperature; G is the gravitational con-
stant; ⇢ is the density of the test mass. For test masses that are
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mechanical oscillators with resonant frequency !m, it implies

T
Qm
 1.5 ⇥ 10�18K

 
1 Hz
!m/2⇡

!  
⇢

19 g/cm3

!
, (2)

where Qm ⌘ !m/�m is the mechanical quality factor and a
density close to Tungsten or Gold is assumed. This require-
ment is beyond the state-of-the-art, and needs further experi-
mental e↵orts.

In this paper, we propose an intermediate step before
demonstrating the entanglement by using optomechanical de-
vices [34, 35] to realise gravity-mediated quantum correlation
of light, which is not constrained by Eq. (1). The setup is
shown schematically in Fig. 1. Two optomechanical cavities
are placed close to each other with their end mirrors (as the
test masses) interacting through gravity. Di↵erent from the
single-photon nonlinear regime studied by Balushi et al. [36],
we are considering the linear regime with the cavity driven
by a coherent laser, and having the light (optical field) and
the mirrors (mechanical oscillators) in Gaussian states. The
quantum correlation of light is measured by cross-correlating
the homodyne readouts of two photodetectors. With the sys-
tem being in a steady state, the signal-to-noise ratio (SNR) for
the correlation measurement grows in time. As shown later in
Eq. (18), the integration time for achieving a unity SNR is

⌧ ⇡ 1.0 year
 

n̄th/C
0.4

!  
!m/2⇡
1 Hz

!3  
106

Qm

!  
19 g/cm3

⇢

!2

, (3)

where n̄th is the thermal occupation number, and C is the op-
tomechanical cooperativity. To constrain the integration time

FIG. 1. Schematics showing the setup of two optomechanical cav-
ities with their end mirrors coupled to each other through gravity.
The quantum correlation of light is inferred by cross-correlating the
readouts of two photodiodes.

ar
X

iv
:1

90
1.

05
82

7v
2 

 [q
ua

nt
-p

h]
  7

 M
ar

 2
01

9

show, in Supplemental Material [31], that off-diagonal
terms between coherent states (a signature of the quantum
superposition principle) of the Newtonian gravitational
field are necessary for the development of the entanglement
between the test masses.
Our proposal relies on two simple assumptions: (a) the

gravitational interaction between two masses is mediated
by a gravitational field (in other words, it is not a direct
interaction at a distance) and (b) the validity of a central
principle of quantum information theory: entanglement
between two systems cannot be created by local operations
and classical communication (LOCC) [38]. It can readily
be proved that, in the absence of closed timelike loops [39]
(i.e., under the assumption of validity of the chronology
protection conjecture [40]) and as long as the notion of
classicality itself is not extended significantly [41], LOCC
keeps any initially unentangled state separable. Translating
to our setting of two test masses in adjacent interferometers
any external fields (including the gravitational fields from
other masses around them) can only make LOs on their
states, while a classical gravitational field propagating
between the test masses can only give a CC channel
between them. These LOCC processes cannot entangle
the states of the masses. Thus it immediately follows that
if the mutual gravitational interaction entangles the state of
two masses, then the mediating gravitational field is
necessarily quantum mechanical in nature.

Entanglement due to gravitational interaction.—We first
consider a schematic version that clarifies how the states of
two neutral test masses 1 and 2 (masses m1 and m2), each
held steadily in a superposition of two spatially separated
states jLi and jRi as shown in Fig. 1(a) for a time τ, get
entangled. Imagine the centers of jLi and jRi to be
separated by a distance Δx, while each of the states jLi
and jRi is a localized Gaussian wave packet with widths
≪ Δx so that we can assume hLjRi ¼ 0. There is a
separation d between the centers of the superpositions as
shown in Fig. 1(a) so that even for the closest approach of
the masses (d−Δx), the short-range Casimir-Polder force
is negligible. Distinct components of the superposition
have distinct gravitational interaction energies as the
masses are separated by different distances and thereby
have different rates of phase evolution. Under these
circumstances, the time evolution of the joint state of the
two masses is purely due to their mutual gravitational
interaction, and given by

jΨðt ¼ 0Þi12 ¼
1ffiffiffi
2

p ðjLi1 þ jRi1Þ
1ffiffiffi
2

p ðjLi2 þ jRi2Þ ð1Þ

→ jΨðt ¼ τÞi12 ¼
eiϕffiffiffi
2

p
"
jLi1

1ffiffiffi
2

p ðjLi2 þ eiΔϕLRjRi2Þ

þ jRi1
1ffiffiffi
2

p ðeiΔϕRLjLi2 þ jRi2Þ
#
; ð2Þ

where ΔϕRL ¼ ϕRL −ϕ, ΔϕLR ¼ ϕLR −ϕ, and

ϕRL ∼
Gm1m2τ
ℏðd−ΔxÞ

; ϕLR ∼
Gm1m2τ
ℏðdþ ΔxÞ

;

