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S C H W I N G E R  AND STATISTICAL PHYSICS: 
A SPIN-OFF SUCCESS STORY AND SOME C H A L L E N G I N G  SEQUELS* 

PAUL C. MARTIN 

Department of Physics and Division of Applied Sciences, Harvard University, Cambridge, 
Massachusetts 02138, USA 

Some of the influences Julian Schwinger has had on condensed matter physics are discussed. 
The first part rapidly summarizes the language and methods he introduced to describe physical 
systems exactly and to approximate their properties systematically. The significance of these 
methods and the ways in which they havg been extended are noted. The second part describes 
how these concepts have been applied to the condensed Bose fluid (i.e., helium 4), a system with 
rich and varied properties. Some fundamental features of this system are summarized. The third 
part examines recent advances in our understanding of helium at its critical point in three 
dimensions and below the critical point in two. A final section describes briefly certain features of 
chaotic behavior and what is needed to explain them. The problems encountered in the study of 
turbulence and other chaotic phenomena are compared and contrasted with those arising in other 
areas of statistical physics. Throughout, the direct and indirect contributions Schwinger has made 
to condensed matter physics and the contributions condensed matter physics and field theory 
have made to one another are emphasized. 

I. Introduction 

During the late 1940's and early 1950's Harva rd  was the home of a school of 
physics with a special out look and a distinctive set of rituals. Somewhat  
before  noon three times each week,  the master  would arrive in his blue 

chariot  and, in forceful  and beautiful  lectures,  reveal  profound truths to his 
Cantabridgian followers,  Harva rd  and M.I.T. students and faculty.  Cast  in a 
language more powerful  and general than any of his listeners had ever  

encountered,  these ceremonial  gatherings had some sacrificial o v e r t o n e s -  
interruptions were discouraged and since the sermons  usually lasted past  the 
lunch hour, fasting was often required. Following a mid-af ternoon break,  
private audiences with the master  were permit ted and, in uncertain anti- 
cipation, s tudents would gather in long lines to seek counsel. 

During this period the religion had its own golden rule - the action principle - 
and its own cryptic t e s t a m e n t - O n  the Green ' s  Functions of Quantized 
Fieldsi). Mastery  of this paper  conferred on fol lowers a high priest  status. The 
tes tament  was couched in terms that could not be questioned,  in a language 
whose elements  were the values of real physical  observables  and their 
correlations.  The language was enlightening, but the lectures were exciting 
because they were more than metaphysical .  Along with structural insights, 
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succinct and implicit self-consistent methods for generating true statements 
were revealed. To be sure, the techniques were perturbative, but they were 
sufficiently potent to work when power series in the coupling constant failed 
because, for example, the coupling was strong enough to produce bound 
states. 

In the dark recesses of the sub-basement of Lyman Laboratory, where 
theoretical students retired to decipher their tablets, and where the ritual 
taboo on pagan pictures could be safely ignored, students scribbled drawings 
that disclosed profound identities between diagrams and sums of diagrams. 
Few papers have had so large an influence as these papers and the sub- 
sequent, less cryptic, version 2) of part of their content in the series Quantized 
Theory of Fields, 1-VI. Clarifying, justifying, and rephrasing the ideas and 
the techniques that they contain has occupied many physicists and the results 
of these activities have often been valuable. 

A few years later, in Birmingham and Copenhagen, Cyrano DeDominicis 
and I turned our hand to the nuclear many-body problem on which work by 
Keith Brueckner had aroused interest. While we were engaged in this project, 
Gell Mann and Brueckner were making strides in understanding the quantum 
electron plasma and Bardeen, Schrieffer, and Cooper were explaining super- 
conductivity. That these three problems had many common features and that 
a language and techniques akin to those that Schwinger had introduced for 
relativistic fields should also be developed for equilibrium systems gradually 
became apparent to both of us. In France, with Claude Bloch, DeDominicis 
set out to develop a general framework, while at Harvard, upon my return in 
1957, I was fortunate enough to enlist Julian's collaboration in the pursuit of 
this goal. 

The paper 3) Julian and I wrote in 1958 seems to be the only paper of the 
nearly 200 his bibliography contains that falls in the area of statistical and 
solid state physics. But it is far from his only contribution to the field. A 
number of the seventy students whose doctoral research was directed by 
Julian worked on theses in solid state and plasma physics and several more 
have gone on to apply tools and modes of thinking he developed in these 
fields. Thus, although Julian may not realize the degree to which his tech- 
niques and their extensions have pervaded the field, I am revealing nothing 
new to him when I report that field theoretic methods are extremely valuable 
for studying nonrelativistic many body systems. He and some others among 
you are likely to be more surprised by the fact that there has also been 
"spin-off" in the opposite direction, that is, that information about bizarre and 
unsuspected field theoretic phenomena have emerged from theoretical studies 
of superfluid helium films, superconductors, and magnetic materials such as 
RbMnF3, K2NiF4, and LiTbF4. 
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My talk is divided into three parts. The first few minutes are devoted to the 
language to which I referred. Since it says almost anything, without further 
specifications, it says almost nothing concrete. If any of you fail to recognize 
the words, just consider it a mystical incantation recited to exhibit part of the 
lore Julian generated and why it has permeated almost all of physics. 

The second part consists of a case h is tory-what  we have learned about 
interacting Bose fluids, in particular, liquid helium, and how these discoveries 
have elucidated the rich content of one field theory. I shall talk about 
discoveries concerning the behavior of such a system at and far below the 
temperature, To, at which it becomes a superfluid. 

The third part of the talk continues the discussion of helium, dwelling on 
aspects of that problem that cannot be even qualitatively explained without 
adding essentially new methods and ideas to the self-consistent "pertur- 
bative" techniques that work elsewhere. Even simpler problems that pose 
essential difficulties are noted. Common to them all is the absence of a simpler 
manageable model onto which they can be smoothly mapped. 

