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From the Schwarzschild singularity to the black hole horizon


•  I. The early interpretation of the 
Schwarzschild solution.  

–  General relativity before the sixties. 
–  The solution: Schwarzschild, Droste. 
–  - The “singularity": coordinates, 

covariance, junction conditions, 
singularities... And the proper time?  

–  The "singularity": Schwarzschild, Droste, 
Hilbert, Laue, Eddington... 

–  The trajectories: Droste, Hilbert, von 
Laue, de Jans, Hagihara, Rabe... And the 
free fall? 	



•  II. The early way to a new 
interpretation.  

–  Lanczos: is Schwarzschild's "radius" singular? 
(1921) 

–  Synge (1934) 
–  Lemaître on Schwarzschild's 

"singularity" (1932). 
–  Lemaître, Robertson, Einstein, Synge, 

Tolman, Oppenheimer, Kruskal... 

! III. Cosmology, a space for thought in 
general relativity. 



I. The early interpretation of the Schwarzschild solution.  



The solution: Schwarzschild, Droste. 
 



Karl Schwarzschild	





Einstein to Schwarzschild, 1916


« I have read your paper with the utmost interest. I had not expected 
that one could formulate the exact solution of the problem in such a 
simple way. I liked very much your mathematical treatment of the 
subject. Next Thursday I shall present the work at the Academy with a 
few words of explanation. » (Einstein to Schwarzschild, January 9, 
1916). 
 



Schwarzschild's original solution (1916)	
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Schwarzschild's solution in Droste's coordinates (1916)	
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− r2 dθ 2 + sin2θdφ 2( )



The early Schwarzschild structure	





 
The "Schwarzschild singularity": coordinates, covariance, junction conditions, singularities... 

And the proper time? 
 
 
 

Eisenstaedt, Jean (1982). "Histoire et singularités de la solution de Schwarzschild (1915-1923)." Archive for History of Exact Sciences 27 : 
157-198. 	





 
Embedding the solution, Flamm 1916, Becquerel 1922.  




Embedding the spatial part of the Schwarzschild solution in an 

Euclidean space of four dimensions: 

 

 

where: x = r sinθ , y = r cosθ  and z =
dr
r
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d s2 =
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+ r 2 dθ 2 = dx 2 + dy 2 + dz 2



Line-elements’ collection…


1. Schwarzschild's solution in standard polar coordinates:

d s 2 = (1 −
α
r

)c2 dt 2 −
dr2

1 − α
r

− r2 dθ 2 + sin2 θdφ 2( )

with r = R3 + α 3( )
13
.

2. Schwarzschild's solution in Droste's coordinates:

d s 2 = (1 −
α
r

)c2 dt 2 −
dr2

1 − α
r

− r2 dθ 2 + sin2 θdφ 2( )

(with r >
2Gm
rc2 ).

3. Isotropic system (Droste 1916):
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4. (Droste 1916) by means of the transformation r = ˜ r + α :

ds2 =
c2 dt 2

(1 +
α
˜ r 

)
− (1 +

α
˜ r 

)d˜ r 2− ˜ r + α( )2 dθ 2 + sin2 θdφ 2( ).



Droste's comments on covariance


"To what formula shall we give the preference to that of Schwarzschild [2], to 
[3] or to [5]? It is in fact a matter of personal convenience. But we must 
remember that the r coordinate doesn't represent the measured interval. 
We are however free to choose any coordinate (provided that all points may 
be reached) but some choice of coordinates may appear more appropriate 
than another." (Droste 1916)  
 



 
 Weyl on the Schwarzschild solution (1917).  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•  "the domain ρ > m/2 will correspond to the exterior and ρ > m/2 to 
the interior of the massif point. Through analytical extension !

will be negative in the interior so that for a point at rest, the 
cosmic time and proper time are in opposition. »!

ρ −m2
ρ +m2



Einstein at Collège de France, Paris 1922




Jacques Hadamard




Paris 1922: Einstein and Painlevé




 
Painlevé, Schwarzschild's solution and covariance.  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d s2 = (1− α
r
)c2 d t2 + 2 α

r
drcdt− d r2+ r2 dθ 2 + sin2θdφ 2( )( )

"It seems to me that the existence of [this] formula and the possibility of an infinity of others give a 
clear indication of the hazardous character of such predictions [...] it's pure imagination to claim 
that such consequences can be derived from the ds2" (Painlevé 1921). 
 



 
 Einstein, the Schwarzschild solution and covariance.  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d s2 = (1− α
r
)c2 d t2 + 2 α

r
drcdt− d r2+ r2 dθ 2 + sin2θdφ 2( )( )

"When, in the ds2 of the static solution with central symmetry, you introduce any 
function of r instead of r, you do not obtain a new solution because the quantity r in 
itself has no physical meaning. [...] You must always keep in mind that coordinates do 
not have any physical signification; which means that they do not represent the 
result of a measurement; only conclusions, reached after the elimination of 
coordinates may pretend to an objective significance. Furthermore, the metrical 
interpretation of the quantity ds is not "pure imagination" but the deep core of the 
theory itself." (Einstein to Painlevé, December 7, 1921) (EA 19-004).  
 



