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Bohr: The collapse 1s not a physical
process because the wavefunction |W) is
to be regarded as merely referring to
our knowledge of the system.

Everett: The wavefunction |WV) is a
representation of a real physical state.

(Many Worlds)

Zurek (and others): The collapse of the
wave function (of a given system) follows
from standard gquantum dynamics




(Z cn|n>) Bo) 53 el (1))

n

on with
5, the basis




pSANZlcnl 1) (1] © | ) (D]



pSANZlcnl 1) (1] © | ) (D]









Consider the following model
(Zurek and Unruh, PRD, 40 1071 (1989)).

Initial pure density matrix p(x, x")
plx,x") = x(x)x*(x)

with y(x)~x*(x) +x~ (x) (sum of two
gaussian wavepackets)

From: Zurek, Physics Today 61, 69 (2008)
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with y(x)~x*(x) +x~ (x) (sum of two
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H.; = exdp/dt
with a scalar field @(q,t)
propagating mn direction g.
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Y (x —x)%p relaxation rate y = £%/4m

acts mainly on off-diagonal elements
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Example 1: T=300K, m=Igram, Example 2: T=300K, electron:
Ax = 1cm. If we define the m=10"27 on atomic scales

relaxation time 7, = y ~'theratio  Ax ~ 1071%m: "2/, ~ 10*
of *P/z =~ 107401

2mykgT Ax?
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Two heroic experiments
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Conclusion: The collapse is real (for the sub system).
The collapse is the result of unitairy quantum evolution of the entire
system and leads to a reduced density matrix that mathematically has
the same form as a classical probability distribution.
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Vaidman’s watch

Many worlds!

Any objections?



Two alternative locations of a massive object will
cach have stationary states, and have wavefunctions
|W)and |®), that are eigenstates of the 9/,, operator
with eigenvalues related to the energy.
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5 Penrose & 1
i > — —ihEcD ‘(I)> R. Penrose, Wavefunction Collapse as a
ot' Real Gravitational Effect

General Relativity and Gravitation 28, 581
(1996).

But how to deal with superpositions
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Consider an equal superposition 1 (g, (g

& (¥)+|2))
f and £’ are the acceleration 3-vectors of the free-fall motion in the two
space-times (f and f” are gravitational forces per unit test mass).

Penrose postulate: at each point the scalar (|f-f’|)?is a measure of
Incompatibility of the identification. The total measure of
incompatibility (or “uncertainty) A at time t Is:

1
A = f-f') d°x
47Z'G ( )

EEG

This is the gravitational self energy associated to the superposition

Prediction: The superposition state is unstable and has a lifetime

of the order of "
E. .
g (see also GRW, Diosi, others)
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Small problem: what is mass and what is the mass distribution of

a piece of material?
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Take, a~10->m size of nucleus, take a~10-13m size of ground-
state wave function

Decoherence time ~1 ms, ~0.1-1s

e time is 1019










Thermal mirror state, dissipation to thermal (bosonic) bath

Ao _ _Iry A1.70( 2 A0t _RTRhA— ARTR ). N (2R Ah — PRt A ARBT
E——£[H,p]+§{(N +l)(2bpb —b'bp—pb b)+|\|(2b bbb’ p— pbb )}
N is mean thermal phonon number, at resonance with the mechanical resonator at T, ..

2T, (%) Qmechamcal
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Final conclusion for x ~1/+/2, Q~100,000, m=10"%kg, T, , =1mK,

the decoherence time is 0.1ms.
Q's up to 1,000,000 for small mechanical resonators are possible,

T...., ~10mK acceptable.



Detectors
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Single photon sources Stability 10-1*m (over ms)
and detectors, stable
Detectors

lasers locked to cavity \

Beam splitter |
Photon
source
10kHz E
-I_cantilever'y:l-!'lK antiever
Finesse~200,000 Tiny mirror

Mass~10-12kg



Passive optical cooling of the mechanical mode
AT A
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W, @ —am, Optical spectrum

Needed for ground state cooling:
Work in side band resolved regime: ®,>Y,pica, FiN€sse>20,000
T,.;n~100mK (compatible with previous requirements F>10°, T, ,,~5mK)



Generation 1
Room temperature
vacuum

Generation2 . /g
Low temperature” ‘/
vacuum '

Generation 3

Low temperature vacuum
& stable



Generation 1
Finesse: 2100
Mechanical Q:130.000

10-100kHz |

Generation 5
Finesse: 60.000
Q: 600.000

Generation 2
Finesse: 3000
Q: 400.000



















Weak spring

10 kHz low-pass

50 Hz low-pass
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Passive optical cooling of the mechanical mode
AT A
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Needed for ground state cooling:
Work in side band resolved regime: ®,>Y,pica, FiN€sse>20,000
T,.;n~100mK (compatible with previous requirements F>10°, T, ,,~5mK)
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Single resonator

7= 200 mK

312 314 316 318 320
Frequency (kHz)

Sideband resolved optical
cooling from room temperature

rms/Hz)
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Double rgsonator

7= 150 mK

80 82 84 86 83
Frequency (kHz)



Sideband resolved optical
cooling from room temperature
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Fiber
interferometer

High voltage
amplifier

<—{Laser lab|
A From interferometer
dx/dt

: B [From Pound-Drever-Hall|:
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Three main technical complications:

1) Optomechanical coupling not strong enough.

2) Mechanical Q’s not high enough.

3) Optical heating.






Two Tone Driving

"Resariatdr 1
=l Resariator 2

[Delm— 1), [n),

H,,, = hJ(bi by+b3 by)

|0).|m — 1)1|n + 1),
|O>C|m)1|n>2
L. F. Buchmann & D. M. Stamper-Kurn, Phys. Rev. A (2015)



Ta,0,/Si0, DBR Mirror
High Stress LPCVD Si-N,

Silicon

Front Side Back Side

A =1064 nm

Resonator 1 Resonator 2
®,/2n =297 kHz  ®,/2n =659 kHz
g,/2n = 0.8 Hz g,/2n = 1.1 Hz




Single Shot Measurement of the Optomechanical
Swapping Interaction
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New scheme for creating and testing macroscopic superpositions
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Displacement (arb. units)
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Number of Membranes
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Eigenfrequencies Rabi Frequencies

Mixing Angle
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Porflulations

Since Poremains zero, the decay
rate of level 2 1s irrelevant!!!
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Three Main technical Complications:
1) Optomechanical coupling not strong enough.

entangle two or more mechanical modes

2) Mechanical Q’s not high enough.
use phononic photonic crysta membranes

3) Optical heating.
use STIRAP method
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