2. T h e  m e t h o d  

Suppose, for concreteness, we have an interacting boson gas characterized by 
the Lagrangian density 

h 2 
- ~ = ~ - ~  V ~  ÷ .  V ~  - / ~ ÷ ~  + ½ A ~ ÷ ~ ÷ ~  - j*qJ - j ~ ÷  - ~ i h ( ~ * ~  - ~÷~/,), 

where ~b(r) and ~b÷(r ') satisfy the canonical commutation relations, /~ is the 
chemical potential, j* a particle source, and A an interparticle interaction. For 
comprehensibility, the arguments of the variables have been eliminated; with 
a sufficiently concise implicit notation in which space time and spin indices of 
a matrix A have been suppressed, the formulas describe not only a four point 
contact potential, but a real non-local two-body interaction. Since explicit 
treatment of such features leads to equations festooned with indices and 
obscures the essential ideas, we shall restrict ourselves to the special case of a 
local four-field interaction when convenient. 

With this Lagrangian, the equation of motion is 

( 0 h2V2 ) 
- ih Ot 2 m  t~ ~b + A~b÷~b~b = j 

from which a functional equation for the action, W, can be generated by 
noting that with 
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h 8 w eWOp) = ~-8-~e , 

h ( i h O  
fi2 

T \  ~+2-mm v 2 + ~  eW 3a a a e w e w. 

The solution of  this equation yields 

exp W[jj*] f = ~ [ a a * ] e x p ( g f . ~ ( a a * ) d t ) .  
i 

From this action a calculational arsenal can be generated in which, with 

J -- (j, j*)(ilh) 

and 

~ - - -  (,k, ,k+), 

we have 

8W 
(~F(1)) = a J(1) 

82W 
0(12)  - a ] ( ] ) a ] ( 2 )  = ( (q / (1)qt (2) )+)-  (q t (1) ) (~(2))  

(see fig. la), 

as well as higher order cumulants or connected propagators defined by 

O(1 . . .  n) = 
6"W 

a J ( 1 ) .  • • 8J(n) "  

It is natural also to introduce vertex functions described in terms of the 
Legendre transform, X. Specifically, we have 

X = a [ _  f J ( 1 ) ~ ( 1 ) ]  = J(1), a ( ~ ( 1 ) )  - a ( g ' ( 1 ) ) t  w +  

82X 
F(12) = G- ' (12) --- Go'(12) - E 0 2 )  = 8 (~ (1 ) )8 (~ (2 ) ) '  

8 "X  
t O . . .  n )  = a ( ~ ( 1 ) ) a ( ~ ( 2 ) )  • • • a ( ~ ( n ) ) "  

/ 
(,~(i)) G (~2) 

(o) (b) 

i i 

2' 2~ -3 
G(123) 

(c) 
Fig. 1. Diagrammatic elements representing the mean value of the field and its cumulants. The 
circle represents  the three point vertex. 
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With a summation convention for repeated indices, we may write 

G(123) = G(11)G(22)G(33)F(123) (see fig. lc). 

Higher order "real physical" interactions are similarly related to higher 
order cumulants. The development of self-consistent perturbation theories in 
terms of these true propagators and, if desired, in terms of true interactions, 
follows simply and mechanically from the basic equations. 

Specifically, we obtain a self-energy 

8 8 + 

x[G(13) 8(1p(3)------~ + 8  (~(1))](~(1)) 

which gives rise to the terms which are depicted in fig. 2. 
From these equations the functional equations by which perturbation 

theory is generated, follow immediately. An uncondensed Bose system, in 
which (~(1))=  0, appears as a special case in which the terms described by 
figs. 2a, 2c, and 2e vanish. By contrast, in a highly condensed system, for 
example, a weakly interacting Bose gas in its ground state, the term described 
by fig. 2a dominates the one in fig. 2b and the term in fig. 2c dominates those 

(o) Mean F i e l d  (b)Extended Hortree-Fock 

x (,~ (1)> ss(23) G(12) ~ G(SI) 

(c) Cubic "Phonon" Interactions 

2 

8E(25) 
XG(]2)G(14)G(31) ~(~(4))8 (~(]11) 

(d) Quertic"Particle" Interactions 

4 

~T. (45) ST. (56) G ),G (]4) ~ ~ - - ~ - )  G (51) G (] 5) ~ )  (62) 

(e) Cubic-Quertic "Mixed" Interactions 

Fig. 2. Exact self-energy for a Bose propagator. The circles represent vertices and the square, the 
four point interaction. 
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in figs. 2d and 2e. With this approach, the condensed system in which 
G(ll)/l(gr(1))[2~ 1, occurs no less naturally than the "normal" uncondensed 
system. 

In short, the perturbation framework developed by Julian is superior to the 
conventional scheme in that: 

1) It allows for and "insists upon" the possibility for anomalous pro- 
pagators. This possibility arises naturally because the theory is phrased 
entirely in terms of "true", rather than "bare", propagators. 

2) It makes no "adiabatic" perturbative assumption, and thus allows 
naturally for self-consistent solutions. 

3) At no stage does it entail unphysical "unlinked diagrams." Their absence 
does not rest on a "Wick theorem" (which does not hold for operators that do 
not satisfy canonical commutation relations). 

In order to make the framework less schematic, it is necessary to impose 
boundary conditions. In particular: 

1) To discuss the ground state of a relativistic field theory, the differential 
equations must be supplemented by positive frequency boundary conditions. 
These conditions, and how to incorporate them with a Euclidian formulation 
were explained by Julian in another cryptic article4). 

2) To discuss systems in thermal equilibrium, the equations must be sup- 
plemented by 2) a periodic boundary condition in imaginary time3). This con- 
dition, which is tantamount to the fluctuation-dissipation theorem, seems to 
have acquired a name, the KSM condition, in a literature that is by now inscrutable 
to Kubo, Martin, and Schringer. 

3) To discuss non-equilibrium quantum systems, it is necessary to specify 
initial - not boundary conditions. The treatment of such quantum systems was 
first discussed by Julian 5) in 1961. Without equilibrium, there is no general 
connection between fluctuation and dissipation, and as a result more in- 
dependent functions must be determined. The subsequent developments of 
this approach 6) by many authors are not always valid. Specifically, the usual 
treatments hold only for special initial conditions, or after the system has 
evolved for a time long enough to eliminate most of the dependence on initial 
conditions. (Naturally, the existence of such a time and its value can vary 
from one property to another and from one system to another. In addition, 
some aspects of these conditions, e.g., the total mass and energy, remain 
forever.) With these treatments steady states far from equilibrium, e.g., a 
continuously pumped laser, can be analyzed. 