ϕ∼
Gm1m2τ

ℏd
:

One can now think of each mass as an effective “orbital
qubit” with its two states being the spatial states jLi and
jRi, which we can call orbital states. As long as
1=

ffiffiffi
2

p
ðjLi2 þ eiΔϕLRjRi2Þ and 1=

ffiffiffi
2

p
ðeiΔϕRLjLi2 þ jRi2Þ

are not the same state (which is very generic, happening
for any ΔϕLR þ ΔϕRL ≠2nπ, with integral n), it is clear
that the state jΨðt ¼ τÞi12 cannot be factorized and is
thereby an entangled state of the two orbital qubits.
Witnessing this entanglement then suffices to prove that
a quantum field must have mediated the gravitational
interaction between them.
It makes sense to start with particles of the largest

possible masses, namely, m1 ∼m2 ∼10−14 kg for which
there have already been realistic proposals for creating
superpositions of spatially separated states such as jLi and
jRi [26]. Note that we are constrained to design an
experiment in which only the gravitational interaction is
active. This means that the allowed distance of closest
approach is d−Δx≈200 μm, which is the distance at
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FIG. 1. Adjacent interferometers to test the quantum nature of
gravity: (a) Two test masses held adjacently in superposition of
spatially localized states jLi and jRi. (b) Adjacent Stern-Gerlach
(SG) interferometers in which initial motional states jCij of
masses are split in a spin dependent manner to prepare states
jL;↑ij þ jR;↓ij (j ¼ 1, 2). Evolution under mutual gravitational
interaction for a time τ entangles the test masses by imparting
appropriate phases to the components of the superposition. This
entanglement can only result from the exchange of quantum
mediators—if all interactions aside gravity are absent, then this
must be the gravitational field (labeled h00 where hμν are weak
perturbations on the flat space-time metric ημν). This entangle-
ment between test masses evidencing quantized gravity can be
verified by completing each interferometer and measuring spin
correlations.
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Can gravity be “classical”?

5

kh⇤ < 1 (54)

n ⇠ n1 + n2E cos 2w0t (55)

S
GW

12
= g( f )SGW (56)
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wave packet attracted by its own potential
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a macroscopic crystal made up  
from atoms
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xCM xCM xCM
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ωCM
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phase space
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Quantum noise ellipse rotate at a different frequency: 
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peak quantum 
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W
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H. Yang et al., 2013
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Nonlinear QM in two steps: 

Ĥ(t, λ), λ = λ[ |ψ⟩]
Hamiltonian depends on quantum state

time

A B

instantaneous 
quantum state 

reduction

measurement
B will feel 
the effect 
right away!

Polchinski 1991

space

Nonlinear QM + Instantaneous State Reduction 
lead to superluminal communication

lig
ht co

ne

Ĥ(t, λA, λB)
λA = λA[ |ψA⟩cond], λB = λB[ |ψB⟩cond]

time

A B
space

Force at each location only depends on results 
within past light cone [Helou, 2018; Scully, in prep] 

Gravity as classical feedback!  
(Kafri & Taylor)

λA λB
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Quantum correlation of light mediated by gravity

Haixing Miao,1, ⇤ Denis Martynov,1, † and Huan Yang2, 3, ‡

1School of Physics and Astronomy, and Institute for Gravitational Wave Astronomy,
University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

2Perimeter Institute for Theoretical Physics, Waterloo, ON N2L2Y5, Canada
3University of Guelph, Guelph, ON N2L3G1, Canada

We consider using the quantum correlation of light in two optomechanical cavities, which are coupled to each
other through the gravitational interaction of their end mirrors, to probe the quantum nature of gravity. The
optomechanical interaction coherently amplifies the correlation signal, and a unity signal-to-noise ratio can be
achieved within one-year integration time by using high-quality-factor, low-frequency mechanical oscillators.
Measuring the correlation can test classical models of gravity, and is an intermediate step before demonstrating
the gravity-mediated entanglement which has a more stringent requirement on the thermal decoherence rate.