Allvar Gullstrand (1862-1930).




Eddington 1932




Eddington on the Schwarzschild solution


"We can go on shifting the measuring-rod through its own length time after 
time, but dr is zero; that is to say, we do not reduce r. There is a magic 
circle which no measurement can bring us inside. It is not unnatural that we 
should picture something obstructing our closer approach, and say that a 
particle of matter is filling up the interior." (Eddington 1920, 98) 	
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dr2 − r2 dθ 2 + sin2θdφ 2( )

"At a place where g44 vanishes there is an impassable barrier, since any 
change dr corresponds to an infinite distance ds surveyed by measuring-
rods. [...] The first root would represent the boundary of the particle - if a 
genuine particle could exist - and give it the appearance of impenetrability. 
The second barrier is at a very great distance and may be described as the 
horizon of the world." (Eddington, 1923)	


	





Eddington on the Schwarzschild singularity


"A singularity  of  ds2  does  not  necessarily  indicate  material  particles,  for  we  can 
introduce or remove such singularities by making transformations of coordinates. It is 
impossible to know whether to blame the world-structure or the inappropriateness of 
the coordinate-system." (Eddington 1923, 165)	


	





The Eddington-Finkelstein line-element (1924)


ds2 = −dr2 − r2 dθ 2 + sin2θdφ 2( )+ c2dt2 − 2Gmrc2 cdt − dr( )2

This line element is actually due to Gullstrand. Eddington never claimed that the 
r = 2m surface was regular. 



 
The trajectories: Droste, Hilbert, von Laue, de Jans, Hagihara, Rabe...  

And the free fall 
 
 



Trajectories of the Schwarzschild field


Droste thesis, December 1916
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Droste on the radial fall (1916, 1917)


Defining "a physical distance" 
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˙ δ  and 

€ 

˙ ̇ δ  go to zero at 

€ 

r = 2Gm c 2  "where the motion stops infinitely 
smoothly". He will even get a repulsion around the "singularity". 

- "a moving particule out of the sphere 

€ 

r =α would never get into this 
sphere" 

- "the particule will never reach the sphere 

€ 

r =α".  

- He "will not consider the space 

€ 

r <α" 
 

He will come back to this question in his thesis (1917) but with his radial 
coordinate only and 

€ 

t, the time-coordinate.  
 



Droste “for once, a different result“


"It might be said then that the material point does not reach the center. 
This result is, for once, different with any precision of the newtonian theory. 
We see here to what an extent the movement is different near the center 
with all what is said by the classical theory." (Droste 1916, thesis, 26).  



De Jans, 1922-1924


•  As Droste, de Jans starts from: 	


•   	

 	

 	

 	

[7]	



•  He calculates "the velocity of the particles on its orbit" as evaluated by an observer at infinity  defined by	


	


 the ratio of the spatial part of Schwarzschild's line-element to the time coordinate au temps coordonnée ; a non-covariant 
quantity:	



«  ν goes to zero for r = α »  he wrote insisting on the fact that  « r – 2m   could not be negative ».	
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De Jans, 1923, trajectories




 
Hilbert, 1917; Laue, 1921...
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Light-rays in a Schwarzschild field




Max von Laue, 1879-1960




Laue 1921: light-rays




The free fall. 
 

Newtonian equations in the radial case:  

Relativistic equations in the radial case:  

	





 
Regularity and jumping conditions 



Hilbert on regularity (1917)


"a line element or a gravitational field gmn is regular at a point if it is possible by a 
reversible one to one transformation to introduce a coordinate system such that in 
this system the corresponding functions g'µν are regular at that point, i.e. they are 
continuous and arbitrarily differentiable at the point and in a neighborhood of the 
point, and the determinant g' is different from 0." (Hilbert 1917, p 70-71). 



"Moreover, the condition of continuity for the gµν and the gµν should not be taken as 
saying that there has to be a coordinate system such that continuity holds throughout 
space[time]. Clearly, one only has to require that in the neighborhood of every point there 
exists a coordinate system such that continuity holds in this neighborhood; such a restriction 
of the demand of continuity naturally results from the general covariance of the [field] 
equations." (Einstein 1918, 271); [my emphasis].  
 

Einstein on regularity (1918)	





 
II. The early way to a new interpretation.  

 



Cornelius Lanczos




 
Lanczos' insight, 1922.  




With  
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Consequently, at r  = 0 the determinant is singular, which was not 
the case at the corresponding point r = α

2
 of the solution in Droste 

coordinates."  



 
Lanczos' conclusion, 1922.  




"This example shows how little one can infer an actual singularity of 
the field from the singular behavior of the functions gmn since it may be 
possible to remove the latter by a coordinate 
transformation." (Lanczos 1922, 539) 
 



Georges Lemaître (1894-1966) 
 



Lemaître solved the field-equations with spherical symmetry, energy density
ρ(χ,t) and no pressure. (Usually and wrongly called the Bondi-Tolman
solution).