4) To discuss non-equilibrium classical systems, it is useful to introduce for 
each classical field 4' a second field, 8/&b. In the terms of two fields the 
analysis 7) of classical spins and of Navier-Stokes' fluids becomes simpler, 
clearer, and more systematicS). 
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5) Although a full treatment of non-equilibrium systems with arbitrary 
initial conditions by functional techniques has never been spelled out in the 
literature, it poses no problem. At short times one obtains complicated equations 
that describe the effects of both interactions and initial correlations in terms of 
"linked diagrams"9). 

6) Finally, Julian and some of the rest of you may also be amused to hear 
of some non-esoteric complications the non-equilibrium formalism masks. We 
have recently discovered that the theory does not forget, although users might 
like to, the fact that non-equilibrium steady states cannot be maintained 
without carrying off the heat produced by the work performed by external 
forces. Spatial boundary conditions, and the heat exchange at spatial boun- 
daries play a far greater role outside of equilibrium (and in nonlinear res- 
ponse) than they do in equilibrium (or linear response)J°). One illustration of this 
complication is the divergence of the term of order E 2 of the current fluctuations 
of an electron gas with impurities when there is no heat sink. 

3. A case s t u d y -  superfluid helium 

Below 2.2 K, liquid helium behaves very strangely: It is hard to contain, 
flowing through minute capillaries without friction; heat propagates through it 
like sound, and a temperature gradient produces a flow. To describe it 
phenomenologically, an extra variable, an irrotational "superfluid velocity," 
that does not appear in the Navier-Stokes' equations is needed. An additional 
equilibrium parameter, the "superfluid density" is also required. A two fluid 
model 11) which allows for persistent flow was developed by Landau, who 
placed great stress on the elementary excitation spectrum of helium, with 
phonons and rotons (see fig. 3). 

The Landau picture did not emphasize the Bose nature of 4He and its 
relation to superfluidity. Indeed it seems that the Russian school anticipated 
that 3He might also be superfluid. The importance of Bose condensation and 
its implications for macroscopic quantization of vorticity were first realized 

Fig. 3. Energy-momentum relation for excitations of superfluid helium as determined by neutron- 
scattering experiments. 
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by Onsager and emphasized by Feynman ~2) in the early 50's. The connection 
of this picture with states in which (gt) # 0 seems first to have been noted in 
the work of Bogolyubovt3). By the mid-1960's it was generally recognized that 
below the transition temperature, the phase of the condensate (gt(r))-- 
X/no(r) exp(i$(r)) should be associated with the irrotational superfluid velo- 
city potential, that is, 

Vs(r) = (h/m)Vck(r) (2.1) 

and the fraction of particles in the macroscopically condensed mode with 
no(r)/n [where n is the density of particles]. That no(r) differs from the 
superltuid density, n~(r), measured in heat propagation and rotation experi- 
ments described by energy and current correlation functions, had been made 
clear by derivations of the two fluid model and other properties of helium'4). 
These derivations identify many of the measurable parameters with the 
vertices described in the previous section of this paper. With condensation 
and quantization, superfluidity may be easily understood. 

Far below Tc, it was possible to derive the properties described in fig. 4, and 
to understand why, although the Landau criterion, a necessary condition for 
superfluidity, could be illustrated in fig. 3, this criterion was less essential than 
condensation. The listener who finds this statement mysterious should reflect 
on the modification of the excitation spectra, low temperature specific heat, 
condensate fraction, and superfluid density of superfluid 4He when it contains 
a small concentration of 3He impurities. 

The crosses on the ns curves in fig. 4 are schematic. They are intended to 
show that ns is easily measured but that no is not. Indeed, although estimates 
for no/n at T = 0 of about - .08  have existed for some time, the first fairly 
reliable measurement of no was made only last year. This measurement by 
Woods and Sears ~5) is represented by the single cross on the no/n curve. 

To all orders in perturbation theory, for low frequencies, to, wave numbers, 

i I 
n'In 

!I~ . 

O(T 4 ) 

/ /  . . . . . .  ~ (- AT/Tc )u 

~ T/Tc 1.0 

Fig. 4. Condensate fraction and superfluid fraction of helium as a function of temperature. 
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q, and temperatures,  T, it is possible to prove that the Fourier  t ransform of 
the field correlation function obeys the relation 

.,.+/r~r~xl~ ~ no m2c2 1 
F.T. i~t(t)([q,(rt), Ip ~uuJl! ~ ~ C2q2__ 002, (2 .2 )  

where c 2 = (dp/dn) and n s ~  n. Thus,  at long wavelengths and low frequencies,  
the Bose gas has phonons.  It is also possible to show that, for  small momenta,  
p, the momentum distribution, n(p) is given by 

n(p) ~- no(T)[8(p)+ kBTm mc ], 
h3p2ns(T) + 2 ~ n p  J (2.3) 

-- / d3pn(p)" n 

These important  results can be qualitatively explained in the following man- 
ner. The classical equipartition theorem holds for  long wavelength excitations 
and implies that 

~mns(v 2) ~ ½kaT. (2.4) 

The connect ion between vs and the phase ~b implies that 

-~2mn~qE(dp 2q) = kaT, (2.5) 

and the relation 6q~ - X/n0 i&b yields 

(~b+ O)p no kaTm 
- n---~ ~ "  (2.6) 

The connect ion between the mean classical energy kBT and the mean quan- 
tum energy cp[(e cp/kBr- 1)-1+ ½] is the source of the last term in (2.3). 

The phase fluctuations associated with the Goldstone mode, that must be 
present  because when (q,)= V~n0e i~ ~ 0 states with differing phase ~b are 
degenerate,  have far-reaching consequences  for condensed Bose systems. 

