Strong gravity & Numerical Relativity

L. Lehner

Perimeter Institute/CIFAR

NR goal: understand 'strongly gravitating' regimes

"Instead of: If we think hard enough, we don't need a computer,
With the right resources we can simulate situations we can't even begin to
think through, and thereby provide us with completely new and unexpected
things to think about" [M. Choptuik]

(M/L) ~ 1; (v/c) ~ 1; no `restrictive' symmetries solve Einstein equations in full generality

Overarching questions:

- Gravitational waves & connection with behaviour of source: gravitational wave astronomy
- Understanding of spacetime structure in relevant/interest scenarios
- Explore conjectures
- Provide intuition for `analytical modeling', mathematical analysis
- uncover surprises...

What's involved

- express EEs in terms of an initial boundary value problem (formulation)
- ensure a well posed problem is defined (eqns & BCs) adopt or rewrite eqns to ensure symmetric/strong hyperbolicity of evolution equations
- discretize equations (to obtain an algebraic problem) which introduces a discrete length h (as h 0 one recovers continuum problem) adopt particular approximation methods/algorithms/discretization strategies
- recognize discrete equations do not necessarily behave well (in continuum terms, eqns & data off the constraint surface and physical conditions)
 modify continuum eqns so that constraint surface is an attractor
- Avoid singular region (through excision or slicing)
- Implement eqns on sufficiently powerful computational infrastructure (software & hardware)
- Arguably < 1990s: head-on collision of black holes (Smarr'80)
 critical phenomena in GR (Choptuik 86-93). Things changed rapidly
 after that, especially from 2005 onwards

2-body problem in GR (NS/BH)

- Cauchy formulation of EEs: (generalized) Harmonic or: BSSN (ADM-augmented eqns for well posedness). Both employing a rather rigid set of gauge conditions. [100s of procs, ~ 1month timescale]
- "Quasi-circular" initial configuration (zero-eccentricity)

Main take home messages...

- Effective one body approach can capture quite a bit of observed behavior and be used for data analysis efforts
- Radiation: converts ~ 5% of total intial mass and angular momentum. (can be higher for 'tuned' collisions).
 - $E_{GW} \sim 10^{58} \text{ ergs } (M_T/10^6 M_{sun}) \text{ in } \sim 100 (M_T/10^6 M_{sun}) \text{ s}$
 - $L_{GW} \sim 10^{23} L_{sun}$
 - Asymmetric scenarios give rise to 'kicks', which can be as large as 3-8
 10³ km/s!
 - Yet... these need some tweaking.
 - A few 100s km/s more typical. (Mech Energy~ 10^{53} ergs (M_T/ 10^6 M_{sun}) >> SN !)
- Just a fraction of this into surrounding gas/matter/fields can trigger an observable counterpart. e.g. GRBs, etc.
 - Obviously exciting prospects for multimessenger astronomy
 - Models must include suitable ingredients

Current efforts

- Construct accurate waveform templates for usage in data analysis
 [PN + NR + BH Perturbations]. Cover parameter space
- Astrophysical implications in supermassive BH growth by mergers

- Non-vacuum binaries (BH-NS; NS-NS). Further physics in BH-BH systems
- Gravitational waves in alternative gravity theories
- Multimessenger astronomy (for astrophysics & fundamental qns)

- Qualitative features of waveforms in non-vacuum cases also understood in simple terms
- no 'extremal' scenario arises (i.e. cosmic censorship seems to hold)
- Regions 'violating' Kerr bound loose angular momentum before a trapped surface arises
- Late time behavior consistent with Kerr solution (QNMs, horizon behavior, asymptotic structure)

Additional front: higher dimensional gravity

- At the gravity level alone, D=4 is special, but how special?
 - No stable circular orbits and no "Kerr-bound". There are richer geometries in higher dimensional Ricci-flat Lorentzian manifolds, in particular the zoo of "black objects" black spheres, rings, strings, saturns, ...
- If string theory is providing the correct path to a consistent theory of nature valid at Planck scales, the universe is fundamentally higher dimensional
- Lots of examples on (holographic) supposedly describing many aspects of conventional non-gravitational 4D physical processes in terms of 5-dimensional gravity
 - interestingly, the gravitational dual to many relevant processes involves black holes

Black strings

- 1.- Contain singularities
- 2.- Ruled by null-rays
- 3.- Non-unique even in spherical symm

- Black string perturbations admit exponential growth for L > L_c (Gregory-Laflamme)
- Entropy $S_{BS} < S_{BH}$ (for a given M) [bs ~ M²/L; bh ~ M^{3/2}]

Conjecture: Black strings will bifurcate

End-state of the instability?

- This cannot happen [Hawking-Ellis '73] if spacetime is asymptotically predictable.
- A naked singularity must form for this to happen \rightarrow a *generic* example of cosmic censorship violation in higher dimensional gravity

Dynamics?

$$L/m = 20$$
; $L_c \sim 14 \text{ m}$

$$M = 4 \pi (2m)^2 L$$

Btw...
$$S_{BH}/S_{BS} = 1.374...$$

Extra details...

6 4 2 0 0 5 10 15 20 z/M

- S(late time) ~ 1.369 S(t=0)
- invariants.. bhs+ bss!
- Can calculate 'thin-to-zero' time
 T~ 231M
- finite observer time

Observers?

Affine time $\sim e^{t/M}$

local solution: M=0
 BH (Choptuik critical phenomena). Without fine tuning

Fluid connection?

Rayleigh-Plateau instability: Satellite formation in fluids... for lower viscosity higher number of satellites

More than an analogy?

• Eggers, Miyamoto. In fluids, solution is self-similar, $r \sim (t_o-t)$ d ln(r) / d(-ln(t_o-t)) = -1

Also, after breakup, scaling in 'recessing' bubble

We see roughly such slope (10-20%)
 for 'bifurcation' stage

Cosmic censorship is *violated 'generically' in higher dims* (note: many BHs show this instability. Eg. Myers-Perry BHs, black rings, black saturns, etc.)

For this case (and a number of others that can be mapped to it)

Classically: Naked singularity has 0 mass. Semi-classically: Local spacetime would behave as a Hawking evaporating BH (unless higher curvature corrections kick in). Need QG to tell us what happens

If QG effects do not drastically affect the picture, the solution should transition to a smooth behavior

Fluid analogue: nothing drastic takes place at pinch off, 2nd solution (bubbles) proceed smoothly

nothing drastic expected in the spacetime

A lot more is going on

- Astrophysical connection: grav waves, role in energetic phenomena (eg. GRBs), grav waves in alternative theories, black hold 'balding', etc.
- Black hole evaporation
- Cosmology: bubble collisions in multiverse, ekpyrotic scenarios,...
- Higher dimensional gravity: black rings, Myers-Perry bhs...
- AdS/CFT motivated work: instability of AdS and 'equilibration' questions
- Surprises in gravity: turbulence in the gravitational field, fractal behavior of horizons