In the co-moving coordinate system he chose, the line element reads:

ds2 = c2 dτ2 – a2 dχ2 – r2 ( dθ2 + sin2θ  dφ2 ) ,

where c, a, and r a re functions of χ and t. Writing his dust solution in
the exterior case and using the non-static transformation of coordinates:
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Lemaître obtains the Schwarzschild line element in his own coordinates:
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The “classical” Schwarzschild solution
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Lemaître has shown that:

"the singularity of the field is not real but the result of using a
coordinate-system in which the field is static.”

Lemaître and the  Schwarzschild « singularity », 1933.




Lemaître and the  Schwarzschild « singularity », 1933.


"The equations of the Friedman universe admit [...] solutions in which the radius 
of the universe goes to zero. This contradicts the generally accepted result that a 
given mass cannot have a radius smaller than 2Gm/c2"  (Lemaître 1932, 80).  

	





Structure de la solution de Friedmann	



Friedmann’s space	



«true» singularity	





Schwarzschild’s solution before the sixties	



«true» singularity: r = 0	



Schwarzschild’s singularity	



Schwarzschild’s exterior space	





Structure of Lemaître solution	



Friedmann	



Schwarzschild	



Schwarzschild	





Lemaître on the Schwarzschild "singularity"


"The singularity of the Schwarzschild field then is a fictitious 
singularity, analogous to the one appearing on the horizon of the 
center in the original form of the de Sitter universe." (Lemaître 
1932, 82).  



Richard Tolman (1881-1948)




John L. Synge (1897-1995).




Einstein and Lemaître




Millikan, Lemaître, Einstein. 
 (California Institute of Technology. Pasadena, 10 janvier 1933)




Howard Robertson (1903-1961)




Ratio of gravitational radius to radius 
(from H. P. Robertson and T. W. Noonan, 1968).	



______________________________________________________________________________ 

Objet    m G / a c2 

______________________________________________________________________________ 

Proton    1 . 0  1 0-39 

Metal sphere with radius 1 meter    3  1 0-23 

Earth    6 . 9 5  1 0-10 

Sun    2 . 1 2  1 0-6 

Certain white dwarfs stars     2 . 5  1 0-4 

Galactic nucleus    3  1 0-7 

 

"There are no known objects with so small a size » (Robertson and Noona n, 
1968). 



From Lemaître's to Robertson's line-element  



From Lemaître's line element:
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Robertson's trajectories of a Schwarzschild's field




A trajectory in Schwarzschild’s space.  
(from H. P. Robertson and T. W. Noonan, 1968).	





Robertson approach to « r = 2m »	



"The observer never sees the particle reach r = 2m, although the particle passes r = 2m and 
reaches r = 0 in a finite proper time ! [. . . ] the light from the particle is redshited more 
and more; as the particle approaches r = 2m, z approaches ∞." (Robertson & Noonan 1968, 
252).  
 



Oppenheimer and Snyder on collapse


•  "When all thermonuclear sources of energy are exhausted a sufficiently heavy star will 
collapse...the radius of the star approaches asymptotically its gravitational radius; light from 
the surface of the star is progressively reddened, and can escape over a progressively narrower 
range of angles...The total time of collapse for an observer comoving with the stellar matter 
is finite [...] an external observer sees the star asymptotically shrinking to its gravitational 
radius." (Oppenheimer and Snyder 1939, 455) 



Oppenheimer and Tolman, 1938




Einstein and the Schwarzschild “singularity”, 1939


"This investigation arose out of discussions the author conducted with
Professor H.P. Robertson and with Drs. V. Bargmann and P. Bergmann on the
mathematical and physical significance of the Schwarzschild singularity.
The problem quite naturally leads to the question, answered by this paper
in the negative, as to whether physical models are capable of exhibiting
such a singularity."



Peter Bergmann and the Schwarzschild “singularity”, 1942	





Robertson came to Einstein's office and "told us that the Schwarzschild 
singularity (at r = 2M) might not be so bad. He used what is known as 
Finkelstein coordinates [...]. In these terms it takes only a finite 'time' to get 
inside, but 'forever' to get out. Or the converse. We thought this was important 
but puzzling." (Bergmann to J.E, 9 May 1986).  



J. Robert Oppenheimer had to work closely with the military at Los Alamos
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Schwarzschild’s singularity  becomes a 
black-hole horizon...	





John L. Synge on singularities, 1950




Synge’s diagram 1950




Topology: Synge 1950 versus Kruskal 1960




Arthur Eddington and David Finkelstein	





John A. Wheeler	





Kruskal’s Extension




Schwarzschild, Kruskal- Szekeres diagrams (Wheeler et al, 1973) 



Roger Penrose




Spherical collapse, Penrose, 1965




Albert Einstein 1954




Laplace never quoted at John Michell who laid the foundations of the Newtonian 
theory  of  the  propagation of  light,  of  the  action of  gravitation on light  and 
invented the "dark bodies" in 1784; all cousins of general relativity. 






Number of publications in general relativity  
as a percentage of the total number of publication in physics (from Science 

Abstract:1915-1955).���
N.B. The absolute number of pubications goes from 10 in 1916 to 42 (greatest) in 1920; 4 in 1945 (lowest).  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