For  example,  in terms of the "inverse stiffness" 

K~ I= - kBTmlhZn~ (2.7) 

which has the dimension of (length) n-2 where d is the spatial dimension of the 
system, we may infer that 16) 

(~O+(0)~O(r)) - X/n~b) e-i*t°)X/n0(r) e i*(r) 

n0(e  -i4'(°) e i4'(r)) - -  no e -((6(0)-'/'(r))2)/2 

exp[ r ddq 1 . rJ - j (--~--~) K----~ e lq (2.8) 
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which yields for various spatial dimensions, d: 

d {e i4'(°) e -i¢~(r)) Implication 

I e x p [ -  K~-lr] 
2 (r) - t2,r ' r '  

3 1 - e x p [ -  (4~rKsr)-I] 

4 I - e x p [ -  (2¢r2Ksr2) -I] 

No long range order 

No long range order but infinite 
correlation range for low T 
(Ks--> o~) 
Long range order 

Long range order 

(2.9) 

These qualitative results are borne out by more careful investigations. The 
conclusions for (d = 2) are probably the most interesting since they imply that 
two dimensional Bose systems (i.e., helium films) undergo a phase transition 
to a state with an infinite correlation length but no long range order. We shall 
return to this conclusion after some brief comments on the behavior of bulk 
helium near T¢. 

4. Systems with no simple counterpart 

It is standard lore among physicists that the only exactly soluble problem is 
the harmonic oscillator (and by extension, the only approximately soluble 
problems are those that can be studied by perturbing the oscillator). Julian has 
done more than his share to contribute to this rule, reducing the study of 
angular momenta to the oscillator ~6) and treating the hydrogen atom and its 
Stark effect in terms of angular momentat7). Indeed the hand-waving general- 
ist might claim that all the self-consistent theories discussed to this point in 
this lecture can be put into one-to-one correspondence with theories of 
weakly coupled oscillators (some of which are spontaneously displaced) and 
that the great advances in condensed matter physics in the past decade have 
come from understanding problems for which no such one-to-one mapping 
occurs. 

In a very deep sense, the most amazing and striking features of continuous 
phase transitions are connected with the absence of such a one-to-one 
mapping onto a set of weakly interacting excitations. The behavior of classes 
of systems with different Hamiltonians becomes identical at the transition 
point because,  in the asymptotic limit that characterizes the transition, a 
non-trivial non-oscillator like "fixed-point" Hamiltonian describes the 
dominant features. There are, of course, many allusions to fixed-points and to 
the disappearance of certain parameters in asymptotic limits throughout the 
field theory literature of the 1950's and 60's. Much occurs under the label, 



80 p.c. MARTIN 

"renormal izat ion group."  However ,  our understanding of the behavior  of 
physical  sys tems at their transition temperatures ,  where even self-consistent 

perturbat ion theory totally fails, really commenced  with the work of Leo 
Kadanoff  ~8) in 1966, and the problem was essentially unravelled by Kenneth  

Wilson ~9) in 1971 and 1972. 
I shall not a t tempt  to summarize  here the ideas behind "renormal izat ion 

group"  techniques that Wilson used to explain critical phenomena.  They are 
discussed in ref. 19c. Let  me mention,  however ,  one relevant  observat ion:  

Both Leo Kadanoff  and Ken Wilson, who made those advances ,  were deeply 
imbued with Schwinger-style physics.  Each did their undergraduate  work and 

each spent several  additional years  at H a r v a r d - K a d a n o f f  as a graduate 

student,  and Wilson as a member  of the Society of Fellows. 
Suffice it to say that through their work and the work of many  others we 

know that Bose sys tems which undergo continuous phase transitions to 
condensed states have singular propert ies  at Tc which depend o n l y  o n  t he  

d i m e n s i o n ,  d ;  they are complete ly  independent  of the interaction. Moreover ,  
essentially all the leading asymptot ic  measurable  propert ies  of these sys tems 

can be character ized in terms of two accurately calculable numbers ,  the 
critical exponents ,  /3 and v, defined in fig. 4. The best value 2°) for  v-~ 0.670 
has been verified rather  precisely. The prediction, /3 = 0.346, is more difficult 

to study experimental ly  for the reason noted earlier. /3 is related to the 
parameter ,  ~7, defined in terms of the asymptot ic  behavior  for small k of the 

Fourier  t ransform of the order pa ramete r  correlation function G ( k )  ~ k 2., by 

17 = 2 - d + 2 f l / u  = 0.0335. (3.1) 

In field theories where the broken symmet ry  is described not by a single angle 
~b, but by a symmet ry  group 0(n), with n ~  1, the critical exponents  have 

different values. In particular,  theories in which n = 3, 4, etc. with non- 
Abelian symmet ry  groups,  have no phase transitions in two dimensions2~). 

Because there is a close relation between the propert ies  of field theories for  

Bose particle fields with 0(n) symmet ry  in two dimensions and lattice gauge 
field theories with 0(n) symmet ry  in four  dimensions,  the asymptot ic  behavior  
of a two-dimensional  Bose gas and of quantum elec t rodynamics  on a lattice 
are closely connected.  Specifically the fact  that correlations in a Bose gas fall 
off algebraically at low tempera tures  and exponential ly at high tempera tures  is 
related to the fact  that on a lattice, e lec t rodynamics  results in massless  
photons  when the coupling is weak but to "conf inement"  when the coupling is 
strong. Likewise,  for  n > 2 there are no " low- tempera tu re"  long range cor- 
relations in two spatial dimensions,  and when n > 2 in a non-Abelian gauge 
field theory there may always be "conf inement ."  This connection,  which has 
been hypothes ized and examined by Wilson, MigdalZt), and Polyakov 22) is 
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ec ~ e ~r - Ks 1 

(a] (b) 

Fig. 5. Parallel plots of the mass of "photon" excitations as a function of the coupling constant 
and of the inverse coherence length of two-dimensional helium as a function of the temperature. 

discussed at some length in a recent review by Kadanoff25). The picture in fig. 
5, describing the connection,  is contained in Wilson's 1974 article. It may 
remind Julian of a paper 26) he wrote fifteen years ago. 