Introduction.—Constructing a consistent and verifiable
quantum theory of gravity is a challenging task of mod-
ern physics [1–3], which is partially due to the di�culty in
observing quantum e↵ects of gravity. This, to certain ex-
tents, motivates some theoretical models that treat gravity as
a fundamental classical entity [4–11] or being emerged from
some yet-to-known underlying microphysics [12–15]. Prob-
ing the quantum nature of gravity experimentally is there-
fore essential for providing hints towards constructing the cor-
rect model [16, 17]. Recently, there are two experimental
proposals about demonstrating gravity-induced quantum en-
tanglement between two mesoscopic test masses in matter-
wave interferometers [18, 19], motivated by an early sugges-
tion of Feynman [20]. The setup involves two interferom-
eters located close to each other and their test masses are
entangled through the gravitational interaction. There are
some discussions regarding whether the gravity-mediated en-
tanglement in the Newtonian limit proves the quantumness
of gravity or not [21–25], because the radiative degrees of
freedom—graviton, are not directly probed in these exper-
iments. Given the lack of experimental evidence, such ex-
periments are important steps towards understanding gravity
in the quantum regime. Interestingly, they are also sensi-
tive to gravity-induced decoherence models for explaining the
quantum-to-classical transition [26–31].

The key to demonstrate the entanglement is a low thermal
decoherence rate, so the quantum coherence from the gravi-
tational interaction can build up significantly. As shown by
Eq. (25) and also Appendix A, there is an universal require-
ment on the thermal decoherence rate that is independent of
the size of the two test masses:

�mkBT  ~G⇢ . (1)

Here �m is the damping rate and also quantifies the strength
of the thermal Langevin force according to the fluctuation-
dissipation theorem [32, 33]; kB is the Boltzmann constant; T
is the environmental temperature; G is the gravitational con-
stant; ⇢ is the density of the test mass. For test masses that are

⇤ haixing@star.sr.bham.ac.uk
† dmartynov@star.sr.bham.ac.uk
‡ hyang@perimeterinstitute.ca

mechanical oscillators with resonant frequency !m, it implies

T
Qm
 1.5 ⇥ 10�18K

 
1 Hz
!m/2⇡

!  
⇢

19 g/cm3

!
, (2)

where Qm ⌘ !m/�m is the mechanical quality factor and a
density close to Tungsten or Gold is assumed. This require-
ment is beyond the state-of-the-art, and needs further experi-
mental e↵orts.

In this paper, we propose an intermediate step before
demonstrating the entanglement by using optomechanical de-
vices [34, 35] to realise gravity-mediated quantum correlation
of light, which is not constrained by Eq. (1). The setup is
shown schematically in Fig. 1. Two optomechanical cavities
are placed close to each other with their end mirrors (as the
test masses) interacting through gravity. Di↵erent from the
single-photon nonlinear regime studied by Balushi et al. [36],
we are considering the linear regime with the cavity driven
by a coherent laser, and having the light (optical field) and
the mirrors (mechanical oscillators) in Gaussian states. The
quantum correlation of light is measured by cross-correlating
the homodyne readouts of two photodetectors. With the sys-
tem being in a steady state, the signal-to-noise ratio (SNR) for
the correlation measurement grows in time. As shown later in
Eq. (18), the integration time for achieving a unity SNR is

⌧ ⇡ 1.0 year
 

n̄th/C
0.4

!  
!m/2⇡
1 Hz

!3  
106

Qm

!  
19 g/cm3

⇢

!2

, (3)

where n̄th is the thermal occupation number, and C is the op-
tomechanical cooperativity. To constrain the integration time

FIG. 1. Schematics showing the setup of two optomechanical cav-
ities with their end mirrors coupled to each other through gravity.
The quantum correlation of light is inferred by cross-correlating the
readouts of two photodiodes.
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Quantum radiation-pressure-induced 
motion of A will not cause motion in B 
via gravity [Miao, Martynov & Yang]

A B

Out-going field spectrum has a 
peak near ωQ [S. Scully, in prep.]