While these arguments make the two-dimensional Bose gas below Tc a 
system worthy of study not only by those concerned with helium films and 
similar materials, a full discussion of the results of Kosterli tz and Thouless 27) 
and of Jos6, Kadanoff,  Kirkpatrick, and Nelson :8) cannot  be carried out here. 
I would, however,  like to describe in some detail one striking and directly 
verifiable prediction Nelson and Kosterlitz discussed in a recent  letter29): ns 
does not vanish for T < Tc in two dimensions even though no does. In fact, 
ns/T or Ks is not only finite and nonvanishing below T¢ but it remains 
nonvanishing, decreasing to the value 2Hr at T¢ and then dropping abruptly to 
zero. This value is universal even though Tc and ns vary with the thickness of 
the film. Steps to test this prediction are currently underway at Cornell3°). 

As  a result of  this talk at UCLA,  L Rudnick was made aware of  the 
predictions in this paragraph. Immediately afterward he undertook a re- 
analysis o[ his earlier data which had never been compiled in this fashion, and 
discovered that the agreement was excellent3~). Even i[ this review has no other 

consequences, it can lay claim to one very practical contribution to scientific 
communication. 

Nelson and Kosterli tz begin with the Hamiltonian 

f [ (  ] H dr  ½K m y01V x 12/(2~rh) ~ (3.2) k--T = -ff vs - m 2 In vs 

in which K is a "bare"  stiffness constant. The second term in this Hamil- 
tonian describes the vorticity and is multiplied by a "ba re"  vorticity chemical 
potential, In y0. The superfluid velocity, in turn, is described by 

1 , vs= v ,÷ (e× v) f d2r'to(r')(r I - lr ), ,3.3) 
where to is an integral-valued vorticity field. They rewrite the Hamiltonian in 
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the form 

H f fd2rdZr ' Ir-r'l k--T - 1 K dZr(~7(~) 2 -  7rK ~a 7 to(r)to(r') In a 

where a, a vortex core radius has been explicitly inserted. 

- - - l n  y f -~ to2(r). 

(3.4) 

Clearly, when f(to(r))d2r = 0, the Hamil tonian is the same as that for  a 

two-dimensional  neutral Coulomb gas (which has finite energy). The renor- 
malized stiffness constant  or ns is r igorously given by 

m 2 f 
K~ 1 = -~r J d2r(v~(r)v~(O))" (3.5) 

The vor tex correlation function in eq. (2.13) (to(r)to(0)) is given approximate ly  

by 

(~(r)to(0)) - - 2y 2 e x p ( -  27rK log r). (3.6) 

The correlat ion is at t ract ive;  it is proport ional  to the square of the vortex 
density or concentrat ion;  there are two orientations for  each pair; and it 
varies as the exponential  of  the intervortex force. From eqs. (3.3), (3.5), and 

(3.6) they conclude that 

K;' KC~,~?+47r3y2{dr(r~3-zr~ = + ~(y4). (3.7) .~ a \a /  
a 

The implications of this equation are convenient ly studied by renormalizat ion 
group techniques.  Specifically in this way the equation can be shown to 
describe the fact  that as the effective length scale, l, is increased 

dy(/)  
dl - y ( l ) [ 2 -  ~rK(/)], 

(3.8) 
dK- l ( l )  _ 47r3y2(l). 

dl 

The sys tem is stable, and the vor tex concentrat ion decreases  with increasing l 
and the integral in eq. (2.16) is convergent  when 4 - 2 K T r  < 0 ;  the sys tem is 
unstable to vortex product ion when K - t >  ¢r/2!! 

The flows associated with eq. (3.8) are depicted in fig. 6. F rom eqs. (2.9) and 
(3.6) it follows that the field correlat ions reflecting the spin waves ,  

(ql+qj)- r_(2~K,) 1 (3.9) 

die off slowly at low T, while the vorticity correlations,  reflecting the bound 
vortex pairs, 

( t O O )  ~ r - z K ' ~  (3 .10)  
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2 

Fig.  6. F l o w s  o f  t he  v o r t e x  c h e m i c a l  p o t e n t i a l  a n d  the  t e m p e r a t u r e  a s  t he  l e n g t h  s c a l e  i n c r e a s e s .  

die off rapidly. These  correlation ranges shrink and grow, respect ively,  and, at 

the critical temperature ,  with K = 2/~r, 

(¢+¢)Tc ~ r-I/4, 
(3.11) 

(~¢-O)Tc ~ r-4. 

A table giving the values of the critical exponents, 17 and v, as a function of 

dimension for systems with discrete (n = I) symmetry (e.g., the Ising model or 

a gas-liquid transition); Abelian (n = 2) continuous symmetry (e.g., our Bose 

gas system or a planar ferromagnet); and one non-Abelian (n = 3) symmetry 

follows: 

~: -~ ( m a s s )  -1 - (AT)-"  

n = l  

v rs d 

½ o 4 

.630 ~ .031 3 

1 1 ~ 2 

(~b+(r)~b(O)) ~ r-d+2-~ 

n =  n = 3  
u ~ d v 71 

o i ½ o 
~- .670 ~ .033 ~ .705 ~ .034 

oo. a n o  t r a n s i t i o n  

n o  t r a n s i t i o n  
* ~ ~ exp[ c(  A T) -I/2] 

In support  of  my claim that condensed matter  offers unparalleled opportunit ies  
for  studying field theories,  I cannot  resist pointing out that condensed mat ter  
theorists have even found a way to enter and exper iment  in the fourth 
dimension. Exper iments  on LiTbF4 test  32) the results for d = 4 where the 
asymptot ic  correct ions to free fields are logarithmic. 

The results discussed to this point in this section are intrinsically non- 
perturbat ive.  Never theless ,  for technical reasons  connected with ap- 
proximat ions  in a variable dimension many  studies of  the asymptot ic  proper-  
ties of  the states onto which sys tems map at the critical point have made use 
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of many per turbat ive field theoretic techniques. (Others, for example ,  the 
" rea l - space"  methods,  have not.) As a result, critical phenomena  have pro- 

vided many-part icle  physicists  with a set of new but not complete ly  foreign 
challenges. In the remainder  of  this section, I would like to turn to a problem 

that I fear  offers a more formidable  challenge. That  is the problem of chaos  or 
turbulence.  On this matter  I like to recall the s ta tement  33) attributed to Sir 

Horace  Lamb  in 1932: 

"I am an old man, and when I die and go to heaven, there are two matters on which I hope 
for enlightenment. One is quantum electrodynamics and the other is the turbulent motions of 
fluids. About the former I am really rather optimistic." 

Viscous fluids at rest, or subjected to weak mechanical  or thermal s tresses 

relax to a well defined state when they are disturbed f rom equilibrium. In this 
respect ,  they and simpler mechanical  dissipative sys tems behave in time, in a 
manner  similar to the way in which coupling constants  flow when the scale is 
changed. They approach fixed points. When the external stress is sufficiently 

large, however ,  the opposi te  phenomenon  occurs.  The "fixed point"  or 
t ime-independent  solution becomes  unstable and the sys tem exhibits erratic 

t ime-varying behavior  though there are no t ime-varying external parameters .  
Exact ly  how the system behaves  depends on the precise initial conditions and 
only statistical aspects  of the behavior  are predictable.  Sys tems with very 

similar initial conditions behave  entirely differently at much later times. It is 
not unreasonable  to say that such sys tems are character ized by a "one- to-  
m a n y "  m a p p i n g - a  mapping which is considerably more perverse  than even 
the "many- to -one"  mappings that character ize fixed points34). 

Not  surprisingly most  of the research by physicists  on the propert ies  of 

turbulence has been directed at the statistical propert ies  of strongly and 
randomly forced fluid systems.  In such sys tems there is a one-to-one mapping 
between a noisy stirring force and a noisy fluid spectrum. However ,  near  the 
onset  of  turbulence,  the internal noise that develops  does n o t  depend upon 
the external  noise and even in fully developed turbulence (which is difficult to 
produce in the laboratory)  the equivalence of the short distance internal 
fluctuation spectra  produced by strong ' coheren t"  (noise-free) stresses and 

random (noisy) stresses is based largely on faith. 
In order to make this point let me turn f rom the sublime to the concrete  and 

call your  at tention to the simple mechanical  sys tem described in fig. 7 and 
actually constructed some years  ago by Louis Howard  and WiUem Malkus 35) 

at M.I.T. 
The equations this simple mechanical  sys tem obeys  were first analyzed in a 

very beautiful paper  by Ed Lorenz  36) that did not receive the attention it 
merits for  many  years.  He  introduced these equations after  studying certain 
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Fig. 7. A simple mechanical model that exhibits chaotic behavior. 

numerical solutions to a truncated set of equations for a convecting fluid. 
Similar equations are now believed to play a role in modelling the earth's 
magnetic field and its reversals. Very briefly, when the water flows at a slow 
steady rate into the partitioned water wheel  with a screened base, it leaks 
through the screen and, because the bearing is frictional, the wheel does not 
turn. When the rate, r, is increased to a value larger than unity, the weight of 
the water at the top of the tilted wheel  is sufficient to overcome the friction 
and the wheel  turns at a uniform rate either clockwise or counterclockwise 
("convection").  Finally, when the water enters steadily but at a sufficiently 
fast rate, the wheel  may turn too rapidly; the filled (heavy) partition of the 
wheel may then "overshoot" the bottom and rise partially, the unfilled (light) 
partition directly opposite it having insufficient time under the faucet to 
acquire sufficient counterweight. The wheel  then turns in the opposite direc- 
tion, moving rapidly to a different position, where, once again a reversal takes 
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place. Lorenz  showed that the dynamics  of this system is, in a deep sense, 

chaotic.  Although unpredictable in detail,  the statistics of the motion are well 
defined and measurable ,  and much can be said about  them. In recent years 
mathemat ic ians  and physicists  have begun to study the propert ies  of such 

equations.  Using light scattering techniques that were developed and employed to 
study dynamic critical phenomena ,  physicists  have begun to measure  carefully 

the noise spectra  of  real fluid sys tems that undergo transitions to periodic and 
chaotic flows37). Exact ly  how much that is generally applicable can be learned 

f rom these studies is hard to say. In any event ,  I think you will find the wealth of  
information contained in the Lorentz  equations thought-provoking and urge you 

to check that one stat ionary solution 

v = O ,  0~=0,  0 2 = 0  

is stable only for  0 < r < 1 : to verify that a second 

v = O~ = + X / b ( r -  1), 

02=r-1 

is stable only for 

o'(cr + b + 3) 
1 < r < r v -  ~ r - b -  1 

the marginally stable modes  at rv having frequencies,  

WT= --L o ' - b -  

and then to look at Lorenz ' s  paper  to find'out about  the chaotic behavior  that 
occurs  for  a range of values above  rT although not at all very large values of r. 

In this talk I have probably  undertaken too large a task. I have tried to 

review for Julian and for an audience comprised dominantly of field theorists 
how some of the ideas and methods  to which Julian may lay claim have been 
extended in the field of condensed matter  physics and how that field has 
evolved.  I have tried to stress recent  deve lopments  in directions of particular 
interest to this audience. The liquid helium propert ies  I discussed exhibit one 
of several  areas in which a confluence of concepts  f rom particle and conden- 
sed matter  physics has recently occurred.  Others include topological sin- 
gularities (from dislocations and textures to monopoles  and instantons) and 
exactly soluble models  (from the Lutt inger a n d ' L u t h e r  models to the Sine-  
Gordon equation and Thirring model). Finally, I have briefly discussed an 
unresolved fascinating problem and tried to explain why it is difficult. 
Exper ience suggests that progress on this problem may also be widely 
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applicable in field theory but it is so different from the other problems we 
have resolved that the potential connections are difficult to visualize3S). 