Notes on Schrödinger-Newton

Yanbei Chen

Here we have the Heisenberg equations of motion:

�M⌦2x̂ = �M!2
c x̂+ iM�m⌦x̂�M!2

SN(x̂� hxi) + ↵â1 (1)

b̂⇣ = â⇣ +
↵

~ sin ⇣x̂ (2)

As we had discussed before, we have

x̂� hx̂i = R̂(0) (3)

where R̂(0) is residual of the following system:

�M⌦2x̂(0) = �M!2
qx̂

(0) + iM�m⌦x̂(0) + ↵â1 (4)

b̂(0)⇣ = â⇣ +
↵

~ sin ⇣x̂(0) (5)

where

x̂(0) = K(0)
⇣ b̂(0)⇣ + R̂(0) (6)

We can approximately write

x̂(0) = � ↵

M

â1
(⌦� !q + i�m/2)(⌦+ !q + i�m/2)

, (7)

b̂(0)⇣ = â1


cos ⇣ � ↵2 sin ⇣

~M
1

(⌦� !q + i�m/2)(⌦+ !q + i�m/2)

�
+ â2 sin ⇣ (8)

We will need to causal whiten b̂(0⇣ . For this, we �nd

Sbb =
(⌦� ⇠)(⌦+ ⇠⇤)(⌦+ ⇠)(⌦� ⇠⇤)

(⌦� !q + i�m/2)(⌦+ !q + i�m/2)(⌦� !q � i�m/2)(⌦+ !q � i�m/2)
(9)

where ⇠ has positive real part and negative imaginary part:

⇠ =

r
!2
q +

↵2 sin ⇣

~M e�i⇣ . (10)

In this way, the whitened version of b̂(0)⇣ is given by

z =
(⌦� !q + i�m/2)(⌦+ !q + i�m/2)

(⌦� ⇠)(⌦+ ⇠⇤)
b̂(0)⇣ (11)

We will have

K⇣b⇣ = [Sxz(⌦)]+z(⌦) (12)

where [. . .]+ takes only poles from lower half of complex plane. We get

K⇣ =
~

↵ sin ⇣

!2
q � ⇠⇠⇤ + ⇠⇤⌦� ⇠⌦

(⌦� ⇠)(⌦+ ⇠⇤)
(13)

In this way, we get

R(0) = (1� ↵

~ sin ⇣K)x(0 �K(a1 cos ⇣ + a2 sin ⇣)

= � ↵â1
M(⌦� ⇠)(⌦+ ⇠⇤)

�K(â1 cos ⇣ + â2 sin ⇣) (14)

self gravity back action
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light
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EXPECTATIONS/HOPES 
   
 (1) Full non-linearity of General Relativity would make quantized theory non-
linear → breakdown of superposition principle 
 (2) Anthropocentric nature of Quantum Measurement be eliminated  

1

2

1

2
Path A Path A

Path BPath B

Incorporates key ideas from General Relativity and Quantum Mechanics 

Equivalence Principle 
General Covariance

Indistinguishability

adapted from Philip Stamp’s slides

Inter-path Communication  
and Correlation via gravity



CWL vs Conventional Quantum Gravity
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Propagator in 
Conventional QG

Diagrams

Propagator in CWL

Diagrams

adapted from Philip Stamp’s slides



Low speed & Weak Gravity
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adapted from Philip Stamp’s slides

+
1 2

Crude Approximation

Can be viewed as propagator for two-particle Schroedinger Equation



CWL Phenomenology, 1-Dimension
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i∂tΨ(Q, y, t) = [−
∂2

Q

2M
−

∂2
y

2μ
+ V(Q + y/2) + V(Q − y/2) + Vg(y)] Ψ(Q, y, t), Q =

q + q′�
2

, y = q − q′�

ωSN = 2ωc



Quo vadis?
• We discussed 
• collapse models, quantum/classical nature of gravity, and CWL 

• Signatures that deviate from QM  may be found. 
• What about anthropogenic nature of quantum measurement?
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device  
B

device  
A

Measurement Process

EPR pair

Collapse of Quantum State: Random

system 
B

system 
A

EPR pair

Dynamical Process

Unitary Evolution (Deterministic)

???

No-Go Theorems!!



Quo vadis?
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device  
B

device  
A

EPR pair

Contradiction required by proving No-Go Theorems: no superluminal 
communication

ϕA ϕB

Results of devices [evolutions of systems] depends on the other 
polarizer: evolution allows B to know A’s setting before 2L/c, then 
build a time machine to tell A what her setting would be.

time

For this to happen, both systems must be closed, and at pre-determined 
states. B cannot get out of the closed system to build his time machine. 



Quo vadis?
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System Device 1

System Device 1 Device 2

System Device 1 Device 2 Device 3

Test Mass Photon Photoelectron Electrons 
in amplifier

System Device 1 Device 2 Device 3 Device N…

Only closed “measuring systems” can be mapped to a unitary evolution?