Above all I have tried to document the profound influence that Julian 
Schwinger has had, through his teaching as well as his papers on one of the 
major fields of physics with which his name is not ordinarily associated. I 
hope I have done justice to the case. 
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Abstract I correct some recent misunderstandings about, and amplify some details
of, an old explicit non-geometrical derivation of GR.
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Long ago [1], I presented a compact derivation of GR from an initial free flat space
long-range symmetric spin two field: Since special relativity replaces the matter
Newtonian scalar mass density by its stress-tensor, a tensor must likewise replace
the scalar “potential”. Consistency then forces this field to couple to its its own stress
tensor if it is to allow any matter coupling: it either stays free- and dull- or its stress-
tensor must be added to that of matter as the field’s source. This bootstrap was then
explicitly performed in GR by exploiting its first derivative, cubic, L ∼ pq̇ − qp2,
rather than its more familiar second-order non-polynomial L(q), form. The process
was also illustrated in the simpler, but precisely analogous, context of deriving (non-
linear)YM from a multiplet of free Maxwell fields, which must likewise self-couple to
accept non-abelian sources. Subsequently, two extensions of [1] were found: First, it
was generalized to allow starting from any constant curvature background, where spin
2 is consistently defined [2]. The cosmological term could then also be included in
the bootstrap. Second, a tree-level quantum derivation [3] (later generalized to include
SUGRA [4]) provided an alternate framework, where the irrelevance of inherent field
redefinition ambiguities and freedoms is particularly clear.
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642 S. Deser

Recently, however, there have appeared lengthy, (if not mutually consistent) cri-
tiques [5,6] of [1]. This note addresses and resolves their concerns, both conceptual
and technical, by expanding on the, perhaps too concise, original. For orientation, we
start with the list of main worries and the short answers.

1. The self-coupling idea, while appealing, does not work out concretely; also,the
gravitational stress-tensor is ill-defined.

These worries stem from too narrow a view of self-coupling and a too broad one of
non-uniqueness. Self-coupling means that the right-hand side of the original free-field
equations, in one of its possible incarnations, acquires as a source the field’s own total
stress tensor. This will be (re-)derived below, using the equivalent but more convenient
Ricci, rather than Einstein, form of the equations. A related complaint was that the
coupling did not appear in the naive, hµνTµν , form in the action. True, but irrelevant:
to repeat, the only physical requirement is that, in the field equations, the full Tµν

become the source of the originally free field; the action’s sole job is to yield these,
and it does—see (13) below. Non-uniqueness of the stress tensor: it is indeed always
undetermined up to identically conserved super-potentials. Further, while the one place
where this non-uniqueness is relevant, namely when the stress tensors become local
sources, is here, it is also precisely here that all such ambiguities can be absorbed, as
we shall see, by harmless field redefinitions. Another non-uniqueness pseudo-prob-
lem is that free gauge fields of spin >1 cannot possess (abelian) gauge-invariant stress
tensors; this truism actually turns out to be a plus: only full GR recaptures the initial
invariance, but now in non-abelian form, at the (satisfactory!) price of forfeiting any
physical significance for its own stress-tensors, a fact also known as the equivalence
principle. The only restriction on the initial stress-tensor(s) is that they be symmetric
so they can drive the graviton’s symmetric field equations; further, only they can define
angular momentum.

2. The GR action’s non-analytic dependence on the Einstein constant κ cannot be
obtained perturbatively starting from the, ∼ κ0, free field.

This worry will be easily dispatched in its place; simply, the final 1/κ2 depen-
dence arises from a constant field rescaling of the (analytic) result to connect the field
theoretical and geometrical variables’ dimensions.

3. The theory’s second derivative order was an assumption.

This is as true here as it was for Einstein and Newton! Formally, GR is but one
of an infinite set of geometrical models, with as as many derivatives as desired (e.g.,
L ∼ RDn R) . . . Observation determines the initial kinematics, excluding (to lead-
ing order at least) scalar-tensor mixtures and higher derivative terms. Most rele-
vant for us, second derivative order together with infinite range (any finite range
makes qualitatively wrong weak-field predictions [7–12]) means that a gauge invariant
(i.e., ghost-free) massless tensor field is the initial, special relativistic, mediator of
matter–matter forces (their attractive sign then being a built-in bonus [13]).

4. Total divergences and surface terms are important.
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Yes, but not to obtain Euler–Lagrange equations from an action. Surface terms are
indeed physically useful in GR, but not because of their presence in its action, contrary
to myth.

5. As (correctly) noted in [5], there have many other attempts at deriving GR from
self-coupling, none of which succeeded: their approach being purely metric, the
infinite summations needed to reach non-polynomial metric GR have never been
performed. Instead, they were replaced by such statements as “what else could it
sum to?” and “the sum must be general covariant, ergo GR”.

Agreed. In particular the covariance of the final result, in the strong sense of being
achieved without involving an external metric, does emerge here without being pos-
tulated; likewise, “summation” is trivial.

For maximum clarity, we focus on the logic, with a minimum of formalism and
indices; that can be found in [1]. The flat space, first order, Fierz–Pauli massless spin
2 Lagrangian is

L2 = hµν(∂α�α
µν − ∂µ�α

αν) + ηµν(�α
µν�

β
βα − �α

βµ�β
αν) (1)

The two independent variables are the Minkowski tensors (hµν, �α
µν), with dimension

(L−1, L−2) as befits their “(q, p)” nature; η is the Minkowski metric. The resulting
first order field equations

∂α�α
µν − 1

2
(∂µ�α

αν + ∂ν�
α
αµ) = 0 (2)

∂αhµν − ∂µhνα − 1

2
ηµν∂αhβ

β = 2�α
µν − ηα

µ�
β
βν − ηα

ν �
β
βµ (3)

are equivalent to

2RL
µν(h) ≡ ∂β∂β

(
hµν − 1

2
ηµνhα

α

)
− ∂ν∂αhµα − ∂µ∂αhνα (4)

in terms of the linearized Ricci (rather than Einstein) tensor.1 [Our hµν is related to
the usual covariant metric deviation hµν by hµν = −hµν + (1/2)ηµν(hαβηαβ)]. Note
however that our hµν is NOT the start of an expansion, but is the total deviation, from
its Minkowski value, of the full contravariant metric density.

The full GR, Palatini, Lagrangian we want to derive is

L E H (G, �) = κ−2Gµν Rµν(�)

= κ−2Gµν(∂α�α
µν − ∂µ�α

αν + �α
µν�

β
βα − �α

βµ�β
αν); (5)

G is the contravariant metric density, � the (independent) affinity. The chief differences
between (1) and (5) are that there is no background space dependence in (5), and that

1 For comparison, the first order vector theory equivalents are the initial, L1 ∼ Fcurl A − F2 and LY M ∼
L1 + gF AA ∼ pq̇ − p2 + pq2 as final, forms; they are spelled out in [1].
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it is cubic (rather than quadratic) in the fields. This latter property is its compelling
attraction for us, in contrast to the second order metric formulation’s non-polynomial
dependence on both the metric and its inverse through the affinity’s metric dependence.
The GR equations, from varying G and � independently, are

Rµν(�) ≡ ∂α�α
µν − 1

2
∂µ�α

αν − 1

2
∂ν�

α
αµ + (�α

µν�
β
βα − �α

βµ�β
αν) = 0, (6)

−∂αGµν + Gµν�λ
λα − Gµρ�ν

αρ − Gνρ�µ
αρ = 0, (7)

and reduce to Rµν(G) = 0 upon inserting �(G) ∼ G−1∂G into (6). Note that the
geometrical variables’ dimensions are (G ∼ L0, � ∼ L−1). We will see that the
non-analyticity of (5) is purely apparent, being removable by constant rescalings. It is
useful for the sequel to express this desired answer in flat space notation by expanding
(5) in terms of G = η + κh (κ restores h’s original dimension L−1) and to restore its
old dimension to �, by defining � = κ−1�; we now drop all indices to concentrate
on the form and logic:

L E H (h, �) = κ−1η∂� + (h∂� + η� �) + κh� �. (8)

The first term being an irrelevant total divergence, κ now appears quite tamely in the
rest of (8), disposing nicely of that worry. The middle terms are precisely the quadratic
free field Lagrangian (1). The cubic term, κh�� ≡ κhS is of course supposed to sup-
ply the heralded self-coupling of h to its stress tensor in the field equations (as we will
check it does), the very reason S is not itself the stress tensor. Given this flat space
form of GR, it remains to show that the cubic term in (8) is the right choice: does it
provide just the right (whatever that is) stress tensor source of the free field—middle
terms’—field equation? The justification has three parts: first obtaining the stress ten-
sor(s) of the middle terms’ action, then showing why its non-uniqueness (including
abelian gauge-variance) is harmless, and finally verifying that the chosen cubic term
(the one that agrees with L E H ) indeed produces this stress tensor.

First, the stress tensor: we use the Belinfante prescription: write the flat space action
I covariantly with respect to a fictitious auxiliary metric (for us a contravariant density)
γ µν , vary the resulting action with respect to it, then set it back to ηµν in the resulting
variation. The result is a symmetric on-shell, trace-shifted, stress tensor. In (1), there are
two places to covariantize: the obvious η�� → γ�� and h∂� → h D(γ )�, where
D is the covariant tensor derivative involving the auxiliary Christoffel symbols ∼
(∂γ ) to first order. Manifestly,

T µν ≡ Tµν − 1

2
ηµν tr T ≡ (δI/δγ ) |γ=η ∼ ∂(h�) + ��. (9)

Next (non-)uniqueness: to the Belinfante tensor (of any system) may be added any
identically conserved super-potential

�µν = ∂α∂β H[µα][νβ] = �νµ, ∂µ�µν ≡ 0, (10)
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where H is any 4-index function with the symmetries of the Riemann tensor (to keep
� symmetric). [These contributions may also be thought of as the result of adding
non-minimal couplings ∼ Rαβγ δ(γ )Fαβγ δh, � to the original action (before varying
γ )]. But identical conservation of � means precisely that it can be absorbed by field
redefinition: the usual linearized Einstein equation is of the form

GL
µν(h) = Oµναβhαβ, ∂µOµναβ ≡ 0. (11)

Hence any identically conserved source can simply be removed by a corresponding
shift in h. [The initial Belinfante part, not being a super-potential, cannot be shifted
away]. Finally, we must show that the cubic term in (8) indeed yields the desired field
equation, with the stress tensor (9) as source of the free field. That is, we want to verify
that the full field equation reads RL

µν(�(h)) ∼ κT µν . The Einstein equations (6,7)
are, dropping the overbars and expanding G,

∂� + κ�� = 0, � = ∂h + κh�. (12)

Differentiating the second and inserting it into the first equation gives precisely the
promised second order form

∂2h = κ[∂(h�) + ��] ≡ κ T̄ . (13)

More explicitly, the left side is RL
µν(�(h)), while the right is just the T µν of (9) if (and

only if) we use the cubic term of the GR action (5). Equally important, the bootstrap
stops here because this cubic term in the action does not generate any further (cubic)
stress-tensor correction, being both η-and derivative-independent. This completes our
exegesis.

Sources: it is rather obvious that any matter action must couple to the final GR
through its variables (G, �) or G alone, and do so covariantly in order to respect the
GR equation’s Bianchi identities by having an (on-shell) covariantly conserved metric
variation. But this is just Noether’s theorem: any system’s stress-tensor, namely the
variation of its action with respect to the metric that makes it invariant, is covariantly
conserved by virtue of its own field equations, irrespective of the equations (if any),
satisfied by the metric.

In summary, I have annotated the steps involved in the non-geometric derivation
[1] of GR from special relativistic field theory as the unique consistent self-inter-
acting system (13) extending the initial free massless spin 2. The main ingredients
were: computing the field’s standard Belinfante stress tensor, invoking field-redefini-
tion freedom to neutralize its non-uniqueness, performing a constant field rescaling
to relate geometric and field theoretic variables, and (most important) employing the
cubic, Palatini, first order forms to permit explicit, trivial, summation. It goes without
saying that this non-geometrical interpretation of GR, far from replacing Einstein’s
original geometrical vision, is a tribute to its scope.

Acknowledgments This work was supported by NSF grant PHY 07-57190 and DOE grant DE-FG02-
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